Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Roderick Colenbrander | 13867 | 99.86% | 39 | 92.86% |
Greg Kroah-Hartman | 16 | 0.12% | 1 | 2.38% |
Jiri Kosina | 3 | 0.02% | 1 | 2.38% |
Colin Ian King | 1 | 0.01% | 1 | 2.38% |
Total | 13887 | 42 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * HID driver for Sony DualSense(TM) controller. * * Copyright (c) 2020-2022 Sony Interactive Entertainment */ #include <linux/bits.h> #include <linux/crc32.h> #include <linux/device.h> #include <linux/hid.h> #include <linux/idr.h> #include <linux/input/mt.h> #include <linux/leds.h> #include <linux/led-class-multicolor.h> #include <linux/module.h> #include <asm/unaligned.h> #include "hid-ids.h" /* List of connected playstation devices. */ static DEFINE_MUTEX(ps_devices_lock); static LIST_HEAD(ps_devices_list); static DEFINE_IDA(ps_player_id_allocator); #define HID_PLAYSTATION_VERSION_PATCH 0x8000 /* Base class for playstation devices. */ struct ps_device { struct list_head list; struct hid_device *hdev; spinlock_t lock; uint32_t player_id; struct power_supply_desc battery_desc; struct power_supply *battery; uint8_t battery_capacity; int battery_status; const char *input_dev_name; /* Name of primary input device. */ uint8_t mac_address[6]; /* Note: stored in little endian order. */ uint32_t hw_version; uint32_t fw_version; int (*parse_report)(struct ps_device *dev, struct hid_report *report, u8 *data, int size); void (*remove)(struct ps_device *dev); }; /* Calibration data for playstation motion sensors. */ struct ps_calibration_data { int abs_code; short bias; int sens_numer; int sens_denom; }; struct ps_led_info { const char *name; const char *color; int max_brightness; enum led_brightness (*brightness_get)(struct led_classdev *cdev); int (*brightness_set)(struct led_classdev *cdev, enum led_brightness); int (*blink_set)(struct led_classdev *led, unsigned long *on, unsigned long *off); }; /* Seed values for DualShock4 / DualSense CRC32 for different report types. */ #define PS_INPUT_CRC32_SEED 0xA1 #define PS_OUTPUT_CRC32_SEED 0xA2 #define PS_FEATURE_CRC32_SEED 0xA3 #define DS_INPUT_REPORT_USB 0x01 #define DS_INPUT_REPORT_USB_SIZE 64 #define DS_INPUT_REPORT_BT 0x31 #define DS_INPUT_REPORT_BT_SIZE 78 #define DS_OUTPUT_REPORT_USB 0x02 #define DS_OUTPUT_REPORT_USB_SIZE 63 #define DS_OUTPUT_REPORT_BT 0x31 #define DS_OUTPUT_REPORT_BT_SIZE 78 #define DS_FEATURE_REPORT_CALIBRATION 0x05 #define DS_FEATURE_REPORT_CALIBRATION_SIZE 41 #define DS_FEATURE_REPORT_PAIRING_INFO 0x09 #define DS_FEATURE_REPORT_PAIRING_INFO_SIZE 20 #define DS_FEATURE_REPORT_FIRMWARE_INFO 0x20 #define DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE 64 /* Button masks for DualSense input report. */ #define DS_BUTTONS0_HAT_SWITCH GENMASK(3, 0) #define DS_BUTTONS0_SQUARE BIT(4) #define DS_BUTTONS0_CROSS BIT(5) #define DS_BUTTONS0_CIRCLE BIT(6) #define DS_BUTTONS0_TRIANGLE BIT(7) #define DS_BUTTONS1_L1 BIT(0) #define DS_BUTTONS1_R1 BIT(1) #define DS_BUTTONS1_L2 BIT(2) #define DS_BUTTONS1_R2 BIT(3) #define DS_BUTTONS1_CREATE BIT(4) #define DS_BUTTONS1_OPTIONS BIT(5) #define DS_BUTTONS1_L3 BIT(6) #define DS_BUTTONS1_R3 BIT(7) #define DS_BUTTONS2_PS_HOME BIT(0) #define DS_BUTTONS2_TOUCHPAD BIT(1) #define DS_BUTTONS2_MIC_MUTE BIT(2) /* Status field of DualSense input report. */ #define DS_STATUS_BATTERY_CAPACITY GENMASK(3, 0) #define DS_STATUS_CHARGING GENMASK(7, 4) #define DS_STATUS_CHARGING_SHIFT 4 /* Feature version from DualSense Firmware Info report. */ #define DS_FEATURE_VERSION(major, minor) ((major & 0xff) << 8 | (minor & 0xff)) /* * Status of a DualSense touch point contact. * Contact IDs, with highest bit set are 'inactive' * and any associated data is then invalid. */ #define DS_TOUCH_POINT_INACTIVE BIT(7) /* Magic value required in tag field of Bluetooth output report. */ #define DS_OUTPUT_TAG 0x10 /* Flags for DualSense output report. */ #define DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION BIT(0) #define DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT BIT(1) #define DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE BIT(0) #define DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE BIT(1) #define DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE BIT(2) #define DS_OUTPUT_VALID_FLAG1_RELEASE_LEDS BIT(3) #define DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE BIT(4) #define DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE BIT(1) #define DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2 BIT(2) #define DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE BIT(4) #define DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT BIT(1) /* DualSense hardware limits */ #define DS_ACC_RES_PER_G 8192 #define DS_ACC_RANGE (4*DS_ACC_RES_PER_G) #define DS_GYRO_RES_PER_DEG_S 1024 #define DS_GYRO_RANGE (2048*DS_GYRO_RES_PER_DEG_S) #define DS_TOUCHPAD_WIDTH 1920 #define DS_TOUCHPAD_HEIGHT 1080 struct dualsense { struct ps_device base; struct input_dev *gamepad; struct input_dev *sensors; struct input_dev *touchpad; /* Update version is used as a feature/capability version. */ uint16_t update_version; /* Calibration data for accelerometer and gyroscope. */ struct ps_calibration_data accel_calib_data[3]; struct ps_calibration_data gyro_calib_data[3]; /* Timestamp for sensor data */ bool sensor_timestamp_initialized; uint32_t prev_sensor_timestamp; uint32_t sensor_timestamp_us; /* Compatible rumble state */ bool use_vibration_v2; bool update_rumble; uint8_t motor_left; uint8_t motor_right; /* RGB lightbar */ struct led_classdev_mc lightbar; bool update_lightbar; uint8_t lightbar_red; uint8_t lightbar_green; uint8_t lightbar_blue; /* Microphone */ bool update_mic_mute; bool mic_muted; bool last_btn_mic_state; /* Player leds */ bool update_player_leds; uint8_t player_leds_state; struct led_classdev player_leds[5]; struct work_struct output_worker; bool output_worker_initialized; void *output_report_dmabuf; uint8_t output_seq; /* Sequence number for output report. */ }; struct dualsense_touch_point { uint8_t contact; uint8_t x_lo; uint8_t x_hi:4, y_lo:4; uint8_t y_hi; } __packed; static_assert(sizeof(struct dualsense_touch_point) == 4); /* Main DualSense input report excluding any BT/USB specific headers. */ struct dualsense_input_report { uint8_t x, y; uint8_t rx, ry; uint8_t z, rz; uint8_t seq_number; uint8_t buttons[4]; uint8_t reserved[4]; /* Motion sensors */ __le16 gyro[3]; /* x, y, z */ __le16 accel[3]; /* x, y, z */ __le32 sensor_timestamp; uint8_t reserved2; /* Touchpad */ struct dualsense_touch_point points[2]; uint8_t reserved3[12]; uint8_t status; uint8_t reserved4[10]; } __packed; /* Common input report size shared equals the size of the USB report minus 1 byte for ReportID. */ static_assert(sizeof(struct dualsense_input_report) == DS_INPUT_REPORT_USB_SIZE - 1); /* Common data between DualSense BT/USB main output report. */ struct dualsense_output_report_common { uint8_t valid_flag0; uint8_t valid_flag1; /* For DualShock 4 compatibility mode. */ uint8_t motor_right; uint8_t motor_left; /* Audio controls */ uint8_t reserved[4]; uint8_t mute_button_led; uint8_t power_save_control; uint8_t reserved2[28]; /* LEDs and lightbar */ uint8_t valid_flag2; uint8_t reserved3[2]; uint8_t lightbar_setup; uint8_t led_brightness; uint8_t player_leds; uint8_t lightbar_red; uint8_t lightbar_green; uint8_t lightbar_blue; } __packed; static_assert(sizeof(struct dualsense_output_report_common) == 47); struct dualsense_output_report_bt { uint8_t report_id; /* 0x31 */ uint8_t seq_tag; uint8_t tag; struct dualsense_output_report_common common; uint8_t reserved[24]; __le32 crc32; } __packed; static_assert(sizeof(struct dualsense_output_report_bt) == DS_OUTPUT_REPORT_BT_SIZE); struct dualsense_output_report_usb { uint8_t report_id; /* 0x02 */ struct dualsense_output_report_common common; uint8_t reserved[15]; } __packed; static_assert(sizeof(struct dualsense_output_report_usb) == DS_OUTPUT_REPORT_USB_SIZE); /* * The DualSense has a main output report used to control most features. It is * largely the same between Bluetooth and USB except for different headers and CRC. * This structure hide the differences between the two to simplify sending output reports. */ struct dualsense_output_report { uint8_t *data; /* Start of data */ uint8_t len; /* Size of output report */ /* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */ struct dualsense_output_report_bt *bt; /* Points to USB data payload in case for a USB report else NULL. */ struct dualsense_output_report_usb *usb; /* Points to common section of report, so past any headers. */ struct dualsense_output_report_common *common; }; #define DS4_INPUT_REPORT_USB 0x01 #define DS4_INPUT_REPORT_USB_SIZE 64 #define DS4_INPUT_REPORT_BT 0x11 #define DS4_INPUT_REPORT_BT_SIZE 78 #define DS4_OUTPUT_REPORT_USB 0x05 #define DS4_OUTPUT_REPORT_USB_SIZE 32 #define DS4_OUTPUT_REPORT_BT 0x11 #define DS4_OUTPUT_REPORT_BT_SIZE 78 #define DS4_FEATURE_REPORT_CALIBRATION 0x02 #define DS4_FEATURE_REPORT_CALIBRATION_SIZE 37 #define DS4_FEATURE_REPORT_CALIBRATION_BT 0x05 #define DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE 41 #define DS4_FEATURE_REPORT_FIRMWARE_INFO 0xa3 #define DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE 49 #define DS4_FEATURE_REPORT_PAIRING_INFO 0x12 #define DS4_FEATURE_REPORT_PAIRING_INFO_SIZE 16 /* * Status of a DualShock4 touch point contact. * Contact IDs, with highest bit set are 'inactive' * and any associated data is then invalid. */ #define DS4_TOUCH_POINT_INACTIVE BIT(7) /* Status field of DualShock4 input report. */ #define DS4_STATUS0_BATTERY_CAPACITY GENMASK(3, 0) #define DS4_STATUS0_CABLE_STATE BIT(4) /* Battery status within batery_status field. */ #define DS4_BATTERY_STATUS_FULL 11 /* Status1 bit2 contains dongle connection state: * 0 = connectd * 1 = disconnected */ #define DS4_STATUS1_DONGLE_STATE BIT(2) /* The lower 6 bits of hw_control of the Bluetooth main output report * control the interval at which Dualshock 4 reports data: * 0x00 - 1ms * 0x01 - 1ms * 0x02 - 2ms * 0x3E - 62ms * 0x3F - disabled */ #define DS4_OUTPUT_HWCTL_BT_POLL_MASK 0x3F /* Default to 4ms poll interval, which is same as USB (not adjustable). */ #define DS4_BT_DEFAULT_POLL_INTERVAL_MS 4 #define DS4_OUTPUT_HWCTL_CRC32 0x40 #define DS4_OUTPUT_HWCTL_HID 0x80 /* Flags for DualShock4 output report. */ #define