Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Guenter Roeck | 5118 | 71.66% | 5 | 23.81% |
Constantine Shulyupin | 1256 | 17.59% | 6 | 28.57% |
Oskar Senft | 529 | 7.41% | 1 | 4.76% |
Gilles Buloz | 219 | 3.07% | 2 | 9.52% |
Wan Jiabing | 7 | 0.10% | 1 | 4.76% |
Arvind Yadav | 5 | 0.07% | 1 | 4.76% |
hailizheng | 3 | 0.04% | 1 | 4.76% |
Thomas Gleixner | 2 | 0.03% | 1 | 4.76% |
Krzysztof Kozlowski | 1 | 0.01% | 1 | 4.76% |
Wolfram Sang | 1 | 0.01% | 1 | 4.76% |
Stephen Kitt | 1 | 0.01% | 1 | 4.76% |
Total | 7142 | 21 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * nct7802 - Driver for Nuvoton NCT7802Y * * Copyright (C) 2014 Guenter Roeck <linux@roeck-us.net> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/err.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/jiffies.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/regmap.h> #include <linux/slab.h> #define DRVNAME "nct7802" static const u8 REG_VOLTAGE[5] = { 0x09, 0x0a, 0x0c, 0x0d, 0x0e }; static const u8 REG_VOLTAGE_LIMIT_LSB[2][5] = { { 0x46, 0x00, 0x40, 0x42, 0x44 }, { 0x45, 0x00, 0x3f, 0x41, 0x43 }, }; static const u8 REG_VOLTAGE_LIMIT_MSB[5] = { 0x48, 0x00, 0x47, 0x47, 0x48 }; static const u8 REG_VOLTAGE_LIMIT_MSB_SHIFT[2][5] = { { 0, 0, 4, 0, 4 }, { 2, 0, 6, 2, 6 }, }; #define REG_BANK 0x00 #define REG_TEMP_LSB 0x05 #define REG_TEMP_PECI_LSB 0x08 #define REG_VOLTAGE_LOW 0x0f #define REG_FANCOUNT_LOW 0x13 #define REG_START 0x21 #define REG_MODE 0x22 /* 7.2.32 Mode Selection Register */ #define REG_PECI_ENABLE 0x23 #define REG_FAN_ENABLE 0x24 #define REG_VMON_ENABLE 0x25 #define REG_PWM(x) (0x60 + (x)) #define REG_SMARTFAN_EN(x) (0x64 + (x) / 2) #define SMARTFAN_EN_SHIFT(x) ((x) % 2 * 4) #define REG_VENDOR_ID 0xfd #define REG_CHIP_ID 0xfe #define REG_VERSION_ID 0xff /* * Resistance temperature detector (RTD) modes according to 7.2.32 Mode * Selection Register */ #define RTD_MODE_CURRENT 0x1 #define RTD_MODE_THERMISTOR 0x2 #define RTD_MODE_VOLTAGE 0x3 #define MODE_RTD_MASK 0x3 #define MODE_LTD_EN 0x40 /* * Bit offset for sensors modes in REG_MODE. * Valid for index 0..2, indicating RTD1..3. */ #define MODE_BIT_OFFSET_RTD(index) ((index) * 2) /* * Data structures and manipulation thereof */ struct nct7802_data { struct regmap *regmap; struct mutex access_lock; /* for multi-byte read and write operations */ u8 in_status; struct mutex in_alarm_lock; }; static ssize_t temp_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nct7802_data *data = dev_get_drvdata(dev); struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr); unsigned int mode; int ret; ret = regmap_read(data->regmap, REG_MODE, &mode); if (ret < 0) return ret; return sprintf(buf, "%u\n", (mode >> (2 * sattr->index) & 3) + 2); } static ssize_t temp_type_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct nct7802_data *data = dev_get_drvdata(dev); struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr); unsigned int type; int err; err = kstrtouint(buf, 0, &type); if (err < 0) return err; if (sattr->index == 2 && type != 4) /* RD3 */ return -EINVAL; if (type < 3 || type > 4) return -EINVAL; err = regmap_update_bits(data->regmap, REG_MODE, 3 << 2 * sattr->index, (type - 2) << 2 * sattr->index); return err ? : count; } static ssize_t pwm_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr); struct nct7802_data *data = dev_get_drvdata(dev); unsigned int regval; int ret; if (sattr->index > 1) return sprintf(buf, "1\n"); ret = regmap_read(data->regmap, 0x5E, ®val); if (ret < 0) return ret; return sprintf(buf, "%u\n", !(regval & (1 << sattr->index))); } static ssize_t pwm_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct nct7802_data *data = dev_get_drvdata(dev); unsigned int val; int ret; if (!attr->index) return sprintf(buf, "255\n"); ret = regmap_read(data->regmap, attr->index, &val); if (ret < 0) return ret; return sprintf(buf, "%d\n", val); } static ssize_t pwm_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct nct7802_data *data = dev_get_drvdata(dev); int err; u8 val; err = kstrtou8(buf, 0, &val); if (err < 0) return err; err = regmap_write(data->regmap, attr->index, val); return err ? : count; } static ssize_t