Contributors: 18
Author Tokens Token Proportion Commits Commit Proportion
Michael Hennerich 2750 55.65% 3 5.26%
Jonathan Cameron 1558 31.53% 25 43.86%
Slawomir Stepien 411 8.32% 6 10.53%
Jaya Durga 55 1.11% 1 1.75%
Lars-Peter Clausen 37 0.75% 6 10.53%
Gargi Sharma 33 0.67% 1 1.75%
Cristian Sicilia 30 0.61% 2 3.51%
Alison Schofield 20 0.40% 1 1.75%
Grégor Boirie 12 0.24% 1 1.75%
Sachin Kamat 10 0.20% 1 1.75%
Haneen Mohammed 6 0.12% 2 3.51%
Thomas Meyer 5 0.10% 1 1.75%
Ioana Ciornei 4 0.08% 2 3.51%
Vaishali Thakkar 4 0.08% 1 1.75%
Paul Gortmaker 2 0.04% 1 1.75%
Nicholas Mc Guire 2 0.04% 1 1.75%
Greg Kroah-Hartman 2 0.04% 1 1.75%
Bhumika Goyal 1 0.02% 1 1.75%
Total 4942 57


// SPDX-License-Identifier: GPL-2.0
/*
 * AD7280A Lithium Ion Battery Monitoring System
 *
 * Copyright 2011 Analog Devices Inc.
 */

#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/crc8.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/spi/spi.h>

#include <linux/iio/events.h>
#include <linux/iio/iio.h>

/* Registers */

#define AD7280A_CELL_VOLTAGE_1_REG		0x0  /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_2_REG		0x1  /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_3_REG		0x2  /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_4_REG		0x3  /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_5_REG		0x4  /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_6_REG		0x5  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_1_REG			0x6  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_2_REG			0x7  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_3_REG			0x8  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_4_REG			0x9  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_5_REG			0xA  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_6_REG			0xB  /* D11 to D0, Read only */
#define AD7280A_SELF_TEST_REG			0xC  /* D11 to D0, Read only */

#define AD7280A_CTRL_HB_REG			0xD  /* D15 to D8, Read/write */
#define   AD7280A_CTRL_HB_CONV_INPUT_MSK		GENMASK(7, 6)
#define     AD7280A_CTRL_HB_CONV_INPUT_ALL			0
#define     AD7280A_CTRL_HB_CONV_INPUT_6CELL_AUX1_3_5		1
#define     AD7280A_CTRL_HB_CONV_INPUT_6CELL			2
#define     AD7280A_CTRL_HB_CONV_INPUT_SELF_TEST		3
#define   AD7280A_CTRL_HB_CONV_RREAD_MSK		GENMASK(5, 4)
#define     AD7280A_CTRL_HB_CONV_RREAD_ALL			0
#define     AD7280A_CTRL_HB_CONV_RREAD_6CELL_AUX1_3_5		1
#define     AD7280A_CTRL_HB_CONV_RREAD_6CELL			2
#define     AD7280A_CTRL_HB_CONV_RREAD_NO		        3
#define   AD7280A_CTRL_HB_CONV_START_MSK		BIT(3)
#define     AD7280A_CTRL_HB_CONV_START_CNVST			0
#define     AD7280A_CTRL_HB_CONV_START_CS			1
#define   AD7280A_CTRL_HB_CONV_AVG_MSK			GENMASK(2, 1)
#define     AD7280A_CTRL_HB_CONV_AVG_DIS			0
#define     AD7280A_CTRL_HB_CONV_AVG_2				1
#define     AD7280A_CTRL_HB_CONV_AVG_4			        2
#define     AD7280A_CTRL_HB_CONV_AVG_8			        3
#define   AD7280A_CTRL_HB_PWRDN_SW			BIT(0)