DS4_OUTPUT_VALID_FLAG0_MOTOR 0x01 #define DS4_OUTPUT_VALID_FLAG0_LED 0x02 #define DS4_OUTPUT_VALID_FLAG0_LED_BLINK 0x04 /* DualShock4 hardware limits */ #define DS4_ACC_RES_PER_G 8192 #define DS4_ACC_RANGE (4*DS_ACC_RES_PER_G) #define DS4_GYRO_RES_PER_DEG_S 1024 #define DS4_GYRO_RANGE (2048*DS_GYRO_RES_PER_DEG_S) #define DS4_LIGHTBAR_MAX_BLINK 255 /* 255 centiseconds */ #define DS4_TOUCHPAD_WIDTH 1920 #define DS4_TOUCHPAD_HEIGHT 942 enum dualshock4_dongle_state { DONGLE_DISCONNECTED, DONGLE_CALIBRATING, DONGLE_CONNECTED, DONGLE_DISABLED }; struct dualshock4 { struct ps_device base; struct input_dev *gamepad; struct input_dev *sensors; struct input_dev *touchpad; /* Calibration data for accelerometer and gyroscope. */ struct ps_calibration_data accel_calib_data[3]; struct ps_calibration_data gyro_calib_data[3]; /* Only used on dongle to track state transitions. */ enum dualshock4_dongle_state dongle_state; /* Used during calibration. */ struct work_struct dongle_hotplug_worker; /* Timestamp for sensor data */ bool sensor_timestamp_initialized; uint32_t prev_sensor_timestamp; uint32_t sensor_timestamp_us; /* Bluetooth poll interval */ bool update_bt_poll_interval; uint8_t bt_poll_interval; bool update_rumble; uint8_t motor_left; uint8_t motor_right; /* Lightbar leds */ bool update_lightbar; bool update_lightbar_blink; bool lightbar_enabled; /* For use by global LED control. */ uint8_t lightbar_red; uint8_t lightbar_green; uint8_t lightbar_blue; uint8_t lightbar_blink_on; /* In increments of 10ms. */ uint8_t lightbar_blink_off; /* In increments of 10ms. */ struct led_classdev lightbar_leds[4]; struct work_struct output_worker; bool output_worker_initialized; void *output_report_dmabuf; }; struct dualshock4_touch_point { uint8_t contact; uint8_t x_lo; uint8_t x_hi:4, y_lo:4; uint8_t y_hi; } __packed; static_assert(sizeof(struct dualshock4_touch_point) == 4); struct dualshock4_touch_report { uint8_t timestamp; struct dualshock4_touch_point points[2]; } __packed; static_assert(sizeof(struct dualshock4_touch_report) == 9); /* Main DualShock4 input report excluding any BT/USB specific headers. */ struct dualshock4_input_report_common { uint8_t x, y; uint8_t rx, ry; uint8_t buttons[3]; uint8_t z, rz; /* Motion sensors */ __le16 sensor_timestamp; uint8_t sensor_temperature; __le16 gyro[3]; /* x, y, z */ __le16 accel[3]; /* x, y, z */ uint8_t reserved2[5]; uint8_t status[2]; uint8_t reserved3; } __packed; static_assert(sizeof(struct dualshock4_input_report_common) == 32); struct dualshock4_input_report_usb { uint8_t report_id; /* 0x01 */ struct dualshock4_input_report_common common; uint8_t num_touch_reports; struct dualshock4_touch_report touch_reports[3]; uint8_t reserved[3]; } __packed; static_assert(sizeof(struct dualshock4_input_report_usb) == DS4_INPUT_REPORT_USB_SIZE); struct dualshock4_input_report_bt { uint8_t report_id; /* 0x11 */ uint8_t reserved[2]; struct dualshock4_input_report_common common; uint8_t num_touch_reports; struct dualshock4_touch_report touch_reports[4]; /* BT has 4 compared to 3 for USB */ uint8_t reserved2[2]; __le32 crc32; } __packed; static_assert(sizeof(struct dualshock4_input_report_bt) == DS4_INPUT_REPORT_BT_SIZE); /* Common data between Bluetooth and USB DualShock4 output reports. */ struct dualshock4_output_report_common { uint8_t valid_flag0; uint8_t valid_flag1; uint8_t reserved; uint8_t motor_right; uint8_t motor_left; uint8_t lightbar_red; uint8_t lightbar_green; uint8_t lightbar_blue; uint8_t lightbar_blink_on; uint8_t lightbar_blink_off; } __packed; struct dualshock4_output_report_usb { uint8_t report_id; /* 0x5 */ struct dualshock4_output_report_common common; uint8_t reserved[21]; } __packed; static_assert(sizeof(struct dualshock4_output_report_usb) == DS4_OUTPUT_REPORT_USB_SIZE); struct dualshock4_output_report_bt { uint8_t report_id; /* 0x11 */ uint8_t hw_control; uint8_t audio_control; struct dualshock4_output_report_common common; uint8_t reserved[61]; __le32 crc32; } __packed; static_assert(sizeof(struct dualshock4_output_report_bt) == DS4_OUTPUT_REPORT_BT_SIZE); /* * The DualShock4 has a main output report used to control most features. It is * largely the same between Bluetooth and USB except for different headers and CRC. * This structure hide the differences between the two to simplify sending output reports. */ struct dualshock4_output_report { uint8_t *data; /* Start of data */ uint8_t len; /* Size of output report */ /* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */ struct dualshock4_output_report_bt *bt; /* Points to USB data payload in case for a USB report else NULL. */ struct dualshock4_output_report_usb *usb; /* Points to common section of report, so past any headers. */ struct dualshock4_output_report_common *common; }; /* * Common gamepad buttons across DualShock 3 / 4 and DualSense. * Note: for device with a touchpad, touchpad button is not included * as it will be part of the touchpad device. */ static const int ps_gamepad_buttons[] = { BTN_WEST, /* Square */ BTN_NORTH, /* Triangle */ BTN_EAST, /* Circle */ BTN_SOUTH, /* Cross */ BTN_TL, /* L1 */ BTN_TR, /* R1 */ BTN_TL2, /* L2 */ BTN_TR2, /* R2 */ BTN_SELECT, /* Create (PS5) / Share (PS4) */ BTN_START, /* Option */ BTN_THUMBL, /* L3 */ BTN_THUMBR, /* R3 */ BTN_MODE, /* PS Home */ }; static const struct {int x; int y; } ps_gamepad_hat_mapping[] = { {0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, 0}, }; static int dualshock4_get_calibration_data(struct dualshock4 *ds4); static inline void dualsense_schedule_work(struct dualsense *ds); static inline void dualshock4_schedule_work(struct dualshock4 *ds4); static void dualsense_set_lightbar(struct dualsense *ds, uint8_t red, uint8_t green, uint8_t blue); static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4); /* * Add a new ps_device to ps_devices if it doesn't exist. * Return error on duplicate device, which can happen if the same * device is connected using both Bluetooth and USB. */ static int ps_devices_list_add(struct ps_device *dev) { struct ps_device *entry; mutex_lock(&ps_devices_lock); list_for_each_entry(entry, &ps_devices_list, list) { if (!memcmp(entry->mac_address, dev->mac_address, sizeof(dev->mac_address))) { hid_err(dev->hdev, "Duplicate device found for MAC address %pMR.\n", dev->mac_address); mutex_unlock(&ps_devices_lock); return -EEXIST; } } list_add_tail(&dev->list, &ps_devices_list); mutex_unlock(&ps_devices_lock); return 0; } static int ps_devices_list_remove(struct ps_device *dev) { mutex_lock(&ps_devices_lock); list_del(&dev->list); mutex_unlock(&ps_devices_lock); return 0; } static int ps_device_set_player_id(struct ps_device *dev) { int ret = ida_alloc(&ps_player_id_allocator, GFP_KERNEL); if (ret < 0) return ret; dev->player_id = ret; return 0; } static void ps_device_release_player_id(struct ps_device *dev) { ida_free(&ps_player_id_allocator, dev->player_id); dev->player_id = U32_MAX; } static struct input_dev *ps_allocate_input_dev(struct hid_device *hdev, const char *name_suffix) { struct input_dev *input_dev; input_dev = devm_input_allocate_device(&hdev->dev); if (!input_dev) return ERR_PTR(-ENOMEM); input_dev->id.bustype = hdev->bus; input_dev->id.vendor = hdev->vendor; input_dev->id.product = hdev->product; input_dev->id.version = hdev->version; input_dev->uniq = hdev->uniq; if (name_suffix) { input_dev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s %s", hdev->name, name_suffix); if (!input_dev->name) return ERR_PTR(-ENOMEM); } else { input_dev->name = hdev->name; } input_set_drvdata(input_dev, hdev); return input_dev; } static enum power_supply_property ps_power_supply_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_SCOPE, }; static int ps_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct ps_device *dev = power_supply_get_drvdata(psy); uint8_t battery_capacity; int battery_status; unsigned long flags; int ret = 0; spin_lock_irqsave(&dev->lock, flags); battery_capacity = dev->battery_capacity; battery_status = dev->battery_status; spin_unlock_irqrestore(&dev->lock, flags); switch (psp) { case POWER_SUPPLY_PROP_STATUS: val->intval = battery_status; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = 1; break; case POWER_SUPPLY_PROP_CAPACITY: val->intval = battery_capacity; break; case POWER_SUPPLY_PROP_SCOPE: val->intval = POWER_SUPPLY_SCOPE_DEVICE; break; default: ret = -EINVAL; break; } return ret; } static int ps_device_register_battery(struct ps_device *dev) { struct power_supply *battery; struct power_supply_config battery_cfg = { .drv_data = dev }; int ret; dev->battery_desc.type = POWER_SUPPLY_TYPE_BATTERY; dev->battery_desc.properties = ps_power_supply_props; dev->battery_desc.num_properties = ARRAY_SIZE(ps_power_supply_props); dev->battery_desc.get_property = ps_battery_get_property; dev->battery_desc.name = devm_kasprintf(&dev->hdev->dev, GFP_KERNEL, "ps-controller-battery-%pMR", dev->mac_address); if (!dev->battery_desc.name) return -ENOMEM; battery = devm_power_supply_register(&dev->hdev->dev, &dev->battery_desc, &battery_cfg); if (IS_ERR(battery)) { ret = PTR_ERR(battery); hid_err(dev->hdev, "Unable to register battery device: %d\n", ret); return ret; } dev->battery = battery; ret = power_supply_powers(dev->battery, &dev->hdev->dev); if (ret) { hid_err(dev->hdev, "Unable to activate battery device: %d\n", ret); return ret; } return 0; } /* Compute crc32 of HID data and compare against expected CRC. */ static bool ps_check_crc32(uint8_t seed, uint8_t *data, size_t len, uint32_t report_crc) { uint32_t crc; crc = crc32_le(0xFFFFFFFF, &seed, 1); crc = ~crc32_le(crc, data, len); return crc == report_crc; } static struct input_dev *ps_gamepad_create(struct hid_device *hdev, int (*play_effect)(struct input_dev *, void *, struct ff_effect *)) { struct input_dev *gamepad; unsigned int i; int ret; gamepad = ps_allocate_input_dev(hdev, NULL); if (IS_ERR(gamepad)) return ERR_CAST(gamepad); input_set_abs_params(gamepad, ABS_X, 0, 255, 0, 0); input_set_abs_params(gamepad, ABS_Y, 0, 255, 0, 0); input_set_abs_params(gamepad, ABS_Z, 0, 255, 0, 0); input_set_abs_params(gamepad, ABS_RX, 0, 255, 0, 0); input_set_abs_params(gamepad, ABS_RY, 0, 255, 0, 0); input_set_abs_params(gamepad, ABS_RZ, 0, 255, 0, 0); input_set_abs_params(gamepad, ABS_HAT0X, -1, 1, 0, 0); input_set_abs_params(gamepad, ABS_HAT0Y, -1, 1, 0, 0); for (i = 0; i < ARRAY_SIZE(ps_gamepad_buttons); i++) input_set_capability(gamepad, EV_KEY, ps_gamepad_buttons[i]); #if IS_ENABLED(CONFIG_PLAYSTATION_FF) if (play_effect) { input_set_capability(gamepad, EV_FF, FF_RUMBLE); input_ff_create_memless(gamepad, NULL, play_effect); } #endif ret = input_register_device(gamepad); if (ret) return ERR_PTR(ret); return gamepad; } static int ps_get_report(struct hid_device *hdev, uint8_t report_id, uint8_t *buf, size_t size, bool check_crc) { int ret; ret = hid_hw_raw_request(hdev, report_id, buf, size, HID_FEATURE_REPORT, HID_REQ_GET_REPORT); if (ret < 0) { hid_err(hdev, "Failed to retrieve feature with reportID %d: %d\n", report_id, ret); return ret; } if (ret != size) { hid_err(hdev, "Invalid byte count transferred, expected %zu got %d\n", size, ret); return -EINVAL; } if (buf[0] != report_id) { hid_err(hdev, "Invalid reportID received, expected %d got %d\n", report_id, buf[0]); return -EINVAL; } if (hdev->bus == BUS_BLUETOOTH && check_crc) { /* Last 4 bytes contains crc32. */ uint8_t crc_offset = size - 4; uint32_t report_crc = get_unaligned_le32(&buf[crc_offset]); if (!ps_check_crc32(PS_FEATURE_CRC32_SEED, buf, crc_offset, report_crc)) { hid_err(hdev, "CRC check failed for reportID=%d\n", report_id); return -EILSEQ; } } return 0; } static int ps_led_register(struct ps_device *ps_dev, struct led_classdev *led, const struct ps_led_info *led_info) { int ret; if (led_info->name) { led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL, "%s:%s:%s", ps_dev->input_dev_name, led_info->color, led_info->name); } else { /* Backwards compatible mode for hid-sony, but not compliant with LED class spec. */ led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL, "%s:%s", ps_dev->input_dev_name, led_info->color); } if (!led->name) return -ENOMEM; led->brightness = 0; led->max_brightness = led_info->max_brightness; led->flags = LED_CORE_SUSPENDRESUME; led->brightness_get = led_info->brightness_get; led->brightness_set_blocking = led_info->brightness_set; led->blink_set = led_info->blink_set; ret = devm_led_classdev_register(&ps_dev->hdev->dev, led); if (ret) { hid_err(ps_dev->hdev, "Failed to register LED %s: %d\n", led_info->name, ret); return ret; } return 0; } /* Register a DualSense/DualShock4 RGB lightbar represented by a multicolor LED. */ static int ps_lightbar_register(struct ps_device *ps_dev, struct led_classdev_mc *lightbar_mc_dev, int (*brightness_set)(struct led_classdev *, enum led_brightness)) { struct hid_device *hdev = ps_dev->hdev; struct mc_subled *mc_led_info; struct led_classdev *led_cdev; int ret; mc_led_info = devm_kmalloc_array(&hdev->dev, 3, sizeof(*mc_led_info), GFP_KERNEL | __GFP_ZERO); if (!mc_led_info) return -ENOMEM; mc_led_info[0].color_index = LED_COLOR_ID_RED; mc_led_info[1].color_index = LED_COLOR_ID_GREEN; mc_led_info[2].color_index = LED_COLOR_ID_BLUE; lightbar_mc_dev->subled_info = mc_led_info; lightbar_mc_dev->num_colors = 3; led_cdev = &lightbar_mc_dev->led_cdev; led_cdev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s:rgb:indicator", ps_dev->input_dev_name); if (!led_cdev->name) return -ENOMEM; led_cdev->brightness = 255; led_cdev->max_brightness = 255; led_cdev->brightness_set_blocking = brightness_set; ret = devm_led_classdev_multicolor_register(&hdev->dev, lightbar_mc_dev); if (ret < 0) { hid_err(hdev, "Cannot register multicolor LED device\n"); return ret; } return 0; } static struct input_dev *ps_sensors_create(struct hid_device *hdev, int accel_range, int accel_res, int gyro_range, int gyro_res) { struct input_dev *sensors; int ret; sensors = ps_allocate_input_dev(hdev, "Motion Sensors"); if (IS_ERR(sensors)) return ERR_CAST(sensors); __set_bit(INPUT_PROP_ACCELEROMETER, sensors->propbit); __set_bit(EV_MSC, sensors->evbit); __set_bit(MSC_TIMESTAMP, sensors->mscbit); /* Accelerometer */ input_set_abs_params(sensors, ABS_X, -accel_range, accel_range, 16, 0); input_set_abs_params(sensors, ABS_Y, -accel_range, accel_range, 16, 0); input_set_abs_params(sensors, ABS_Z, -accel_range, accel_range, 16, 0); input_abs_set_res(sensors, ABS_X, accel_res); input_abs_set_res(sensors, ABS_Y, accel_res); input_abs_set_res(sensors, ABS_Z, accel_res); /* Gyroscope */ input_set_abs_params(sensors, ABS_RX, -gyro_range, gyro_range, 16, 0); input_set_abs_params(sensors, ABS_RY, -gyro_range, gyro_range, 16, 0); input_set_abs_params(sensors, ABS_RZ, -gyro_range, gyro_range, 16, 0); input_abs_set_res(sensors, ABS_RX, gyro_res); input_abs_set_res(sensors, ABS_RY, gyro_res); input_abs_set_res(sensors, ABS_RZ, gyro_res); ret = input_register_device(sensors); if (ret) return ERR_PTR(ret); return sensors; } static struct input_dev *ps_touchpad_create(struct hid_device *hdev, int width, int height, unsigned int num_contacts) { struct input_dev *touchpad; int ret; touchpad = ps_allocate_input_dev(hdev, "Touchpad"); if (IS_ERR(touchpad)) return ERR_CAST(touchpad); /* Map button underneath touchpad to BTN_LEFT. */ input_set_capability(touchpad, EV_KEY, BTN_LEFT); __set_bit(INPUT_PROP_BUTTONPAD, touchpad->propbit); input_set_abs_params(touchpad, ABS_MT_POSITION_X, 0, width - 1, 0, 0); input_set_abs_params(touchpad, ABS_MT_POSITION_Y, 0, height - 1, 0, 0); ret = input_mt_init_slots(touchpad, num_contacts, INPUT_MT_POINTER); if (ret) return ERR_PTR(ret); ret = input_register_device(touchpad); if (ret) return ERR_PTR(ret); return touchpad; } static ssize_t firmware_version_show(struct device *dev, struct device_attribute *attr, char *buf) { struct hid_device *hdev = to_hid_device(dev); struct ps_device *ps_dev = hid_get_drvdata(hdev); return sysfs_emit(buf, "0x%08x\n", ps_dev->fw_version); } static DEVICE_ATTR_RO(firmware_version); static ssize_t hardware_version_show(struct device *dev, struct device_attribute *attr, char *buf) { struct hid_device *hdev = to_hid_device(dev); struct ps_device *ps_dev = hid_get_drvdata(hdev); return sysfs_emit(buf, "0x%08x\n", ps_dev->hw_version); } static DEVICE_ATTR_RO(hardware_version); static struct attribute *ps_device_attrs[] = { &dev_attr_firmware_version.attr, &dev_attr_hardware_version.attr, NULL }; ATTRIBUTE_GROUPS(ps_device); static int dualsense_get_calibration_data(struct dualsense *ds) { struct hid_device *hdev = ds->base.hdev; short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus; short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus; short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus; short gyro_speed_plus, gyro_speed_minus; short acc_x_plus, acc_x_minus; short acc_y_plus, acc_y_minus; short acc_z_plus, acc_z_minus; int speed_2x; int range_2g; int ret = 0; int i; uint8_t *buf; buf = kzalloc(DS_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_CALIBRATION, buf, DS_FEATURE_REPORT_CALIBRATION_SIZE, true); if (ret) { hid_err(ds->base.hdev, "Failed to retrieve DualSense calibration info: %d\n", ret); goto err_free; } gyro_pitch_bias = get_unaligned_le16(&buf[1]); gyro_yaw_bias = get_unaligned_le16(&buf[3]); gyro_roll_bias = get_unaligned_le16(&buf[5]); gyro_pitch_plus = get_unaligned_le16(&buf[7]); gyro_pitch_minus = get_unaligned_le16(&buf[9]); gyro_yaw_plus = get_unaligned_le16(&buf[11]); gyro_yaw_minus = get_unaligned_le16(&buf[13]); gyro_roll_plus = get_unaligned_le16(&buf[15]); gyro_roll_minus = get_unaligned_le16(&buf[17]); gyro_speed_plus = get_unaligned_le16(&buf[19]); gyro_speed_minus = get_unaligned_le16(&buf[21]); acc_x_plus = get_unaligned_le16(&buf[23]); acc_x_minus = get_unaligned_le16(&buf[25]); acc_y_plus = get_unaligned_le16(&buf[27]); acc_y_minus = get_unaligned_le16(&buf[29]); acc_z_plus = get_unaligned_le16(&buf[31]); acc_z_minus = get_unaligned_le16(&buf[33]); /* * Set gyroscope calibration and normalization parameters. * Data values will be normalized to 1/DS_GYRO_RES_PER_DEG_S degree/s. */ speed_2x = (gyro_speed_plus + gyro_speed_minus); ds->gyro_calib_data[0].abs_code = ABS_RX; ds->gyro_calib_data[0].bias = 0; ds->gyro_calib_data[0].sens_numer = speed_2x*DS_GYRO_RES_PER_DEG_S; ds->gyro_calib_data[0].sens_denom = abs(gyro_pitch_plus - gyro_pitch_bias) + abs(gyro_pitch_minus - gyro_pitch_bias); ds->gyro_calib_data[1].abs_code = ABS_RY; ds->gyro_calib_data[1].bias = 0; ds->gyro_calib_data[1].sens_numer = speed_2x*DS_GYRO_RES_PER_DEG_S; ds->gyro_calib_data[1].sens_denom = abs(gyro_yaw_plus - gyro_yaw_bias) + abs(gyro_yaw_minus - gyro_yaw_bias); ds->gyro_calib_data[2].abs_code = ABS_RZ; ds->gyro_calib_data[2].bias = 0; ds->gyro_calib_data[2].sens_numer = speed_2x*DS_GYRO_RES_PER_DEG_S; ds->gyro_calib_data[2].sens_denom = abs(gyro_roll_plus - gyro_roll_bias) + abs(gyro_roll_minus - gyro_roll_bias); /* * Sanity check gyro calibration data. This is needed to prevent crashes * during report handling of virtual, clone or broken devices not implementing * calibration data properly. */ for (i = 0; i < ARRAY_SIZE(ds->gyro_calib_data); i++) { if (ds->gyro_calib_data[i].sens_denom == 0) { hid_warn(hdev, "Invalid gyro calibration data for axis (%d), disabling calibration.", ds->gyro_calib_data[i].abs_code); ds->gyro_calib_data[i].bias = 0; ds->gyro_calib_data[i].sens_numer = DS_GYRO_RANGE; ds->gyro_calib_data[i].sens_denom = S16_MAX; } } /* * Set accelerometer calibration and normalization parameters. * Data values will be normalized to 1/DS_ACC_RES_PER_G g. */ range_2g = acc_x_plus - acc_x_minus; ds->accel_calib_data[0].abs_code = ABS_X; ds->accel_calib_data[0].bias = acc_x_plus - range_2g / 2; ds->accel_calib_data[0].sens_numer = 2*DS_ACC_RES_PER_G; ds->accel_calib_data[0].sens_denom = range_2g; range_2g = acc_y_plus - acc_y_minus; ds->accel_calib_data[1].abs_code = ABS_Y; ds->accel_calib_data[1].bias = acc_y_plus - range_2g / 2; ds->accel_calib_data[1].sens_numer = 2*DS_ACC_RES_PER_G; ds->accel_calib_data[1].sens_denom = range_2g; range_2g = acc_z_plus - acc_z_minus; ds->accel_calib_data[2].abs_code = ABS_Z; ds->accel_calib_data[2].bias = acc_z_plus - range_2g / 2; ds->accel_calib_data[2].sens_numer = 2*DS_ACC_RES_PER_G; ds->accel_calib_data[2].sens_denom = range_2g; /* * Sanity check accelerometer calibration data. This is needed to prevent crashes * during report handling of virtual, clone or broken devices not implementing calibration * data properly. */ for (i = 0; i < ARRAY_SIZE(ds->accel_calib_data); i++) { if (ds->accel_calib_data[i].sens_denom == 0) { hid_warn(hdev, "Invalid accelerometer calibration data for axis (%d), disabling