pwm_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nct7802_data *data = dev_get_drvdata(dev); struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr); unsigned int reg, enabled; int ret; ret = regmap_read(data->regmap, REG_SMARTFAN_EN(sattr->index), ®); if (ret < 0) return ret; enabled = reg >> SMARTFAN_EN_SHIFT(sattr->index) & 1; return sprintf(buf, "%u\n", enabled + 1); } static ssize_t pwm_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct nct7802_data *data = dev_get_drvdata(dev); struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr); u8 val; int ret; ret = kstrtou8(buf, 0, &val); if (ret < 0) return ret; if (val < 1 || val > 2) return -EINVAL; ret = regmap_update_bits(data->regmap, REG_SMARTFAN_EN(sattr->index), 1 << SMARTFAN_EN_SHIFT(sattr->index), (val - 1) << SMARTFAN_EN_SHIFT(sattr->index)); return ret ? : count; } static int nct7802_read_temp(struct nct7802_data *data, u8 reg_temp, u8 reg_temp_low, int *temp) { unsigned int t1, t2 = 0; int err; *temp = 0; mutex_lock(&data->access_lock); err = regmap_read(data->regmap, reg_temp, &t1); if (err < 0) goto abort; t1 <<= 8; if (reg_temp_low) { /* 11 bit data */ err = regmap_read(data->regmap, reg_temp_low, &t2); if (err < 0) goto abort; } t1 |= t2 & 0xe0; *temp = (s16)t1 / 32 * 125; abort: mutex_unlock(&data->access_lock); return err; } static int nct7802_read_fan(struct nct7802_data *data, u8 reg_fan) { unsigned int f1, f2; int ret; mutex_lock(&data->access_lock); ret = regmap_read(data->regmap, reg_fan, &f1); if (ret < 0) goto abort; ret = regmap_read(data->regmap, REG_FANCOUNT_LOW, &f2); if (ret < 0) goto abort; ret = (f1 << 5) | (f2 >> 3); /* convert fan count to rpm */ if (ret == 0x1fff) /* maximum value, assume fan is stopped */ ret = 0; else if (ret) ret = DIV_ROUND_CLOSEST(1350000U, ret); abort: mutex_unlock(&data->access_lock); return ret; } static int nct7802_read_fan_min(struct nct7802_data *data, u8 reg_fan_low, u8 reg_fan_high) { unsigned int f1, f2; int ret; mutex_lock(&data->access_lock); ret = regmap_read(data->regmap, reg_fan_low, &f1); if (ret < 0) goto abort; ret = regmap_read(data->regmap, reg_fan_high, &f2); if (ret < 0) goto abort; ret = f1 | ((f2 & 0xf8) << 5); /* convert fan count to rpm */ if (ret == 0x1fff) /* maximum value, assume no limit */ ret = 0; else if (ret) ret = DIV_ROUND_CLOSEST(1350000U, ret); else ret = 1350000U; abort: mutex_unlock(&data->access_lock); return ret; } static int nct7802_write_fan_min(struct nct7802_data *data, u8 reg_fan_low, u8 reg_fan_high, unsigned long limit) { int err; if (limit) limit = DIV_ROUND_CLOSEST(1350000U, limit); else limit = 0x1fff; limit = clamp_val(limit, 0, 0x1fff); mutex_lock(&data->access_lock); err = regmap_write(data->regmap, reg_fan_low, limit & 0xff); if (err < 0) goto abort; err = regmap_write(data->regmap, reg_fan_high, (limit & 0x1f00) >> 5); abort: mutex_unlock(&data->access_lock); return err; } static u8 nct7802_vmul[] = { 4, 2, 2, 2, 2 }; static int nct7802_read_voltage(struct nct7802_data *data, int nr, int index) { unsigned int v1, v2; int ret; mutex_lock(&data->access_lock); if (index == 0) { /* voltage */ ret = regmap_read(data->regmap, REG_VOLTAGE[nr], &v1); if (ret < 0) goto abort; ret = regmap_read(data->regmap, REG_VOLTAGE_LOW, &v2); if (ret < 0) goto abort; ret = ((v1 << 2) | (v2 >> 6)) * nct7802_vmul[nr]; } else { /* limit */ int shift = 8 - REG_VOLTAGE_LIMIT_MSB_SHIFT[index - 1][nr]; ret = regmap_read(data->regmap, REG_VOLTAGE_LIMIT_LSB[index - 1][nr], &v1); if (ret < 0) goto abort; ret = regmap_read(data->regmap, REG_VOLTAGE_LIMIT_MSB[nr], &v2); if (ret < 0) goto abort; ret = (v1 | ((v2 << shift) & 0x300)) * nct7802_vmul[nr]; } abort: mutex_unlock(&data->access_lock); return ret; } static int nct7802_write_voltage(struct nct7802_data *data, int nr, int index, unsigned long voltage) { int shift = 8 - REG_VOLTAGE_LIMIT_MSB_SHIFT[index - 1][nr]; int err; voltage = clamp_val(voltage, 0, 0x3ff * nct7802_vmul[nr]); voltage = DIV_ROUND_CLOSEST(voltage, nct7802_vmul[nr]); mutex_lock(&data->access_lock); err = regmap_write(data->regmap, REG_VOLTAGE_LIMIT_LSB[index - 1][nr], voltage & 0xff); if (err < 0) goto abort; err = regmap_update_bits(data->regmap, REG_VOLTAGE_LIMIT_MSB[nr], 