#define AD7280A_CTRL_LB_REG			0xE  /* D7 to D0, Read/write */
#define   AD7280A_CTRL_LB_SWRST_MSK			BIT(7)
#define   AD7280A_CTRL_LB_ACQ_TIME_MSK			GENMASK(6, 5)
#define     AD7280A_CTRL_LB_ACQ_TIME_400ns			0
#define     AD7280A_CTRL_LB_ACQ_TIME_800ns			1
#define     AD7280A_CTRL_LB_ACQ_TIME_1200ns			2
#define     AD7280A_CTRL_LB_ACQ_TIME_1600ns			3
#define   AD7280A_CTRL_LB_MUST_SET			BIT(4)
#define   AD7280A_CTRL_LB_THERMISTOR_MSK		BIT(3)
#define   AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK		BIT(2)
#define   AD7280A_CTRL_LB_INC_DEV_ADDR_MSK		BIT(1)
#define   AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK		BIT(0)

#define AD7280A_CELL_OVERVOLTAGE_REG		0xF  /* D7 to D0, Read/write */
#define AD7280A_CELL_UNDERVOLTAGE_REG		0x10 /* D7 to D0, Read/write */
#define AD7280A_AUX_ADC_OVERVOLTAGE_REG		0x11 /* D7 to D0, Read/write */
#define AD7280A_AUX_ADC_UNDERVOLTAGE_REG	0x12 /* D7 to D0, Read/write */

#define AD7280A_ALERT_REG			0x13 /* D7 to D0, Read/write */
#define   AD7280A_ALERT_REMOVE_MSK			GENMASK(3, 0)
#define     AD7280A_ALERT_REMOVE_AUX5			BIT(0)
#define     AD7280A_ALERT_REMOVE_AUX3_AUX5		BIT(1)
#define     AD7280A_ALERT_REMOVE_VIN5			BIT(2)
#define     AD7280A_ALERT_REMOVE_VIN4_VIN5		BIT(3)
#define   AD7280A_ALERT_GEN_STATIC_HIGH			BIT(6)
#define   AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN		(BIT(7) | BIT(6))

#define AD7280A_CELL_BALANCE_REG		0x14 /* D7 to D0, Read/write */
#define  AD7280A_CELL_BALANCE_CHAN_BITMAP_MSK		GENMASK(7, 2)
#define AD7280A_CB1_TIMER_REG			0x15 /* D7 to D0, Read/write */
#define  AD7280A_CB_TIMER_VAL_MSK			GENMASK(7, 3)
#define AD7280A_CB2_TIMER_REG			0x16 /* D7 to D0, Read/write */
#define AD7280A_CB3_TIMER_REG			0x17 /* D7 to D0, Read/write */
#define AD7280A_CB4_TIMER_REG			0x18 /* D7 to D0, Read/write */
#define AD7280A_CB5_TIMER_REG			0x19 /* D7 to D0, Read/write */
#define AD7280A_CB6_TIMER_REG			0x1A /* D7 to D0, Read/write */
#define AD7280A_PD_TIMER_REG			0x1B /* D7 to D0, Read/write */
#define AD7280A_READ_REG			0x1C /* D7 to D0, Read/write */
#define   AD7280A_READ_ADDR_MSK				GENMASK(7, 2)
#define AD7280A_CNVST_CTRL_REG			0x1D /* D7 to D0, Read/write */

/* Transfer fields */
#define AD7280A_TRANS_WRITE_DEVADDR_MSK		GENMASK(31, 27)
#define AD7280A_TRANS_WRITE_ADDR_MSK		GENMASK(26, 21)
#define AD7280A_TRANS_WRITE_VAL_MSK		GENMASK(20, 13)
#define AD7280A_TRANS_WRITE_ALL_MSK		BIT(12)
#define AD7280A_TRANS_WRITE_CRC_MSK		GENMASK(10, 3)
#define AD7280A_TRANS_WRITE_RES_PATTERN		0x2

/* Layouts differ for channel vs other registers */
#define AD7280A_TRANS_READ_DEVADDR_MSK		GENMASK(31, 27)
#define AD7280A_TRANS_READ_CONV_CHANADDR_MSK	GENMASK(26, 23)
#define AD7280A_TRANS_READ_CONV_DATA_MSK	GENMASK(22, 11)
#define AD7280A_TRANS_READ_REG_REGADDR_MSK	GENMASK(26, 21)
#define AD7280A_TRANS_READ_REG_DATA_MSK		GENMASK(20, 13)
#define AD7280A_TRANS_READ_WRITE_ACK_MSK	BIT(10)
#define AD7280A_TRANS_READ_CRC_MSK		GENMASK(9, 2)