calibration.", ds->accel_calib_data[i].abs_code); ds->accel_calib_data[i].bias = 0; ds->accel_calib_data[i].sens_numer = DS_ACC_RANGE; ds->accel_calib_data[i].sens_denom = S16_MAX; } } err_free: kfree(buf); return ret; } static int dualsense_get_firmware_info(struct dualsense *ds) { uint8_t *buf; int ret; buf = kzalloc(DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_FIRMWARE_INFO, buf, DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, true); if (ret) { hid_err(ds->base.hdev, "Failed to retrieve DualSense firmware info: %d\n", ret); goto err_free; } ds->base.hw_version = get_unaligned_le32(&buf[24]); ds->base.fw_version = get_unaligned_le32(&buf[28]); /* Update version is some kind of feature version. It is distinct from * the firmware version as there can be many different variations of a * controller over time with the same physical shell, but with different * PCBs and other internal changes. The update version (internal name) is * used as a means to detect what features are available and change behavior. * Note: the version is different between DualSense and DualSense Edge. */ ds->update_version = get_unaligned_le16(&buf[44]); err_free: kfree(buf); return ret; } static int dualsense_get_mac_address(struct dualsense *ds) { uint8_t *buf; int ret = 0; buf = kzalloc(DS_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_PAIRING_INFO, buf, DS_FEATURE_REPORT_PAIRING_INFO_SIZE, true); if (ret) { hid_err(ds->base.hdev, "Failed to retrieve DualSense pairing info: %d\n", ret); goto err_free; } memcpy(ds->base.mac_address, &buf[1], sizeof(ds->base.mac_address)); err_free: kfree(buf); return ret; } static int dualsense_lightbar_set_brightness(struct led_classdev *cdev, enum led_brightness brightness) { struct led_classdev_mc *mc_cdev = lcdev_to_mccdev(cdev); struct dualsense *ds = container_of(mc_cdev, struct dualsense, lightbar); uint8_t red, green, blue; led_mc_calc_color_components(mc_cdev, brightness); red = mc_cdev->subled_info[0].brightness; green = mc_cdev->subled_info[1].brightness; blue = mc_cdev->subled_info[2].brightness; dualsense_set_lightbar(ds, red, green, blue); return 0; } static enum led_brightness dualsense_player_led_get_brightness(struct led_classdev *led) { struct hid_device *hdev = to_hid_device(led->dev->parent); struct dualsense *ds = hid_get_drvdata(hdev); return !!(ds->player_leds_state & BIT(led - ds->player_leds)); } static int dualsense_player_led_set_brightness(struct led_classdev *led, enum led_brightness value) { struct hid_device *hdev = to_hid_device(led->dev->parent); struct dualsense *ds = hid_get_drvdata(hdev); unsigned long flags; unsigned int led_index; spin_lock_irqsave(&ds->base.lock, flags); led_index = led - ds->player_leds; if (value == LED_OFF) ds->player_leds_state &= ~BIT(led_index); else ds->player_leds_state |= BIT(led_index); ds->update_player_leds = true; spin_unlock_irqrestore(&ds->base.lock, flags); dualsense_schedule_work(ds); return 0; } static void dualsense_init_output_report(struct dualsense *ds, struct dualsense_output_report *rp, void *buf) { struct hid_device *hdev = ds->base.hdev; if (hdev->bus == BUS_BLUETOOTH) { struct dualsense_output_report_bt *bt = buf; memset(bt, 0, sizeof(*bt)); bt->report_id = DS_OUTPUT_REPORT_BT; bt->tag = DS_OUTPUT_TAG; /* Tag must be set. Exact meaning is unclear. */ /* * Highest 4-bit is a sequence number, which needs to be increased * every report. Lowest 4-bit is tag and can be zero for now. */ bt->seq_tag = (ds->output_seq << 4) | 0x0; if (++ds->output_seq == 16) ds->output_seq = 0; rp->data = buf; rp->len = sizeof(*bt); rp->bt = bt; rp->usb = NULL; rp->common = &bt->common; } else { /* USB */ struct dualsense_output_report_usb *usb = buf; memset(usb, 0, sizeof(*usb)); usb->report_id = DS_OUTPUT_REPORT_USB; rp->data = buf; rp->len = sizeof(*usb); rp->bt = NULL; rp->usb = usb; rp->common = &usb->common; } } static inline void dualsense_schedule_work(struct dualsense *ds) { unsigned long flags; spin_lock_irqsave(&ds->base.lock, flags); if (ds->output_worker_initialized) schedule_work(&ds->output_worker); spin_unlock_irqrestore(&ds->base.lock, flags); } /* * Helper function to send DualSense output reports. Applies a CRC at the end of a report * for Bluetooth reports. */ static void dualsense_send_output_report(struct dualsense *ds, struct dualsense_output_report *report) { struct hid_device *hdev = ds->base.hdev; /* Bluetooth packets need to be signed with a CRC in the last 4 bytes. */ if (report->bt) { uint32_t crc; uint8_t seed = PS_OUTPUT_CRC32_SEED; crc = crc32_le(0xFFFFFFFF, &seed, 1); crc = ~crc32_le(crc, report->data, report->len - 4); report->bt->crc32 = cpu_to_le32(crc); } hid_hw_output_report(hdev, report->data, report->len); } static void dualsense_output_worker(struct work_struct *work) { struct dualsense *ds = container_of(work, struct dualsense, output_worker); struct dualsense_output_report report; struct dualsense_output_report_common *common; unsigned long flags; dualsense_init_output_report(ds, &report, ds->output_report_dmabuf); common = report.common; spin_lock_irqsave(&ds->base.lock, flags); if (ds->update_rumble) { /* Select classic rumble style haptics and enable it. */ common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT; if (ds->use_vibration_v2) common->valid_flag2 |= DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2; else common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION; common->motor_left = ds->motor_left; common->motor_right = ds->motor_right; ds->update_rumble = false; } if (ds->update_lightbar) { common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE; common->lightbar_red = ds->lightbar_red; common->lightbar_green = ds->lightbar_green; common->lightbar_blue = ds->lightbar_blue; ds->update_lightbar = false; } if (ds->update_player_leds) { common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE; common->player_leds = ds->player_leds_state; ds->update_player_leds = false; } if (ds->update_mic_mute) { common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE; common->mute_button_led = ds->mic_muted; if (ds->mic_muted) { /* Disable microphone */ common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE; common->power_save_control |= DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE; } else { /* Enable microphone */ common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE; common->power_save_control &= ~DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE; } ds->update_mic_mute = false; } spin_unlock_irqrestore(&ds->base.lock, flags); dualsense_send_output_report(ds, &report); } static int dualsense_parse_report(struct ps_device *ps_dev, struct hid_report *report, u8 *data, int size) { struct hid_device *hdev = ps_dev->hdev; struct dualsense *ds = container_of(ps_dev, struct dualsense, base); struct dualsense_input_report *ds_report; uint8_t battery_data, battery_capacity, charging_status, value; int battery_status; uint32_t sensor_timestamp; bool btn_mic_state; unsigned long flags; int i; /* * DualSense in USB uses the full HID report for reportID 1, but * Bluetooth uses a minimal HID report for reportID 1 and reports * the full report using reportID 49. */ if (hdev->bus == BUS_USB && report->id == DS_INPUT_REPORT_USB && size == DS_INPUT_REPORT_USB_SIZE) { ds_report = (struct dualsense_input_report *)&data[1]; } else if (hdev->bus == BUS_BLUETOOTH && report->id == DS_INPUT_REPORT_BT && size == DS_INPUT_REPORT_BT_SIZE) { /* Last 4 bytes of input report contain crc32 */ uint32_t report_crc = get_unaligned_le32(&data[size - 4]); if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) { hid_err(hdev, "DualSense input CRC's check failed\n"); return -EILSEQ; } ds_report = (struct dualsense_input_report *)&data[2]; } else { hid_err(hdev, "Unhandled reportID=%d\n", report->id); return -1; } input_report_abs(ds->gamepad, ABS_X, ds_report->x); input_report_abs(ds->gamepad, ABS_Y, ds_report->y); input_report_abs(ds->gamepad, ABS_RX, ds_report->rx); input_report_abs(ds->gamepad, ABS_RY, ds_report->ry); input_report_abs(ds->gamepad, ABS_Z, ds_report->z); input_report_abs(ds->gamepad, ABS_RZ, ds_report->rz); value = ds_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH; if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping)) value = 8; /* center */ input_report_abs(ds->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x); input_report_abs(ds->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y); input_report_key(ds->gamepad, BTN_WEST, ds_report->buttons[0] & DS_BUTTONS0_SQUARE); input_report_key(ds->gamepad, BTN_SOUTH, ds_report->buttons[0] & DS_BUTTONS0_CROSS); input_report_key(ds->gamepad, BTN_EAST, ds_report->buttons[0] & DS_BUTTONS0_CIRCLE); input_report_key(ds->gamepad, BTN_NORTH, ds_report->buttons[0] & DS_BUTTONS0_TRIANGLE); input_report_key(ds->gamepad, BTN_TL, ds_report->buttons[1] & DS_BUTTONS1_L1); input_report_key(ds->gamepad, BTN_TR, ds_report->buttons[1] & DS_BUTTONS1_R1); input_report_key(ds->gamepad, BTN_TL2, ds_report->buttons[1] & DS_BUTTONS1_L2); input_report_key(ds->gamepad, BTN_TR2, ds_report->buttons[1] & DS_BUTTONS1_R2); input_report_key(ds->gamepad, BTN_SELECT, ds_report->buttons[1] & DS_BUTTONS1_CREATE); input_report_key(ds->gamepad, BTN_START, ds_report->buttons[1] & DS_BUTTONS1_OPTIONS); input_report_key(ds->gamepad, BTN_THUMBL, ds_report->buttons[1] & DS_BUTTONS1_L3); input_report_key(ds->gamepad, BTN_THUMBR, ds_report->buttons[1] & DS_BUTTONS1_R3); input_report_key(ds->gamepad, BTN_MODE, ds_report->buttons[2] & DS_BUTTONS2_PS_HOME); input_sync(ds->gamepad); /* * The DualSense has an internal microphone, which can be muted through a mute button * on the device. The driver is expected to read the button state and program the device * to mute/unmute audio at the hardware level. */ btn_mic_state = !!