0x0300 >> shift, (voltage & 0x0300) >> shift); abort: mutex_unlock(&data->access_lock); return err; } static ssize_t in_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct nct7802_data *data = dev_get_drvdata(dev); int voltage; voltage = nct7802_read_voltage(data, sattr->nr, sattr->index); if (voltage < 0) return voltage; return sprintf(buf, "%d\n", voltage); } static ssize_t in_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct nct7802_data *data = dev_get_drvdata(dev); int index = sattr->index; int nr = sattr->nr; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err < 0) return err; err = nct7802_write_voltage(data, nr, index, val); return err ? : count; } static ssize_t in_alarm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct nct7802_data *data = dev_get_drvdata(dev); int volt, min, max, ret; unsigned int val; mutex_lock(&data->in_alarm_lock); /* * The SMI Voltage status register is the only register giving a status * for voltages. A bit is set for each input crossing a threshold, in * both direction, but the "inside" or "outside" limits info is not * available. Also this register is cleared on read. * Note: this is not explicitly spelled out in the datasheet, but * from experiment. * To deal with this we use a status cache with one validity bit and * one status bit for each input. Validity is cleared at startup and * each time the register reports a change, and the status is processed * by software based on current input value and limits. */ ret = regmap_read(data->regmap, 0x1e, &val); /* SMI Voltage status */ if (ret < 0) goto abort; /* invalidate cached status for all inputs crossing a threshold */ data->in_status &= ~((val & 0x0f) << 4); /* if cached status for requested input is invalid, update it */ if (!(data->in_status & (0x10 << sattr->index))) { ret = nct7802_read_voltage(data, sattr->nr, 0); if (ret < 0) goto abort; volt = ret; ret = nct7802_read_voltage(data, sattr->nr, 1); if (ret < 0) goto abort; min = ret; ret = nct7802_read_voltage(data, sattr->nr, 2); if (ret < 0) goto abort; max = ret; if (volt < min || volt > max) data->in_status |= (1 << sattr->index); else data->in_status &= ~(1 << sattr->index); data->in_status |= 0x10 << sattr->index; } ret = sprintf(buf, "%u\n", !!(data->in_status & (1 << sattr->index))); abort: mutex_unlock(&data->in_alarm_lock); return ret; } static ssize_t temp_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nct7802_data *data = dev_get_drvdata(dev); struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); int err, temp; err = nct7802_read_temp(data, sattr->nr, sattr->index, &temp); if (err < 0) return err; return sprintf(buf, "%d\n", temp); } static ssize_t temp_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct nct7802_data *data = dev_get_drvdata(dev); int nr = sattr->nr; long val; int err; err = kstrtol(buf, 10, &val); if (err < 0) return err; val = DIV_ROUND_CLOSEST(clamp_val(val, -128000, 127000), 1000); err = regmap_write(data->regmap, nr, val & 0xff); return err ? : count; } static ssize_t fan_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr); struct nct7802_data *data = dev_get_drvdata(dev); int speed; speed = nct7802_read_fan(data, sattr->index); if (speed < 0) return speed; return sprintf(buf, "%d\n", speed); } static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct nct7802_data *data = dev_get_drvdata(dev); int speed; speed = nct7802_read_fan_min(data, sattr->nr, sattr->index); if (speed < 0) return speed; return sprintf(buf, "%d\n", speed); } static ssize_t fan_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct nct7802_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err < 0) return err; err = nct7802_write_fan_min(data, sattr->nr, sattr->index, val); return err ? : count; } static ssize_t alarm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nct7802_data *data = dev_get_drvdata(dev); struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); int bit = sattr->index; unsigned int val; int ret; ret = regmap_read(data->regmap, sattr->nr, &val); if (ret < 0) return ret; return sprintf(buf, "%u\n", !!