Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 22666 | 96.32% | 57 | 68.67% |
Jérôme Glisse | 528 | 2.24% | 5 | 6.02% |
Gustavo A. R. Silva | 113 | 0.48% | 2 | 2.41% |
Rafał Miłecki | 77 | 0.33% | 4 | 4.82% |
Alberto Milone | 57 | 0.24% | 1 | 1.20% |
Daniel Vetter | 30 | 0.13% | 1 | 1.20% |
Dave Airlie | 18 | 0.08% | 1 | 1.20% |
Kees Cook | 9 | 0.04% | 1 | 1.20% |
Christian König | 8 | 0.03% | 1 | 1.20% |
Sam Ravnborg | 7 | 0.03% | 1 | 1.20% |
Lee Jones | 6 | 0.03% | 2 | 2.41% |
Denis Efremov | 3 | 0.01% | 1 | 1.20% |
Tommi Rantala | 3 | 0.01% | 1 | 1.20% |
Mike Lothian | 2 | 0.01% | 1 | 1.20% |
Michele Curti | 2 | 0.01% | 1 | 1.20% |
Thomas Zimmermann | 2 | 0.01% | 1 | 1.20% |
Alexey Kodanev | 1 | 0.00% | 1 | 1.20% |
Benjamin Herrenschmidt | 1 | 0.00% | 1 | 1.20% |
Total | 23533 | 83 |
/* * Copyright 2012 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/math64.h> #include <linux/pci.h> #include <linux/seq_file.h> #include "atom.h" #include "evergreen.h" #include "ni_dpm.h" #include "nid.h" #include "r600_dpm.h" #include "rv770.h" #include "radeon.h" #include "radeon_asic.h" #define MC_CG_ARB_FREQ_F0 0x0a #define MC_CG_ARB_FREQ_F1 0x0b #define MC_CG_ARB_FREQ_F2 0x0c #define MC_CG_ARB_FREQ_F3 0x0d #define SMC_RAM_END 0xC000 static const struct ni_cac_weights cac_weights_cayman_xt = { 0x15, 0x2, 0x19, 0x2, 0x8, 0x14, 0x2, 0x16, 0xE, 0x17, 0x13, 0x2B, 0x10, 0x7, 0x5, 0x5, 0x5, 0x2, 0x3, 0x9, 0x10, 0x10, 0x2B, 0xA, 0x9, 0x4, 0xD, 0xD, 0x3E, 0x18, 0x14, 0, 0x3, 0x3, 0x5, 0, 0x2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x1CC, 0, 0x164, 1, 1, 1, 1, 12, 12, 12, 0x12, 0x1F, 132, 5, 7, 0, { 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0 }, true }; static const struct ni_cac_weights cac_weights_cayman_pro = { 0x16, 0x4, 0x10, 0x2, 0xA, 0x16, 0x2, 0x18, 0x10, 0x1A, 0x16, 0x2D, 0x12, 0xA, 0x6, 0x6, 0x6, 0x2, 0x4, 0xB, 0x11, 0x11, 0x2D, 0xC, 0xC, 0x7, 0x10, 0x10, 0x3F, 0x1A, 0x16, 0, 0x7, 0x4, 0x6, 1, 0x2, 0x1, 0, 0, 0, 0, 0, 0, 0x30, 0, 0x1CF, 0, 0x166, 1, 1, 1, 1, 12, 12, 12, 0x15, 0x1F, 132, 6, 6, 0, { 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0 }, true }; static const struct ni_cac_weights cac_weights_cayman_le = { 0x7, 0xE, 0x1, 0xA, 0x1, 0x3F, 0x2, 0x18, 0x10, 0x1A, 0x1, 0x3F, 0x1, 0xE, 0x6, 0x6, 0x6, 0x2, 0x4, 0x9, 0x1A, 0x1A, 0x2C, 0xA, 0x11, 0x8, 0x19, 0x19, 0x1, 0x1, 0x1A, 0, 0x8, 0x5, 0x8, 0x1, 0x3, 0x1, 0, 0, 0, 0, 0, 0, 0x38, 0x38, 0x239, 0x3, 0x18A, 1, 1, 1, 1, 12, 12, 12, 0x15, 0x22, 132, 6, 6, 0, { 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0 }, true }; #define NISLANDS_MGCG_SEQUENCE 300 static const u32 cayman_cgcg_cgls_default[] = { 0x000008f8, 0x00000010, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000011, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000012, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000013, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000014, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000015, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000016, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000017, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000018, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000019, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x0000001a, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x0000001b, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000020, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000021, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000022, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000023, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000024, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000025, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000026, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000027, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000028, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000029, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x0000002a, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x0000002b, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff }; #define CAYMAN_CGCG_CGLS_DEFAULT_LENGTH sizeof(cayman_cgcg_cgls_default) / (3 * sizeof(u32)) static const u32 cayman_cgcg_cgls_disable[] = { 0x000008f8, 0x00000010, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000011, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000012, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000013, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000014, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000015, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000016, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000017, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000018, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000019, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x0000001a, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x0000001b, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000020, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000021, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000022, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000023, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000024, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000025, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000026, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000027, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000028, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000029, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x0000002a, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x0000002b, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x00000644, 0x000f7902, 0x001f4180, 0x00000644, 0x000f3802, 0x001f4180 }; #define CAYMAN_CGCG_CGLS_DISABLE_LENGTH sizeof(cayman_cgcg_cgls_disable) / (3 * sizeof(u32)) static const u32 cayman_cgcg_cgls_enable[] = { 0x00000644, 0x000f7882, 0x001f4080, 0x000008f8, 0x00000010, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000011, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000012, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000013, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000014, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000015, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000016, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000017, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000018, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000019, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x0000001a, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x0000001b, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000020, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000021, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000022, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000023, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000024, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000025, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000026, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000027, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000028, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000029, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x0000002a, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x0000002b, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff }; #define CAYMAN_CGCG_CGLS_ENABLE_LENGTH sizeof(cayman_cgcg_cgls_enable) / (3 * sizeof(u32)) static const u32 cayman_mgcg_default[] = { 0x0000802c, 0xc0000000, 0xffffffff, 0x00003fc4, 0xc0000000, 0xffffffff, 0x00005448, 0x00000100, 0xffffffff, 0x000055e4, 0x00000100, 0xffffffff, 0x0000160c, 0x00000100, 0xffffffff, 0x00008984, 0x06000100, 0xffffffff, 0x0000c164, 0x00000100, 0xffffffff, 0x00008a18, 0x00000100, 0xffffffff, 0x0000897c, 0x06000100, 0xffffffff, 0x00008b28, 0x00000100, 0xffffffff, 0x00009144, 0x00800200, 0xffffffff, 0x00009a60, 0x00000100, 0xffffffff, 0x00009868, 0x00000100, 0xffffffff, 0x00008d58, 0x00000100, 0xffffffff, 0x00009510, 0x00000100, 0xffffffff, 0x0000949c, 0x00000100, 0xffffffff, 0x00009654, 0x00000100, 0xffffffff, 0x00009030, 0x00000100, 0xffffffff, 0x00009034, 0x00000100, 0xffffffff, 0x00009038, 0x00000100, 0xffffffff, 0x0000903c, 0x00000100, 0xffffffff, 0x00009040, 0x00000100, 0xffffffff, 0x0000a200, 0x00000100, 0xffffffff, 0x0000a204, 0x00000100, 0xffffffff, 0x0000a208, 0x00000100, 0xffffffff, 0x0000a20c, 0x00000100, 0xffffffff, 0x00009744, 0x00000100, 0xffffffff, 0x00003f80, 0x00000100, 0xffffffff, 0x0000a210, 0x00000100, 0xffffffff, 0x0000a214, 0x00000100, 0xffffffff, 0x000004d8, 0x00000100, 0xffffffff, 0x00009664, 0x00000100, 0xffffffff, 0x00009698, 0x00000100, 0xffffffff, 0x000004d4, 0x00000200, 0xffffffff, 0x000004d0, 0x00000000, 0xffffffff, 0x000030cc, 0x00000104, 0xffffffff, 0x0000d0c0, 0x00000100, 0xffffffff, 0x0000d8c0, 0x00000100, 0xffffffff, 0x0000802c, 0x40000000, 0xffffffff, 0x00003fc4, 0x40000000, 0xffffffff, 0x0000915c, 0x00010000, 0xffffffff, 0x00009160, 0x00030002, 0xffffffff, 0x00009164, 0x00050004, 0xffffffff, 0x00009168, 0x00070006, 0xffffffff, 0x00009178, 0x00070000, 0xffffffff, 0x0000917c, 0x00030002, 0xffffffff, 0x00009180, 0x00050004, 0xffffffff, 0x0000918c, 0x00010006, 0xffffffff, 0x00009190, 0x00090008, 0xffffffff, 0x00009194, 0x00070000, 0xffffffff, 0x00009198, 0x00030002, 0xffffffff, 0x0000919c, 0x00050004, 0xffffffff, 0x000091a8, 0x00010006, 0xffffffff, 0x000091ac, 0x00090008, 0xffffffff, 0x000091b0, 0x00070000, 0xffffffff, 0x000091b4, 0x00030002, 0xffffffff, 0x000091b8, 0x00050004, 0xffffffff, 0x000091c4, 0x00010006, 0xffffffff, 0x000091c8, 0x00090008, 0xffffffff, 0x000091cc, 0x00070000, 0xffffffff, 0x000091d0, 0x00030002, 0xffffffff, 0x000091d4, 0x00050004, 0xffffffff, 0x000091e0, 0x00010006, 0xffffffff, 0x000091e4, 0x00090008, 0xffffffff, 0x000091e8, 0x00000000, 0xffffffff, 0x000091ec, 0x00070000, 0xffffffff, 0x000091f0, 0x00030002, 0xffffffff, 0x000091f4, 0x00050004, 0xffffffff, 0x00009200, 0x00010006, 0xffffffff, 0x00009204, 0x00090008, 0xffffffff, 0x00009208, 0x00070000, 0xffffffff, 0x0000920c, 0x00030002, 0xffffffff, 0x00009210, 0x00050004, 0xffffffff, 0x0000921c, 0x00010006, 0xffffffff, 0x00009220, 0x00090008, 0xffffffff, 0x00009224, 0x00070000, 0xffffffff, 0x00009228, 0x00030002, 0xffffffff, 0x0000922c, 0x00050004, 0xffffffff, 0x00009238, 0x00010006, 0xffffffff, 0x0000923c, 0x00090008, 0xffffffff, 0x00009240, 0x00070000, 0xffffffff, 0x00009244, 0x00030002, 0xffffffff, 0x00009248, 0x00050004, 0xffffffff, 0x00009254, 0x00010006, 0xffffffff, 0x00009258, 0x00090008, 0xffffffff, 0x0000925c, 0x00070000, 0xffffffff, 0x00009260, 0x00030002, 0xffffffff, 0x00009264, 0x00050004, 0xffffffff, 0x00009270, 0x00010006, 0xffffffff, 0x00009274, 0x00090008, 0xffffffff, 0x00009278, 0x00070000, 0xffffffff, 0x0000927c, 0x00030002, 0xffffffff, 0x00009280, 0x00050004, 0xffffffff, 0x0000928c, 0x00010006, 0xffffffff, 0x00009290, 0x00090008, 0xffffffff, 0x000092a8, 0x00070000, 0xffffffff, 0x000092ac, 0x00030002, 0xffffffff, 0x000092b0, 0x00050004, 0xffffffff, 0x000092bc, 0x00010006, 0xffffffff, 0x000092c0, 0x00090008, 0xffffffff, 0x000092c4, 0x00070000, 0xffffffff, 0x000092c8, 0x00030002, 0xffffffff, 0x000092cc, 0x00050004, 0xffffffff, 0x000092d8, 0x00010006, 0xffffffff, 0x000092dc, 0x00090008, 0xffffffff, 0x00009294, 0x00000000, 0xffffffff, 0x0000802c, 0x40010000, 0xffffffff, 0x00003fc4, 0x40010000, 0xffffffff, 0x0000915c, 0x00010000, 0xffffffff, 0x00009160, 0x00030002, 0xffffffff, 0x00009164, 0x00050004, 0xffffffff, 0x00009168, 0x00070006, 0xffffffff, 0x00009178, 0x00070000, 0xffffffff, 0x0000917c, 0x00030002, 0xffffffff, 0x00009180, 0x00050004, 0xffffffff, 0x0000918c, 0x00010006, 0xffffffff, 0x00009190, 0x00090008, 0xffffffff, 0x00009194, 0x00070000, 0xffffffff, 0x00009198, 0x00030002, 0xffffffff, 0x0000919c, 0x00050004, 0xffffffff, 0x000091a8, 0x00010006, 0xffffffff, 0x000091ac, 0x00090008, 0xffffffff, 0x000091b0, 0x00070000, 0xffffffff, 0x000091b4, 0x00030002, 0xffffffff, 0x000091b8, 0x00050004, 0xffffffff, 0x000091c4, 0x00010006, 0xffffffff, 0x000091c8, 0x00090008, 0xffffffff, 0x000091cc, 0x00070000, 0xffffffff, 0x000091d0, 0x00030002, 0xffffffff, 0x000091d4, 0x00050004, 0xffffffff, 0x000091e0, 0x00010006, 0xffffffff, 0x000091e4, 0x00090008, 0xffffffff, 0x000091e8, 0x00000000, 0xffffffff, 0x000091ec, 0x00070000, 0xffffffff, 0x000091f0, 0x00030002, 0xffffffff, 0x000091f4, 0x00050004, 0xffffffff, 0x00009200, 0x00010006, 0xffffffff, 0x00009204, 0x00090008, 0xffffffff, 0x00009208, 0x00070000, 0xffffffff, 0x0000920c, 0x00030002, 0xffffffff, 0x00009210, 0x00050004, 0xffffffff, 0x0000921c, 0x00010006, 0xffffffff, 0x00009220, 0x00090008, 0xffffffff, 0x00009224, 0x00070000, 0xffffffff, 0x00009228, 0x00030002, 0xffffffff, 0x0000922c, 0x00050004, 0xffffffff, 0x00009238, 0x00010006, 0xffffffff, 0x0000923c, 0x00090008, 0xffffffff, 0x00009240, 0x00070000, 0xffffffff, 0x00009244, 0x00030002, 0xffffffff, 0x00009248, 0x00050004, 0xffffffff, 0x00009254, 0x00010006, 0xffffffff, 0x00009258, 0x00090008, 0xffffffff, 0x0000925c, 0x00070000, 0xffffffff, 0x00009260, 0x00030002, 0xffffffff, 0x00009264, 0x00050004, 0xffffffff, 0x00009270, 0x00010006, 0xffffffff, 0x00009274, 0x00090008, 0xffffffff, 0x00009278, 0x00070000, 0xffffffff, 0x0000927c, 0x00030002, 0xffffffff, 0x00009280, 0x00050004, 0xffffffff, 0x0000928c, 0x00010006, 0xffffffff, 0x00009290, 0x00090008, 0xffffffff, 0x000092a8, 0x00070000, 0xffffffff, 0x000092ac, 0x00030002, 0xffffffff, 0x000092b0, 0x00050004, 0xffffffff, 0x000092bc, 0x00010006, 0xffffffff, 0x000092c0, 0x00090008, 0xffffffff, 0x000092c4, 0x00070000, 0xffffffff, 0x000092c8, 0x00030002, 0xffffffff, 0x000092cc, 0x00050004, 0xffffffff, 0x000092d8, 0x00010006, 0xffffffff, 0x000092dc, 0x00090008, 0xffffffff, 0x00009294, 0x00000000, 0xffffffff, 0x0000802c, 0xc0000000, 0xffffffff, 0x00003fc4, 0xc0000000, 0xffffffff, 0x000008f8, 0x00000010, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000011, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000012, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000013, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000014, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000015, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000016, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000017, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000018, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000019, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x0000001a, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x0000001b, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff }; #define CAYMAN_MGCG_DEFAULT_LENGTH sizeof(cayman_mgcg_default) / (3 * sizeof(u32)) static const u32 cayman_mgcg_disable[] = { 0x0000802c, 0xc0000000, 0xffffffff, 0x000008f8, 0x00000000, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000001, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000002, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x000008f8, 0x00000003, 0xffffffff, 0x000008fc, 