(ds_report->buttons[2] & DS_BUTTONS2_MIC_MUTE); if (btn_mic_state && !ds->last_btn_mic_state) { spin_lock_irqsave(&ps_dev->lock, flags); ds->update_mic_mute = true; ds->mic_muted = !ds->mic_muted; /* toggle */ spin_unlock_irqrestore(&ps_dev->lock, flags); /* Schedule updating of microphone state at hardware level. */ dualsense_schedule_work(ds); } ds->last_btn_mic_state = btn_mic_state; /* Parse and calibrate gyroscope data. */ for (i = 0; i < ARRAY_SIZE(ds_report->gyro); i++) { int raw_data = (short)le16_to_cpu(ds_report->gyro[i]); int calib_data = mult_frac(ds->gyro_calib_data[i].sens_numer, raw_data, ds->gyro_calib_data[i].sens_denom); input_report_abs(ds->sensors, ds->gyro_calib_data[i].abs_code, calib_data); } /* Parse and calibrate accelerometer data. */ for (i = 0; i < ARRAY_SIZE(ds_report->accel); i++) { int raw_data = (short)le16_to_cpu(ds_report->accel[i]); int calib_data = mult_frac(ds->accel_calib_data[i].sens_numer, raw_data - ds->accel_calib_data[i].bias, ds->accel_calib_data[i].sens_denom); input_report_abs(ds->sensors, ds->accel_calib_data[i].abs_code, calib_data); } /* Convert timestamp (in 0.33us unit) to timestamp_us */ sensor_timestamp = le32_to_cpu(ds_report->sensor_timestamp); if (!ds->sensor_timestamp_initialized) { ds->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp, 3); ds->sensor_timestamp_initialized = true; } else { uint32_t delta; if (ds->prev_sensor_timestamp > sensor_timestamp) delta = (U32_MAX - ds->prev_sensor_timestamp + sensor_timestamp + 1); else delta = sensor_timestamp - ds->prev_sensor_timestamp; ds->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta, 3); } ds->prev_sensor_timestamp = sensor_timestamp; input_event(ds->sensors, EV_MSC, MSC_TIMESTAMP, ds->sensor_timestamp_us); input_sync(ds->sensors); for (i = 0; i < ARRAY_SIZE(ds_report->points); i++) { struct dualsense_touch_point *point = &ds_report->points[i]; bool active = (point->contact & DS_TOUCH_POINT_INACTIVE) ? false : true; input_mt_slot(ds->touchpad, i); input_mt_report_slot_state(ds->touchpad, MT_TOOL_FINGER, active); if (active) { int x = (point->x_hi << 8) | point->x_lo; int y = (point->y_hi << 4) | point->y_lo; input_report_abs(ds->touchpad, ABS_MT_POSITION_X, x); input_report_abs(ds->touchpad, ABS_MT_POSITION_Y, y); } } input_mt_sync_frame(ds->touchpad); input_report_key(ds->touchpad, BTN_LEFT, ds_report->buttons[2] & DS_BUTTONS2_TOUCHPAD); input_sync(ds->touchpad); battery_data = ds_report->status & DS_STATUS_BATTERY_CAPACITY; charging_status = (ds_report->status & DS_STATUS_CHARGING) >> DS_STATUS_CHARGING_SHIFT; switch (charging_status) { case 0x0: /* * Each unit of battery data corresponds to 10% * 0 = 0-9%, 1 = 10-19%, .. and 10 = 100% */ battery_capacity = min(battery_data * 10 + 5, 100); battery_status = POWER_SUPPLY_STATUS_DISCHARGING; break; case 0x1: battery_capacity = min(battery_data * 10 + 5, 100); battery_status = POWER_SUPPLY_STATUS_CHARGING; break; case 0x2: battery_capacity = 100; battery_status = POWER_SUPPLY_STATUS_FULL; break; case 0xa: /* voltage or temperature out of range */ case 0xb: /* temperature error */ battery_capacity = 0; battery_status = POWER_SUPPLY_STATUS_NOT_CHARGING; break; case 0xf: /* charging error */ default: battery_capacity = 0; battery_status = POWER_SUPPLY_STATUS_UNKNOWN; } spin_lock_irqsave(&ps_dev->lock, flags); ps_dev->battery_capacity = battery_capacity; ps_dev->battery_status = battery_status; spin_unlock_irqrestore(&ps_dev->lock, flags); return 0; } static int dualsense_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) { struct hid_device *hdev = input_get_drvdata(dev); struct dualsense *ds = hid_get_drvdata(hdev); unsigned long flags; if (effect->type != FF_RUMBLE) return 0; spin_lock_irqsave(&ds->base.lock, flags); ds->update_rumble = true; ds->motor_left = effect->u.rumble.strong_magnitude / 256; ds->motor_right = effect->u.rumble.weak_magnitude / 256; spin_unlock_irqrestore(&ds->base.lock, flags); dualsense_schedule_work(ds); return 0; } static void dualsense_remove(struct ps_device *ps_dev) { struct dualsense *ds = container_of(ps_dev, struct dualsense, base); unsigned long flags; spin_lock_irqsave(&ds->base.lock, flags); ds->output_worker_initialized = false; spin_unlock_irqrestore(&ds->base.lock, flags); cancel_work_sync(&ds->output_worker); } static int dualsense_reset_leds(struct dualsense *ds) { struct dualsense_output_report report; uint8_t *buf; buf = kzalloc(sizeof(struct dualsense_output_report_bt), GFP_KERNEL); if (!buf) return -ENOMEM; dualsense_init_output_report(ds, &report, buf); /* * On Bluetooth the DualSense outputs an animation on the lightbar * during startup and maintains a color afterwards. We need to explicitly * reconfigure the lightbar before we can do any programming later on. * In USB the lightbar is not on by default, but redoing the setup there * doesn't hurt. */ report.common->valid_flag2 = DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE; report.common->lightbar_setup = DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT; /* Fade light out. */ dualsense_send_output_report(ds, &report); kfree(buf); return 0; } static void dualsense_set_lightbar(struct dualsense *ds, uint8_t red, uint8_t green, uint8_t blue) { unsigned long flags; spin_lock_irqsave(&ds->base.lock, flags); ds->update_lightbar = true; ds->lightbar_red = red; ds->lightbar_green = green; ds->lightbar_blue = blue; spin_unlock_irqrestore(&ds->base.lock, flags); dualsense_schedule_work(ds); } static void dualsense_set_player_leds(struct dualsense *ds) { /* * The DualSense controller has a row of 5 LEDs used for player ids. * Behavior on the PlayStation 5 console is to center the player id * across the LEDs, so e.g. player 1 would be "--x--" with x being 'on'. * Follow a similar mapping here. */ static const int player_ids[5] = { BIT(2), BIT(3) | BIT(1), BIT(4) | BIT(2) | BIT(0), BIT(4) | BIT(3) | BIT(1) | BIT(0), BIT(4) | BIT(3) | BIT(2) | BIT(1) | BIT(0) }; uint8_t player_id = ds->base.player_id % ARRAY_SIZE(player_ids); ds->update_player_leds = true; ds->player_leds_state = player_ids[player_id]; dualsense_schedule_work(ds); } static struct ps_device *dualsense_create(struct hid_device *hdev) { struct dualsense *ds; struct ps_device *ps_dev; uint8_t max_output_report_size; int i, ret; static const struct ps_led_info player_leds_info[] = { { LED_FUNCTION_PLAYER1, "white", 1, dualsense_player_led_get_brightness, dualsense_player_led_set_brightness }, { LED_FUNCTION_PLAYER2, "white", 1, dualsense_player_led_get_brightness, dualsense_player_led_set_brightness }, { LED_FUNCTION_PLAYER3, "white", 1, dualsense_player_led_get_brightness, dualsense_player_led_set_brightness }, { LED_FUNCTION_PLAYER4, "white", 1, dualsense_player_led_get_brightness, dualsense_player_led_set_brightness }, { LED_FUNCTION_PLAYER5, "white", 1, dualsense_player_led_get_brightness, dualsense_player_led_set_brightness } }; ds = devm_kzalloc(&hdev->dev, sizeof(*ds), GFP_KERNEL); if (!ds) return ERR_PTR(-ENOMEM); /* * Patch version to allow userspace to distinguish between * hid-generic vs hid-playstation axis and button mapping. */ hdev->version |= HID_PLAYSTATION_VERSION_PATCH; ps_dev = &ds->base; ps_dev->hdev = hdev; spin_lock_init(&ps_dev->lock); ps_dev->battery_capacity = 100; /* initial value until parse_report. */ ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN; ps_dev->parse_report = dualsense_parse_report; ps_dev->remove = dualsense_remove; INIT_WORK(&ds->output_worker, dualsense_output_worker); ds->output_worker_initialized = true; hid_set_drvdata(hdev, ds); max_output_report_size = sizeof(struct dualsense_output_report_bt); ds->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL); if (!ds->output_report_dmabuf) return ERR_PTR(-ENOMEM); ret = dualsense_get_mac_address(ds); if (ret) { hid_err(hdev, "Failed to get MAC address from DualSense\n"); return ERR_PTR(ret); } snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds->base.mac_address); ret = dualsense_get_firmware_info(ds); if (ret) { hid_err(hdev, "Failed to get firmware info from DualSense\n"); return ERR_PTR(ret); } /* Original DualSense firmware simulated classic controller rumble through * its new haptics hardware. It felt different from classic rumble users * were used to. Since then new firmwares were introduced to change behavior * and make this new 'v2' behavior default on PlayStation and other platforms. * The original DualSense requires a new enough firmware as bundled with PS5 * software released in 2021. DualSense edge supports it out of the box. * Both devices also support the old mode, but it is not really used. */ if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER) { /* Feature version 2.21 introduced new vibration method. */ ds->use_vibration_v2 = ds->update_version >= DS_FEATURE_VERSION(2, 21); } else if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) { ds->use_vibration_v2 = true; } ret = ps_devices_list_add(ps_dev); if (ret) return ERR_PTR(ret); ret = dualsense_get_calibration_data(ds); if (ret) { hid_err(hdev, "Failed to get calibration data from DualSense\n"); goto err; } ds->gamepad = ps_gamepad_create(hdev, dualsense_play_effect); if (IS_ERR(ds->gamepad)) { ret = PTR_ERR(ds->gamepad); goto err; } /* Use gamepad input device name as primary device name for e.g. LEDs */ ps_dev->input_dev_name = dev_name(&ds->gamepad->dev); ds->sensors = ps_sensors_create(hdev, DS_ACC_RANGE, DS_ACC_RES_PER_G, DS_GYRO_RANGE, DS_GYRO_RES_PER_DEG_S); if (IS_ERR(ds->sensors)) { ret = PTR_ERR(ds->sensors); goto err; } ds->touchpad = ps_touchpad_create(hdev, DS_TOUCHPAD_WIDTH, DS_TOUCHPAD_HEIGHT, 2); if (IS_ERR(ds->touchpad)) { ret = PTR_ERR(ds->touchpad); goto err; } ret = ps_device_register_battery(ps_dev); if (ret) goto err; /* * The hardware may have control over the LEDs (e.g. in Bluetooth on startup). * Reset the LEDs (lightbar, mute, player leds), so we can control them * from software. */ ret = dualsense_reset_leds(ds); if (ret) goto err; ret = ps_lightbar_register(ps_dev, &ds->lightbar, dualsense_lightbar_set_brightness); if (ret) goto err; /* Set default lightbar color. */ dualsense_set_lightbar(ds, 0, 0, 128); /* blue */ for (i = 0; i < ARRAY_SIZE(player_leds_info); i++) { const struct ps_led_info *led_info = &player_leds_info[i]; ret = ps_led_register(ps_dev, &ds->player_leds[i], led_info); if (ret < 0) goto err; } ret = ps_device_set_player_id(ps_dev); if (ret) { hid_err(hdev, "Failed to assign player id for DualSense: %d\n", ret); goto err; } /* Set player LEDs to our player id. */ dualsense_set_player_leds(ds); /* * Reporting hardware and firmware is important as there are frequent updates, which * can change behavior. */ hid_info(hdev, "Registered DualSense controller hw_version=0x%08x fw_version=0x%08x\n", ds->base.hw_version, ds->base.fw_version); return &ds->base; err: ps_devices_list_remove(ps_dev); return ERR_PTR(ret); } static void dualshock4_dongle_calibration_work(struct work_struct *work) { struct dualshock4 *ds4 = container_of(work, struct dualshock4, dongle_hotplug_worker); unsigned long flags; enum dualshock4_dongle_state dongle_state; int ret; ret = dualshock4_get_calibration_data(ds4); if (ret < 0) { /* This call is very unlikely to fail for the dongle. When it * fails we are probably in a very bad state, so mark the * dongle as disabled. We will re-enable the dongle if a new * DS4 hotplug is detect from sony_raw_event as any issues * are likely resolved then (the dongle is quite stupid). */ hid_err(ds4->base.hdev, "DualShock 4 USB dongle: calibration failed, disabling device\n"); dongle_state = DONGLE_DISABLED; } else { hid_info(ds4->base.hdev, "DualShock 4 USB dongle: calibration completed\n"); dongle_state = DONGLE_CONNECTED; } spin_lock_irqsave(&ds4->base.lock, flags); ds4->dongle_state = dongle_state; spin_unlock_irqrestore(&ds4->base.lock, flags); } static int dualshock4_get_calibration_data(struct dualshock4 *ds4) { struct hid_device *hdev = ds4->base.hdev; short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus; short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus; short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus; short gyro_speed_plus, gyro_speed_minus; short acc_x_plus, acc_x_minus; short acc_y_plus, acc_y_minus; short acc_z_plus, acc_z_minus; int speed_2x; int range_2g; int ret = 0; int i; uint8_t *buf; if (ds4->base.hdev->bus == BUS_USB) { int retries; buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; /* We should normally receive the feature report data we asked * for, but hidraw applications such as Steam can issue feature * reports as well. In particular for Dongle reconnects, Steam * and this function are competing resulting in often receiving * data for a different HID report, so retry a few times. */ for (retries = 0; retries < 3; retries++) { ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION, buf, DS4_FEATURE_REPORT_CALIBRATION_SIZE, true); if (ret) { if (retries < 2) { hid_warn(hdev, "Retrying DualShock 4 get calibration report (0x02) request\n"); continue; } hid_err(hdev, "Failed to retrieve DualShock4 calibration info: %d\n", ret); ret = -EILSEQ; goto err_free; } else { break; } } } else { /* Bluetooth */ buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION_BT, buf, DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, true); if (ret) { hid_err(hdev, "Failed to retrieve DualShock4 calibration info: %d\n", ret); goto err_free; } } gyro_pitch_bias = get_unaligned_le16(&buf[1]); gyro_yaw_bias = get_unaligned_le16(&buf[3]); gyro_roll_bias = get_unaligned_le16(&buf[5]); if (ds4->base.hdev->bus == BUS_USB) { gyro_pitch_plus = get_unaligned_le16(&buf[7]); gyro_pitch_minus = get_unaligned_le16(&buf[9]); gyro_yaw_plus = get_unaligned_le16(&buf[11]); gyro_yaw_minus = get_unaligned_le16(&buf[13]); gyro_roll_plus = get_unaligned_le16(&buf[15]); gyro_roll_minus = get_unaligned_le16(&buf[17]); } else { /* BT + Dongle */ gyro_pitch_plus = get_unaligned_le16(&buf[7]); gyro_yaw_plus = get_unaligned_le16(&buf[9]); gyro_roll_plus = get_unaligned_le16(&buf[11]); gyro_pitch_minus = get_unaligned_le16(&buf[13]); gyro_yaw_minus = get_unaligned_le16(&buf[15]); gyro_roll_minus = get_unaligned_le16(&buf[17]); } gyro_speed_plus = get_unaligned_le16(&buf[19]); gyro_speed_minus = get_unaligned_le16(&buf[21]); acc_x_plus = get_unaligned_le16(&buf[23]); acc_x_minus = get_unaligned_le16(&buf[25]); acc_y_plus = get_unaligned_le16(&buf[27]); acc_y_minus = get_unaligned_le16(&buf[29]); acc_z_plus = get_unaligned_le16(&buf[31]); acc_z_minus = get_unaligned_le16(&buf[33]); /* * Set gyroscope calibration and normalization parameters. * Data values will be normalized to 1/DS4_GYRO_RES_PER_DEG_S degree/s. */ speed_2x = (gyro_speed_plus + gyro_speed_minus); ds4->gyro_calib_data[0].abs_code = ABS_RX; ds4->gyro_calib_data[0].bias = 0; ds4->gyro_calib_data[0].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S; ds4->gyro_calib_data[0].sens_denom = abs(gyro_pitch_plus - gyro_pitch_bias) + abs(gyro_pitch_minus - gyro_pitch_bias); ds4->gyro_calib_data[1].abs_code = ABS_RY; ds4->gyro_calib_data[1].bias = 0; ds4->gyro_calib_data[1].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S; ds4->gyro_calib_data[1].sens_denom = abs(gyro_yaw_plus - gyro_yaw_bias) + abs(gyro_yaw_minus - gyro_yaw_bias); ds4->gyro_calib_data[2].abs_code = ABS_RZ; ds4->gyro_calib_data[2].bias = 0; ds4->gyro_calib_data[2].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S; ds4->gyro_calib_data[2].sens_denom = abs(gyro_roll_plus - gyro_roll_bias) + abs(gyro_roll_minus - gyro_roll_bias); /* * Sanity check gyro calibration data. This is needed to prevent crashes * during report handling of virtual, clone or broken devices not implementing * calibration data properly. */ for (i = 0; i < ARRAY_SIZE(ds4->gyro_calib_data); i++) { if (ds4->gyro_calib_data[i].sens_denom == 0) { hid_warn(hdev, "Invalid gyro calibration data for axis (%d), disabling calibration.", ds4->gyro_calib_data[i].abs_code); ds4->gyro_calib_data[i].bias = 0; ds4->gyro_calib_data[i].sens_numer = DS4_GYRO_RANGE; ds4->gyro_calib_data[i].sens_denom = S16_MAX; } } /* * Set accelerometer calibration and normalization parameters. * Data values will be normalized to 1/DS4_ACC_RES_PER_G g. */ range_2g = acc_x_plus - acc_x_minus; ds4->accel_calib_data[0].abs_code = ABS_X; ds4->accel_calib_data[0].bias = acc_x_plus - range_2g / 2; ds4->accel_calib_data[0].sens_numer = 2*DS4_ACC_RES_PER_G; ds4->accel_calib_data[0].sens_denom = range_2g; range_2g = acc_y_plus - acc_y_minus; ds4->accel_calib_data[1].abs_code = ABS_Y; ds4->accel_calib_data[1].bias = acc_y_plus - range_2g / 2; ds4->accel_calib_data[1].sens_numer = 2*DS4_ACC_RES_PER_G; ds4->accel_calib_data[1].sens_denom = range_2g; range_2g = acc_z_plus - acc_z_minus; ds4->accel_calib_data[2].abs_code = ABS_Z; ds4->accel_calib_data[2].bias = acc_z_plus - range_2g / 2; ds4->accel_calib_data[2].sens_numer = 2*DS4_ACC_RES_PER_G; ds4->accel_calib_data[2].sens_denom = range_2g; /* * Sanity check accelerometer calibration data. This is needed to prevent crashes * during report handling of virtual, clone or broken devices not implementing calibration * data properly. */ for (i = 0; i < ARRAY_SIZE(ds4->accel_calib_data); i++) { if (ds4->accel_calib_data[i].sens_denom == 0) { hid_warn(hdev, "Invalid accelerometer calibration data for axis (%d), disabling calibration.", ds4->accel_calib_data[i].abs_code); ds4->accel_calib_data[i].bias = 0; ds4->accel_calib_data[i].sens_numer = DS4_ACC_RANGE; ds4->accel_calib_data[i].sens_denom = S16_MAX; } } err_free: kfree(buf); return ret; } static int dualshock4_get_firmware_info(struct dualshock4 *ds4) { uint8_t *buf; int ret; buf = kzalloc(DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; /* Note USB and BT support the same feature report, but this report * lacks CRC support, so must be disabled in ps_get_report. */ ret = ps_get_report(ds4->base.hdev, DS4_FEATURE_REPORT_FIRMWARE_INFO, buf, DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, false); if (ret) { hid_err(ds4->base.hdev, "Failed to retrieve DualShock4 firmware info: %d\n", ret); goto err_free; } ds4->base.hw_version = get_unaligned_le16(&buf[35]); ds4->base.fw_version = get_unaligned_le16(&buf[41]); err_free: kfree(buf); return ret; } static int dualshock4_get_mac_address(struct dualshock4 *ds4) { struct hid_device *hdev = ds4->base.hdev; uint8_t *buf; int ret = 0; if (hdev->bus == BUS_USB) { buf = kzalloc(DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; ret = ps_get_report(hdev, DS4_FEATURE_REPORT_PAIRING_INFO, buf, DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, false); if (ret) { hid_err(hdev, "Failed to retrieve DualShock4 pairing info: %d\n", ret); goto err_free; } memcpy(ds4->base.mac_address, &buf[1], sizeof(ds4->base.mac_address)); } else { /* Rely on HIDP for Bluetooth */ if (strlen(hdev->uniq) != 17) return -EINVAL; ret = sscanf(hdev->uniq, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx", &ds4->base.mac_address[5], &ds4->base.mac_address[4], &ds4->base.mac_address[3], &ds4->base.mac_address[2], &ds4->base.mac_address[1], &ds4->base.mac_address[0]); if (ret != sizeof(ds4->base.mac_address)) return -EINVAL; return 0; } err_free: kfree(buf); return ret; } static enum led_brightness dualshock4_led_get_brightness(struct led_classdev *led) { struct hid_device *hdev = to_hid_device(led->dev->parent); struct dualshock4 *ds4 = hid_get_drvdata(hdev); unsigned int led_index; led_index = led - ds4->lightbar_leds; switch (led_index) { case 0: return ds4->lightbar_red; case 1: return ds4->lightbar_green; case 2: return ds4->lightbar_blue; case 3: return ds4->lightbar_enabled; } return -1; } static int dualshock4_led_set_blink(struct led_classdev *led, unsigned long *delay_on, unsigned long *delay_off) { struct hid_device *hdev = to_hid_device(led->dev->parent); struct dualshock4 *ds4 = hid_get_drvdata(hdev); unsigned long flags; spin_lock_irqsave(&ds4->base.lock, flags); if (!*delay_on && !