(val & (1 << bit))); } static ssize_t beep_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct nct7802_data *data = dev_get_drvdata(dev); unsigned int regval; int err; err = regmap_read(data->regmap, sattr->nr, ®val); if (err) return err; return sprintf(buf, "%u\n", !!(regval & (1 << sattr->index))); } static ssize_t beep_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); struct nct7802_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err < 0) return err; if (val > 1) return -EINVAL; err = regmap_update_bits(data->regmap, sattr->nr, 1 << sattr->index, val ? 1 << sattr->index : 0); return err ? : count; } static SENSOR_DEVICE_ATTR_RW(temp1_type, temp_type, 0); static SENSOR_DEVICE_ATTR_2_RO(temp1_input, temp, 0x01, REG_TEMP_LSB); static SENSOR_DEVICE_ATTR_2_RW(temp1_min, temp, 0x31, 0); static SENSOR_DEVICE_ATTR_2_RW(temp1_max, temp, 0x30, 0); static SENSOR_DEVICE_ATTR_2_RW(temp1_crit, temp, 0x3a, 0); static SENSOR_DEVICE_ATTR_RW(temp2_type, temp_type, 1); static SENSOR_DEVICE_ATTR_2_RO(temp2_input, temp, 0x02, REG_TEMP_LSB); static SENSOR_DEVICE_ATTR_2_RW(temp2_min, temp, 0x33, 0); static SENSOR_DEVICE_ATTR_2_RW(temp2_max, temp, 0x32, 0); static SENSOR_DEVICE_ATTR_2_RW(temp2_crit, temp, 0x3b, 0); static SENSOR_DEVICE_ATTR_RW(temp3_type, temp_type, 2); static SENSOR_DEVICE_ATTR_2_RO(temp3_input, temp, 0x03, REG_TEMP_LSB); static SENSOR_DEVICE_ATTR_2_RW(temp3_min, temp, 0x35, 0); static SENSOR_DEVICE_ATTR_2_RW(temp3_max, temp, 0x34, 0); static SENSOR_DEVICE_ATTR_2_RW(temp3_crit, temp, 0x3c, 0); static SENSOR_DEVICE_ATTR_2_RO(temp4_input, temp, 0x04, 0); static SENSOR_DEVICE_ATTR_2_RW(temp4_min, temp, 0x37, 0); static SENSOR_DEVICE_ATTR_2_RW(temp4_max, temp, 0x36, 0); static SENSOR_DEVICE_ATTR_2_RW(temp4_crit, temp, 0x3d, 0); static SENSOR_DEVICE_ATTR_2_RO(temp5_input, temp, 0x06, REG_TEMP_PECI_LSB); static SENSOR_DEVICE_ATTR_2_RW(temp5_min, temp, 0x39, 0); static SENSOR_DEVICE_ATTR_2_RW(temp5_max, temp, 0x38, 0); static SENSOR_DEVICE_ATTR_2_RW(temp5_crit, temp, 0x3e, 0); static SENSOR_DEVICE_ATTR_2_RO(temp6_input, temp, 0x07, REG_TEMP_PECI_LSB); static SENSOR_DEVICE_ATTR_2_RO(temp1_min_alarm, alarm, 0x18, 0); static SENSOR_DEVICE_ATTR_2_RO(temp2_min_alarm, alarm, 0x18, 1); static SENSOR_DEVICE_ATTR_2_RO(temp3_min_alarm, alarm, 0x18, 2); static SENSOR_DEVICE_ATTR_2_RO(temp4_min_alarm, alarm, 0x18, 3); static SENSOR_DEVICE_ATTR_2_RO(temp5_min_alarm, alarm, 0x18, 4); static SENSOR_DEVICE_ATTR_2_RO(temp1_max_alarm, alarm, 0x19, 0); static SENSOR_DEVICE_ATTR_2_RO(temp2_max_alarm, alarm, 0x19, 1); static SENSOR_DEVICE_ATTR_2_RO(temp3_max_alarm, alarm, 0x19, 2); static SENSOR_DEVICE_ATTR_2_RO(temp4_max_alarm, alarm, 0x19, 3); static SENSOR_DEVICE_ATTR_2_RO(temp5_max_alarm, alarm, 0x19, 4); static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, alarm, 0x1b, 0); static SENSOR_DEVICE_ATTR_2_RO(temp2_crit_alarm, alarm, 0x1b, 1); static SENSOR_DEVICE_ATTR_2_RO(temp3_crit_alarm, alarm, 0x1b, 2); static SENSOR_DEVICE_ATTR_2_RO(temp4_crit_alarm, alarm, 0x1b, 3); static SENSOR_DEVICE_ATTR_2_RO(temp5_crit_alarm, alarm, 0x1b, 4); static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, alarm, 0x17, 0); static SENSOR_DEVICE_ATTR_2_RO(temp2_fault, alarm, 0x17, 1); static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, alarm, 0x17, 2); static SENSOR_DEVICE_ATTR_2_RW(temp1_beep, beep, 0x5c, 0); static SENSOR_DEVICE_ATTR_2_RW(temp2_beep, beep, 0x5c, 1); static SENSOR_DEVICE_ATTR_2_RW(temp3_beep, beep, 0x5c, 2); static SENSOR_DEVICE_ATTR_2_RW(temp4_beep, beep, 0x5c, 3); static SENSOR_DEVICE_ATTR_2_RW(temp5_beep, beep, 0x5c, 4); static SENSOR_DEVICE_ATTR_2_RW(temp6_beep, beep, 0x5c, 5); static struct attribute *nct7802_temp_attrs[] = { &sensor_dev_attr_temp1_type.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp1_fault.dev_attr.attr, &sensor_dev_attr_temp1_beep.dev_attr.attr, &sensor_dev_attr_temp2_type.dev_attr.attr, /* 10 */ &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_crit.dev_attr.attr, &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp2_fault.dev_attr.attr, &sensor_dev_attr_temp2_beep.dev_attr.attr, &sensor_dev_attr_temp3_type.dev_attr.attr, /* 20 */ &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_min.