/* Magic value used to indicate this special case */
#define AD7280A_ALL_CELLS				(0xAD << 16)

#define AD7280A_MAX_SPI_CLK_HZ		700000 /* < 1MHz */
#define AD7280A_MAX_CHAIN		8
#define AD7280A_CELLS_PER_DEV		6
#define AD7280A_BITS			12
#define AD7280A_NUM_CH			(AD7280A_AUX_ADC_6_REG - \
					AD7280A_CELL_VOLTAGE_1_REG + 1)

#define AD7280A_CALC_VOLTAGE_CHAN_NUM(d, c) (((d) * AD7280A_CELLS_PER_DEV) + \
					     (c))
#define AD7280A_CALC_TEMP_CHAN_NUM(d, c)    (((d) * AD7280A_CELLS_PER_DEV) + \
					     (c) - AD7280A_CELLS_PER_DEV)

#define AD7280A_DEVADDR_MASTER		0
#define AD7280A_DEVADDR_ALL		0x1F

static const unsigned short ad7280a_n_avg[4] = {1, 2, 4, 8};
static const unsigned short ad7280a_t_acq_ns[4] = {470, 1030, 1510, 1945};

/* 5-bit device address is sent LSB first */
static unsigned int ad7280a_devaddr(unsigned int addr)
{
	return ((addr & 0x1) << 4) |
	       ((addr & 0x2) << 2) |
	       (addr & 0x4) |
	       ((addr & 0x8) >> 2) |
	       ((addr & 0x10) >> 4);
}

/*
 * During a read a valid write is mandatory.
 * So writing to the highest available address (Address 0x1F) and setting the
 * address all parts bit to 0 is recommended.
 * So the TXVAL is AD7280A_DEVADDR_ALL + CRC
 */
#define AD7280A_READ_TXVAL	0xF800030A

/*
 * AD7280 CRC
 *
 * P(x) = x^8 + x^5 + x^3 + x^2 + x^1 + x^0 = 0b100101111 => 0x2F
 */
#define POLYNOM		0x2F

struct ad7280_state {
	struct spi_device		*spi;
	struct iio_chan_spec		*channels;
	unsigned int			chain_last_alert_ignore;
	bool				thermistor_term_en;
	int				slave_num;
	int				scan_cnt;
	int				readback_delay_us;
	unsigned char			crc_tab[CRC8_TABLE_SIZE];
	u8				oversampling_ratio;
	u8				acquisition_time;
	unsigned char			ctrl_lb;
	unsigned char			cell_threshhigh;
	unsigned char			cell_threshlow;
	unsigned char			aux_threshhigh;
	unsigned char			aux_threshlow;
	unsigned char			cb_mask[AD7280A_MAX_CHAIN];
	struct mutex			lock; /* protect sensor state */

	__be32				tx __aligned(IIO_DMA_MINALIGN);
	__be32				rx;
};

static unsigned char ad7280_calc_crc8(unsigned char *crc_tab, unsigned int val)
{
	unsigned char crc;

	crc = crc_tab[val >> 16 & 0xFF];
	crc = crc_tab[crc ^ (val >> 8 & 0xFF)];

	return crc ^ (val & 0xFF);
}

static int ad7280_check_crc(struct ad7280_state *st, unsigned int val)
{
	unsigned char crc = ad7280_calc_crc8(st->crc_tab, val >> 10);

	if (crc != ((val >> 2) & 0xFF))
		return -EIO;

	return 0;
}

/*
 * After initiating a conversion sequence we need to wait until the conversion
 * is done. The delay is typically in the range of 15..30us however depending on
 * the number of devices in the daisy chain, the number of averages taken,
 * conversion delays and acquisition time options it may take up to 250us, in
 * this case we better sleep instead of busy wait.
 */

static void ad7280_delay(struct ad7280_state *st)
{
	if (st->readback_delay_us < 50)
		udelay(st->readback_delay_us);
	else
		usleep_range(250, 500);
}

static int __ad7280_read32(struct ad7280_state *st, unsigned int *val)
{
	int ret;
	struct spi_transfer t = {
		.tx_buf	= &st->tx,
		.rx_buf = &st->rx,
		.len = sizeof(st->tx),
	};

	st->tx = cpu_to_be32(AD7280A_READ_TXVAL);

	ret = spi_sync_transfer(st->spi, &t, 1);
	if (ret)
		return ret;