0xffffffff, 0xffffffff, 0x00009150, 0x00600000, 0xffffffff }; #define CAYMAN_MGCG_DISABLE_LENGTH sizeof(cayman_mgcg_disable) / (3 * sizeof(u32)) static const u32 cayman_mgcg_enable[] = { 0x0000802c, 0xc0000000, 0xffffffff, 0x000008f8, 0x00000000, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000001, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x000008f8, 0x00000002, 0xffffffff, 0x000008fc, 0x00600000, 0xffffffff, 0x000008f8, 0x00000003, 0xffffffff, 0x000008fc, 0x00000000, 0xffffffff, 0x00009150, 0x96944200, 0xffffffff }; #define CAYMAN_MGCG_ENABLE_LENGTH sizeof(cayman_mgcg_enable) / (3 * sizeof(u32)) #define NISLANDS_SYSLS_SEQUENCE 100 static const u32 cayman_sysls_default[] = { /* Register, Value, Mask bits */ 0x000055e8, 0x00000000, 0xffffffff, 0x0000d0bc, 0x00000000, 0xffffffff, 0x0000d8bc, 0x00000000, 0xffffffff, 0x000015c0, 0x000c1401, 0xffffffff, 0x0000264c, 0x000c0400, 0xffffffff, 0x00002648, 0x000c0400, 0xffffffff, 0x00002650, 0x000c0400, 0xffffffff, 0x000020b8, 0x000c0400, 0xffffffff, 0x000020bc, 0x000c0400, 0xffffffff, 0x000020c0, 0x000c0c80, 0xffffffff, 0x0000f4a0, 0x000000c0, 0xffffffff, 0x0000f4a4, 0x00680fff, 0xffffffff, 0x00002f50, 0x00000404, 0xffffffff, 0x000004c8, 0x00000001, 0xffffffff, 0x000064ec, 0x00000000, 0xffffffff, 0x00000c7c, 0x00000000, 0xffffffff, 0x00008dfc, 0x00000000, 0xffffffff }; #define CAYMAN_SYSLS_DEFAULT_LENGTH sizeof(cayman_sysls_default) / (3 * sizeof(u32)) static const u32 cayman_sysls_disable[] = { /* Register, Value, Mask bits */ 0x0000d0c0, 0x00000000, 0xffffffff, 0x0000d8c0, 0x00000000, 0xffffffff, 0x000055e8, 0x00000000, 0xffffffff, 0x0000d0bc, 0x00000000, 0xffffffff, 0x0000d8bc, 0x00000000, 0xffffffff, 0x000015c0, 0x00041401, 0xffffffff, 0x0000264c, 0x00040400, 0xffffffff, 0x00002648, 0x00040400, 0xffffffff, 0x00002650, 0x00040400, 0xffffffff, 0x000020b8, 0x00040400, 0xffffffff, 0x000020bc, 0x00040400, 0xffffffff, 0x000020c0, 0x00040c80, 0xffffffff, 0x0000f4a0, 0x000000c0, 0xffffffff, 0x0000f4a4, 0x00680000, 0xffffffff, 0x00002f50, 0x00000404, 0xffffffff, 0x000004c8, 0x00000001, 0xffffffff, 0x000064ec, 0x00007ffd, 0xffffffff, 0x00000c7c, 0x0000ff00, 0xffffffff, 0x00008dfc, 0x0000007f, 0xffffffff }; #define CAYMAN_SYSLS_DISABLE_LENGTH sizeof(cayman_sysls_disable) / (3 * sizeof(u32)) static const u32 cayman_sysls_enable[] = { /* Register, Value, Mask bits */ 0x000055e8, 0x00000001, 0xffffffff, 0x0000d0bc, 0x00000100, 0xffffffff, 0x0000d8bc, 0x00000100, 0xffffffff, 0x000015c0, 0x000c1401, 0xffffffff, 0x0000264c, 0x000c0400, 0xffffffff, 0x00002648, 0x000c0400, 0xffffffff, 0x00002650, 0x000c0400, 0xffffffff, 0x000020b8, 0x000c0400, 0xffffffff, 0x000020bc, 0x000c0400, 0xffffffff, 0x000020c0, 0x000c0c80, 0xffffffff, 0x0000f4a0, 0x000000c0, 0xffffffff, 0x0000f4a4, 0x00680fff, 0xffffffff, 0x00002f50, 0x00000903, 0xffffffff, 0x000004c8, 0x00000000, 0xffffffff, 0x000064ec, 0x00000000, 0xffffffff, 0x00000c7c, 0x00000000, 0xffffffff, 0x00008dfc, 0x00000000, 0xffffffff }; #define CAYMAN_SYSLS_ENABLE_LENGTH sizeof(cayman_sysls_enable) / (3 * sizeof(u32)) extern int ni_mc_load_microcode(struct radeon_device *rdev); struct ni_power_info *ni_get_pi(struct radeon_device *rdev) { struct ni_power_info *pi = rdev->pm.dpm.priv; return pi; } struct ni_ps *ni_get_ps(struct radeon_ps *rps) { struct ni_ps *ps = rps->ps_priv; return ps; } static void ni_calculate_leakage_for_v_and_t_formula(const struct ni_leakage_coeffients *coeff, u16 v, s32 t, u32 ileakage, u32 *leakage) { s64 kt, kv, leakage_w, i_leakage, vddc, temperature; i_leakage = div64_s64(drm_int2fixp(ileakage), 1000); vddc = div64_s64(drm_int2fixp(v), 1000); temperature = div64_s64(drm_int2fixp(t), 1000); kt = drm_fixp_mul(div64_s64(drm_int2fixp(coeff->at), 1000), drm_fixp_exp(drm_fixp_mul(div64_s64(drm_int2fixp(coeff->bt), 1000), temperature))); kv = drm_fixp_mul(div64_s64(drm_int2fixp(coeff->av), 1000), drm_fixp_exp(drm_fixp_mul(div64_s64(drm_int2fixp(coeff->bv), 1000), vddc))); leakage_w = drm_fixp_mul(drm_fixp_mul(drm_fixp_mul(i_leakage, kt), kv), vddc); *leakage = drm_fixp2int(leakage_w * 1000); } static void ni_calculate_leakage_for_v_and_t(struct radeon_device *rdev, const struct ni_leakage_coeffients *coeff, u16 v, s32 t, u32 i_leakage, u32 *leakage) { ni_calculate_leakage_for_v_and_t_formula(coeff, v, t, i_leakage, leakage); } bool ni_dpm_vblank_too_short(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u32 vblank_time = r600_dpm_get_vblank_time(rdev); /* we never hit the non-gddr5 limit so disable it */ u32 switch_limit = pi->mem_gddr5 ? 450 : 0; if (vblank_time < switch_limit) return true; else return false; } static void ni_apply_state_adjust_rules(struct radeon_device *rdev, struct radeon_ps *rps) { struct ni_ps *ps = ni_get_ps(rps); struct radeon_clock_and_voltage_limits *max_limits; bool disable_mclk_switching; u32 mclk; u16 vddci; int i; if ((rdev->pm.dpm.new_active_crtc_count > 1) || ni_dpm_vblank_too_short(rdev)) disable_mclk_switching = true; else disable_mclk_switching = false; if (rdev->pm.dpm.ac_power) max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac; else max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc; if (rdev->pm.dpm.ac_power == false) { for (i = 0; i < ps->performance_level_count; i++) { if (ps->performance_levels[i].mclk > max_limits->mclk) ps->performance_levels[i].mclk = max_limits->mclk; if (ps->performance_levels[i].sclk > max_limits->sclk) ps->performance_levels[i].sclk = max_limits->sclk; if (ps->performance_levels[i].vddc > max_limits->vddc) ps->performance_levels[i].vddc = max_limits->vddc; if (ps->performance_levels[i].vddci > max_limits->vddci) ps->performance_levels[i].vddci = max_limits->vddci; } } /* XXX validate the min clocks required for display */ /* adjust low state */ if (disable_mclk_switching) { ps->performance_levels[0].mclk = ps->performance_levels[ps->performance_level_count - 1].mclk; ps->performance_levels[0].vddci = ps->performance_levels[ps->performance_level_count - 1].vddci; } btc_skip_blacklist_clocks(rdev, max_limits->sclk, max_limits->mclk, &ps->performance_levels[0].sclk, &ps->performance_levels[0].mclk); for (i = 1; i < ps->performance_level_count; i++) { if (ps->performance_levels[i].sclk < ps->performance_levels[i - 1].sclk) ps->performance_levels[i].sclk = ps->performance_levels[i - 1].sclk; if (ps->performance_levels[i].vddc < ps->performance_levels[i - 1].vddc) ps->performance_levels[i].vddc = ps->performance_levels[i - 1].vddc; } /* adjust remaining states */ if (disable_mclk_switching) { mclk = ps->performance_levels[0].mclk; vddci = ps->performance_levels[0].vddci; for (i = 1; i < ps->performance_level_count; i++) { if (mclk < ps->performance_levels[i].mclk) mclk = ps->performance_levels[i].mclk; if (vddci < ps->performance_levels[i].vddci) vddci = ps->performance_levels[i].vddci; } for (i = 0; i < ps->performance_level_count; i++) { ps->performance_levels[i].mclk = mclk; ps->performance_levels[i].vddci = vddci; } } else { for (i = 1; i < ps->performance_level_count; i++) { if (ps->performance_levels[i].mclk < ps->performance_levels[i - 1].mclk) ps->performance_levels[i].mclk = ps->performance_levels[i - 1].mclk; if (ps->performance_levels[i].vddci < ps->performance_levels[i - 1].vddci) ps->performance_levels[i].vddci = ps->performance_levels[i - 1].vddci; } } for (i = 1; i < ps->performance_level_count; i++) btc_skip_blacklist_clocks(rdev, max_limits->sclk, max_limits->mclk, &ps->performance_levels[i].sclk, &ps->performance_levels[i].mclk); for (i = 0; i < ps->performance_level_count; i++) btc_adjust_clock_combinations(rdev, max_limits, &ps->performance_levels[i]); for (i = 0; i < ps->performance_level_count; i++) { btc_apply_voltage_dependency_rules(&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk, ps->performance_levels[i].sclk, max_limits->vddc, &ps->performance_levels[i].vddc); btc_apply_voltage_dependency_rules(&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk, ps->performance_levels[i].mclk, max_limits->vddci, &ps->performance_levels[i].vddci); btc_apply_voltage_dependency_rules(&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk, ps->performance_levels[i].mclk, max_limits->vddc, &ps->performance_levels[i].vddc); btc_apply_voltage_dependency_rules(&rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk, rdev->clock.current_dispclk, max_limits->vddc, &ps->performance_levels[i].vddc); } for (i = 0; i < ps->performance_level_count; i++) { btc_apply_voltage_delta_rules(rdev, max_limits->vddc, max_limits->vddci, &ps->performance_levels[i].vddc, &ps->performance_levels[i].vddci); } ps->dc_compatible = true; for (i = 0; i < ps->performance_level_count; i++) { if (ps->performance_levels[i].vddc > rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddc) ps->dc_compatible = false; if (ps->performance_levels[i].vddc < rdev->pm.dpm.dyn_state.min_vddc_for_pcie_gen2) ps->performance_levels[i].flags &= ~ATOM_PPLIB_R600_FLAGS_PCIEGEN2; } } static void ni_cg_clockgating_default(struct radeon_device *rdev) { u32 count; const u32 *ps = NULL; ps = (const u32 *)&cayman_cgcg_cgls_default; count = CAYMAN_CGCG_CGLS_DEFAULT_LENGTH; btc_program_mgcg_hw_sequence(rdev, ps, count); } static void ni_gfx_clockgating_enable(struct radeon_device *rdev, bool enable) { u32 count; const u32 *ps = NULL; if (enable) { ps = (const u32 *)&cayman_cgcg_cgls_enable; count = CAYMAN_CGCG_CGLS_ENABLE_LENGTH; } else { ps = (const u32 *)&cayman_cgcg_cgls_disable; count = CAYMAN_CGCG_CGLS_DISABLE_LENGTH; } btc_program_mgcg_hw_sequence(rdev, ps, count); } static void ni_mg_clockgating_default(struct radeon_device *rdev) { u32 count; const u32 *ps = NULL; ps = (const u32 *)&cayman_mgcg_default; count = CAYMAN_MGCG_DEFAULT_LENGTH; btc_program_mgcg_hw_sequence(rdev, ps, count); } static void ni_mg_clockgating_enable(struct radeon_device *rdev, bool enable) { u32 count; const u32 *ps = NULL; if (enable) { ps = (const u32 *)&cayman_mgcg_enable; count = CAYMAN_MGCG_ENABLE_LENGTH; } else { ps = (const u32 *)&cayman_mgcg_disable; count = CAYMAN_MGCG_DISABLE_LENGTH; } btc_program_mgcg_hw_sequence(rdev, ps, count); } static void ni_ls_clockgating_default(struct radeon_device *rdev) { u32 count; const u32 *ps = NULL; ps = (const u32 *)&cayman_sysls_default; count = CAYMAN_SYSLS_DEFAULT_LENGTH; btc_program_mgcg_hw_sequence(rdev, ps, count); } static void ni_ls_clockgating_enable(struct radeon_device *rdev, bool enable) { u32 count; const u32 *ps = NULL; if (enable) { ps = (const u32 *)&cayman_sysls_enable; count = CAYMAN_SYSLS_ENABLE_LENGTH; } else { ps = (const u32 *)&cayman_sysls_disable; count = CAYMAN_SYSLS_DISABLE_LENGTH; } btc_program_mgcg_hw_sequence(rdev, ps, count); } static int ni_patch_single_dependency_table_based_on_leakage(struct radeon_device *rdev, struct radeon_clock_voltage_dependency_table *table) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u32 i; if (table) { for (i = 0; i < table->count; i++) { if (0xff01 == table->entries[i].v) { if (pi->max_vddc == 0) return -EINVAL; table->entries[i].v = pi->max_vddc; } } } return 0; } static int ni_patch_dependency_tables_based_on_leakage(struct radeon_device *rdev) { int ret = 0; ret = ni_patch_single_dependency_table_based_on_leakage(rdev, &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk); ret = ni_patch_single_dependency_table_based_on_leakage(rdev, &rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk); return ret; } static void ni_stop_dpm(struct radeon_device *rdev) { WREG32_P(GENERAL_PWRMGT, 0, ~GLOBAL_PWRMGT_EN); } #if 0 static int ni_notify_hw_of_power_source(struct radeon_device *rdev, bool ac_power) { if (ac_power) return (rv770_send_msg_to_smc(rdev, PPSMC_MSG_RunningOnAC) == PPSMC_Result_OK) ? 0 : -EINVAL; return 0; } #endif static PPSMC_Result ni_send_msg_to_smc_with_parameter(struct radeon_device *rdev, PPSMC_Msg msg, u32 parameter) { WREG32(SMC_SCRATCH0, parameter); return rv770_send_msg_to_smc(rdev, msg); } static int ni_restrict_performance_levels_before_switch(struct radeon_device *rdev) { if (rv770_send_msg_to_smc(rdev, PPSMC_MSG_NoForcedLevel) != PPSMC_Result_OK) return -EINVAL; return (ni_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SetEnabledLevels, 1) == PPSMC_Result_OK) ? 0 : -EINVAL; } int ni_dpm_force_performance_level(struct radeon_device *rdev, enum radeon_dpm_forced_level level) { if (level == RADEON_DPM_FORCED_LEVEL_HIGH) { if (ni_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SetEnabledLevels, 0) != PPSMC_Result_OK) return -EINVAL; if (ni_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SetForcedLevels, 1) != PPSMC_Result_OK) return -EINVAL; } else if (level == RADEON_DPM_FORCED_LEVEL_LOW) { if (ni_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SetForcedLevels, 0) != PPSMC_Result_OK) return -EINVAL; if (ni_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SetEnabledLevels, 1) != PPSMC_Result_OK) return -EINVAL; } else if (level == RADEON_DPM_FORCED_LEVEL_AUTO) { if (ni_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SetForcedLevels, 0) != PPSMC_Result_OK) return -EINVAL; if (ni_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SetEnabledLevels, 0) != PPSMC_Result_OK) return -EINVAL; } rdev->pm.dpm.forced_level = level; return 0; } static void ni_stop_smc(struct radeon_device *rdev) { u32 tmp; int i; for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(LB_SYNC_RESET_SEL) & LB_SYNC_RESET_SEL_MASK; if (tmp != 1) break; udelay(1); } udelay(100); r7xx_stop_smc(rdev); } static int ni_process_firmware_header(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); u32 tmp; int ret; ret = rv770_read_smc_sram_dword(rdev, NISLANDS_SMC_FIRMWARE_HEADER_LOCATION + NISLANDS_SMC_FIRMWARE_HEADER_stateTable, &tmp, pi->sram_end); if (ret) return ret; pi->state_table_start = (u16)tmp; ret = rv770_read_smc_sram_dword(rdev, NISLANDS_SMC_FIRMWARE_HEADER_LOCATION + NISLANDS_SMC_FIRMWARE_HEADER_softRegisters, &tmp, pi->sram_end); if (ret) return ret; pi->soft_regs_start = (u16)tmp; ret = rv770_read_smc_sram_dword(rdev, NISLANDS_SMC_FIRMWARE_HEADER_LOCATION + NISLANDS_SMC_FIRMWARE_HEADER_mcRegisterTable, &tmp, pi->sram_end); if (ret) return ret; eg_pi->mc_reg_table_start = (u16)tmp; ret = rv770_read_smc_sram_dword(rdev, NISLANDS_SMC_FIRMWARE_HEADER_LOCATION + NISLANDS_SMC_FIRMWARE_HEADER_fanTable, &tmp, pi->sram_end); if (ret) return ret; ni_pi->fan_table_start = (u16)tmp; ret = rv770_read_smc_sram_dword(rdev, NISLANDS_SMC_FIRMWARE_HEADER_LOCATION + NISLANDS_SMC_FIRMWARE_HEADER_mcArbDramAutoRefreshTable, &tmp, pi->sram_end); if (ret) return ret; ni_pi->arb_table_start = (u16)tmp; ret = rv770_read_smc_sram_dword(rdev, NISLANDS_SMC_FIRMWARE_HEADER_LOCATION + NISLANDS_SMC_FIRMWARE_HEADER_cacTable, &tmp, pi->sram_end); if (ret) return ret; ni_pi->cac_table_start = (u16)tmp; ret = rv770_read_smc_sram_dword(rdev, NISLANDS_SMC_FIRMWARE_HEADER_LOCATION + NISLANDS_SMC_FIRMWARE_HEADER_spllTable, &tmp, pi->sram_end); if (ret) return ret; ni_pi->spll_table_start = (u16)tmp; return ret; } static void ni_read_clock_registers(struct radeon_device *rdev) { struct ni_power_info *ni_pi = ni_get_pi(rdev); ni_pi->clock_registers.cg_spll_func_cntl = RREG32(CG_SPLL_FUNC_CNTL); ni_pi->clock_registers.cg_spll_func_cntl_2 = RREG32(CG_SPLL_FUNC_CNTL_2); ni_pi->clock_registers.cg_spll_func_cntl_3 = RREG32(CG_SPLL_FUNC_CNTL_3); ni_pi->clock_registers.cg_spll_func_cntl_4 = RREG32(CG_SPLL_FUNC_CNTL_4); ni_pi->clock_registers.cg_spll_spread_spectrum = RREG32(CG_SPLL_SPREAD_SPECTRUM); ni_pi->clock_registers.cg_spll_spread_spectrum_2 = RREG32(CG_SPLL_SPREAD_SPECTRUM_2); ni_pi->clock_registers.mpll_ad_func_cntl = RREG32(MPLL_AD_FUNC_CNTL); ni_pi->clock_registers.mpll_ad_func_cntl_2 = RREG32(MPLL_AD_FUNC_CNTL_2); ni_pi->clock_registers.mpll_dq_func_cntl = RREG32(MPLL_DQ_FUNC_CNTL); ni_pi->clock_registers.mpll_dq_func_cntl_2 = RREG32(MPLL_DQ_FUNC_CNTL_2); ni_pi->clock_registers.mclk_pwrmgt_cntl = RREG32(MCLK_PWRMGT_CNTL); ni_pi->clock_registers.dll_cntl = RREG32(DLL_CNTL); ni_pi->clock_registers.mpll_ss1 = RREG32(MPLL_SS1); ni_pi->clock_registers.mpll_ss2 = RREG32(MPLL_SS2); } #if 0 static int ni_enter_ulp_state(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); if (pi->gfx_clock_gating) { WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN); WREG32_P(SCLK_PWRMGT_CNTL, GFX_CLK_FORCE_ON, ~GFX_CLK_FORCE_ON); WREG32_P(SCLK_PWRMGT_CNTL, 0, ~GFX_CLK_FORCE_ON); RREG32(GB_ADDR_CONFIG); } WREG32_P(SMC_MSG, HOST_SMC_MSG(PPSMC_MSG_SwitchToMinimumPower), ~HOST_SMC_MSG_MASK); udelay(25000); return 0; } #endif static void ni_program_response_times(struct radeon_device *rdev) { u32 voltage_response_time, backbias_response_time, acpi_delay_time, vbi_time_out; u32 vddc_dly, bb_dly, acpi_dly, vbi_dly, mclk_switch_limit; u32 reference_clock; rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_mvdd_chg_time, 1); voltage_response_time = (u32)rdev->pm.dpm.voltage_response_time; backbias_response_time = (u32)rdev->pm.dpm.backbias_response_time; if (voltage_response_time == 0) voltage_response_time = 1000; if (backbias_response_time == 0) backbias_response_time = 1000; acpi_delay_time = 15000; vbi_time_out = 100000; reference_clock = radeon_get_xclk(rdev); vddc_dly = (voltage_response_time * reference_clock) / 1600; bb_dly = (backbias_response_time * reference_clock) / 1600; acpi_dly = (acpi_delay_time * reference_clock) / 1600; vbi_dly = (vbi_time_out * reference_clock) / 1600; mclk_switch_limit = (460 * reference_clock) / 100; rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_delay_vreg, vddc_dly); rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_delay_bbias, bb_dly); rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_delay_acpi, acpi_dly); rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_mclk_chg_timeout, vbi_dly); rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_mc_block_delay, 0xAA); rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_mclk_switch_lim, mclk_switch_limit); } static void ni_populate_smc_voltage_table(struct radeon_device *rdev, struct atom_voltage_table *voltage_table, NISLANDS_SMC_STATETABLE *table) { unsigned int i; for (i = 0; i < voltage_table->count; i++) { table->highSMIO[i] = 0; table->lowSMIO[i] |= cpu_to_be32(voltage_table->entries[i].smio_low); } } static void ni_populate_smc_voltage_tables(struct radeon_device *rdev, NISLANDS_SMC_STATETABLE *table) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); unsigned char i; if (eg_pi->vddc_voltage_table.count) { ni_populate_smc_voltage_table(rdev, &eg_pi->vddc_voltage_table, table); table->voltageMaskTable.highMask[NISLANDS_SMC_VOLTAGEMASK_VDDC] = 0; table->voltageMaskTable.lowMask[NISLANDS_SMC_VOLTAGEMASK_VDDC] = cpu_to_be32(eg_pi->vddc_voltage_table.mask_low); for (i = 0; i < eg_pi->vddc_voltage_table.count; i++) { if (pi->max_vddc_in_table <= eg_pi->vddc_voltage_table.entries[i].value) { table->maxVDDCIndexInPPTable = i; break; } } } if (eg_pi->vddci_voltage_table.count) { ni_populate_smc_voltage_table(rdev, &eg_pi->vddci_voltage_table, table); table->voltageMaskTable.highMask[NISLANDS_SMC_VOLTAGEMASK_VDDCI] = 0; table->voltageMaskTable.lowMask[NISLANDS_SMC_VOLTAGEMASK_VDDCI] = cpu_to_be32(eg_pi->vddci_voltage_table.mask_low); } } static int ni_populate_voltage_value(struct radeon_device *rdev, struct atom_voltage_table *table, u16 value, NISLANDS_SMC_VOLTAGE_VALUE *voltage) { unsigned int i; for (i = 0; i < table->count; i++) { if (value <= table->entries[i].value) { voltage->index = (u8)i; voltage->value = cpu_to_be16(table->entries[i].value); break; } } if (i >= table->count) return -EINVAL; return 0; } static void ni_populate_mvdd_value(struct radeon_device *rdev, u32 mclk, NISLANDS_SMC_VOLTAGE_VALUE *voltage) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); if (!pi->mvdd_control) { voltage->index = eg_pi->mvdd_high_index; voltage->value = cpu_to_be16(MVDD_HIGH_VALUE); return; } if (mclk <= pi->mvdd_split_frequency) { voltage->index = eg_pi->mvdd_low_index; voltage->value = cpu_to_be16(MVDD_LOW_VALUE); } else { voltage->index = eg_pi->mvdd_high_index; voltage->value = cpu_to_be16(MVDD_HIGH_VALUE); } } static int ni_get_std_voltage_value(struct radeon_device *rdev, NISLANDS_SMC_VOLTAGE_VALUE *voltage, u16 *std_voltage) { if (rdev->pm.dpm.dyn_state.cac_leakage_table.entries && ((u32)voltage->index < rdev->pm.dpm.dyn_state.cac_leakage_table.count)) *std_voltage = rdev->pm.dpm.dyn_state.cac_leakage_table.entries[voltage->index].vddc; else *std_voltage = be16_to_cpu(voltage->value); return 0; } static void ni_populate_std_voltage_value(struct radeon_device *rdev, u16 value, u8 index, NISLANDS_SMC_VOLTAGE_VALUE *voltage) { voltage->index = index; voltage->value = cpu_to_be16(value); } static u32 ni_get_smc_power_scaling_factor(struct radeon_device *rdev) { u32 xclk_period; u32 xclk = radeon_get_xclk(rdev); u32 tmp = RREG32(CG_CAC_CTRL) & TID_CNT_MASK; xclk_period = (1000000000UL / xclk); xclk_period /= 10000UL; return tmp * xclk_period; } static u32 ni_scale_power_for_smc(u32 power_in_watts, u32 scaling_factor) { return (power_in_watts * scaling_factor) << 2; } static u32 ni_calculate_power_boost_limit(struct radeon_device *rdev, struct radeon_ps *radeon_state, u32 near_tdp_limit) { struct ni_ps *state = ni_get_ps(radeon_state); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); u32 power_boost_limit = 0; int ret; if (ni_pi->enable_power_containment && ni_pi->use_power_boost_limit) { NISLANDS_SMC_VOLTAGE_VALUE vddc; u16 std_vddc_med; u16 std_vddc_high; u64 tmp, n, d; if (state->performance_level_count < 3) return 0; ret = ni_populate_voltage_value(rdev, &eg_pi->vddc_voltage_table, state->performance_levels[state->performance_level_count - 2].vddc, &vddc); if (ret) return 0; ret = ni_get_std_voltage_value(rdev, &vddc, &std_vddc_med); if (ret) return 0; ret = ni_populate_voltage_value(rdev, &eg_pi->vddc_voltage_table, state->performance_levels[state->performance_level_count - 1].vddc, &vddc); if (ret) return 0; ret = ni_get_std_voltage_value(rdev, &vddc, &std_vddc_high); if (ret) return 0; n = ((u64)near_tdp_limit * ((u64)std_vddc_med * (u64)std_vddc_med) * 90); d = ((u64)std_vddc_high * (u64)std_vddc_high * 100); tmp = div64_u64(n, d); if (tmp >> 32) return 0; power_boost_limit = (u32)tmp; } return power_boost_limit; } static int ni_calculate_adjusted_tdp_limits(struct radeon_device *rdev, bool adjust_polarity, u32 tdp_adjustment, u32 *tdp_limit, u32 *near_tdp_limit) { if (tdp_adjustment > (u32)rdev->pm.dpm.tdp_od_limit) return -EINVAL; if (adjust_polarity) { *tdp_limit = ((100 + tdp_adjustment) * rdev->pm.dpm.tdp_limit) / 100; *near_tdp_limit = rdev->pm.dpm.near_tdp_limit + (*tdp_limit - rdev->pm.dpm.tdp_limit); } else { *tdp_limit = ((100 - tdp_adjustment) * rdev->pm.dpm.tdp_limit) / 100; *near_tdp_limit = rdev->pm.dpm.near_tdp_limit - (rdev->pm.dpm.tdp_limit - *tdp_limit); } return 0; } static int ni_populate_smc_tdp_limits(struct radeon_device *rdev, struct radeon_ps *radeon_state) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); if (ni_pi->enable_power_containment) { NISLANDS_SMC_STATETABLE *smc_table = &ni_pi->smc_statetable; u32 scaling_factor = ni_get_smc_power_scaling_factor(rdev); u32 tdp_limit; u32 near_tdp_limit; u32 power_boost_limit; int ret; if (scaling_factor == 0) return -EINVAL; memset(smc_table, 0, sizeof(NISLANDS_SMC_STATETABLE)); ret = ni_calculate_adjusted_tdp_limits(rdev, false, /* ??? */ rdev->pm.dpm.tdp_adjustment, &tdp_limit, &near_tdp_limit); if (ret) return ret; power_boost_limit = ni_calculate_power_boost_limit(rdev, radeon_state, near_tdp_limit); smc_table->dpm2Params.TDPLimit = cpu_to_be32(ni_scale_power_for_smc(tdp_limit, scaling_factor)); smc_table->dpm2Params.NearTDPLimit = cpu_to_be32(ni_scale_power_for_smc(near_tdp_limit, scaling_factor)); smc_table->dpm2Params.SafePowerLimit = cpu_to_be32(ni_scale_power_for_smc((near_tdp_limit * NISLANDS_DPM2_TDP_SAFE_LIMIT_PERCENT) / 100, scaling_factor)); smc_table->dpm2Params.PowerBoostLimit = cpu_to_be32(ni_scale_power_for_smc(power_boost_limit, scaling_factor)); ret = rv770_copy_bytes_to_smc(rdev, (u16)(pi->state_table_start + offsetof(NISLANDS_SMC_STATETABLE, dpm2Params) + offsetof(PP_NIslands_DPM2Parameters, TDPLimit)), (u8 *)(&smc_table->dpm2Params.TDPLimit), sizeof(u32) * 4, pi->sram_end); if (ret) return ret; } return 0; } int ni_copy_and_switch_arb_sets(struct radeon_device *rdev, u32 arb_freq_src, u32 arb_freq_dest) { u32 mc_arb_dram_timing; u32 mc_arb_dram_timing2; u32 burst_time; u32 mc_cg_config; switch (arb_freq_src) { case MC_CG_ARB_FREQ_F0: mc_arb_dram_timing = RREG32(MC_ARB_DRAM_TIMING); mc_arb_dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2); burst_time = (RREG32(MC_ARB_BURST_TIME) & STATE0_MASK) >> STATE0_SHIFT; break; case MC_CG_ARB_FREQ_F1: mc_arb_dram_timing = RREG32(MC_ARB_DRAM_TIMING_1); mc_arb_dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2_1); burst_time = (RREG32(MC_ARB_BURST_TIME) & STATE1_MASK) >> STATE1_SHIFT; break; case MC_CG_ARB_FREQ_F2: mc_arb_dram_timing = RREG32(MC_ARB_DRAM_TIMING_2); mc_arb_dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2_2); burst_time = (RREG32(MC_ARB_BURST_TIME) & STATE2_MASK) >> STATE2_SHIFT; break; case MC_CG_ARB_FREQ_F3: mc_arb_dram_timing = RREG32(MC_ARB_DRAM_TIMING_3); mc_arb_dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2_3); burst_time = (RREG32(MC_ARB_BURST_TIME) & STATE3_MASK) >> STATE3_SHIFT; break; default: return -EINVAL; } switch (arb_freq_dest) { case MC_CG_ARB_FREQ_F0: WREG32(MC_ARB_DRAM_TIMING, mc_arb_dram_timing); WREG32(MC_ARB_DRAM_TIMING2, mc_arb_dram_timing2); WREG32_P(MC_ARB_BURST_TIME, STATE0(burst_time), ~STATE0_MASK); break; case MC_CG_ARB_FREQ_F1: WREG32(MC_ARB_DRAM_TIMING_1, mc_arb_dram_timing); WREG32(MC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2); WREG32_P(MC_ARB_BURST_TIME, STATE1(burst_time), ~STATE1_MASK); break; case MC_CG_ARB_FREQ_F2: WREG32(MC_ARB_DRAM_TIMING_2, mc_arb_dram_timing); WREG32(MC_ARB_DRAM_TIMING2_2, mc_arb_dram_timing2); WREG32_P(MC_ARB_BURST_TIME, STATE2(burst_time), ~STATE2_MASK); break; case MC_CG_ARB_FREQ_F3: WREG32(MC_ARB_DRAM_TIMING_3, mc_arb_dram_timing); WREG32(MC_ARB_DRAM_TIMING2_3, mc_arb_dram_timing2); WREG32_P(MC_ARB_BURST_TIME, STATE3(burst_time), ~STATE3_MASK); break; default: return -EINVAL; } mc_cg_config = RREG32(MC_CG_CONFIG) | 0x0000000F; WREG32(MC_CG_CONFIG, mc_cg_config); WREG32_P(MC_ARB_CG, CG_ARB_REQ(arb_freq_dest), ~CG_ARB_REQ_MASK); return 0; } static int ni_init_arb_table_index(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); u32 tmp; int ret; ret = rv770_read_smc_sram_dword(rdev, ni_pi->arb_table_start, &tmp, pi->sram_end); if (ret) return ret; tmp &= 0x00FFFFFF; tmp |= ((u32)MC_CG_ARB_FREQ_F1) << 24; return rv770_write_smc_sram_dword(rdev, ni_pi->arb_table_start, tmp, pi->sram_end); } static int ni_initial_switch_from_arb_f0_to_f1(struct radeon_device *rdev) { return ni_copy_and_switch_arb_sets(rdev, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1); } static int ni_force_switch_to_arb_f0(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); u32 tmp; int ret; ret = rv770_read_smc_sram_dword(rdev, ni_pi->arb_table_start, &tmp, pi->sram_end); if (ret) return ret; tmp = (tmp >> 24) & 0xff; if (tmp == MC_CG_ARB_FREQ_F0) return 0; return ni_copy_and_switch_arb_sets(rdev, tmp, MC_CG_ARB_FREQ_F0); } static int ni_populate_memory_timing_parameters(struct radeon_device *rdev, struct rv7xx_pl *pl, SMC_NIslands_MCArbDramTimingRegisterSet *arb_regs) { u32 dram_timing; u32 dram_timing2; arb_regs->mc_arb_rfsh_rate = (u8)rv770_calculate_memory_refresh_rate(rdev, pl->sclk); radeon_atom_set_engine_dram_timings(rdev, pl->sclk, pl->mclk); dram_timing = RREG32(MC_ARB_DRAM_TIMING); dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2); arb_regs->mc_arb_dram_timing = cpu_to_be32(dram_timing); arb_regs->mc_arb_dram_timing2 = cpu_to_be32(dram_timing2); return 0; } static int ni_do_program_memory_timing_parameters(struct radeon_device *rdev, struct radeon_ps *radeon_state, unsigned int first_arb_set) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); struct ni_ps *state = ni_get_ps(radeon_state); SMC_NIslands_MCArbDramTimingRegisterSet arb_regs = { 0 }; int i, ret = 0; for (i = 0; i < state->performance_level_count; i++) { ret = ni_populate_memory_timing_parameters(rdev, &state->performance_levels[i], &arb_regs); if (ret) break; ret = rv770_copy_bytes_to_smc(rdev, (u16)(ni_pi->arb_table_start + offsetof(SMC_NIslands_MCArbDramTimingRegisters, data) + sizeof(SMC_NIslands_MCArbDramTimingRegisterSet) * (first_arb_set + i)), (u8 *)&arb_regs, (u16)sizeof(SMC_NIslands_MCArbDramTimingRegisterSet), pi->sram_end); if (ret) break; } return ret; } static int ni_program_memory_timing_parameters(struct radeon_device *rdev, struct radeon_ps *radeon_new_state) { return ni_do_program_memory_timing_parameters(rdev, radeon_new_state, NISLANDS_DRIVER_STATE_ARB_INDEX); } static void ni_populate_initial_mvdd_value(struct radeon_device *rdev, struct NISLANDS_SMC_VOLTAGE_VALUE *voltage) { struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); voltage->index = eg_pi->mvdd_high_index; voltage->value = cpu_to_be16(MVDD_HIGH_VALUE); } static int ni_populate_smc_initial_state(struct radeon_device *rdev, struct radeon_ps *radeon_initial_state, NISLANDS_SMC_STATETABLE *table) { struct ni_ps *initial_state = ni_get_ps(radeon_initial_state); struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); u32 reg; int ret; table->initialState.level.mclk.vMPLL_AD_FUNC_CNTL = cpu_to_be32(ni_pi->clock_registers.mpll_ad_func_cntl); table->initialState.level.mclk.vMPLL_AD_FUNC_CNTL_2 = cpu_to_be32(ni_pi->clock_registers.mpll_ad_func_cntl_2); table->initialState.level.mclk.vMPLL_DQ_FUNC_CNTL = cpu_to_be32(ni_pi->clock_registers.mpll_dq_func_cntl); table->initialState.level.mclk.vMPLL_DQ_FUNC_CNTL_2 = cpu_to_be32(ni_pi->clock_registers.mpll_dq_func_cntl_2); table->initialState.level.mclk.vMCLK_PWRMGT_CNTL = cpu_to_be32(ni_pi->clock_registers.mclk_pwrmgt_cntl); table->initialState.level.mclk.vDLL_CNTL = cpu_to_be32(ni_pi->clock_registers.dll_cntl); table->initialState.level.mclk.vMPLL_SS = cpu_to_be32(ni_pi->clock_registers.mpll_ss1); table->initialState.level.mclk.vMPLL_SS2 = cpu_to_be32(ni_pi->clock_registers.mpll_ss2); table->initialState.level.mclk.mclk_value = cpu_to_be32(initial_state->performance_levels[0].mclk); table->initialState.level.sclk.vCG_SPLL_FUNC_CNTL = cpu_to_be32(ni_pi->clock_registers.cg_spll_func_cntl); table->initialState.level.sclk.vCG_SPLL_FUNC_CNTL_2 = cpu_to_be32(ni_pi->clock_registers.cg_spll_func_cntl_2); table->initialState.level.sclk.vCG_SPLL_FUNC_CNTL_3 = cpu_to_be32(ni_pi->clock_registers.cg_spll_func_cntl_3); table->initialState.level.sclk.vCG_SPLL_FUNC_CNTL_4 = cpu_to_be32(ni_pi->clock_registers.cg_spll_func_cntl_4); table->initialState.level.sclk.vCG_SPLL_SPREAD_SPECTRUM = cpu_to_be32(ni_pi->clock_registers.cg_spll_spread_spectrum); table->initialState.level.sclk.vCG_SPLL_SPREAD_SPECTRUM_2 = cpu_to_be32(ni_pi->clock_registers.cg_spll_spread_spectrum_2); table->initialState.level.sclk.sclk_value = cpu_to_be32(initial_state->performance_levels[0].sclk); table->initialState.level.arbRefreshState = NISLANDS_INITIAL_STATE_ARB_INDEX; table->initialState.level.ACIndex = 0; ret = ni_populate_voltage_value(rdev, &eg_pi->vddc_voltage_table, initial_state->performance_levels[0].vddc, &table->initialState.level.vddc); if (!ret) { u16 std_vddc; ret = ni_get_std_voltage_value(rdev, &table->initialState.level.vddc, &std_vddc); if (!ret) ni_populate_std_voltage_value(rdev, std_vddc, table->initialState.level.vddc.index, &table->initialState.level.std_vddc); } if (eg_pi->vddci_control) ni_populate_voltage_value(rdev, &eg_pi->vddci_voltage_table, initial_state->performance_levels[0].vddci, &table->initialState.level.vddci); ni_populate_initial_mvdd_value(rdev, &table->initialState.level.mvdd); reg = CG_R(0xffff) | CG_L(0); table->initialState.level.aT = cpu_to_be32(reg); table->initialState.level.bSP = cpu_to_be32(pi->dsp); if (pi->boot_in_gen2) table->initialState.level.gen2PCIE = 1; else table->initialState.level.gen2PCIE = 0; if (pi->mem_gddr5) { table->initialState.level.strobeMode = cypress_get_strobe_mode_settings(rdev, initial_state->performance_levels[0].mclk); if (initial_state->performance_levels[0].mclk > pi->mclk_edc_enable_threshold) table->initialState.level.mcFlags = NISLANDS_SMC_MC_EDC_RD_FLAG | NISLANDS_SMC_MC_EDC_WR_FLAG; else table->initialState.level.mcFlags = 0; } table->initialState.levelCount = 1; table->initialState.flags |= PPSMC_SWSTATE_FLAG_DC; table->initialState.level.dpm2.MaxPS = 0; table->initialState.level.dpm2.NearTDPDec = 0; table->initialState.level.dpm2.AboveSafeInc = 0; table->initialState.level.dpm2.BelowSafeInc = 0; reg = MIN_POWER_MASK | MAX_POWER_MASK; table->initialState.level.SQPowerThrottle = cpu_to_be32(reg); reg = MAX_POWER_DELTA_MASK | STI_SIZE_MASK | LTI_RATIO_MASK; table->initialState.level.SQPowerThrottle_2 = cpu_to_be32(reg); return 0; } static int ni_populate_smc_acpi_state(struct radeon_device *rdev, NISLANDS_SMC_STATETABLE *table) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); u32 mpll_ad_func_cntl = ni_pi->clock_registers.mpll_ad_func_cntl; u32 mpll_ad_func_cntl_2 = ni_pi->clock_registers.mpll_ad_func_cntl_2; u32 mpll_dq_func_cntl = ni_pi->clock_registers.mpll_dq_func_cntl; u32 mpll_dq_func_cntl_2 = ni_pi->clock_registers.mpll_dq_func_cntl_2; u32 spll_func_cntl = ni_pi->clock_registers.cg_spll_func_cntl; u32 spll_func_cntl_2 = ni_pi->clock_registers.cg_spll_func_cntl_2; u32 spll_func_cntl_3 = ni_pi->clock_registers.cg_spll_func_cntl_3; u32 spll_func_cntl_4 = ni_pi->clock_registers.cg_spll_func_cntl_4; u32 mclk_pwrmgt_cntl = ni_pi->clock_registers.mclk_pwrmgt_cntl; u32 dll_cntl = ni_pi->clock_registers.dll_cntl; u32 reg; int ret; table->ACPIState = table->initialState; table->ACPIState.flags &= ~PPSMC_SWSTATE_FLAG_DC; if (pi->acpi_vddc) { ret = ni_populate_voltage_value(rdev, &eg_pi->vddc_voltage_table, pi->acpi_vddc, &table->ACPIState.level.vddc); if (!ret) { u16 std_vddc; ret = ni_get_std_voltage_value(rdev, &table->ACPIState.level.vddc, &std_vddc); if (!ret) ni_populate_std_voltage_value(rdev, std_vddc, table->ACPIState.level.vddc.index, &table->ACPIState.level.std_vddc); } if (pi->pcie_gen2) { if (pi->acpi_pcie_gen2) table->ACPIState.level.gen2PCIE = 1; else table->ACPIState.level.gen2PCIE = 0; } else { table->ACPIState.level.gen2PCIE = 0; } } else { ret = ni_populate_voltage_value(rdev, &eg_pi->vddc_voltage_table, pi->min_vddc_in_table, &table->ACPIState.level.vddc); if (!ret) { u16 std_vddc; ret = ni_get_std_voltage_value(rdev, &table->ACPIState.level.vddc, &std_vddc); if (!ret) ni_populate_std_voltage_value(rdev, std_vddc, table->ACPIState.level.vddc.index, &table->ACPIState.level.std_vddc); } table->ACPIState.level.gen2PCIE = 0; } if (eg_pi->acpi_vddci) { if (eg_pi->vddci_control) ni_populate_voltage_value(rdev, &eg_pi->vddci_voltage_table, eg_pi->acpi_vddci, &table->ACPIState.level.vddci); } mpll_ad_func_cntl &= ~PDNB; mpll_ad_func_cntl_2 |= BIAS_GEN_PDNB | RESET_EN; if (pi->mem_gddr5) mpll_dq_func_cntl &= ~PDNB; mpll_dq_func_cntl_2 |= BIAS_GEN_PDNB | RESET_EN | BYPASS; mclk_pwrmgt_cntl |= (MRDCKA0_RESET | MRDCKA1_RESET | MRDCKB0_RESET | MRDCKB1_RESET | MRDCKC0_RESET | MRDCKC1_RESET | MRDCKD0_RESET | MRDCKD1_RESET); mclk_pwrmgt_cntl &= ~(MRDCKA0_PDNB | MRDCKA1_PDNB | MRDCKB0_PDNB | MRDCKB1_PDNB | MRDCKC0_PDNB | MRDCKC1_PDNB | MRDCKD0_PDNB | MRDCKD1_PDNB); dll_cntl |= (MRDCKA0_BYPASS | MRDCKA1_BYPASS | MRDCKB0_BYPASS | MRDCKB1_BYPASS | MRDCKC0_BYPASS | MRDCKC1_BYPASS | MRDCKD0_BYPASS | MRDCKD1_BYPASS); spll_func_cntl_2 &= ~SCLK_MUX_SEL_MASK; spll_func_cntl_2 |= SCLK_MUX_SEL(4); table->ACPIState.level.mclk.vMPLL_AD_FUNC_CNTL = cpu_to_be32(mpll_ad_func_cntl); table->ACPIState.level.mclk.vMPLL_AD_FUNC_CNTL_2 = cpu_to_be32(mpll_ad_func_cntl_2); table->ACPIState.level.mclk.vMPLL_DQ_FUNC_CNTL = cpu_to_be32(mpll_dq_func_cntl); table->ACPIState.level.mclk.vMPLL_DQ_FUNC_CNTL_2 = cpu_to_be32(mpll_dq_func_cntl_2); table->ACPIState.level.mclk.vMCLK_PWRMGT_CNTL = cpu_to_be32(mclk_pwrmgt_cntl); table->ACPIState.level.mclk.vDLL_CNTL = cpu_to_be32(dll_cntl); table->ACPIState.level.mclk.mclk_value = 0; table->ACPIState.level.sclk.vCG_SPLL_FUNC_CNTL = cpu_to_be32(spll_func_cntl); table->ACPIState.level.sclk.vCG_SPLL_FUNC_CNTL_2 = cpu_to_be32(spll_func_cntl_2); table->ACPIState.level.sclk.vCG_SPLL_FUNC_CNTL_3 = cpu_to_be32(spll_func_cntl_3); table->ACPIState.level.sclk.vCG_SPLL_FUNC_CNTL_4 = cpu_to_be32(spll_func_cntl_4); table->ACPIState.level.sclk.sclk_value = 0; ni_populate_mvdd_value(rdev, 0, &table->ACPIState.level.mvdd); if (eg_pi->dynamic_ac_timing) table->ACPIState.level.ACIndex = 1; table->ACPIState.level.dpm2.MaxPS = 0; table->ACPIState.level.dpm2.NearTDPDec = 0; table->ACPIState.level.dpm2.AboveSafeInc = 0; table->ACPIState.level.dpm2.BelowSafeInc = 0; reg = MIN_POWER_MASK | MAX_POWER_MASK; table->ACPIState.level.SQPowerThrottle = cpu_to_be32(reg); reg = MAX_POWER_DELTA_MASK | STI_SIZE_MASK | LTI_RATIO_MASK; table->ACPIState.level.SQPowerThrottle_2 = cpu_to_be32(reg); return 0; } static int ni_init_smc_table(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); int ret; struct radeon_ps *radeon_boot_state = rdev->pm.dpm.boot_ps; NISLANDS_SMC_STATETABLE *table = &ni_pi->smc_statetable; memset(table, 0, sizeof(NISLANDS_SMC_STATETABLE)); ni_populate_smc_voltage_tables(rdev, table); switch (rdev->pm.int_thermal_type) { case THERMAL_TYPE_NI: case THERMAL_TYPE_EMC2103_WITH_INTERNAL: table->thermalProtectType = PPSMC_THERMAL_PROTECT_TYPE_INTERNAL; break; case THERMAL_TYPE_NONE: table->thermalProtectType = PPSMC_THERMAL_PROTECT_TYPE_NONE; break; default: table->thermalProtectType = PPSMC_THERMAL_PROTECT_TYPE_EXTERNAL; break; } if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_HARDWAREDC) table->systemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_REGULATOR_HOT) table->systemFlags |= PPSMC_SYSTEMFLAG_REGULATOR_HOT; if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC) table->systemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; if (pi->mem_gddr5) table->systemFlags |= PPSMC_SYSTEMFLAG_GDDR5; ret = ni_populate_smc_initial_state(rdev, radeon_boot_state, table); if (ret) return ret; ret = ni_populate_smc_acpi_state(rdev, table); if (ret) return ret; table->driverState.flags = table->initialState.flags; table->driverState.levelCount = table->initialState.levelCount; table->driverState.levels[0] = table->initialState.level; table->ULVState = table->initialState; ret = ni_do_program_memory_timing_parameters(rdev, radeon_boot_state, NISLANDS_INITIAL_STATE_ARB_INDEX); if (ret) return ret; return rv770_copy_bytes_to_smc(rdev, pi->state_table_start, (u8 *)table, sizeof(NISLANDS_SMC_STATETABLE), pi->sram_end); } static int ni_calculate_sclk_params(struct radeon_device *rdev, u32 engine_clock, NISLANDS_SMC_SCLK_VALUE *sclk) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); struct atom_clock_dividers dividers; u32 spll_func_cntl = ni_pi->clock_registers.cg_spll_func_cntl; u32 spll_func_cntl_2 = ni_pi->clock_registers.cg_spll_func_cntl_2; u32 spll_func_cntl_3 = ni_pi->clock_registers.cg_spll_func_cntl_3; u32 spll_func_cntl_4 = ni_pi->clock_registers.cg_spll_func_cntl_4; u32 cg_spll_spread_spectrum = ni_pi->clock_registers.cg_spll_spread_spectrum; u32 cg_spll_spread_spectrum_2 = ni_pi->clock_registers.cg_spll_spread_spectrum_2; u64 tmp; u32 reference_clock = rdev->clock.spll.reference_freq; u32 reference_divider; u32 fbdiv; int ret; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, engine_clock, false, ÷rs); if (ret) return ret; reference_divider = 1 + dividers.ref_div; tmp = (u64) engine_clock * reference_divider * dividers.post_div * 16834; do_div(tmp, reference_clock); fbdiv = (u32) tmp; spll_func_cntl &= ~(SPLL_PDIV_A_MASK | SPLL_REF_DIV_MASK); spll_func_cntl |= SPLL_REF_DIV(dividers.ref_div); spll_func_cntl |= SPLL_PDIV_A(dividers.post_div); spll_func_cntl_2 &= ~SCLK_MUX_SEL_MASK; spll_func_cntl_2 |= SCLK_MUX_SEL(2); spll_func_cntl_3 &= ~SPLL_FB_DIV_MASK; spll_func_cntl_3 |= SPLL_FB_DIV(fbdiv); spll_func_cntl_3 |= SPLL_DITHEN; if (pi->sclk_ss) { struct radeon_atom_ss ss; u32 vco_freq = engine_clock * dividers.post_div; if (radeon_atombios_get_asic_ss_info(rdev, &ss, ASIC_INTERNAL_ENGINE_SS, vco_freq)) { u32 clk_s = reference_clock * 5 / (reference_divider * ss.rate); u32 clk_v = 4 * ss.percentage * fbdiv / (clk_s * 10000); cg_spll_spread_spectrum &= ~CLK_S_MASK; cg_spll_spread_spectrum |= CLK_S(clk_s); cg_spll_spread_spectrum |= SSEN; cg_spll_spread_spectrum_2 &= ~CLK_V_MASK; cg_spll_spread_spectrum_2 |= CLK_V(clk_v); } } sclk->sclk_value = engine_clock; sclk->vCG_SPLL_FUNC_CNTL = spll_func_cntl; sclk->vCG_SPLL_FUNC_CNTL_2 = spll_func_cntl_2; sclk->vCG_SPLL_FUNC_CNTL_3 = spll_func_cntl_3; sclk->vCG_SPLL_FUNC_CNTL_4 = spll_func_cntl_4; sclk->vCG_SPLL_SPREAD_SPECTRUM = cg_spll_spread_spectrum; sclk->vCG_SPLL_SPREAD_SPECTRUM_2 = cg_spll_spread_spectrum_2; return 0; } static int ni_populate_sclk_value(struct radeon_device *rdev, u32 engine_clock, NISLANDS_SMC_SCLK_VALUE *sclk) { NISLANDS_SMC_SCLK_VALUE sclk_tmp; int ret; ret = ni_calculate_sclk_params(rdev, engine_clock, &sclk_tmp); if (!ret) { sclk->sclk_value = cpu_to_be32(sclk_tmp.sclk_value); sclk->vCG_SPLL_FUNC_CNTL = cpu_to_be32(sclk_tmp.vCG_SPLL_FUNC_CNTL); sclk->vCG_SPLL_FUNC_CNTL_2 = cpu_to_be32(sclk_tmp.vCG_SPLL_FUNC_CNTL_2); sclk->vCG_SPLL_FUNC_CNTL_3 = cpu_to_be32(sclk_tmp.vCG_SPLL_FUNC_CNTL_3); sclk->vCG_SPLL_FUNC_CNTL_4 = cpu_to_be32(sclk_tmp.vCG_SPLL_FUNC_CNTL_4); sclk->vCG_SPLL_SPREAD_SPECTRUM = cpu_to_be32(sclk_tmp.vCG_SPLL_SPREAD_SPECTRUM); sclk->vCG_SPLL_SPREAD_SPECTRUM_2 = cpu_to_be32(sclk_tmp.vCG_SPLL_SPREAD_SPECTRUM_2); } return ret; } static int ni_init_smc_spll_table(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); SMC_NISLANDS_SPLL_DIV_TABLE *spll_table; NISLANDS_SMC_SCLK_VALUE sclk_params; u32 fb_div; u32 p_div; u32 clk_s; u32 clk_v; u32 sclk = 0; int i, ret; u32 tmp; if (ni_pi->spll_table_start == 0) return -EINVAL; spll_table = kzalloc(sizeof(SMC_NISLANDS_SPLL_DIV_TABLE), GFP_KERNEL); if (spll_table == NULL) return -ENOMEM; for (i = 0; i < 256; i++) { ret = ni_calculate_sclk_params(rdev, sclk, &sclk_params); if (ret) break; p_div = (sclk_params.vCG_SPLL_FUNC_CNTL & SPLL_PDIV_A_MASK) >> SPLL_PDIV_A_SHIFT; fb_div = (sclk_params.vCG_SPLL_FUNC_CNTL_3 & SPLL_FB_DIV_MASK) >> SPLL_FB_DIV_SHIFT; clk_s = (sclk_params.vCG_SPLL_SPREAD_SPECTRUM & CLK_S_MASK) >> CLK_S_SHIFT; clk_v = (sclk_params.vCG_SPLL_SPREAD_SPECTRUM_2 & CLK_V_MASK) >> CLK_V_SHIFT; fb_div &= ~0x00001FFF; fb_div >>= 1; clk_v >>= 6; if (p_div & ~(SMC_NISLANDS_SPLL_DIV_TABLE_PDIV_MASK >> SMC_NISLANDS_SPLL_DIV_TABLE_PDIV_SHIFT)) ret = -EINVAL; if (clk_s & ~(SMC_NISLANDS_SPLL_DIV_TABLE_CLKS_MASK >> SMC_NISLANDS_SPLL_DIV_TABLE_CLKS_SHIFT)) ret = -EINVAL; if (fb_div & ~(SMC_NISLANDS_SPLL_DIV_TABLE_FBDIV_MASK >> SMC_NISLANDS_SPLL_DIV_TABLE_FBDIV_SHIFT)) ret = -EINVAL; if (clk_v & ~(SMC_NISLANDS_SPLL_DIV_TABLE_CLKV_MASK >> SMC_NISLANDS_SPLL_DIV_TABLE_CLKV_SHIFT)) ret = -EINVAL; if (ret) break; tmp = ((fb_div << SMC_NISLANDS_SPLL_DIV_TABLE_FBDIV_SHIFT) & SMC_NISLANDS_SPLL_DIV_TABLE_FBDIV_MASK) | ((p_div << SMC_NISLANDS_SPLL_DIV_TABLE_PDIV_SHIFT) & SMC_NISLANDS_SPLL_DIV_TABLE_PDIV_MASK); spll_table->freq[i] = cpu_to_be32(tmp); tmp = ((clk_v << SMC_NISLANDS_SPLL_DIV_TABLE_CLKV_SHIFT) & SMC_NISLANDS_SPLL_DIV_TABLE_CLKV_MASK) | ((clk_s << SMC_NISLANDS_SPLL_DIV_TABLE_CLKS_SHIFT) & SMC_NISLANDS_SPLL_DIV_TABLE_CLKS_MASK); spll_table->ss[i] = cpu_to_be32(tmp); sclk += 512; } if (!ret) ret = rv770_copy_bytes_to_smc(rdev, ni_pi->spll_table_start, (u8 *)spll_table, sizeof(SMC_NISLANDS_SPLL_DIV_TABLE), pi->sram_end); kfree(spll_table); return ret; } static int ni_populate_mclk_value(struct radeon_device *rdev, u32 engine_clock, u32 memory_clock, NISLANDS_SMC_MCLK_VALUE *mclk, bool strobe_mode, bool dll_state_on) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); u32 mpll_ad_func_cntl = ni_pi->clock_registers.mpll_ad_func_cntl; u32 mpll_ad_func_cntl_2 = ni_pi->clock_registers.mpll_ad_func_cntl_2; u32 mpll_dq_func_cntl = ni_pi->clock_registers.mpll_dq_func_cntl; u32 mpll_dq_func_cntl_2 = ni_pi->clock_registers.mpll_dq_func_cntl_2; u32 mclk_pwrmgt_cntl = ni_pi->clock_registers.mclk_pwrmgt_cntl; u32 dll_cntl = ni_pi->clock_registers.dll_cntl; u32 mpll_ss1 = ni_pi->clock_registers.mpll_ss1; u32 mpll_ss2 = ni_pi->clock_registers.mpll_ss2; struct atom_clock_dividers dividers; u32 ibias; u32 dll_speed; int ret; u32 mc_seq_misc7; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_MEMORY_PLL_PARAM, memory_clock, strobe_mode, ÷rs); if (ret) return ret; if (!strobe_mode) { mc_seq_misc7 = RREG32(MC_SEQ_MISC7); if (mc_seq_misc7 & 0x8000000) dividers.post_div = 1; } ibias = cypress_map_clkf_to_ibias(rdev, dividers.whole_fb_div); mpll_ad_func_cntl &= ~(CLKR_MASK | YCLK_POST_DIV_MASK | CLKF_MASK | CLKFRAC_MASK | IBIAS_MASK); mpll_ad_func_cntl |= CLKR(dividers.ref_div); mpll_ad_func_cntl |= YCLK_POST_DIV(dividers.post_div); mpll_ad_func_cntl |= CLKF(dividers.whole_fb_div); mpll_ad_func_cntl |= CLKFRAC(dividers.frac_fb_div); mpll_ad_func_cntl |= IBIAS(ibias); if (dividers.vco_mode) mpll_ad_func_cntl_2 |= VCO_MODE; else mpll_ad_func_cntl_2 &= ~VCO_MODE; if (pi->mem_gddr5) { mpll_dq_func_cntl &= ~(CLKR_MASK | YCLK_POST_DIV_MASK | CLKF_MASK | CLKFRAC_MASK | IBIAS_MASK); mpll_dq_func_cntl |= CLKR(dividers.ref_div); mpll_dq_func_cntl |= YCLK_POST_DIV(dividers.post_div); mpll_dq_func_cntl |= CLKF(dividers.whole_fb_div); mpll_dq_func_cntl |= CLKFRAC(dividers.frac_fb_div); mpll_dq_func_cntl |= IBIAS(ibias); if (strobe_mode) mpll_dq_func_cntl &= ~PDNB; else mpll_dq_func_cntl |= PDNB; if (dividers.vco_mode) mpll_dq_func_cntl_2 |= VCO_MODE; else mpll_dq_func_cntl_2 &= ~VCO_MODE; } if (pi->mclk_ss) { struct radeon_atom_ss ss; u32 vco_freq = memory_clock * dividers.post_div; if (radeon_atombios_get_asic_ss_info(rdev, &ss, ASIC_INTERNAL_MEMORY_SS, vco_freq)) { u32 reference_clock = rdev->clock.mpll.reference_freq; u32 decoded_ref = rv740_get_decoded_reference_divider(dividers.ref_div); u32 clk_s = reference_clock * 5 / (decoded_ref * ss.rate); u32 clk_v = ss.percentage * (0x4000 * dividers.whole_fb_div + 0x800 * dividers.frac_fb_div) / (clk_s * 625); mpll_ss1 &= ~CLKV_MASK; mpll_ss1 |= CLKV(clk_v); mpll_ss2 &= ~CLKS_MASK; mpll_ss2 |= CLKS(clk_s); } } dll_speed = rv740_get_dll_speed(pi->mem_gddr5, memory_clock); mclk_pwrmgt_cntl &= ~DLL_SPEED_MASK; mclk_pwrmgt_cntl |= DLL_SPEED(dll_speed); if (dll_state_on) mclk_pwrmgt_cntl |= (MRDCKA0_PDNB | MRDCKA1_PDNB | MRDCKB0_PDNB | MRDCKB1_PDNB | MRDCKC0_PDNB | MRDCKC1_PDNB | MRDCKD0_PDNB | MRDCKD1_PDNB); else mclk_pwrmgt_cntl &= ~(MRDCKA0_PDNB | MRDCKA1_PDNB | MRDCKB0_PDNB | MRDCKB1_PDNB | MRDCKC0_PDNB | MRDCKC1_PDNB | MRDCKD0_PDNB | MRDCKD1_PDNB); mclk->mclk_value = cpu_to_be32(memory_clock); mclk->vMPLL_AD_FUNC_CNTL = cpu_to_be32(mpll_ad_func_cntl); mclk->vMPLL_AD_FUNC_CNTL_2 = cpu_to_be32(mpll_ad_func_cntl_2); mclk->vMPLL_DQ_FUNC_CNTL = cpu_to_be32(mpll_dq_func_cntl); mclk->vMPLL_DQ_FUNC_CNTL_2 = cpu_to_be32(mpll_dq_func_cntl_2); mclk->vMCLK_PWRMGT_CNTL = cpu_to_be32(mclk_pwrmgt_cntl); mclk->vDLL_CNTL = cpu_to_be32(dll_cntl); mclk->vMPLL_SS = cpu_to_be32(mpll_ss1); mclk->vMPLL_SS2 = cpu_to_be32(mpll_ss2); return 0; } static void ni_populate_smc_sp(struct radeon_device *rdev, struct radeon_ps *radeon_state, NISLANDS_SMC_SWSTATE *smc_state) { struct ni_ps *ps = ni_get_ps(radeon_state); struct rv7xx_power_info *pi = rv770_get_pi(rdev); int i; for (i = 0; i < ps->performance_level_count - 1; i++) smc_state->levels[i].bSP = cpu_to_be32(pi->dsp); smc_state->levels[ps->performance_level_count - 1].bSP = cpu_to_be32(pi->psp); } static int ni_convert_power_level_to_smc(struct radeon_device *rdev, struct rv7xx_pl *pl, NISLANDS_SMC_HW_PERFORMANCE_LEVEL *level) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); int ret; bool dll_state_on; u16 std_vddc; u32 tmp = RREG32(DC_STUTTER_CNTL); level->gen2PCIE = pi->pcie_gen2 ? ((pl->flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) ? 1 : 0) : 0; ret = ni_populate_sclk_value(rdev, pl->sclk, &level->sclk); if (ret) return ret; level->mcFlags = 0; if (pi->mclk_stutter_mode_threshold && (pl->mclk <= pi->mclk_stutter_mode_threshold) && !eg_pi->uvd_enabled && (tmp & DC_STUTTER_ENABLE_A) && (tmp & DC_STUTTER_ENABLE_B)) level->mcFlags |= NISLANDS_SMC_MC_STUTTER_EN; if (pi->mem_gddr5) { if (pl->mclk > pi->mclk_edc_enable_threshold) level->mcFlags |= NISLANDS_SMC_MC_EDC_RD_FLAG; if (pl->mclk > eg_pi->mclk_edc_wr_enable_threshold) level->mcFlags |= NISLANDS_SMC_MC_EDC_WR_FLAG; level->strobeMode = cypress_get_strobe_mode_settings(rdev, pl->mclk); if (level->strobeMode & NISLANDS_SMC_STROBE_ENABLE) { if (cypress_get_mclk_frequency_ratio(rdev, pl->mclk, true) >= ((RREG32(MC_SEQ_MISC7) >> 16) & 0xf)) dll_state_on = ((RREG32(MC_SEQ_MISC5) >> 1) & 0x1) ? true : false; else dll_state_on = ((RREG32(MC_SEQ_MISC6) >> 1) & 0x1) ? true : false; } else { dll_state_on = false; if (pl->mclk > ni_pi->mclk_rtt_mode_threshold) level->mcFlags |= NISLANDS_SMC_MC_RTT_ENABLE; } ret = ni_populate_mclk_value(rdev, pl->sclk, pl->mclk, &level->mclk, (level->strobeMode & NISLANDS_SMC_STROBE_ENABLE) != 0, dll_state_on); } else ret = ni_populate_mclk_value(rdev, pl->sclk, pl->mclk, &level->mclk, 1, 1); if (ret) return ret; ret = ni_populate_voltage_value(rdev, &eg_pi->vddc_voltage_table, pl->vddc, &level->vddc); if (ret) return ret; ret = ni_get_std_voltage_value(rdev, &level->vddc, &std_vddc); if (ret) return ret; ni_populate_std_voltage_value(rdev, std_vddc, level->vddc.index, &level->std_vddc); if (eg_pi->vddci_control) { ret = ni_populate_voltage_value(rdev, &eg_pi->vddci_voltage_table, pl->vddci, &level->vddci); if (ret) return ret; } ni_populate_mvdd_value(rdev, pl->mclk, &level->mvdd); return ret; } static int ni_populate_smc_t(struct radeon_device *rdev, struct radeon_ps *radeon_state, NISLANDS_SMC_SWSTATE *smc_state) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct ni_ps *state = ni_get_ps(radeon_state); u32 a_t; u32 t_l, t_h; u32 high_bsp; int i, ret; if (state->performance_level_count >= 9) return -EINVAL; if (state->performance_level_count < 2) { a_t = CG_R(0xffff) | CG_L(0); smc_state->levels[0].aT = cpu_to_be32(a_t); return 0; } smc_state->levels[0].aT = cpu_to_be32(0); for (i = 0; i <= state->performance_level_count - 2; i++) { if (eg_pi->uvd_enabled) ret = r600_calculate_at( 1000 * (i * (eg_pi->smu_uvd_hs ? 2 : 8) + 2), 100 * R600_AH_DFLT, state->performance_levels[i + 1].sclk, state->performance_levels[i].sclk, &t_l, &t_h); else ret = r600_calculate_at( 1000 * (i + 1), 100 * R600_AH_DFLT, state->performance_levels[i + 1].sclk, state->performance_levels[i].sclk, &t_l, &t_h); if (ret) { t_h = (i + 1) * 1000 - 50 * R600_AH_DFLT; t_l = (i + 1) * 1000 + 50 * R600_AH_DFLT; } a_t = be32_to_cpu(smc_state->levels[i].aT) & ~CG_R_MASK; a_t |= CG_R(t_l * pi->bsp / 20000); smc_state->levels[i].aT = cpu_to_be32(a_t); high_bsp = (i == state->performance_level_count - 2) ? pi->pbsp : pi->bsp; a_t = CG_R(0xffff) | CG_L(t_h * high_bsp / 20000); smc_state->levels[i + 1].aT = cpu_to_be32(a_t); } return 0; } static int ni_populate_power_containment_values(struct radeon_device *rdev, struct radeon_ps *radeon_state, NISLANDS_SMC_SWSTATE *smc_state) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); struct ni_ps *state = ni_get_ps(radeon_state); u32 prev_sclk; u32 max_sclk; u32 min_sclk; int i, ret; u32 tdp_limit; u32 near_tdp_limit; u32 power_boost_limit; u8 max_ps_percent; if (ni_pi->enable_power_containment == false) return 0; if (state->performance_level_count == 0) return -EINVAL; if (smc_state->levelCount != state->performance_level_count) return -EINVAL; ret = ni_calculate_adjusted_tdp_limits(rdev, false, /* ??? */ rdev->pm.dpm.tdp_adjustment, &tdp_limit, &near_tdp_limit); if (ret) return ret; power_boost_limit = ni_calculate_power_boost_limit(rdev, radeon_state, near_tdp_limit); ret = rv770_write_smc_sram_dword(rdev, pi->state_table_start + offsetof(NISLANDS_SMC_STATETABLE, dpm2Params) + offsetof(PP_NIslands_DPM2Parameters, PowerBoostLimit), ni_scale_power_for_smc(power_boost_limit, ni_get_smc_power_scaling_factor(rdev)), pi->sram_end); if (ret) power_boost_limit = 0; smc_state->levels[0].dpm2.MaxPS = 0; smc_state->levels[0].dpm2.NearTDPDec = 0; smc_state->levels[0].dpm2.AboveSafeInc = 0; smc_state->levels[0].dpm2.BelowSafeInc = 0; smc_state->levels[0].stateFlags |= power_boost_limit ? PPSMC_STATEFLAG_POWERBOOST : 0; for (i = 1; i < state->performance_level_count; i++) { prev_sclk = state->performance_levels[i-1].sclk; max_sclk = state->performance_levels[i].sclk; max_ps_percent = (i != (state->performance_level_count - 1)) ? NISLANDS_DPM2_MAXPS_PERCENT_M : NISLANDS_DPM2_MAXPS_PERCENT_H; if (max_sclk < prev_sclk) return -EINVAL; if ((max_ps_percent == 0) || (prev_sclk == max_sclk) || eg_pi->uvd_enabled) min_sclk = max_sclk; else if (1 == i) min_sclk = prev_sclk; else min_sclk = (prev_sclk * (u32)max_ps_percent) / 100; if (min_sclk < state->performance_levels[0].sclk) min_sclk = state->performance_levels[0].sclk; if (min_sclk == 0) return -EINVAL; smc_state->levels[i].dpm2.MaxPS = (u8)((NISLANDS_DPM2_MAX_PULSE_SKIP * (max_sclk - min_sclk)) / max_sclk); smc_state->levels[i].dpm2.NearTDPDec = NISLANDS_DPM2_NEAR_TDP_DEC; smc_state->levels[i].dpm2.AboveSafeInc = NISLANDS_DPM2_ABOVE_SAFE_INC; smc_state->levels[i].dpm2.BelowSafeInc = NISLANDS_DPM2_BELOW_SAFE_INC; smc_state->levels[i].stateFlags |= ((i != (state->performance_level_count - 1)) && power_boost_limit) ? PPSMC_STATEFLAG_POWERBOOST : 0; } return 0; } static int ni_populate_sq_ramping_values(struct radeon_device *rdev, struct radeon_ps *radeon_state, NISLANDS_SMC_SWSTATE *smc_state) { struct ni_power_info *ni_pi = ni_get_pi(rdev); struct ni_ps *state = ni_get_ps(radeon_state); u32 sq_power_throttle; u32 sq_power_throttle2; bool enable_sq_ramping = ni_pi->enable_sq_ramping; int i; if (state->performance_level_count == 0) return -EINVAL; if (smc_state->levelCount != state->performance_level_count) return -EINVAL; if (rdev->pm.dpm.sq_ramping_threshold == 0) return -EINVAL; if (NISLANDS_DPM2_SQ_RAMP_MAX_POWER > (MAX_POWER_MASK >> MAX_POWER_SHIFT)) enable_sq_ramping = false; if (NISLANDS_DPM2_SQ_RAMP_MIN_POWER > (MIN_POWER_MASK >> MIN_POWER_SHIFT)) enable_sq_ramping = false; if (NISLANDS_DPM2_SQ_RAMP_MAX_POWER_DELTA > (MAX_POWER_DELTA_MASK >> MAX_POWER_DELTA_SHIFT)) enable_sq_ramping = false; if (NISLANDS_DPM2_SQ_RAMP_STI_SIZE > (STI_SIZE_MASK >> STI_SIZE_SHIFT)) enable_sq_ramping = false; if (NISLANDS_DPM2_SQ_RAMP_LTI_RATIO > (LTI_RATIO_MASK >> LTI_RATIO_SHIFT)) enable_sq_ramping = false; for (i = 0; i < state->performance_level_count; i++) { sq_power_throttle = 0; sq_power_throttle2 = 0; if ((state->performance_levels[i].sclk >= rdev->pm.dpm.sq_ramping_threshold) && enable_sq_ramping) { sq_power_throttle |= MAX_POWER(NISLANDS_DPM2_SQ_RAMP_MAX_POWER); sq_power_throttle |= MIN_POWER(NISLANDS_DPM2_SQ_RAMP_MIN_POWER); sq_power_throttle2 |= MAX_POWER_DELTA(NISLANDS_DPM2_SQ_RAMP_MAX_POWER_DELTA); sq_power_throttle2 |= STI_SIZE(NISLANDS_DPM2_SQ_RAMP_STI_SIZE); sq_power_throttle2 |= LTI_RATIO(NISLANDS_DPM2_SQ_RAMP_LTI_RATIO); } else { sq_power_throttle |= MAX_POWER_MASK | MIN_POWER_MASK; sq_power_throttle2 |= MAX_POWER_DELTA_MASK | STI_SIZE_MASK | LTI_RATIO_MASK; } smc_state->levels[i].SQPowerThrottle = cpu_to_be32(sq_power_throttle); smc_state->levels[i].SQPowerThrottle_2 = cpu_to_be32(sq_power_throttle2); } return 0; } static int ni_enable_power_containment(struct radeon_device *rdev, struct radeon_ps *radeon_new_state, bool enable) { struct ni_power_info *ni_pi = ni_get_pi(rdev); PPSMC_Result smc_result; int ret = 0; if (ni_pi->enable_power_containment) { if (enable) { if (!r600_is_uvd_state(radeon_new_state->class, radeon_new_state->class2)) { smc_result = rv770_send_msg_to_smc(rdev, PPSMC_TDPClampingActive); if (smc_result != PPSMC_Result_OK) { ret = -EINVAL; ni_pi->pc_enabled = false; } else { ni_pi->pc_enabled = true; } } } else { smc_result = rv770_send_msg_to_smc(rdev, PPSMC_TDPClampingInactive); if (smc_result != PPSMC_Result_OK) ret = -EINVAL; ni_pi->pc_enabled = false; } } return ret; } static int ni_convert_power_state_to_smc(struct radeon_device *rdev, struct radeon_ps *radeon_state, NISLANDS_SMC_SWSTATE *smc_state) { struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); struct ni_ps *state = ni_get_ps(radeon_state); int i, ret; u32 threshold = state->performance_levels[state->performance_level_count - 1].sclk * 100 / 100; if (!(radeon_state->caps & ATOM_PPLIB_DISALLOW_ON_DC)) smc_state->flags |= PPSMC_SWSTATE_FLAG_DC; smc_state->levelCount = 0; if (state->performance_level_count > NISLANDS_MAX_SMC_PERFORMANCE_LEVELS_PER_SWSTATE) return -EINVAL; for (i = 0; i < state->performance_level_count; i++) { ret = ni_convert_power_level_to_smc(rdev, &state->performance_levels[i], &smc_state->levels[i]); smc_state->levels[i].arbRefreshState = (u8)(NISLANDS_DRIVER_STATE_ARB_INDEX + i); if (ret) return ret; if (ni_pi->enable_power_containment) smc_state->levels[i].displayWatermark = (state->performance_levels[i].sclk < threshold) ? PPSMC_DISPLAY_WATERMARK_LOW : PPSMC_DISPLAY_WATERMARK_HIGH; else smc_state->levels[i].displayWatermark = (i < 2) ? PPSMC_DISPLAY_WATERMARK_LOW : PPSMC_DISPLAY_WATERMARK_HIGH; if (eg_pi->dynamic_ac_timing) smc_state->levels[i].ACIndex = NISLANDS_MCREGISTERTABLE_FIRST_DRIVERSTATE_SLOT + i; else smc_state->levels[i].ACIndex = 0; smc_state->levelCount++; } rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_watermark_threshold, cpu_to_be32(threshold / 512)); ni_populate_smc_sp(rdev, radeon_state, smc_state); ret = ni_populate_power_containment_values(rdev, radeon_state, smc_state); if (ret) ni_pi->enable_power_containment = false; ret = ni_populate_sq_ramping_values(rdev, radeon_state, smc_state); if (ret) ni_pi->enable_sq_ramping = false; return ni_populate_smc_t(rdev, radeon_state, smc_state); } static int ni_upload_sw_state(struct radeon_device *rdev, struct radeon_ps *radeon_new_state) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u16 address = pi->state_table_start + offsetof(NISLANDS_SMC_STATETABLE, driverState); NISLANDS_SMC_SWSTATE *smc_state; size_t state_size = struct_size(smc_state, levels, NISLANDS_MAX_SMC_PERFORMANCE_LEVELS_PER_SWSTATE); int ret; smc_state = kzalloc(state_size, GFP_KERNEL); if (smc_state == NULL) return -ENOMEM; ret = ni_convert_power_state_to_smc(rdev, radeon_new_state, smc_state); if (ret) goto done; ret = rv770_copy_bytes_to_smc(rdev, address, (u8 *)smc_state, state_size, pi->sram_end); done: kfree(smc_state); return ret; } static int ni_set_mc_special_registers(struct radeon_device *rdev, struct ni_mc_reg_table *table) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u8 i, j, k; u32 temp_reg; for (i = 0, j = table->last; i < table->last; i++) { switch (table->mc_reg_address[i].s1) { case MC_SEQ_MISC1 >> 2: if (j >= SMC_NISLANDS_MC_REGISTER_ARRAY_SIZE) return -EINVAL; temp_reg = RREG32(MC_PMG_CMD_EMRS); table->mc_reg_address[j].s1 = MC_PMG_CMD_EMRS >> 2; table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_EMRS_LP >> 2; for (k = 0; k < table->num_entries; k++) table->mc_reg_table_entry[k].mc_data[j] = ((temp_reg & 0xffff0000)) | ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); j++; if (j >= SMC_NISLANDS_MC_REGISTER_ARRAY_SIZE) return -EINVAL; temp_reg = RREG32(MC_PMG_CMD_MRS); table->mc_reg_address[j].s1 = MC_PMG_CMD_MRS >> 2; table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_MRS_LP >> 2; for(k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = (temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); if (!pi->mem_gddr5) table->mc_reg_table_entry[k].mc_data[j] |= 0x100; } j++; break; case MC_SEQ_RESERVE_M >> 2: if (j >= SMC_NISLANDS_MC_REGISTER_ARRAY_SIZE) return -EINVAL; temp_reg = RREG32(MC_PMG_CMD_MRS1); table->mc_reg_address[j].s1 = MC_PMG_CMD_MRS1 >> 2; table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_MRS1_LP >> 2; for (k = 0; k < table->num_entries; k++) table->mc_reg_table_entry[k].mc_data[j] = (temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); j++; break; default: break; } } table->last = j; return 0; } static bool ni_check_s0_mc_reg_index(u16 in_reg, u16 *out_reg) { bool result = true; switch (in_reg) { case MC_SEQ_RAS_TIMING >> 2: *out_reg = MC_SEQ_RAS_TIMING_LP >> 2; break; case MC_SEQ_CAS_TIMING >> 2: *out_reg = MC_SEQ_CAS_TIMING_LP >> 2; break; case MC_SEQ_MISC_TIMING >> 2: *out_reg = MC_SEQ_MISC_TIMING_LP >> 2; break; case MC_SEQ_MISC_TIMING2 >> 2: *out_reg = MC_SEQ_MISC_TIMING2_LP >> 2; break; case MC_SEQ_RD_CTL_D0 >> 2: *out_reg = MC_SEQ_RD_CTL_D0_LP >> 2; break; case MC_SEQ_RD_CTL_D1 >> 2: *out_reg = MC_SEQ_RD_CTL_D1_LP >> 2; break; case MC_SEQ_WR_CTL_D0 >> 2: *out_reg = MC_SEQ_WR_CTL_D0_LP >> 2; break; case MC_SEQ_WR_CTL_D1 >> 2: *out_reg = MC_SEQ_WR_CTL_D1_LP >> 2; break; case MC_PMG_CMD_EMRS >> 2: *out_reg = MC_SEQ_PMG_CMD_EMRS_LP >> 2; break; case MC_PMG_CMD_MRS >> 2: *out_reg = MC_SEQ_PMG_CMD_MRS_LP >> 2; break; case MC_PMG_CMD_MRS1 >> 2: *out_reg = MC_SEQ_PMG_CMD_MRS1_LP >> 2; break; case MC_SEQ_PMG_TIMING >> 2: *out_reg = MC_SEQ_PMG_TIMING_LP >> 2; break; case MC_PMG_CMD_MRS2 >> 2: *out_reg = MC_SEQ_PMG_CMD_MRS2_LP >> 2; break; default: result = false; break; } return result; } static void ni_set_valid_flag(struct ni_mc_reg_table *table) { u8 i, j; for (i = 0; i < table->last; i++) { for (j = 1; j < table->num_entries; j++) { if (table->mc_reg_table_entry[j-1].mc_data[i] != table->mc_reg_table_entry[j].mc_data[i]) { table->valid_flag |= 1 << i; break; } } } } static void ni_set_s0_mc_reg_index(struct ni_mc_reg_table *table) { u32 i; u16 address; for (i = 0; i < table->last; i++) table->mc_reg_address[i].s0 = ni_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) ? address : table->mc_reg_address[i].s1; } static int ni_copy_vbios_mc_reg_table(struct atom_mc_reg_table *table, struct ni_mc_reg_table *ni_table) { u8 i, j; if (table->last > SMC_NISLANDS_MC_REGISTER_ARRAY_SIZE) return -EINVAL; if (table->num_entries > MAX_AC_TIMING_ENTRIES) return -EINVAL; for (i = 0; i < table->last; i++) ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; ni_table->last = table->last; for (i = 0; i < table->num_entries; i++) { ni_table->mc_reg_table_entry[i].mclk_max = table->mc_reg_table_entry[i].mclk_max; for (j = 0; j < table->last; j++) ni_table->mc_reg_table_entry[i].mc_data[j] = table->mc_reg_table_entry[i].mc_data[j]; } ni_table->num_entries = table->num_entries; return 0; } static int ni_initialize_mc_reg_table(struct radeon_device *rdev) { struct ni_power_info *ni_pi = ni_get_pi(rdev); int ret; struct atom_mc_reg_table *table; struct ni_mc_reg_table *ni_table = &ni_pi->mc_reg_table; u8 module_index = rv770_get_memory_module_index(rdev); table = kzalloc(sizeof(struct atom_mc_reg_table), GFP_KERNEL); if (!table) return -ENOMEM; WREG32(MC_SEQ_RAS_TIMING_LP, RREG32(MC_SEQ_RAS_TIMING)); WREG32(MC_SEQ_CAS_TIMING_LP, RREG32(MC_SEQ_CAS_TIMING)); WREG32(MC_SEQ_MISC_TIMING_LP, RREG32(MC_SEQ_MISC_TIMING)); WREG32(MC_SEQ_MISC_TIMING2_LP, RREG32(MC_SEQ_MISC_TIMING2)); WREG32(MC_SEQ_PMG_CMD_EMRS_LP, RREG32(MC_PMG_CMD_EMRS)); WREG32(MC_SEQ_PMG_CMD_MRS_LP, RREG32(MC_PMG_CMD_MRS)); WREG32(MC_SEQ_PMG_CMD_MRS1_LP, RREG32(MC_PMG_CMD_MRS1)); WREG32(MC_SEQ_WR_CTL_D0_LP, RREG32(MC_SEQ_WR_CTL_D0)); WREG32(MC_SEQ_WR_CTL_D1_LP, RREG32(MC_SEQ_WR_CTL_D1)); WREG32(MC_SEQ_RD_CTL_D0_LP, RREG32(MC_SEQ_RD_CTL_D0)); WREG32(MC_SEQ_RD_CTL_D1_LP, RREG32(MC_SEQ_RD_CTL_D1)); WREG32(MC_SEQ_PMG_TIMING_LP, RREG32(MC_SEQ_PMG_TIMING)); WREG32(MC_SEQ_PMG_CMD_MRS2_LP, RREG32(MC_PMG_CMD_MRS2)); ret = radeon_atom_init_mc_reg_table(rdev, module_index, table); if (ret) goto init_mc_done; ret = ni_copy_vbios_mc_reg_table(table, ni_table); if (ret) goto init_mc_done; ni_set_s0_mc_reg_index(ni_table); ret = ni_set_mc_special_registers(rdev, ni_table); if (ret) goto init_mc_done; ni_set_valid_flag(ni_table); init_mc_done: kfree(table); return ret; } static void ni_populate_mc_reg_addresses(struct radeon_device *rdev, SMC_NIslands_MCRegisters *mc_reg_table) { struct ni_power_info *ni_pi = ni_get_pi(rdev); u32 i, j; for (i = 0, j = 0; j < ni_pi->mc_reg_table.last; j++) { if (ni_pi->mc_reg_table.valid_flag & (1 << j)) { if (i >= SMC_NISLANDS_MC_REGISTER_ARRAY_SIZE) break; mc_reg_table->address[i].s0 = cpu_to_be16(ni_pi->mc_reg_table.mc_reg_address[j].s0); mc_reg_table->address[i].s1 = cpu_to_be16(ni_pi->mc_reg_table.mc_reg_address[j].s1); i++; } } mc_reg_table->last = (u8)i; } static void ni_convert_mc_registers(struct ni_mc_reg_entry *entry, SMC_NIslands_MCRegisterSet *data, u32 num_entries, u32 valid_flag) { u32 i, j; for (i = 0, j = 0; j < num_entries; j++) { if (valid_flag & (1 << j)) { data->value[i] = cpu_to_be32(entry->mc_data[j]); i++; } } } static void ni_convert_mc_reg_table_entry_to_smc(struct radeon_device *rdev, struct rv7xx_pl *pl, SMC_NIslands_MCRegisterSet *mc_reg_table_data) { struct ni_power_info *ni_pi = ni_get_pi(rdev); u32 i = 0; for (i = 0; i < ni_pi->mc_reg_table.num_entries; i++) { if (pl->mclk <= ni_pi->mc_reg_table.mc_reg_table_entry[i].mclk_max) break; } if ((i == ni_pi->mc_reg_table.num_entries) && (i > 0)) --i; ni_convert_mc_registers(&ni_pi->mc_reg_table.mc_reg_table_entry[i], mc_reg_table_data, ni_pi->mc_reg_table.last, ni_pi->mc_reg_table.valid_flag); } static void ni_convert_mc_reg_table_to_smc(struct radeon_device *rdev, struct radeon_ps *radeon_state, SMC_NIslands_MCRegisters *mc_reg_table) { struct ni_ps *state = ni_get_ps(radeon_state); int i; for (i = 0; i < state->performance_level_count; i++) { ni_convert_mc_reg_table_entry_to_smc(rdev, &state->performance_levels[i], &mc_reg_table->data[NISLANDS_MCREGISTERTABLE_FIRST_DRIVERSTATE_SLOT + i]); } } static int ni_populate_mc_reg_table(struct radeon_device *rdev, struct radeon_ps *radeon_boot_state) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); struct ni_ps *boot_state = ni_get_ps(radeon_boot_state); SMC_NIslands_MCRegisters *mc_reg_table = &ni_pi->smc_mc_reg_table; memset(mc_reg_table, 0, sizeof(SMC_NIslands_MCRegisters)); rv770_write_smc_soft_register(rdev, NI_SMC_SOFT_REGISTER_seq_index, 1); ni_populate_mc_reg_addresses(rdev, mc_reg_table); ni_convert_mc_reg_table_entry_to_smc(rdev, &boot_state->performance_levels[0], &mc_reg_table->data[0]); ni_convert_mc_registers(&ni_pi->mc_reg_table.mc_reg_table_entry[0], &mc_reg_table->data[1], ni_pi->mc_reg_table.last, ni_pi->mc_reg_table.valid_flag); ni_convert_mc_reg_table_to_smc(rdev, radeon_boot_state, mc_reg_table); return rv770_copy_bytes_to_smc(rdev, eg_pi->mc_reg_table_start, (u8 *)mc_reg_table, sizeof(SMC_NIslands_MCRegisters), pi->sram_end); } static int ni_upload_mc_reg_table(struct radeon_device *rdev, struct radeon_ps *radeon_new_state) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); struct ni_ps *ni_new_state = ni_get_ps(radeon_new_state); SMC_NIslands_MCRegisters *mc_reg_table = &ni_pi->smc_mc_reg_table; u16 address; memset(mc_reg_table, 0, sizeof(SMC_NIslands_MCRegisters)); ni_convert_mc_reg_table_to_smc(rdev, radeon_new_state, mc_reg_table); address = eg_pi->mc_reg_table_start + (u16)offsetof(SMC_NIslands_MCRegisters, data[NISLANDS_MCREGISTERTABLE_FIRST_DRIVERSTATE_SLOT]); return rv770_copy_bytes_to_smc(rdev, address, (u8 *)&mc_reg_table->data[NISLANDS_MCREGISTERTABLE_FIRST_DRIVERSTATE_SLOT], sizeof(SMC_NIslands_MCRegisterSet) * ni_new_state->performance_level_count, pi->sram_end); } static int ni_init_driver_calculated_leakage_table(struct radeon_device *rdev, PP_NIslands_CACTABLES *cac_tables) { struct ni_power_info *ni_pi = ni_get_pi(rdev); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); u32 leakage = 0; unsigned int i, j, table_size; s32 t; u32 smc_leakage, max_leakage = 0; u32 scaling_factor; table_size = eg_pi->vddc_voltage_table.count; if (SMC_NISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES < table_size) table_size = SMC_NISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES; scaling_factor = ni_get_smc_power_scaling_factor(rdev); for (i = 0; i < SMC_NISLANDS_LKGE_LUT_NUM_OF_TEMP_ENTRIES; i++) { for (j = 0; j < table_size; j++) { t = (1000 * ((i + 1) * 8)); if (t < ni_pi->cac_data.leakage_minimum_temperature) t = ni_pi->cac_data.leakage_minimum_temperature; ni_calculate_leakage_for_v_and_t(rdev, &ni_pi->cac_data.leakage_coefficients, eg_pi->vddc_voltage_table.entries[j].value, t, ni_pi->cac_data.i_leakage, &leakage); smc_leakage = ni_scale_power_for_smc(leakage, scaling_factor) / 1000; if (smc_leakage > max_leakage) max_leakage = smc_leakage; cac_tables->cac_lkge_lut[i][j] = cpu_to_be32(smc_leakage); } } for (j = table_size; j < SMC_NISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES; j++) { for (i = 0; i < SMC_NISLANDS_LKGE_LUT_NUM_OF_TEMP_ENTRIES; i++) cac_tables->cac_lkge_lut[i][j] = cpu_to_be32(max_leakage); } return 0; } static int ni_init_simplified_leakage_table(struct radeon_device *rdev, PP_NIslands_CACTABLES *cac_tables) { struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct radeon_cac_leakage_table *leakage_table = &rdev->pm.dpm.dyn_state.cac_leakage_table; u32 i, j, table_size; u32 smc_leakage, max_leakage = 0; u32 scaling_factor; if (!leakage_table) return -EINVAL; table_size = leakage_table->count; if (eg_pi->vddc_voltage_table.count != table_size) table_size = (eg_pi->vddc_voltage_table.count < leakage_table->count) ? eg_pi->vddc_voltage_table.count : leakage_table->count; if (SMC_NISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES < table_size) table_size = SMC_NISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES; if (table_size == 0) return -EINVAL; scaling_factor = ni_get_smc_power_scaling_factor(rdev); for (j = 0; j < table_size; j++) { smc_leakage = leakage_table->entries[j].leakage; if (smc_leakage > max_leakage) max_leakage = smc_leakage; for (i = 0; i < SMC_NISLANDS_LKGE_LUT_NUM_OF_TEMP_ENTRIES; i++) cac_tables->cac_lkge_lut[i][j] = cpu_to_be32(ni_scale_power_for_smc(smc_leakage, scaling_factor)); } for (j = table_size; j < SMC_NISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES; j++) { for (i = 0; i < SMC_NISLANDS_LKGE_LUT_NUM_OF_TEMP_ENTRIES; i++) cac_tables->cac_lkge_lut[i][j] = cpu_to_be32(ni_scale_power_for_smc(max_leakage, scaling_factor)); } return 0; } static int ni_initialize_smc_cac_tables(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); PP_NIslands_CACTABLES *cac_tables = NULL; int i, ret; u32 reg; if (ni_pi->enable_cac == false) return 0; cac_tables = kzalloc(sizeof(PP_NIslands_CACTABLES), GFP_KERNEL); if (!cac_tables) return -ENOMEM; reg = RREG32(CG_CAC_CTRL) & ~(TID_CNT_MASK | TID_UNIT_MASK); reg |= (TID_CNT(ni_pi->cac_weights->tid_cnt) | TID_UNIT(ni_pi->cac_weights->tid_unit)); WREG32(CG_CAC_CTRL, reg); for (i = 0; i < NISLANDS_DCCAC_MAX_LEVELS; i++) ni_pi->dc_cac_table[i] = ni_pi->cac_weights->dc_cac[i]; for (i = 0; i < SMC_NISLANDS_BIF_LUT_NUM_OF_ENTRIES; i++) cac_tables->cac_bif_lut[i] = ni_pi->cac_weights->pcie_cac[i]; ni_pi->cac_data.i_leakage = rdev->pm.dpm.cac_leakage; ni_pi->cac_data.pwr_const = 0; ni_pi->cac_data.dc_cac_value = ni_pi->dc_cac_table[NISLANDS_DCCAC_LEVEL_0]; ni_pi->cac_data.bif_cac_value = 0; ni_pi->cac_data.mc_wr_weight = ni_pi->cac_weights->mc_write_weight; ni_pi->cac_data.mc_rd_weight = ni_pi->cac_weights->mc_read_weight; ni_pi->cac_data.allow_ovrflw = 0; ni_pi->cac_data.l2num_win_tdp = ni_pi->lta_window_size; ni_pi->cac_data.num_win_tdp = 0; ni_pi->cac_data.lts_truncate_n = ni_pi->lts_truncate; if (ni_pi->driver_calculate_cac_leakage) ret = ni_init_driver_calculated_leakage_table(rdev, cac_tables); else ret = ni_init_simplified_leakage_table(rdev, cac_tables); if (ret) goto done_free; cac_tables->pwr_const = cpu_to_be32(ni_pi->cac_data.pwr_const); cac_tables->dc_cacValue = cpu_to_be32(ni_pi->cac_data.dc_cac_value); cac_tables->bif_cacValue = cpu_to_be32(ni_pi->cac_data.bif_cac_value); cac_tables->AllowOvrflw = ni_pi->cac_data.allow_ovrflw; cac_tables->MCWrWeight = ni_pi->cac_data.mc_wr_weight; cac_tables->MCRdWeight = ni_pi->cac_data.mc_rd_weight; cac_tables->numWin_TDP = ni_pi->cac_data.num_win_tdp; cac_tables->l2numWin_TDP = ni_pi->cac_data.l2num_win_tdp; cac_tables->lts_truncate_n = ni_pi->cac_data.lts_truncate_n; ret = rv770_copy_bytes_to_smc(rdev, ni_pi->cac_table_start, (u8 *)cac_tables, sizeof(PP_NIslands_CACTABLES), pi->sram_end); done_free: if (ret) { ni_pi->enable_cac = false; ni_pi->enable_power_containment = false; } kfree(cac_tables); return 0; } static int ni_initialize_hardware_cac_manager(struct radeon_device *rdev) { struct ni_power_info *ni_pi = ni_get_pi(rdev); u32 reg; if (!ni_pi->enable_cac || !ni_pi->cac_configuration_required) return 0; if (ni_pi->cac_weights == NULL) return -EINVAL; reg = RREG32_CG(CG_CAC_REGION_1_WEIGHT_0) & ~(WEIGHT_TCP_SIG0_MASK | WEIGHT_TCP_SIG1_MASK | WEIGHT_TA_SIG_MASK); reg |= (WEIGHT_TCP_SIG0(ni_pi->cac_weights->weight_tcp_sig0) | WEIGHT_TCP_SIG1(ni_pi->cac_weights->weight_tcp_sig1) | WEIGHT_TA_SIG(ni_pi->cac_weights->weight_ta_sig)); WREG32_CG(CG_CAC_REGION_1_WEIGHT_0, reg); reg = RREG32_CG(CG_CAC_REGION_1_WEIGHT_1) & ~(WEIGHT_TCC_EN0_MASK | WEIGHT_TCC_EN1_MASK | WEIGHT_TCC_EN2_MASK); reg |= (WEIGHT_TCC_EN0(ni_pi->cac_weights->weight_tcc_en0) | WEIGHT_TCC_EN1(ni_pi->cac_weights->weight_tcc_en1) | WEIGHT_TCC_EN2(ni_pi->cac_weights->weight_tcc_en2)); WREG32_CG(CG_CAC_REGION_1_WEIGHT_1, reg); reg = RREG32_CG(CG_CAC_REGION_2_WEIGHT_0) & ~(WEIGHT_CB_EN0_MASK | WEIGHT_CB_EN1_MASK | WEIGHT_CB_EN2_MASK | WEIGHT_CB_EN3_MASK); reg |= (WEIGHT_CB_EN0(ni_pi->cac_weights->weight_cb_en0) | WEIGHT_CB_EN1(ni_pi->cac_weights->weight_cb_en1) | WEIGHT_CB_EN2(ni_pi->cac_weights->weight_cb_en2) | WEIGHT_CB_EN3(ni_pi->cac_weights->weight_cb_en3)); WREG32_CG(CG_CAC_REGION_2_WEIGHT_0, reg); reg = RREG32_CG(CG_CAC_REGION_2_WEIGHT_1) & ~(WEIGHT_DB_SIG0_MASK | WEIGHT_DB_SIG1_MASK | WEIGHT_DB_SIG2_MASK | WEIGHT_DB_SIG3_MASK); reg |= (WEIGHT_DB_SIG0(ni_pi->cac_weights->weight_db_sig0) | WEIGHT_DB_SIG1(ni_pi->cac_weights->weight_db_sig1) | WEIGHT_DB_SIG2(ni_pi->cac_weights->weight_db_sig2) | WEIGHT_DB_SIG3(ni_pi->cac_weights->weight_db_sig3)); WREG32_CG(CG_CAC_REGION_2_WEIGHT_1, reg); reg = RREG32_CG(CG_CAC_REGION_2_WEIGHT_2) & ~(WEIGHT_SXM_SIG0_MASK | WEIGHT_SXM_SIG1_MASK | WEIGHT_SXM_SIG2_MASK | WEIGHT_SXS_SIG0_MASK | WEIGHT_SXS_SIG1_MASK); reg |= (WEIGHT_SXM_SIG0(ni_pi->cac_weights->weight_sxm_sig0) | WEIGHT_SXM_SIG1(ni_pi->cac_weights->weight_sxm_sig1) | WEIGHT_SXM_SIG2(ni_pi->cac_weights->weight_sxm_sig2) | WEIGHT_SXS_SIG0(ni_pi->cac_weights->weight_sxs_sig0) | WEIGHT_SXS_SIG1(ni_pi->cac_weights->weight_sxs_sig1)); WREG32_CG(CG_CAC_REGION_2_WEIGHT_2, reg); reg = RREG32_CG(CG_CAC_REGION_3_WEIGHT_0) & ~(WEIGHT_XBR_0_MASK | WEIGHT_XBR_1_MASK | WEIGHT_XBR_2_MASK | WEIGHT_SPI_SIG0_MASK); reg |= (WEIGHT_XBR_0(ni_pi->cac_weights->weight_xbr_0) | WEIGHT_XBR_1(ni_pi->cac_weights->weight_xbr_1) | WEIGHT_XBR_2(ni_pi->cac_weights->weight_xbr_2) | WEIGHT_SPI_SIG0(ni_pi->cac_weights->weight_spi_sig0)); WREG32_CG(CG_CAC_REGION_3_WEIGHT_0, reg); reg = RREG32_CG(CG_CAC_REGION_3_WEIGHT_1) & ~(WEIGHT_SPI_SIG1_MASK | WEIGHT_SPI_SIG2_MASK | WEIGHT_SPI_SIG3_MASK | WEIGHT_SPI_SIG4_MASK | WEIGHT_SPI_SIG5_MASK); reg |= (WEIGHT_SPI_SIG1(ni_pi->cac_weights->weight_spi_sig1) | WEIGHT_SPI_SIG2(ni_pi->cac_weights->weight_spi_sig2) | WEIGHT_SPI_SIG3(ni_pi->cac_weights->weight_spi_sig3) | WEIGHT_SPI_SIG4(ni_pi->cac_weights->weight_spi_sig4) | WEIGHT_SPI_SIG5(ni_pi->cac_weights->weight_spi_sig5)); WREG32_CG(CG_CAC_REGION_3_WEIGHT_1, reg); reg = RREG32_CG(CG_CAC_REGION_4_WEIGHT_0) & ~(WEIGHT_LDS_SIG0_MASK | WEIGHT_LDS_SIG1_MASK | WEIGHT_SC_MASK); reg |= (WEIGHT_LDS_SIG0(ni_pi->cac_weights->weight_lds_sig0) | WEIGHT_LDS_SIG1(ni_pi->cac_weights->weight_lds_sig1) | WEIGHT_SC(ni_pi->cac_weights->weight_sc)); WREG32_CG(CG_CAC_REGION_4_WEIGHT_0, reg); reg = RREG32_CG(CG_CAC_REGION_4_WEIGHT_1) & ~(WEIGHT_BIF_MASK | WEIGHT_CP_MASK | WEIGHT_PA_SIG0_MASK | WEIGHT_PA_SIG1_MASK | WEIGHT_VGT_SIG0_MASK); reg |= (WEIGHT_BIF(ni_pi->cac_weights->weight_bif) | WEIGHT_CP(ni_pi->cac_weights->weight_cp) | WEIGHT_PA_SIG0(ni_pi->cac_weights->weight_pa_sig0) | WEIGHT_PA_SIG1(ni_pi->cac_weights->weight_pa_sig1) | WEIGHT_VGT_SIG0(ni_pi->cac_weights->weight_vgt_sig0)); WREG32_CG(CG_CAC_REGION_4_WEIGHT_1, reg); reg = RREG32_CG(CG_CAC_REGION_4_WEIGHT_2) & ~(WEIGHT_VGT_SIG1_MASK | WEIGHT_VGT_SIG2_MASK | WEIGHT_DC_SIG0_MASK | WEIGHT_DC_SIG1_MASK | WEIGHT_DC_SIG2_MASK); reg |= (WEIGHT_VGT_SIG1(ni_pi->cac_weights->weight_vgt_sig1) | WEIGHT_VGT_SIG2(ni_pi->cac_weights->weight_vgt_sig2) | WEIGHT_DC_SIG0(ni_pi->cac_weights->weight_dc_sig0) | WEIGHT_DC_SIG1(ni_pi->cac_weights->weight_dc_sig1) | WEIGHT_DC_SIG2(ni_pi->cac_weights->weight_dc_sig2)); WREG32_CG(CG_CAC_REGION_4_WEIGHT_2, reg); reg = RREG32_CG(CG_CAC_REGION_4_WEIGHT_3) & ~(WEIGHT_DC_SIG3_MASK | WEIGHT_UVD_SIG0_MASK | WEIGHT_UVD_SIG1_MASK | WEIGHT_SPARE0_MASK | WEIGHT_SPARE1_MASK); reg |= (WEIGHT_DC_SIG3(ni_pi->cac_weights->weight_dc_sig3) | WEIGHT_UVD_SIG0(ni_pi->cac_weights->weight_uvd_sig0) | WEIGHT_UVD_SIG1(ni_pi->cac_weights->weight_uvd_sig1) | WEIGHT_SPARE0(ni_pi->cac_weights->weight_spare0) | WEIGHT_SPARE1(ni_pi->cac_weights->weight_spare1)); WREG32_CG(CG_CAC_REGION_4_WEIGHT_3, reg); reg = RREG32_CG(CG_CAC_REGION_5_WEIGHT_0) & ~(WEIGHT_SQ_VSP_MASK | WEIGHT_SQ_VSP0_MASK); reg |= (WEIGHT_SQ_VSP(ni_pi->cac_weights->weight_sq_vsp) | WEIGHT_SQ_VSP0(ni_pi->cac_weights->weight_sq_vsp0)); WREG32_CG(CG_CAC_REGION_5_WEIGHT_0, reg); reg = RREG32_CG(CG_CAC_REGION_5_WEIGHT_1) & ~(WEIGHT_SQ_GPR_MASK); reg |= WEIGHT_SQ_GPR(ni_pi->cac_weights->weight_sq_gpr); WREG32_CG(CG_CAC_REGION_5_WEIGHT_1, reg); reg = RREG32_CG(CG_CAC_REGION_4_OVERRIDE_4) & ~(OVR_MODE_SPARE_0_MASK | OVR_VAL_SPARE_0_MASK | OVR_MODE_SPARE_1_MASK | OVR_VAL_SPARE_1_MASK); reg |= (OVR_MODE_SPARE_0(ni_pi->cac_weights->ovr_mode_spare_0) | OVR_VAL_SPARE_0(ni_pi->cac_weights->ovr_val_spare_0) | OVR_MODE_SPARE_1(ni_pi->cac_weights->ovr_mode_spare_1) | OVR_VAL_SPARE_1(ni_pi->cac_weights->ovr_val_spare_1)); WREG32_CG(CG_CAC_REGION_4_OVERRIDE_4, reg); reg = RREG32(SQ_CAC_THRESHOLD) & ~(VSP_MASK | VSP0_MASK | GPR_MASK); reg |= (VSP(ni_pi->cac_weights->vsp) | VSP0(ni_pi->cac_weights->vsp0) | GPR(ni_pi->cac_weights->gpr)); WREG32(SQ_CAC_THRESHOLD, reg); reg = (MCDW_WR_ENABLE | MCDX_WR_ENABLE | MCDY_WR_ENABLE | MCDZ_WR_ENABLE | INDEX(0x09D4)); WREG32(MC_CG_CONFIG, reg); reg = (READ_WEIGHT(ni_pi->cac_weights->mc_read_weight) | WRITE_WEIGHT(ni_pi->cac_weights->mc_write_weight) | ALLOW_OVERFLOW); WREG32(MC_CG_DATAPORT, reg); return 0; } static int ni_enable_smc_cac(struct radeon_device *rdev, struct radeon_ps *radeon_new_state, bool enable) { struct ni_power_info *ni_pi = ni_get_pi(rdev); int ret = 0; PPSMC_Result smc_result; if (ni_pi->enable_cac) { if (enable) { if (!r600_is_uvd_state(radeon_new_state->class, radeon_new_state->class2)) { smc_result = rv770_send_msg_to_smc(rdev, PPSMC_MSG_CollectCAC_PowerCorreln); if (ni_pi->support_cac_long_term_average) { smc_result = rv770_send_msg_to_smc(rdev, PPSMC_CACLongTermAvgEnable); if (PPSMC_Result_OK != smc_result) ni_pi->support_cac_long_term_average = false; } smc_result = rv770_send_msg_to_smc(rdev, PPSMC_MSG_EnableCac); if (PPSMC_Result_OK != smc_result) ret = -EINVAL; ni_pi->cac_enabled = (PPSMC_Result_OK == smc_result) ? true : false; } } else if (ni_pi->cac_enabled) { smc_result = rv770_send_msg_to_smc(rdev, PPSMC_MSG_DisableCac); ni_pi->cac_enabled = false; if (ni_pi->support_cac_long_term_average) { smc_result = rv770_send_msg_to_smc(rdev, PPSMC_CACLongTermAvgDisable); if (PPSMC_Result_OK != smc_result) ni_pi->support_cac_long_term_average = false; } } } return ret; } static int ni_pcie_performance_request(struct radeon_device *rdev, u8 perf_req, bool advertise) { #if defined(CONFIG_ACPI) struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); if ((perf_req == PCIE_PERF_REQ_PECI_GEN1) || (perf_req == PCIE_PERF_REQ_PECI_GEN2)) { if (eg_pi->pcie_performance_request_registered == false) radeon_acpi_pcie_notify_device_ready(rdev); eg_pi->pcie_performance_request_registered = true; return radeon_acpi_pcie_performance_request(rdev, perf_req, advertise); } else if ((perf_req == PCIE_PERF_REQ_REMOVE_REGISTRY) && eg_pi->pcie_performance_request_registered) { eg_pi->pcie_performance_request_registered = false; return radeon_acpi_pcie_performance_request(rdev, perf_req, advertise); } #endif return 0; } static int ni_advertise_gen2_capability(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u32 tmp; tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); if ((tmp & LC_OTHER_SIDE_EVER_SENT_GEN2) && (tmp & LC_OTHER_SIDE_SUPPORTS_GEN2)) pi->pcie_gen2 = true; else pi->pcie_gen2 = false; if (!pi->pcie_gen2) ni_pcie_performance_request(rdev, PCIE_PERF_REQ_PECI_GEN2, true); return 0; } static void ni_enable_bif_dynamic_pcie_gen2(struct radeon_device *rdev, bool enable) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); u32 tmp, bif; tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); if ((tmp & LC_OTHER_SIDE_EVER_SENT_GEN2) && (tmp & LC_OTHER_SIDE_SUPPORTS_GEN2)) { if (enable) { if (!pi->boot_in_gen2) { bif = RREG32(CG_BIF_REQ_AND_RSP) & ~CG_CLIENT_REQ_MASK; bif |= CG_CLIENT_REQ(0xd); WREG32(CG_BIF_REQ_AND_RSP, bif); } tmp &= ~LC_HW_VOLTAGE_IF_CONTROL_MASK; tmp |= LC_HW_VOLTAGE_IF_CONTROL(1); tmp |= LC_GEN2_EN_STRAP; tmp |= LC_CLR_FAILED_SPD_CHANGE_CNT; WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp); udelay(10); tmp &= ~LC_CLR_FAILED_SPD_CHANGE_CNT; WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp); } else { if (!pi->boot_in_gen2) { bif = RREG32(CG_BIF_REQ_AND_RSP) & ~CG_CLIENT_REQ_MASK; bif |= CG_CLIENT_REQ(0xd); WREG32(CG_BIF_REQ_AND_RSP, bif); tmp &= ~LC_HW_VOLTAGE_IF_CONTROL_MASK; tmp &= ~LC_GEN2_EN_STRAP; } WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp); } } } static void ni_enable_dynamic_pcie_gen2(struct radeon_device *rdev, bool enable) { ni_enable_bif_dynamic_pcie_gen2(rdev, enable); if (enable) WREG32_P(GENERAL_PWRMGT, ENABLE_GEN2PCIE, ~ENABLE_GEN2PCIE); else WREG32_P(GENERAL_PWRMGT, 0, ~ENABLE_GEN2PCIE); } void ni_set_uvd_clock_before_set_eng_clock(struct radeon_device *rdev, struct radeon_ps *new_ps, struct radeon_ps *old_ps) { struct ni_ps *new_state = ni_get_ps(new_ps); struct ni_ps *current_state = ni_get_ps(old_ps); if ((new_ps->vclk == old_ps->vclk) && (new_ps->dclk == old_ps->dclk)) return; if (new_state->performance_levels[new_state->performance_level_count - 1].sclk >= current_state->performance_levels[current_state->performance_level_count - 1].sclk) return; radeon_set_uvd_clocks(rdev, new_ps->vclk, new_ps->dclk); } void ni_set_uvd_clock_after_set_eng_clock(struct radeon_device *rdev, struct radeon_ps *new_ps, struct radeon_ps *old_ps) { struct ni_ps *new_state = ni_get_ps(new_ps); struct ni_ps *current_state = ni_get_ps(old_ps); if ((new_ps->vclk == old_ps->vclk) && (new_ps->dclk == old_ps->dclk)) return; if (new_state->performance_levels[new_state->performance_level_count - 1].sclk < current_state->performance_levels[current_state->performance_level_count - 1].sclk) return; radeon_set_uvd_clocks(rdev, new_ps->vclk, new_ps->dclk); } void ni_dpm_setup_asic(struct radeon_device *rdev) { struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); int r; r = ni_mc_load_microcode(rdev); if (r) DRM_ERROR("Failed to load MC firmware!\n"); ni_read_clock_registers(rdev); btc_read_arb_registers(rdev); rv770_get_memory_type(rdev); if (eg_pi->pcie_performance_request) ni_advertise_gen2_capability(rdev); rv770_get_pcie_gen2_status(rdev); rv770_enable_acpi_pm(rdev); } void ni_update_current_ps(struct radeon_device *rdev, struct radeon_ps *rps) { struct ni_ps *new_ps = ni_get_ps(rps); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); eg_pi->current_rps = *rps; ni_pi->current_ps = *new_ps; eg_pi->current_rps.ps_priv = &ni_pi->current_ps; } void ni_update_requested_ps(struct radeon_device *rdev, struct radeon_ps *rps) { struct ni_ps *new_ps = ni_get_ps(rps); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct ni_power_info *ni_pi = ni_get_pi(rdev); eg_pi->requested_rps = *rps; ni_pi->requested_ps = *new_ps; eg_pi->requested_rps.ps_priv = &ni_pi->requested_ps; } int ni_dpm_enable(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps; int ret; if (pi->gfx_clock_gating) ni_cg_clockgating_default(rdev); if (btc_dpm_enabled(rdev)) return -EINVAL; if (pi->mg_clock_gating) ni_mg_clockgating_default(rdev); if (eg_pi->ls_clock_gating) ni_ls_clockgating_default(rdev); if (pi->voltage_control) { rv770_enable_voltage_control(rdev, true); ret = cypress_construct_voltage_tables(rdev); if (ret) { DRM_ERROR("cypress_construct_voltage_tables failed\n"); return ret; } } if (eg_pi->dynamic_ac_timing) { ret = ni_initialize_mc_reg_table(rdev); if (ret) eg_pi->dynamic_ac_timing = false; } if (pi->dynamic_ss) cypress_enable_spread_spectrum(rdev, true); if (pi->thermal_protection) rv770_enable_thermal_protection(rdev, true); rv770_setup_bsp(rdev); rv770_program_git(rdev); rv770_program_tp(rdev); rv770_program_tpp(rdev); rv770_program_sstp(rdev); cypress_enable_display_gap(rdev); rv770_program_vc(rdev); if (pi->dynamic_pcie_gen2) ni_enable_dynamic_pcie_gen2(rdev, true); ret = rv770_upload_firmware(rdev); if (ret) { DRM_ERROR("rv770_upload_firmware failed\n"); return ret; } ret = ni_process_firmware_header(rdev); if (ret) { DRM_ERROR("ni_process_firmware_header failed\n"); return ret; } ret = ni_initial_switch_from_arb_f0_to_f1(rdev); if (ret) { DRM_ERROR("ni_initial_switch_from_arb_f0_to_f1 failed\n"); return ret; } ret = ni_init_smc_table(rdev); if (ret) { DRM_ERROR("ni_init_smc_table failed\n"); return ret; } ret = ni_init_smc_spll_table(rdev); if (ret) { DRM_ERROR("ni_init_smc_spll_table failed\n"); return ret; } ret = ni_init_arb_table_index(rdev); if (ret) { DRM_ERROR("ni_init_arb_table_index failed\n"); return ret; } if (eg_pi->dynamic_ac_timing) { ret = ni_populate_mc_reg_table(rdev, boot_ps); if (ret) { DRM_ERROR("ni_populate_mc_reg_table failed\n"); return ret; } } ret = ni_initialize_smc_cac_tables(rdev); if (ret) { DRM_ERROR("ni_initialize_smc_cac_tables failed\n"); return ret; } ret = ni_initialize_hardware_cac_manager(rdev); if (ret) { DRM_ERROR("ni_initialize_hardware_cac_manager failed\n"); return ret; } ret = ni_populate_smc_tdp_limits(rdev, boot_ps); if (ret) { DRM_ERROR("ni_populate_smc_tdp_limits failed\n"); return ret; } ni_program_response_times(rdev); r7xx_start_smc(rdev); ret = cypress_notify_smc_display_change(rdev, false); if (ret) { DRM_ERROR("cypress_notify_smc_display_change failed\n"); return ret; } cypress_enable_sclk_control(rdev, true); if (eg_pi->memory_transition) cypress_enable_mclk_control(rdev, true); cypress_start_dpm(rdev); if (pi->gfx_clock_gating) ni_gfx_clockgating_enable(rdev, true); if (pi->mg_clock_gating) ni_mg_clockgating_enable(rdev, true); if (eg_pi->ls_clock_gating) ni_ls_clockgating_enable(rdev, true); rv770_enable_auto_throttle_source(rdev, RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL, true); ni_update_current_ps(rdev, boot_ps); return 0; } void ni_dpm_disable(struct radeon_device *rdev) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps; if (!btc_dpm_enabled(rdev)) return; rv770_clear_vc(rdev); if (pi->thermal_protection) rv770_enable_thermal_protection(rdev, false); ni_enable_power_containment(rdev, boot_ps, false); ni_enable_smc_cac(rdev, boot_ps, false); cypress_enable_spread_spectrum(rdev, false); rv770_enable_auto_throttle_source(rdev, RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL, false); if (pi->dynamic_pcie_gen2) ni_enable_dynamic_pcie_gen2(rdev, false); if (rdev->irq.installed && r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) { rdev->irq.dpm_thermal = false; radeon_irq_set(rdev); } if (pi->gfx_clock_gating) ni_gfx_clockgating_enable(rdev, false); if (pi->mg_clock_gating) ni_mg_clockgating_enable(rdev, false); if (eg_pi->ls_clock_gating) ni_ls_clockgating_enable(rdev, false); ni_stop_dpm(rdev); btc_reset_to_default(rdev); ni_stop_smc(rdev); ni_force_switch_to_arb_f0(rdev); ni_update_current_ps(rdev, boot_ps); } static int ni_power_control_set_level(struct radeon_device *rdev) { struct radeon_ps *new_ps = rdev->pm.dpm.requested_ps; int ret; ret = ni_restrict_performance_levels_before_switch(rdev); if (ret) return ret; ret = rv770_halt_smc(rdev); if (ret) return ret; ret = ni_populate_smc_tdp_limits(rdev, new_ps); if (ret) return ret; ret = rv770_resume_smc(rdev); if (ret) return ret; ret = rv770_set_sw_state(rdev); if (ret) return ret; return 0; } int ni_dpm_pre_set_power_state(struct radeon_device *rdev) { struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps; struct radeon_ps *new_ps = &requested_ps; ni_update_requested_ps(rdev, new_ps); ni_apply_state_adjust_rules(rdev, &eg_pi->requested_rps); return 0; } int ni_dpm_set_power_state(struct radeon_device *rdev) { struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct radeon_ps *new_ps = &eg_pi->requested_rps; struct radeon_ps *old_ps = &eg_pi->current_rps; int ret; ret = ni_restrict_performance_levels_before_switch(rdev); if (ret) { DRM_ERROR("ni_restrict_performance_levels_before_switch failed\n"); return ret; } ni_set_uvd_clock_before_set_eng_clock(rdev, new_ps, old_ps); ret = ni_enable_power_containment(rdev, new_ps, false); if (ret) { DRM_ERROR("ni_enable_power_containment failed\n"); return ret; } ret = ni_enable_smc_cac(rdev, new_ps, false); if (ret) { DRM_ERROR("ni_enable_smc_cac failed\n"); return ret; } ret = rv770_halt_smc(rdev); if (ret) { DRM_ERROR("rv770_halt_smc failed\n"); return ret; } if (eg_pi->smu_uvd_hs) btc_notify_uvd_to_smc(rdev, new_ps); ret = ni_upload_sw_state(rdev, new_ps); if (ret) { DRM_ERROR("ni_upload_sw_state failed\n"); return ret; } if (eg_pi->dynamic_ac_timing) { ret = ni_upload_mc_reg_table(rdev, new_ps); if (ret) { DRM_ERROR("ni_upload_mc_reg_table failed\n"); return ret; } } ret = ni_program_memory_timing_parameters(rdev, new_ps); if (ret) { DRM_ERROR("ni_program_memory_timing_parameters failed\n"); return ret; } ret = rv770_resume_smc(rdev); if (ret) { DRM_ERROR("rv770_resume_smc failed\n"); return ret; } ret = rv770_set_sw_state(rdev); if (ret) { DRM_ERROR("rv770_set_sw_state failed\n"); return ret; } ni_set_uvd_clock_after_set_eng_clock(rdev, new_ps, old_ps); ret = ni_enable_smc_cac(rdev, new_ps, true); if (ret) { DRM_ERROR("ni_enable_smc_cac failed\n"); return ret; } ret = ni_enable_power_containment(rdev, new_ps, true); if (ret) { DRM_ERROR("ni_enable_power_containment failed\n"); return ret; } /* update tdp */ ret = ni_power_control_set_level(rdev); if (ret) { DRM_ERROR("ni_power_control_set_level failed\n"); return ret; } return 0; } void ni_dpm_post_set_power_state(struct radeon_device *rdev) { struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct radeon_ps *new_ps = &eg_pi->requested_rps; ni_update_current_ps(rdev, new_ps); } #if 0 void ni_dpm_reset_asic(struct radeon_device *rdev) { ni_restrict_performance_levels_before_switch(rdev); rv770_set_boot_state(rdev); } #endif union power_info { struct _ATOM_POWERPLAY_INFO info; struct _ATOM_POWERPLAY_INFO_V2 info_2; struct _ATOM_POWERPLAY_INFO_V3 info_3; struct _ATOM_PPLIB_POWERPLAYTABLE pplib; struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2; struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3; }; union pplib_clock_info { struct _ATOM_PPLIB_R600_CLOCK_INFO r600; struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780; struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen; struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo; }; union pplib_power_state { struct _ATOM_PPLIB_STATE v1; struct _ATOM_PPLIB_STATE_V2 v2; }; static void ni_parse_pplib_non_clock_info(struct radeon_device *rdev, struct radeon_ps *rps, struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info, u8 table_rev) { rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings); rps->class = le16_to_cpu(non_clock_info->usClassification); rps->class2 = le16_to_cpu(non_clock_info->usClassification2); if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) { rps->vclk = le32_to_cpu(non_clock_info->ulVCLK); rps->dclk = le32_to_cpu(non_clock_info->ulDCLK); } else if (r600_is_uvd_state(rps->class, rps->class2)) { rps->vclk = RV770_DEFAULT_VCLK_FREQ; rps->dclk = RV770_DEFAULT_DCLK_FREQ; } else { rps->vclk = 0; rps->dclk = 0; } if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) rdev->pm.dpm.boot_ps = rps; if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) rdev->pm.dpm.uvd_ps = rps; } static void ni_parse_pplib_clock_info(struct radeon_device *rdev, struct radeon_ps *rps, int index, union pplib_clock_info *clock_info) { struct rv7xx_power_info *pi = rv770_get_pi(rdev); struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct ni_ps *ps = ni_get_ps(rps); struct rv7xx_pl *pl = &ps->performance_levels[index]; ps->performance_level_count = index + 1; pl->sclk = le16_to_cpu(clock_info->evergreen.usEngineClockLow); pl->sclk |= clock_info->evergreen.ucEngineClockHigh << 16; pl->mclk = le16_to_cpu(clock_info->evergreen.usMemoryClockLow); pl->mclk |= clock_info->evergreen.ucMemoryClockHigh << 16; pl->vddc = le16_to_cpu(clock_info->evergreen.usVDDC); pl->vddci = le16_to_cpu(clock_info->evergreen.usVDDCI); pl->flags = le32_to_cpu(clock_info->evergreen.ulFlags); /* patch up vddc if necessary */ if (pl->vddc == 0xff01) { if (pi->max_vddc) pl->vddc = pi->max_vddc; } if (rps->class & ATOM_PPLIB_CLASSIFICATION_ACPI) { pi->acpi_vddc = pl->vddc; eg_pi->acpi_vddci = pl->vddci; if (ps->performance_levels[0].flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) pi->acpi_pcie_gen2 = true; else pi->acpi_pcie_gen2 = false; } if (rps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) { eg_pi->ulv.supported = true; eg_pi->ulv.pl = pl; } if (pi->min_vddc_in_table > pl->vddc) pi->min_vddc_in_table = pl->vddc; if (pi->max_vddc_in_table < pl->vddc) pi->max_vddc_in_table = pl->vddc; /* patch up boot state */ if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) { u16 vddc, vddci, mvdd; radeon_atombios_get_default_voltages(rdev, &vddc, &vddci, &mvdd); pl->mclk = rdev->clock.default_mclk; pl->sclk = rdev->clock.default_sclk; pl->vddc = vddc; pl->vddci = vddci; } if ((rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) == ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE) { rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk = pl->sclk; rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.mclk = pl->mclk; rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddc = pl->vddc; rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddci = pl->vddci; } } static int ni_parse_power_table(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info; union pplib_power_state *power_state; int i, j; union pplib_clock_info *clock_info; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; struct ni_ps *ps; if (!atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return -EINVAL; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); rdev->pm.dpm.ps = kcalloc(power_info->pplib.ucNumStates, sizeof(struct radeon_ps), GFP_KERNEL); if (!rdev->pm.dpm.ps) return -ENOMEM; for (i = 0; i < power_info->pplib.ucNumStates; i++) { power_state = (union pplib_power_state *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usStateArrayOffset) + i * power_info->pplib.ucStateEntrySize); non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset) + (power_state->v1.ucNonClockStateIndex * power_info->pplib.ucNonClockSize)); if (power_info->pplib.ucStateEntrySize - 1) { u8 *idx; ps = kzalloc(sizeof(struct ni_ps), GFP_KERNEL); if (ps == NULL) { kfree(rdev->pm.dpm.ps); return -ENOMEM; } rdev->pm.dpm.ps[i].ps_priv = ps; ni_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i], non_clock_info, power_info->pplib.ucNonClockSize); idx = (u8 *)&power_state->v1.ucClockStateIndices[0]; for (j = 0; j < (power_info->pplib.ucStateEntrySize - 1); j++) { clock_info = (union pplib_clock_info *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usClockInfoArrayOffset) + (idx[j] * power_info->pplib.ucClockInfoSize)); ni_parse_pplib_clock_info(rdev, &rdev->pm.dpm.ps[i], j, clock_info); } } } rdev->pm.dpm.num_ps = power_info->pplib.ucNumStates; return 0; } int ni_dpm_init(struct radeon_device *rdev) { struct rv7xx_power_info *pi; struct evergreen_power_info *eg_pi; struct ni_power_info *ni_pi; struct atom_clock_dividers dividers; int ret; ni_pi = kzalloc(sizeof(struct ni_power_info), GFP_KERNEL); if (ni_pi == NULL) return -ENOMEM; rdev->pm.dpm.priv = ni_pi; eg_pi = &ni_pi->eg; pi = &eg_pi->rv7xx; rv770_get_max_vddc(rdev); eg_pi->ulv.supported = false; pi->acpi_vddc = 0; eg_pi->acpi_vddci = 0; pi->min_vddc_in_table = 0; pi->max_vddc_in_table = 0; ret = r600_get_platform_caps(rdev); if (ret) return ret; ret = ni_parse_power_table(rdev); if (ret) return ret; ret = r600_parse_extended_power_table(rdev); if (ret) return ret; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries = kcalloc(4, sizeof(struct radeon_clock_voltage_dependency_entry), GFP_KERNEL); if (!rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries) { r600_free_extended_power_table(rdev); return -ENOMEM; } rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.count = 4; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[0].clk = 0; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[0].v = 0; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[1].clk = 36000; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[1].v = 720; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[2].clk = 54000; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[2].v = 810; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[3].clk = 72000; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[3].v = 900; ni_patch_dependency_tables_based_on_leakage(rdev); if (rdev->pm.dpm.voltage_response_time == 0) rdev->pm.dpm.voltage_response_time = R600_VOLTAGERESPONSETIME_DFLT; if (rdev->pm.dpm.backbias_response_time == 0) rdev->pm.dpm.backbias_response_time = R600_BACKBIASRESPONSETIME_DFLT; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, 0, false, ÷rs); if (ret) pi->ref_div = dividers.ref_div + 1; else pi->ref_div = R600_REFERENCEDIVIDER_DFLT; pi->rlp = RV770_RLP_DFLT; pi->rmp = RV770_RMP_DFLT; pi->lhp = RV770_LHP_DFLT; pi->lmp = RV770_LMP_DFLT; eg_pi->ats[0].rlp = RV770_RLP_DFLT; eg_pi->ats[0].rmp = RV770_RMP_DFLT; eg_pi->ats[0].lhp = RV770_LHP_DFLT; eg_pi->ats[0].lmp = RV770_LMP_DFLT; eg_pi->ats[1].rlp = BTC_RLP_UVD_DFLT; eg_pi->ats[1].rmp = BTC_RMP_UVD_DFLT; eg_pi->ats[1].lhp = BTC_LHP_UVD_DFLT; eg_pi->ats[1].lmp = BTC_LMP_UVD_DFLT; eg_pi->smu_uvd_hs = true; if (rdev->pdev->device == 0x6707) { pi->mclk_strobe_mode_threshold = 55000; pi->mclk_edc_enable_threshold = 55000; eg_pi->mclk_edc_wr_enable_threshold = 55000; } else { pi->mclk_strobe_mode_threshold = 40000; pi->mclk_edc_enable_threshold = 40000; eg_pi->mclk_edc_wr_enable_threshold = 40000; } ni_pi->mclk_rtt_mode_threshold = eg_pi->mclk_edc_wr_enable_threshold; pi->voltage_control = radeon_atom_is_voltage_gpio(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC, 0); pi->mvdd_control = radeon_atom_is_voltage_gpio(rdev, SET_VOLTAGE_TYPE_ASIC_MVDDC, 0); eg_pi->vddci_control = radeon_atom_is_voltage_gpio(rdev, SET_VOLTAGE_TYPE_ASIC_VDDCI, 0); rv770_get_engine_memory_ss(rdev); pi->asi = RV770_ASI_DFLT; pi->pasi = CYPRESS_HASI_DFLT; pi->vrc = CYPRESS_VRC_DFLT; pi->power_gating = false; pi->gfx_clock_gating = true; pi->mg_clock_gating = true; pi->mgcgtssm = true; eg_pi->ls_clock_gating = false; eg_pi->sclk_deep_sleep = false; pi->dynamic_pcie_gen2 = true; if (rdev->pm.int_thermal_type != THERMAL_TYPE_NONE) pi->thermal_protection = true; else pi->thermal_protection = false; pi->display_gap = true; pi->dcodt = true; pi->ulps = true; eg_pi->dynamic_ac_timing = true; eg_pi->abm = true; eg_pi->mcls = true; eg_pi->light_sleep = true; eg_pi->memory_transition = true; #if defined(CONFIG_ACPI) eg_pi->pcie_performance_request = radeon_acpi_is_pcie_performance_request_supported(rdev); #else eg_pi->pcie_performance_request = false; #endif eg_pi->dll_default_on = false; eg_pi->sclk_deep_sleep = false; pi->mclk_stutter_mode_threshold = 0; pi->sram_end = SMC_RAM_END; rdev->pm.dpm.dyn_state.mclk_sclk_ratio = 3; rdev->pm.dpm.dyn_state.vddc_vddci_delta = 200; rdev->pm.dpm.dyn_state.min_vddc_for_pcie_gen2 = 900; rdev->pm.dpm.dyn_state.valid_sclk_values.count = ARRAY_SIZE(btc_valid_sclk); rdev->pm.dpm.dyn_state.valid_sclk_values.values = btc_valid_sclk; rdev->pm.dpm.dyn_state.valid_mclk_values.count = 0; rdev->pm.dpm.dyn_state.valid_mclk_values.values = NULL; rdev->pm.dpm.dyn_state.sclk_mclk_delta = 12500; ni_pi->cac_data.leakage_coefficients.at = 516; ni_pi->cac_data.leakage_coefficients.bt = 18; ni_pi->cac_data.leakage_coefficients.av = 51; ni_pi->cac_data.leakage_coefficients.bv = 2957; switch (rdev->pdev->device) { case 0x6700: case 0x6701: case 0x6702: case 0x6703: case 0x6718: ni_pi->cac_weights = &cac_weights_cayman_xt; break; case 0x6705: case 0x6719: case 0x671D: case 0x671C: default: ni_pi->cac_weights = &cac_weights_cayman_pro; break; case 0x6704: case 0x6706: case 0x6707: case 0x6708: case 0x6709: ni_pi->cac_weights = &cac_weights_cayman_le; break; } if (ni_pi->cac_weights->enable_power_containment_by_default) { ni_pi->enable_power_containment = true; ni_pi->enable_cac = true; ni_pi->enable_sq_ramping = true; } else { ni_pi->enable_power_containment = false; ni_pi->enable_cac = false; ni_pi->enable_sq_ramping = false; } ni_pi->driver_calculate_cac_leakage = false; ni_pi->cac_configuration_required = true; if (ni_pi->cac_configuration_required) { ni_pi->support_cac_long_term_average = true; ni_pi->lta_window_size = ni_pi->cac_weights->l2_lta_window_size; ni_pi->lts_truncate = ni_pi->cac_weights->lts_truncate; } else { ni_pi->support_cac_long_term_average = false; ni_pi->lta_window_size = 0; ni_pi->lts_truncate = 0; } ni_pi->use_power_boost_limit = true; /* make sure dc limits are valid */ if ((rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk == 0) || (rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk == 0)) rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc = rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac; return 0; } void ni_dpm_fini(struct radeon_device *rdev) { int i; for (i = 0; i < rdev->pm.dpm.num_ps; i++) { kfree(rdev->pm.dpm.ps[i].ps_priv); } kfree(rdev->pm.dpm.ps); kfree(rdev->pm.dpm.priv); kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries); r600_free_extended_power_table(rdev); } void ni_dpm_print_power_state(struct radeon_device *rdev, struct radeon_ps *rps) { struct ni_ps *ps = ni_get_ps(rps); struct rv7xx_pl *pl; int i; r600_dpm_print_class_info(rps->class, rps->class2); r600_dpm_print_cap_info(rps->caps); printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); for (i = 0; i < ps->performance_level_count; i++) { pl = &ps->performance_levels[i]; if (rdev->family >= CHIP_TAHITI) printk("\t\tpower level %d sclk: %u mclk: %u vddc: %u vddci: %u pcie gen: %u\n", i, pl->sclk, pl->mclk, pl->vddc, pl->vddci, pl->pcie_gen + 1); else printk("\t\tpower level %d sclk: %u mclk: %u vddc: %u vddci: %u\n", i, pl->sclk, pl->mclk, pl->vddc, pl->vddci); } r600_dpm_print_ps_status(rdev, rps); } void ni_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev, struct seq_file *m) { struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct radeon_ps *rps = &eg_pi->current_rps; struct ni_ps *ps = ni_get_ps(rps); struct rv7xx_pl *pl; u32 current_index = (RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_STATE_INDEX_MASK) >> CURRENT_STATE_INDEX_SHIFT; if (current_index >= ps->performance_level_count) { seq_printf(m, "invalid dpm profile %d\n", current_index); } else { pl = &ps->performance_levels[current_index]; seq_printf(m, "uvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); seq_printf(m, "power level %d sclk: %u mclk: %u vddc: %u vddci: %u\n", current_index, pl->sclk, pl->mclk, pl->vddc, pl->vddci); } } u32 ni_dpm_get_current_sclk(struct radeon_device *rdev) { struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct radeon_ps *rps = &eg_pi->current_rps; struct ni_ps *ps = ni_get_ps(rps); struct rv7xx_pl *pl; u32 current_index = (RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_STATE_INDEX_MASK) >> CURRENT_STATE_INDEX_SHIFT; if (current_index >= ps->performance_level_count) { return 0; } else { pl = &ps->performance_levels[current_index]; return pl->sclk; } } u32 ni_dpm_get_current_mclk(struct radeon_device *rdev) { struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct radeon_ps *rps = &eg_pi->current_rps; struct ni_ps *ps = ni_get_ps(rps); struct rv7xx_pl *pl; u32 current_index = (RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_STATE_INDEX_MASK) >> CURRENT_STATE_INDEX_SHIFT; if (current_index >= ps->performance_level_count) { return 0; } else { pl = &ps->performance_levels[current_index]; return pl->mclk; } } u32 ni_dpm_get_sclk(struct radeon_device *rdev, bool low) { struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct ni_ps *requested_state = ni_get_ps(&eg_pi->requested_rps); if (low) return requested_state->performance_levels[0].sclk; else return requested_state->performance_levels[requested_state->performance_level_count - 1].sclk; } u32 ni_dpm_get_mclk(struct radeon_device *rdev, bool low) { struct evergreen_power_info *eg_pi = evergreen_get_pi(rdev); struct ni_ps *requested_state = ni_get_ps(&eg_pi->requested_rps); if (low) return requested_state->performance_levels[0].mclk; else return requested_state->performance_levels[requested_state->performance_level_count - 1].mclk; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1