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp3_crit.dev_attr.attr, &sensor_dev_attr_temp3_min_alarm.dev_attr.attr, &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp3_fault.dev_attr.attr, &sensor_dev_attr_temp3_beep.dev_attr.attr, &sensor_dev_attr_temp4_input.dev_attr.attr, /* 30 */ &sensor_dev_attr_temp4_min.dev_attr.attr, &sensor_dev_attr_temp4_max.dev_attr.attr, &sensor_dev_attr_temp4_crit.dev_attr.attr, &sensor_dev_attr_temp4_min_alarm.dev_attr.attr, &sensor_dev_attr_temp4_max_alarm.dev_attr.attr, &sensor_dev_attr_temp4_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp4_beep.dev_attr.attr, &sensor_dev_attr_temp5_input.dev_attr.attr, /* 38 */ &sensor_dev_attr_temp5_min.dev_attr.attr, &sensor_dev_attr_temp5_max.dev_attr.attr, &sensor_dev_attr_temp5_crit.dev_attr.attr, &sensor_dev_attr_temp5_min_alarm.dev_attr.attr, &sensor_dev_attr_temp5_max_alarm.dev_attr.attr, &sensor_dev_attr_temp5_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp5_beep.dev_attr.attr, &sensor_dev_attr_temp6_input.dev_attr.attr, /* 46 */ &sensor_dev_attr_temp6_beep.dev_attr.attr, NULL }; static umode_t nct7802_temp_is_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = kobj_to_dev(kobj); struct nct7802_data *data = dev_get_drvdata(dev); unsigned int reg; int err; err = regmap_read(data->regmap, REG_MODE, ®); if (err < 0) return 0; if (index < 10 && (reg & 03) != 0x01 && (reg & 0x03) != 0x02) /* RD1 */ return 0; if (index >= 10 && index < 20 && (reg & 0x0c) != 0x04 && (reg & 0x0c) != 0x08) /* RD2 */ return 0; if (index >= 20 && index < 30 && (reg & 0x30) != 0x20) /* RD3 */ return 0; if (index >= 30 && index < 38) /* local */ return attr->mode; err = regmap_read(data->regmap, REG_PECI_ENABLE, ®); if (err < 0) return 0; if (index >= 38 && index < 46 && !(reg & 0x01)) /* PECI 0 */ return 0; if (index >= 0x46 && (!(reg & 0x02))) /* PECI 1 */ return 0; return attr->mode; } static const struct attribute_group nct7802_temp_group = { .attrs = nct7802_temp_attrs, .is_visible = nct7802_temp_is_visible, }; static SENSOR_DEVICE_ATTR_2_RO(in0_input, in, 0, 0); static SENSOR_DEVICE_ATTR_2_RW(in0_min, in, 0, 1); static SENSOR_DEVICE_ATTR_2_RW(in0_max, in, 0, 2); static SENSOR_DEVICE_ATTR_2_RO(in0_alarm, in_alarm, 0, 3); static SENSOR_DEVICE_ATTR_2_RW(in0_beep, beep, 0x5a, 3); static SENSOR_DEVICE_ATTR_2_RO(in1_input, in, 1, 0); static SENSOR_DEVICE_ATTR_2_RO(in2_input, in, 2, 0); static SENSOR_DEVICE_ATTR_2_RW(in2_min, in, 2, 1); static SENSOR_DEVICE_ATTR_2_RW(in2_max, in, 2, 2); static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, in_alarm, 2, 0); static SENSOR_DEVICE_ATTR_2_RW(in2_beep, beep, 0x5a, 0); static SENSOR_DEVICE_ATTR_2_RO(in3_input, in, 3, 0); static SENSOR_DEVICE_ATTR_2_RW(in3_min, in, 3, 1); static SENSOR_DEVICE_ATTR_2_RW(in3_max, in, 3, 2); static SENSOR_DEVICE_ATTR_2_RO(in3_alarm, in_alarm, 3, 1); static SENSOR_DEVICE_ATTR_2_RW(in3_beep, beep, 0x5a, 1); static SENSOR_DEVICE_ATTR_2_RO(in4_input, in, 4, 0); static SENSOR_DEVICE_ATTR_2_RW(in4_min, in, 4, 1); static SENSOR_DEVICE_ATTR_2_RW(in4_max, in, 4, 2); static SENSOR_DEVICE_ATTR_2_RO(in4_alarm, in_alarm, 4, 2); static SENSOR_DEVICE_ATTR_2_RW(in4_beep, beep, 0x5a, 2); static struct attribute *nct7802_in_attrs[] = { &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in0_beep.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, /* 5 */ &sensor_dev_attr_in2_input.dev_attr.attr, /* 6 */ &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in2_beep.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, /* 11 */ &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_in3_beep.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, /* 16 */ &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, &sensor_dev_attr_in4_beep.dev_attr.attr, NULL, }; static umode_t nct7802_in_is_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = kobj_to_dev(kobj); struct nct7802_data *data = dev_get_drvdata(dev); unsigned int reg; int err; if (index < 6) /* VCC, VCORE */ return attr->mode; err = regmap_read(data->regmap, REG_MODE, ®); if (err < 0) return 0; if (index >= 6 && index < 11 && (reg & 0x03) != 0x03) /* VSEN1 */ return 0; if (index >= 11 && index < 16 && (reg & 0x0c) != 0x0c) /* VSEN2 */ return 0; if (index >= 16 && (reg & 