	*val = be32_to_cpu(st->rx);

	return 0;
}

static int ad7280_write(struct ad7280_state *st, unsigned int devaddr,
			unsigned int addr, bool all, unsigned int val)
{
	unsigned int reg = FIELD_PREP(AD7280A_TRANS_WRITE_DEVADDR_MSK, devaddr) |
		FIELD_PREP(AD7280A_TRANS_WRITE_ADDR_MSK, addr) |
		FIELD_PREP(AD7280A_TRANS_WRITE_VAL_MSK, val) |
		FIELD_PREP(AD7280A_TRANS_WRITE_ALL_MSK, all);

	reg |= FIELD_PREP(AD7280A_TRANS_WRITE_CRC_MSK,
			ad7280_calc_crc8(st->crc_tab, reg >> 11));
	/* Reserved b010 pattern not included crc calc */
	reg |= AD7280A_TRANS_WRITE_RES_PATTERN;

	st->tx = cpu_to_be32(reg);

	return spi_write(st->spi, &st->tx, sizeof(st->tx));
}

static int ad7280_read_reg(struct ad7280_state *st, unsigned int devaddr,
			   unsigned int addr)
{
	int ret;
	unsigned int tmp;

	/* turns off the read operation on all parts */
	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
				      AD7280A_CTRL_HB_CONV_INPUT_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
				      AD7280A_CTRL_HB_CONV_RREAD_NO) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
				      st->oversampling_ratio));
	if (ret)
		return ret;

	/* turns on the read operation on the addressed part */
	ret = ad7280_write(st, devaddr, AD7280A_CTRL_HB_REG, 0,
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
				      AD7280A_CTRL_HB_CONV_INPUT_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
				      AD7280A_CTRL_HB_CONV_RREAD_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
				      st->oversampling_ratio));
	if (ret)
		return ret;

	/* Set register address on the part to be read from */
	ret = ad7280_write(st, devaddr, AD7280A_READ_REG, 0,
			   FIELD_PREP(AD7280A_READ_ADDR_MSK, addr));
	if (ret)
		return ret;

	ret = __ad7280_read32(st, &tmp);
	if (ret)
		return ret;

	if (ad7280_check_crc(st, tmp))
		return -EIO;

	if ((FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, tmp) != devaddr) ||
	    (FIELD_GET(AD7280A_TRANS_READ_REG_REGADDR_MSK, tmp) != addr))
		return -EFAULT;

	return FIELD_GET(AD7280A_TRANS_READ_REG_DATA_MSK, tmp);
}

static int ad7280_read_channel(struct ad7280_state *st, unsigned int devaddr,
			       unsigned int addr)
{
	int ret;
	unsigned int tmp;

	ret = ad7280_write(st, devaddr, AD7280A_READ_REG, 0,
			   FIELD_PREP(AD7280A_READ_ADDR_MSK, addr));
	if (ret)
		return ret;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
				      AD7280A_CTRL_HB_CONV_INPUT_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
				      AD7280A_CTRL_HB_CONV_RREAD_NO) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
				      st->oversampling_ratio));
	if (ret)
		return ret;

	ret = ad7280_write(st, devaddr, AD7280A_CTRL_HB_REG, 0,
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
				      AD7280A_CTRL_HB_CONV_INPUT_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
				      AD7280A_CTRL_HB_CONV_RREAD_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_START_MSK,
				      AD7280A_CTRL_HB_CONV_START_CS) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
				      st->oversampling_ratio));
	if (ret)
		return ret;

	ad7280_delay(st);

	ret = __ad7280_read32(st, &tmp);
	if (ret)
		return ret;

	if (ad7280_check_crc(st, tmp))
		return -EIO;

	if ((FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, tmp) != devaddr) ||
	    (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, tmp) != addr))
		return -EFAULT;