*delay_off) { /* Default to 1 Hz (50 centiseconds on, 50 centiseconds off). */ ds4->lightbar_blink_on = 50; ds4->lightbar_blink_off = 50; } else { /* Blink delays in centiseconds. */ ds4->lightbar_blink_on = min_t(unsigned long, *delay_on/10, DS4_LIGHTBAR_MAX_BLINK); ds4->lightbar_blink_off = min_t(unsigned long, *delay_off/10, DS4_LIGHTBAR_MAX_BLINK); } ds4->update_lightbar_blink = true; spin_unlock_irqrestore(&ds4->base.lock, flags); dualshock4_schedule_work(ds4); *delay_on = ds4->lightbar_blink_on; *delay_off = ds4->lightbar_blink_off; return 0; } static int dualshock4_led_set_brightness(struct led_classdev *led, enum led_brightness value) { struct hid_device *hdev = to_hid_device(led->dev->parent); struct dualshock4 *ds4 = hid_get_drvdata(hdev); unsigned long flags; unsigned int led_index; spin_lock_irqsave(&ds4->base.lock, flags); led_index = led - ds4->lightbar_leds; switch (led_index) { case 0: ds4->lightbar_red = value; break; case 1: ds4->lightbar_green = value; break; case 2: ds4->lightbar_blue = value; break; case 3: ds4->lightbar_enabled = !!value; } ds4->update_lightbar = true; spin_unlock_irqrestore(&ds4->base.lock, flags); dualshock4_schedule_work(ds4); return 0; } static void dualshock4_init_output_report(struct dualshock4 *ds4, struct dualshock4_output_report *rp, void *buf) { struct hid_device *hdev = ds4->base.hdev; if (hdev->bus == BUS_BLUETOOTH) { struct dualshock4_output_report_bt *bt = buf; memset(bt, 0, sizeof(*bt)); bt->report_id = DS4_OUTPUT_REPORT_BT; rp->data = buf; rp->len = sizeof(*bt); rp->bt = bt; rp->usb = NULL; rp->common = &bt->common; } else { /* USB */ struct dualshock4_output_report_usb *usb = buf; memset(usb, 0, sizeof(*usb)); usb->report_id = DS4_OUTPUT_REPORT_USB; rp->data = buf; rp->len = sizeof(*usb); rp->bt = NULL; rp->usb = usb; rp->common = &usb->common; } } static void dualshock4_output_worker(struct work_struct *work) { struct dualshock4 *ds4 = container_of(work, struct dualshock4, output_worker); struct dualshock4_output_report report; struct dualshock4_output_report_common *common; unsigned long flags; dualshock4_init_output_report(ds4, &report, ds4->output_report_dmabuf); common = report.common; spin_lock_irqsave(&ds4->base.lock, flags); if (ds4->update_rumble) { /* Select classic rumble style haptics and enable it. */ common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_MOTOR; common->motor_left = ds4->motor_left; common->motor_right = ds4->motor_right; ds4->update_rumble = false; } if (ds4->update_lightbar) { common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED; /* Comptabile behavior with hid-sony, which used a dummy global LED to * allow enabling/disabling the lightbar. The global LED maps to * lightbar_enabled. */ common->lightbar_red = ds4->lightbar_enabled ? ds4->lightbar_red : 0; common->lightbar_green = ds4->lightbar_enabled ? ds4->lightbar_green : 0; common->lightbar_blue = ds4->lightbar_enabled ? ds4->lightbar_blue : 0; ds4->update_lightbar = false; } if (ds4->update_lightbar_blink) { common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED_BLINK; common->lightbar_blink_on = ds4->lightbar_blink_on; common->lightbar_blink_off = ds4->lightbar_blink_off; ds4->update_lightbar_blink = false; } spin_unlock_irqrestore(&ds4->base.lock, flags); /* Bluetooth packets need additional flags as well as a CRC in the last 4 bytes. */ if (report.bt) { uint32_t crc; uint8_t seed = PS_OUTPUT_CRC32_SEED; /* Hardware control flags need to set to let the device know * there is HID data as well as CRC. */ report.bt->hw_control = DS4_OUTPUT_HWCTL_HID | DS4_OUTPUT_HWCTL_CRC32; if (ds4->update_bt_poll_interval) { report.bt->hw_control |= ds4->bt_poll_interval; ds4->update_bt_poll_interval = false; } crc = crc32_le(0xFFFFFFFF, &seed, 1); crc = ~crc32_le(crc, report.data, report.len - 4); report.bt->crc32 = cpu_to_le32(crc); } hid_hw_output_report(ds4->base.hdev, report.data, report.len); } static int dualshock4_parse_report(struct ps_device *ps_dev, struct hid_report *report, u8 *data, int size) { struct hid_device *hdev = ps_dev->hdev; struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base); struct dualshock4_input_report_common *ds4_report; struct dualshock4_touch_report *touch_reports; uint8_t battery_capacity, num_touch_reports, value; int battery_status, i, j; uint16_t sensor_timestamp; unsigned long flags; /* * DualShock4 in USB uses the full HID report for reportID 1, but * Bluetooth uses a minimal HID report for reportID 1 and reports * the full report using reportID 17. */ if (hdev->bus == BUS_USB && report->id == DS4_INPUT_REPORT_USB && size == DS4_INPUT_REPORT_USB_SIZE) { struct dualshock4_input_report_usb *usb = (struct dualshock4_input_report_usb *)data; ds4_report = &usb->common; num_touch_reports = usb->num_touch_reports; touch_reports = usb->touch_reports; } else if (hdev->bus == BUS_BLUETOOTH && report->id == DS4_INPUT_REPORT_BT && size == DS4_INPUT_REPORT_BT_SIZE) { struct dualshock4_input_report_bt *bt = (struct dualshock4_input_report_bt *)data; uint32_t report_crc = get_unaligned_le32(&bt->crc32); /* Last 4 bytes of input report contains CRC. */ if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) { hid_err(hdev, "DualShock4 input CRC's check failed\n"); return -EILSEQ; } ds4_report = &bt->common; num_touch_reports = bt->num_touch_reports; touch_reports = bt->touch_reports; } else { hid_err(hdev, "Unhandled reportID=%d\n", report->id); return -1; } input_report_abs(ds4->gamepad, ABS_X, ds4_report->x); input_report_abs(ds4->gamepad, ABS_Y, ds4_report->y); input_report_abs(ds4->gamepad, ABS_RX, ds4_report->rx); input_report_abs(ds4->gamepad, ABS_RY, ds4_report->ry); input_report_abs(ds4->gamepad, ABS_Z, ds4_report->z); input_report_abs(ds4->gamepad, ABS_RZ, ds4_report->rz); value = ds4_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH; if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping)) value = 8; /* center */ input_report_abs(ds4->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x); input_report_abs(ds4->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y); input_report_key(ds4->gamepad, BTN_WEST, ds4_report->buttons[0] & DS_BUTTONS0_SQUARE); input_report_key(ds4->gamepad, BTN_SOUTH, ds4_report->buttons[0] & DS_BUTTONS0_CROSS); input_report_key(ds4->gamepad, BTN_EAST, ds4_report->buttons[0] & DS_BUTTONS0_CIRCLE); input_report_key(ds4->gamepad, BTN_NORTH, ds4_report->buttons[0] & DS_BUTTONS0_TRIANGLE); input_report_key(ds4->gamepad, BTN_TL, ds4_report->buttons[1] & DS_BUTTONS1_L1); input_report_key(ds4->gamepad, BTN_TR, ds4_report->buttons[1] & DS_BUTTONS1_R1); input_report_key(ds4->gamepad, BTN_TL2, ds4_report->buttons[1] & DS_BUTTONS1_L2); input_report_key(ds4->gamepad, BTN_TR2, ds4_report->buttons[1] & DS_BUTTONS1_R2); input_report_key(ds4->gamepad, BTN_SELECT, ds4_report->buttons[1] & DS_BUTTONS1_CREATE); input_report_key(ds4->gamepad, BTN_START, ds4_report->buttons[1] & DS_BUTTONS1_OPTIONS); input_report_key(ds4->gamepad, BTN_THUMBL, ds4_report->buttons[1] & DS_BUTTONS1_L3); input_report_key(ds4->gamepad, BTN_THUMBR, ds4_report->buttons[1] & DS_BUTTONS1_R3); input_report_key(ds4->gamepad, BTN_MODE, ds4_report->buttons[2] & DS_BUTTONS2_PS_HOME); input_sync(ds4->gamepad); /* Parse and calibrate gyroscope data. */ for (i = 0; i < ARRAY_SIZE(ds4_report->gyro); i++) { int raw_data = (short)le16_to_cpu(ds4_report->gyro[i]); int calib_data = mult_frac(ds4->gyro_calib_data[i].sens_numer, raw_data, ds4->gyro_calib_data[i].sens_denom); input_report_abs(ds4->sensors, ds4->gyro_calib_data[i].abs_code, calib_data); } /* Parse and calibrate accelerometer data. */ for (i = 0; i < ARRAY_SIZE(ds4_report->accel); i++) { int raw_data = (short)le16_to_cpu(ds4_report->accel[i]); int calib_data = mult_frac(ds4->accel_calib_data[i].sens_numer, raw_data - ds4->accel_calib_data[i].bias, ds4->accel_calib_data[i].sens_denom); input_report_abs(ds4->sensors, ds4->accel_calib_data[i].abs_code, calib_data); } /* Convert timestamp (in 5.33us unit) to timestamp_us */ sensor_timestamp = le16_to_cpu(ds4_report->sensor_timestamp); if (!ds4->sensor_timestamp_initialized) { ds4->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp*16, 3); ds4->sensor_timestamp_initialized = true; } else { uint16_t delta; if (ds4->prev_sensor_timestamp > sensor_timestamp) delta = (U16_MAX - ds4->prev_sensor_timestamp + sensor_timestamp + 1); else delta = sensor_timestamp - ds4->prev_sensor_timestamp; ds4->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta*16, 3); } ds4->prev_sensor_timestamp = sensor_timestamp; input_event(ds4->sensors, EV_MSC, MSC_TIMESTAMP, ds4->sensor_timestamp_us); input_sync(ds4->sensors); for (i = 0; i < num_touch_reports; i++) { struct dualshock4_touch_report *touch_report = &touch_reports[i]; for (j = 0; j < ARRAY_SIZE(touch_report->points); j++) { struct dualshock4_touch_point *point = &touch_report->points[j]; bool active = (point->contact & DS4_TOUCH_POINT_INACTIVE) ? false : true; input_mt_slot(ds4->touchpad, j); input_mt_report_slot_state(ds4->touchpad, MT_TOOL_FINGER, active); if (active) { int x = (point->x_hi << 8) | point->x_lo; int y = (point->y_hi << 4) | point->y_lo; input_report_abs(ds4->touchpad, ABS_MT_POSITION_X, x); input_report_abs(ds4->touchpad, ABS_MT_POSITION_Y, y); } } input_mt_sync_frame(ds4->touchpad); input_sync(ds4->touchpad); } input_report_key(ds4->touchpad, BTN_LEFT, ds4_report->buttons[2] & DS_BUTTONS2_TOUCHPAD); /* * Interpretation of the battery_capacity data depends on the cable state. * When no cable is connected (bit4 is 0): * - 0:10: percentage in units of 10%. * When a cable is plugged in: * - 0-10: percentage in units of 10%. * - 11: battery is full * - 14: not charging due to Voltage or temperature error * - 15: charge error */ if (ds4_report->status[0] & DS4_STATUS0_CABLE_STATE) { uint8_t battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY; if (battery_data < 10) { /* Take the mid-point for each battery capacity value, * because on the hardware side 0 = 0-9%, 1=10-19%, etc. * This matches official platform behavior, which does * the same. */ battery_capacity = battery_data * 10 + 5; battery_status = POWER_SUPPLY_STATUS_CHARGING; } else if (battery_data == 10) { battery_capacity = 100; battery_status = POWER_SUPPLY_STATUS_CHARGING; } else if (battery_data == DS4_BATTERY_STATUS_FULL) { battery_capacity = 100; battery_status = POWER_SUPPLY_STATUS_FULL; } else { /* 14, 15 and undefined values */ battery_capacity = 0; battery_status = POWER_SUPPLY_STATUS_UNKNOWN; } } else { uint8_t battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY; if (battery_data < 10) battery_capacity = battery_data * 10 + 5; else /* 10 */ battery_capacity = 100; battery_status = POWER_SUPPLY_STATUS_DISCHARGING; } spin_lock_irqsave(&ps_dev->lock, flags); ps_dev->battery_capacity = battery_capacity; ps_dev->battery_status = battery_status; spin_unlock_irqrestore(&ps_dev->lock, flags); return 0; } static int dualshock4_dongle_parse_report(struct ps_device *ps_dev, struct hid_report *report, u8 *data, int size) { struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base); bool connected = false; /* The dongle reports data using the main USB report (0x1) no matter whether a controller * is connected with mostly zeros. The report does contain dongle status, which we use to * determine if a controller is connected and if so we forward to the regular DualShock4 * parsing code. */ if (data[0] == DS4_INPUT_REPORT_USB && size == DS4_INPUT_REPORT_USB_SIZE) { struct dualshock4_input_report_common *ds4_report = (struct dualshock4_input_report_common *)&data[1]; unsigned long flags; connected = ds4_report->status[1] & DS4_STATUS1_DONGLE_STATE ? false : true; if (ds4->dongle_state == DONGLE_DISCONNECTED && connected) { hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller connected\n"); dualshock4_set_default_lightbar_colors(ds4); spin_lock_irqsave(&ps_dev->lock, flags); ds4->dongle_state = DONGLE_CALIBRATING; spin_unlock_irqrestore(&ps_dev->lock, flags); schedule_work(&ds4->dongle_hotplug_worker); /* Don't process the report since we don't have * calibration data, but let hidraw have it anyway. */ return 0; } else if ((ds4->dongle_state == DONGLE_CONNECTED || ds4->dongle_state == DONGLE_DISABLED) && !connected) { hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller disconnected\n"); spin_lock_irqsave(&ps_dev->lock, flags); ds4->dongle_state = DONGLE_DISCONNECTED; spin_unlock_irqrestore(&ps_dev->lock, flags); /* Return 0, so hidraw can get the report. */ return 0; } else if (ds4->dongle_state == DONGLE_CALIBRATING || ds4->dongle_state == DONGLE_DISABLED || ds4->dongle_state == DONGLE_DISCONNECTED) { /* Return 0, so hidraw can get the report. */ return 0; } } if (connected) return dualshock4_parse_report(ps_dev, report, data, size); return 0; } static int dualshock4_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) { struct hid_device *hdev = input_get_drvdata(dev); struct dualshock4 *ds4 = hid_get_drvdata(hdev); unsigned long flags; if (effect->type != FF_RUMBLE) return 0; spin_lock_irqsave(&ds4->base.lock, flags); ds4->update_rumble = true; ds4->motor_left = effect->u.rumble.strong_magnitude / 256; ds4->motor_right = effect->u.rumble.weak_magnitude / 256; spin_unlock_irqrestore(&ds4->base.lock, flags); dualshock4_schedule_work(ds4); return 0; } static void dualshock4_remove(struct ps_device *ps_dev) { struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base); unsigned long flags; spin_lock_irqsave(&ds4->base.lock, flags); ds4->output_worker_initialized = false; spin_unlock_irqrestore(&ds4->base.lock, flags); cancel_work_sync(&ds4->output_worker); if (ps_dev->hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) cancel_work_sync(&ds4->dongle_hotplug_worker); } static inline void dualshock4_schedule_work(struct dualshock4 *ds4) { unsigned long flags; spin_lock_irqsave(&ds4->base.lock, flags); if (ds4->output_worker_initialized) schedule_work(&ds4->output_worker); spin_unlock_irqrestore(&ds4->base.lock, flags); } static void dualshock4_set_bt_poll_interval(struct dualshock4 *ds4, uint8_t interval) { ds4->bt_poll_interval = interval; ds4->update_bt_poll_interval = true; dualshock4_schedule_work(ds4); } /* Set default lightbar color based on player. */ static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4) { /* Use same player colors as PlayStation 4. * Array of colors is in RGB. */ static const int player_colors[4][3] = { { 0x00, 0x00, 0x40 }, /* Blue */ { 0x40, 0x00, 0x00 }, /* Red */ { 0x00, 0x40, 0x00 }, /* Green */ { 0x20, 0x00, 0x20 } /* Pink */ }; uint8_t player_id = ds4->base.player_id % ARRAY_SIZE(player_colors); ds4->lightbar_enabled = true; ds4->lightbar_red = player_colors[player_id][0]; ds4->lightbar_green = player_colors[player_id][1]; ds4->lightbar_blue = player_colors[player_id][2]; ds4->update_lightbar = true; dualshock4_schedule_work(ds4); } static struct ps_device *dualshock4_create(struct hid_device *hdev) { struct dualshock4 *ds4; struct ps_device *ps_dev; uint8_t max_output_report_size; int i, ret; /* The DualShock4 has an RGB lightbar, which the original hid-sony driver * exposed as a set of 4 LEDs for the 3 color channels and a global control. * Ideally this should have used the multi-color LED class, which didn't exist * yet. In addition the driver used a naming scheme not compliant with the LED * naming spec by using "<mac_address>:<color>", which contained many colons. * We use a more compliant by using "<device_name>:<color>" name now. Ideally * would have been "<device_name>:<color>:indicator", but that would break * existing applications (e.g. Android). Nothing matches against MAC address. */ static const struct ps_led_info lightbar_leds_info[] = { { NULL, "red", 255, dualshock4_led_get_brightness, dualshock4_led_set_brightness }, { NULL, "green", 255, dualshock4_led_get_brightness, dualshock4_led_set_brightness }, { NULL, "blue", 255, dualshock4_led_get_brightness, dualshock4_led_set_brightness }, { NULL, "global", 1, dualshock4_led_get_brightness, dualshock4_led_set_brightness, dualshock4_led_set_blink }, }; ds4 = devm_kzalloc(&hdev->dev, sizeof(*ds4), GFP_KERNEL); if (!ds4) return ERR_PTR(-ENOMEM); /* * Patch version to allow userspace to distinguish between * hid-generic vs hid-playstation axis and button mapping. */ hdev->version |= HID_PLAYSTATION_VERSION_PATCH; ps_dev = &ds4->base; ps_dev->hdev = hdev; spin_lock_init(&ps_dev->lock); ps_dev->battery_capacity = 100; /* initial value until parse_report. */ ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN; ps_dev->parse_report = dualshock4_parse_report; ps_dev->remove = dualshock4_remove; INIT_WORK(&ds4->output_worker, dualshock4_output_worker); ds4->output_worker_initialized = true; hid_set_drvdata(hdev, ds4); max_output_report_size = sizeof(struct dualshock4_output_report_bt); ds4->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL); if (!ds4->output_report_dmabuf) return ERR_PTR(-ENOMEM); if (hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) { ds4->dongle_state = DONGLE_DISCONNECTED; INIT_WORK(&ds4->dongle_hotplug_worker, dualshock4_dongle_calibration_work); /* Override parse report for dongle specific hotplug handling. */ ps_dev->parse_report = dualshock4_dongle_parse_report; } ret = dualshock4_get_mac_address(ds4); if (ret) { hid_err(hdev, "Failed to get MAC address from DualShock4\n"); return ERR_PTR(ret); } snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds4->base.mac_address); ret = dualshock4_get_firmware_info(ds4); if (ret) { hid_err(hdev, "Failed to get firmware info from DualShock4\n"); return ERR_PTR(ret); } ret = ps_devices_list_add(ps_dev); if (ret) return ERR_PTR(ret); ret = dualshock4_get_calibration_data(ds4); if (ret) { hid_err(hdev, "Failed to get calibration data from DualShock4\n"); goto err; } ds4->gamepad = ps_gamepad_create(hdev, dualshock4_play_effect); if (IS_ERR(ds4->gamepad)) { ret = PTR_ERR(ds4->gamepad); goto err; } /* Use gamepad input device name as primary device name for e.g. LEDs */ ps_dev->input_dev_name = dev_name(&ds4->gamepad->dev); ds4->sensors = ps_sensors_create(hdev, DS4_ACC_RANGE, DS4_ACC_RES_PER_G, DS4_GYRO_RANGE, DS4_GYRO_RES_PER_DEG_S); if (IS_ERR(ds4->sensors)) { ret = PTR_ERR(ds4->sensors); goto err; } ds4->touchpad = ps_touchpad_create(hdev, DS4_TOUCHPAD_WIDTH, DS4_TOUCHPAD_HEIGHT, 2); if (IS_ERR(ds4->touchpad)) { ret = PTR_ERR(ds4->touchpad); goto err; } ret = ps_device_register_battery(ps_dev); if (ret) goto err; for (i = 0; i < ARRAY_SIZE(lightbar_leds_info); i++) { const struct ps_led_info *led_info = &lightbar_leds_info[i]; ret = ps_led_register(ps_dev, &ds4->lightbar_leds[i], led_info); if (ret < 0) goto err; } dualshock4_set_bt_poll_interval(ds4, DS4_BT_DEFAULT_POLL_INTERVAL_MS); ret = ps_device_set_player_id(ps_dev); if (ret) { hid_err(hdev, "Failed to assign player id for DualShock4: %d\n", ret); goto err; } dualshock4_set_default_lightbar_colors(ds4); /* * Reporting hardware and firmware is important as there are frequent updates, which * can change behavior. */ hid_info(hdev, "Registered DualShock4 controller hw_version=0x%08x fw_version=0x%08x\n", ds4->base.hw_version, ds4->base.fw_version); return &ds4->base; err: ps_devices_list_remove(ps_dev); return ERR_PTR(ret); } static int ps_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *data, int size) { struct ps_device *dev = hid_get_drvdata(hdev); if (dev && dev->parse_report) return dev->parse_report(dev, report, data, size); return 0; } static int ps_probe(struct hid_device *hdev, const struct hid_device_id *id) { struct ps_device *dev; int ret; ret = hid_parse(hdev); if (ret) { hid_err(hdev, "Parse failed\n"); return ret; } ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW); if (ret) { hid_err(hdev, "Failed to start HID device\n"); return ret; } ret = hid_hw_open(hdev); if (ret) { hid_err(hdev, "Failed to open HID device\n"); goto err_stop; } if (hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER || hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_2 || hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) { dev = dualshock4_create(hdev); if (IS_ERR(dev)) { hid_err(hdev, "Failed to create dualshock4.\n"); ret = PTR_ERR(dev); goto err_close; } } else if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER || hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) { dev = dualsense_create(hdev); if (IS_ERR(dev)) { hid_err(hdev, "Failed to create dualsense.\n"); ret = PTR_ERR(dev); goto err_close; } } return ret; err_close: hid_hw_close(hdev); err_stop: hid_hw_stop(hdev); return ret; } static void ps_remove(struct hid_device *hdev) { struct ps_device *dev = hid_get_drvdata(hdev); ps_devices_list_remove(dev); ps_device_release_player_id(dev); if (dev->remove) dev->remove(dev); hid_hw_close(hdev); hid_hw_stop(hdev); } static const struct hid_device_id ps_devices[] = { /* Sony DualShock 4 controllers for PS4 */ { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER) }, { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER) }, { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2) }, { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2) }, { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) }, /* Sony DualSense controllers for PS5 */ { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER) }, { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER) }, { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) }, { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) }, { } }; MODULE_DEVICE_TABLE(hid, ps_devices); static struct hid_driver ps_driver = { .name = "playstation", .id_table = ps_devices, .probe = ps_probe, .remove = ps_remove, .raw_event = ps_raw_event, .driver = { .dev_groups = ps_device_groups, }, }; static int __init ps_init(void) { return hid_register_driver(&ps_driver); } static void __exit ps_exit(void) { hid_unregister_driver(&ps_driver); ida_destroy(&ps_player_id_allocator); } module_init(ps_init); module_exit(ps_exit); MODULE_AUTHOR("Sony Interactive Entertainment"); MODULE_DESCRIPTION("HID Driver for PlayStation peripherals."); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1