0x30) != 0x30) /* VSEN3 */ return 0; return attr->mode; } static const struct attribute_group nct7802_in_group = { .attrs = nct7802_in_attrs, .is_visible = nct7802_in_is_visible, }; static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0x10); static SENSOR_DEVICE_ATTR_2_RW(fan1_min, fan_min, 0x49, 0x4c); static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, alarm, 0x1a, 0); static SENSOR_DEVICE_ATTR_2_RW(fan1_beep, beep, 0x5b, 0); static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 0x11); static SENSOR_DEVICE_ATTR_2_RW(fan2_min, fan_min, 0x4a, 0x4d); static SENSOR_DEVICE_ATTR_2_RO(fan2_alarm, alarm, 0x1a, 1); static SENSOR_DEVICE_ATTR_2_RW(fan2_beep, beep, 0x5b, 1); static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 0x12); static SENSOR_DEVICE_ATTR_2_RW(fan3_min, fan_min, 0x4b, 0x4e); static SENSOR_DEVICE_ATTR_2_RO(fan3_alarm, alarm, 0x1a, 2); static SENSOR_DEVICE_ATTR_2_RW(fan3_beep, beep, 0x5b, 2); /* 7.2.89 Fan Control Output Type */ static SENSOR_DEVICE_ATTR_RO(pwm1_mode, pwm_mode, 0); static SENSOR_DEVICE_ATTR_RO(pwm2_mode, pwm_mode, 1); static SENSOR_DEVICE_ATTR_RO(pwm3_mode, pwm_mode, 2); /* 7.2.91... Fan Control Output Value */ static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, REG_PWM(0)); static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, REG_PWM(1)); static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, REG_PWM(2)); /* 7.2.95... Temperature to Fan mapping Relationships Register */ static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0); static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1); static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2); static struct attribute *nct7802_fan_attrs[] = { &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan1_beep.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_fan2_beep.dev_attr.attr, &sensor_dev_attr_fan3_input.dev_attr.attr, &sensor_dev_attr_fan3_min.dev_attr.attr, &sensor_dev_attr_fan3_alarm.dev_attr.attr, &sensor_dev_attr_fan3_beep.dev_attr.attr, NULL }; static umode_t nct7802_fan_is_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = kobj_to_dev(kobj); struct nct7802_data *data = dev_get_drvdata(dev); int fan = index / 4; /* 4 attributes per fan */ unsigned int reg; int err; err = regmap_read(data->regmap, REG_FAN_ENABLE, ®); if (err < 0 || !(reg & (1 << fan))) return 0; return attr->mode; } static const struct attribute_group nct7802_fan_group = { .attrs = nct7802_fan_attrs, .is_visible = nct7802_fan_is_visible, }; static struct attribute *nct7802_pwm_attrs[] = { &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm1_mode.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm2_enable.dev_attr.attr, &sensor_dev_attr_pwm2_mode.dev_attr.attr, &sensor_dev_attr_pwm2.dev_attr.attr, &sensor_dev_attr_pwm3_enable.dev_attr.attr, &sensor_dev_attr_pwm3_mode.dev_attr.attr, &sensor_dev_attr_pwm3.dev_attr.attr, NULL }; static const struct attribute_group nct7802_pwm_group = { .attrs = nct7802_pwm_attrs, }; /* 7.2.115... 0x80-0x83, 0x84 Temperature (X-axis) transition */ static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point1_temp, temp, 0x80, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point2_temp, temp, 0x81, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point3_temp, temp, 0x82, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point4_temp, temp, 0x83, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point5_temp, temp, 0x84, 0); /* 7.2.120... 0x85-0x88 PWM (Y-axis) transition */ static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point1_pwm, pwm, 0x85); static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point2_pwm, pwm, 0x86); static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point3_pwm, pwm, 0x87); static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point4_pwm, pwm, 0x88); static SENSOR_DEVICE_ATTR_RO(pwm1_auto_point5_pwm, pwm, 0); /* 7.2.124 Table 2 X-axis Transition Point 1 Register */ static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point1_temp, temp, 0x90, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point2_temp, temp, 0x91, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point3_temp, temp, 