	return FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, tmp);
}

static int ad7280_read_all_channels(struct ad7280_state *st, unsigned int cnt,
				    unsigned int *array)
{
	int i, ret;
	unsigned int tmp, sum = 0;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ_REG, 1,
			   AD7280A_CELL_VOLTAGE_1_REG << 2);
	if (ret)
		return ret;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
				      AD7280A_CTRL_HB_CONV_INPUT_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
				      AD7280A_CTRL_HB_CONV_RREAD_ALL) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_START_MSK,
				      AD7280A_CTRL_HB_CONV_START_CS) |
			   FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
				      st->oversampling_ratio));
	if (ret)
		return ret;

	ad7280_delay(st);

	for (i = 0; i < cnt; i++) {
		ret = __ad7280_read32(st, &tmp);
		if (ret)
			return ret;

		if (ad7280_check_crc(st, tmp))
			return -EIO;

		if (array)
			array[i] = tmp;
		/* only sum cell voltages */
		if (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, tmp) <=
		    AD7280A_CELL_VOLTAGE_6_REG)
			sum += FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, tmp);
	}

	return sum;
}

static void ad7280_sw_power_down(void *data)
{
	struct ad7280_state *st = data;

	ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
		     AD7280A_CTRL_HB_PWRDN_SW |
		     FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio));
}

static int ad7280_chain_setup(struct ad7280_state *st)
{
	unsigned int val, n;
	int ret;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_LB_REG, 1,
			   FIELD_PREP(AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK, 1) |
			   FIELD_PREP(AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK, 1) |
			   AD7280A_CTRL_LB_MUST_SET |
			   FIELD_PREP(AD7280A_CTRL_LB_SWRST_MSK, 1) |
			   st->ctrl_lb);
	if (ret)
		return ret;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_LB_REG, 1,
			   FIELD_PREP(AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK, 1) |
			   FIELD_PREP(AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK, 1) |
			   AD7280A_CTRL_LB_MUST_SET |
			   FIELD_PREP(AD7280A_CTRL_LB_SWRST_MSK, 0) |
			   st->ctrl_lb);
	if (ret)
		goto error_power_down;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ_REG, 1,
			   FIELD_PREP(AD7280A_READ_ADDR_MSK, AD7280A_CTRL_LB_REG));
	if (ret)
		goto error_power_down;

	for (n = 0; n <= AD7280A_MAX_CHAIN; n++) {
		ret = __ad7280_read32(st, &val);
		if (ret)
			goto error_power_down;

		if (val == 0)
			return n - 1;

		if (ad7280_check_crc(st, val)) {
			ret = -EIO;
			goto error_power_down;
		}

		if (n != ad7280a_devaddr(FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, val))) {
			ret = -EIO;
			goto error_power_down;
		}
	}
	ret = -EFAULT;

error_power_down:
	ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
		     AD7280A_CTRL_HB_PWRDN_SW |
		     FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio));

	return ret;
}

static ssize_t ad7280_show_balance_sw(struct iio_dev *indio_dev,
				      uintptr_t private,
				      const struct iio_chan_spec *chan, char *buf)
{
	struct ad7280_state *st = iio_priv(indio_dev);

	return sysfs_emit(buf, "%d\n",
			  !!(st->cb_mask[chan->address >> 8] &
			     BIT(chan->address & 0xFF)));
}

static ssize_t ad7280_store_balance_sw(struct iio_dev *indio_dev,
				       uintptr_t private,
				       const struct iio_chan_spec *chan,
				       const char *buf, size_t len)
{
	struct ad7280_state *st = iio_priv(indio_dev);
	unsigned int devaddr, ch;
	bool readin;
	int ret;

	ret = kstrtobool(buf, &readin);
	if (ret)
		return ret;

	devaddr = chan->address >> 8;
	ch = chan->address & 0xFF;

	mutex_lock(&st->lock);
	if (readin)
		st->cb_mask[devaddr] |= BIT(ch);
	else
		st->cb_mask[devaddr] &= ~BIT(ch);

	ret = ad7280_write(st, devaddr, AD7280A_CELL_BALANCE_REG, 0,
			   FIELD_PREP(AD7280A_CELL_BALANCE_CHAN_BITMAP_MSK,
				      st->cb_mask[devaddr]));
	mutex_unlock(&st->lock);