0x92, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point4_temp, temp, 0x93, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point5_temp, temp, 0x94, 0); /* 7.2.129 Table 2 Y-axis Transition Point 1 Register */ static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point1_pwm, pwm, 0x95); static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point2_pwm, pwm, 0x96); static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point3_pwm, pwm, 0x97); static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point4_pwm, pwm, 0x98); static SENSOR_DEVICE_ATTR_RO(pwm2_auto_point5_pwm, pwm, 0); /* 7.2.133 Table 3 X-axis Transition Point 1 Register */ static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point1_temp, temp, 0xA0, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point2_temp, temp, 0xA1, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point3_temp, temp, 0xA2, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point4_temp, temp, 0xA3, 0); static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point5_temp, temp, 0xA4, 0); /* 7.2.138 Table 3 Y-axis Transition Point 1 Register */ static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point1_pwm, pwm, 0xA5); static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point2_pwm, pwm, 0xA6); static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point3_pwm, pwm, 0xA7); static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point4_pwm, pwm, 0xA8); static SENSOR_DEVICE_ATTR_RO(pwm3_auto_point5_pwm, pwm, 0); static struct attribute *nct7802_auto_point_attrs[] = { &sensor_dev_attr_pwm1_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point3_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point4_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point5_temp.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point3_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point4_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point5_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point3_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point4_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point5_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point3_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point4_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point5_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point3_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point4_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point5_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point3_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point4_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point5_pwm.dev_attr.attr, NULL }; static const struct attribute_group nct7802_auto_point_group = { .attrs = nct7802_auto_point_attrs, }; static const struct attribute_group *nct7802_groups[] = { &nct7802_temp_group, &nct7802_in_group, &nct7802_fan_group, &nct7802_pwm_group, &nct7802_auto_point_group, NULL }; static int nct7802_detect(struct i2c_client *client, struct i2c_board_info *info) { int reg; /* * Chip identification registers are only available in bank 0, * so only attempt chip detection if bank 0 is selected */ reg = i2c_smbus_read_byte_data(client, REG_BANK); if (reg != 0x00) return -ENODEV; reg = i2c_smbus_read_byte_data(client, REG_VENDOR_ID); if (reg != 0x50) return -ENODEV; reg = i2c_smbus_read_byte_data(client, REG_CHIP_ID); if (reg != 0xc3) return -ENODEV; reg = i2c_smbus_read_byte_data(client, REG_VERSION_ID); if (reg < 0 || (reg & 0xf0) != 0x20) return -ENODEV; /* Also validate lower bits of voltage and temperature registers */ reg = i2c_smbus_read_byte_data(client, REG_TEMP_LSB); if (reg < 0 || (reg & 0x1f)) return -ENODEV; reg = i2c_smbus_read_byte_data(client, REG_TEMP_PECI_LSB); if (reg < 0 || (reg & 0x3f)) return -ENODEV; reg = i2c_smbus_read_byte_data(client, REG_VOLTAGE_LOW); if (reg < 0 || (reg & 0x3f)) return -ENODEV; strscpy(info->type, "nct7802", I2C_NAME_SIZE); return 0; } static bool nct7802_regmap_is_volatile(struct device *dev, unsigned int reg) { return (reg != REG_BANK && reg <= 0x20) || (reg >= REG_PWM(0) && reg <= REG_PWM(2)); } static const