	return ret ? ret : len;
}

static ssize_t ad7280_show_balance_timer(struct iio_dev *indio_dev,
					 uintptr_t private,
					 const struct iio_chan_spec *chan,
					 char *buf)
{
	struct ad7280_state *st = iio_priv(indio_dev);
	unsigned int msecs;
	int ret;

	mutex_lock(&st->lock);
	ret = ad7280_read_reg(st, chan->address >> 8,
			      (chan->address & 0xFF) + AD7280A_CB1_TIMER_REG);
	mutex_unlock(&st->lock);

	if (ret < 0)
		return ret;

	msecs = FIELD_GET(AD7280A_CB_TIMER_VAL_MSK, ret) * 71500;

	return sysfs_emit(buf, "%u.%u\n", msecs / 1000, msecs % 1000);
}

static ssize_t ad7280_store_balance_timer(struct iio_dev *indio_dev,
					  uintptr_t private,
					  const struct iio_chan_spec *chan,
					  const char *buf, size_t len)
{
	struct ad7280_state *st = iio_priv(indio_dev);
	int val, val2;
	int ret;

	ret = iio_str_to_fixpoint(buf, 1000, &val, &val2);
	if (ret)
		return ret;

	val = val * 1000 + val2;
	val /= 71500;

	if (val > 31)
		return -EINVAL;

	mutex_lock(&st->lock);
	ret = ad7280_write(st, chan->address >> 8,
			   (chan->address & 0xFF) + AD7280A_CB1_TIMER_REG, 0,
			   FIELD_PREP(AD7280A_CB_TIMER_VAL_MSK, val));
	mutex_unlock(&st->lock);

	return ret ? ret : len;
}

static const struct iio_chan_spec_ext_info ad7280_cell_ext_info[] = {
	{
		.name = "balance_switch_en",
		.read = ad7280_show_balance_sw,
		.write = ad7280_store_balance_sw,
		.shared = IIO_SEPARATE,
	}, {
		.name = "balance_switch_timer",
		.read = ad7280_show_balance_timer,
		.write = ad7280_store_balance_timer,
		.shared = IIO_SEPARATE,
	},
	{}
};

static const struct iio_event_spec ad7280_events[] = {
	{
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_RISING,
		.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE),
	}, {
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_FALLING,
		.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE),
	},
};

static void ad7280_voltage_channel_init(struct iio_chan_spec *chan, int i,
					bool irq_present)
{
	chan->type = IIO_VOLTAGE;
	chan->differential = 1;
	chan->channel = i;
	chan->channel2 = chan->channel + 1;
	if (irq_present) {
		chan->event_spec = ad7280_events;
		chan->num_event_specs = ARRAY_SIZE(ad7280_events);
	}
	chan->ext_info = ad7280_cell_ext_info;
}

static void ad7280_temp_channel_init(struct iio_chan_spec *chan, int i,
				     bool irq_present)
{
	chan->type = IIO_TEMP;
	chan->channel = i;
	if (irq_present) {
		chan->event_spec = ad7280_events;
		chan->num_event_specs = ARRAY_SIZE(ad7280_events);
	}
}

static void ad7280_common_fields_init(struct iio_chan_spec *chan, int addr,
				      int cnt)
{
	chan->indexed = 1;
	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
	chan->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO);
	chan->address = addr;
	chan->scan_index = cnt;
	chan->scan_type.sign = 'u';
	chan->scan_type.realbits = 12;
	chan->scan_type.storagebits = 32;
}

static void ad7280_total_voltage_channel_init(struct iio_chan_spec *chan,
					      int cnt, int dev)
{
	chan->type = IIO_VOLTAGE;
	chan->differential = 1;
	chan->channel = 0;
	chan->channel2 = dev * AD7280A_CELLS_PER_DEV;
	chan->address = AD7280A_ALL_CELLS;
	chan->indexed = 1;
	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
	chan->scan_index = cnt;
	chan->scan_type.sign = 'u';
	chan->scan_type.realbits = 32;
	chan->scan_type.storagebits = 32;
}

static void ad7280_init_dev_channels(struct ad7280_state *st, int dev, int *cnt,
				     bool irq_present)
{
	int addr, ch, i;
	struct iio_chan_spec *chan;

	for (ch = AD7280A_CELL_VOLTAGE_1_REG; ch <= AD7280A_AUX_ADC_6_REG; ch++) {
		chan = &st->channels[*cnt];

		if (ch < AD7280A_AUX_ADC_1_REG) {
			i = AD7280A_CALC_VOLTAGE_CHAN_NUM(dev, ch);
			ad7280_voltage_channel_init(chan, i, irq_present);
		} else {
			i = AD7280A_CALC_TEMP_CHAN_NUM(dev, ch);
			ad7280_temp_channel_init(chan, i, irq_present);
		}

		addr = ad7280a_devaddr(dev) << 8 | ch;
		ad7280_common_fields_init(chan, addr, *cnt);