struct regmap_config nct7802_regmap_config = { .reg_bits = 8, .val_bits = 8, .cache_type = REGCACHE_RBTREE, .volatile_reg = nct7802_regmap_is_volatile, }; static int nct7802_get_channel_config(struct device *dev, struct device_node *node, u8 *mode_mask, u8 *mode_val) { u32 reg; const char *type_str, *md_str; u8 md; if (!node->name || of_node_cmp(node->name, "channel")) return 0; if (of_property_read_u32(node, "reg", ®)) { dev_err(dev, "Could not read reg value for '%s'\n", node->full_name); return -EINVAL; } if (reg > 3) { dev_err(dev, "Invalid reg (%u) in '%s'\n", reg, node->full_name); return -EINVAL; } if (reg == 0) { if (!of_device_is_available(node)) *mode_val &= ~MODE_LTD_EN; else *mode_val |= MODE_LTD_EN; *mode_mask |= MODE_LTD_EN; return 0; } /* At this point we have reg >= 1 && reg <= 3 */ if (!of_device_is_available(node)) { *mode_val &= ~(MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1)); *mode_mask |= MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1); return 0; } if (of_property_read_string(node, "sensor-type", &type_str)) { dev_err(dev, "No type for '%s'\n", node->full_name); return -EINVAL; } if (!strcmp(type_str, "voltage")) { *mode_val |= (RTD_MODE_VOLTAGE & MODE_RTD_MASK) << MODE_BIT_OFFSET_RTD(reg - 1); *mode_mask |= MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1); return 0; } if (strcmp(type_str, "temperature")) { dev_err(dev, "Invalid type '%s' for '%s'\n", type_str, node->full_name); return -EINVAL; } if (reg == 3) { /* RTD3 only supports thermistor mode */ md = RTD_MODE_THERMISTOR; } else { if (of_property_read_string(node, "temperature-mode", &md_str)) { dev_err(dev, "No mode for '%s'\n", node->full_name); return -EINVAL; } if (!strcmp(md_str, "thermal-diode")) md = RTD_MODE_CURRENT; else if (!strcmp(md_str, "thermistor")) md = RTD_MODE_THERMISTOR; else { dev_err(dev, "Invalid mode '%s' for '%s'\n", md_str, node->full_name); return -EINVAL; } } *mode_val |= (md & MODE_RTD_MASK) << MODE_BIT_OFFSET_RTD(reg - 1); *mode_mask |= MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1); return 0; } static int nct7802_configure_channels(struct device *dev, struct nct7802_data *data) { /* Enable local temperature sensor by default */ u8 mode_mask = MODE_LTD_EN, mode_val = MODE_LTD_EN; struct device_node *node; int err; if (dev->of_node) { for_each_child_of_node(dev->of_node, node) { err = nct7802_get_channel_config(dev, node, &mode_mask, &mode_val); if (err) { of_node_put(node); return err; } } } return regmap_update_bits(data->regmap, REG_MODE, mode_mask, mode_val); } static int nct7802_init_chip(struct device *dev, struct nct7802_data *data) { int err; /* Enable ADC */ err = regmap_update_bits(data->regmap, REG_START, 0x01, 0x01); if (err) return err; err = nct7802_configure_channels(dev, data); if (err) return err; /* Enable Vcore and VCC voltage monitoring */ return regmap_update_bits(data->regmap, REG_VMON_ENABLE, 0x03, 0x03); } static int nct7802_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct nct7802_data *data; struct device *hwmon_dev; int ret; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (data == NULL) return -ENOMEM; data->regmap = devm_regmap_init_i2c(client, &nct7802_regmap_config); if (IS_ERR(data->regmap)) return PTR_ERR(data->regmap); mutex_init(&data->access_lock); mutex_init(&data->in_alarm_lock); ret = nct7802_init_chip(dev, data); if (ret < 0) return ret; hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, data, nct7802_groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static const unsigned short nct7802_address_list[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END }; static const struct i2c_device_id nct7802_idtable[] = { { "nct7802", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, nct7802_idtable); static struct i2c_driver nct7802_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = DRVNAME, }, .detect = nct7802_detect, .probe_new = nct7802_probe, .id_table = nct7802_idtable, .address_list = nct7802_address_list, }; module_i2c_driver(nct7802_driver); MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>"); MODULE_DESCRIPTION("NCT7802Y Hardware Monitoring Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1