		(*cnt)++;
	}
}

static int ad7280_channel_init(struct ad7280_state *st, bool irq_present)
{
	int dev, cnt = 0;

	st->channels = devm_kcalloc(&st->spi->dev, (st->slave_num + 1) * 12 + 1,
				    sizeof(*st->channels), GFP_KERNEL);
	if (!st->channels)
		return -ENOMEM;

	for (dev = 0; dev <= st->slave_num; dev++)
		ad7280_init_dev_channels(st, dev, &cnt, irq_present);

	ad7280_total_voltage_channel_init(&st->channels[cnt], cnt, dev);

	return cnt + 1;
}

static int ad7280a_read_thresh(struct iio_dev *indio_dev,
			       const struct iio_chan_spec *chan,
			       enum iio_event_type type,
			       enum iio_event_direction dir,
			       enum iio_event_info info, int *val, int *val2)
{
	struct ad7280_state *st = iio_priv(indio_dev);

	switch (chan->type) {
	case IIO_VOLTAGE:
		switch (dir) {
		case IIO_EV_DIR_RISING:
			*val = 1000 + (st->cell_threshhigh * 1568L) / 100;
			return IIO_VAL_INT;
		case IIO_EV_DIR_FALLING:
			*val = 1000 + (st->cell_threshlow * 1568L) / 100;
			return IIO_VAL_INT;
		default:
			return -EINVAL;
		}
		break;
	case IIO_TEMP:
		switch (dir) {
		case IIO_EV_DIR_RISING:
			*val = ((st->aux_threshhigh) * 196L) / 10;
			return IIO_VAL_INT;
		case IIO_EV_DIR_FALLING:
			*val = (st->aux_threshlow * 196L) / 10;
			return IIO_VAL_INT;
		default:
			return -EINVAL;
		}
		break;
	default:
		return -EINVAL;
	}
}

static int ad7280a_write_thresh(struct iio_dev *indio_dev,
				const struct iio_chan_spec *chan,
				enum iio_event_type type,
				enum iio_event_direction dir,
				enum iio_event_info info,
				int val, int val2)
{
	struct ad7280_state *st = iio_priv(indio_dev);
	unsigned int addr;
	long value;
	int ret;

	if (val2 != 0)
		return -EINVAL;

	mutex_lock(&st->lock);
	switch (chan->type) {
	case IIO_VOLTAGE:
		value = ((val - 1000) * 100) / 1568; /* LSB 15.68mV */
		value = clamp(value, 0L, 0xFFL);
		switch (dir) {
		case IIO_EV_DIR_RISING:
			addr = AD7280A_CELL_OVERVOLTAGE_REG;
			ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
					   1, value);
			if (ret)
				break;
			st->cell_threshhigh = value;
			break;
		case IIO_EV_DIR_FALLING:
			addr = AD7280A_CELL_UNDERVOLTAGE_REG;
			ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
					   1, value);
			if (ret)
				break;
			st->cell_threshlow = value;
			break;
		default:
			ret = -EINVAL;
			goto err_unlock;
		}
		break;
	case IIO_TEMP:
		value = (val * 10) / 196; /* LSB 19.6mV */
		value = clamp(value, 0L, 0xFFL);
		switch (dir) {
		case IIO_EV_DIR_RISING:
			addr = AD7280A_AUX_ADC_OVERVOLTAGE_REG;
			ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
					   1, value);
			if (ret)
				break;
			st->aux_threshhigh = value;
			break;
		case IIO_EV_DIR_FALLING:
			addr = AD7280A_AUX_ADC_UNDERVOLTAGE_REG;
			ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
					   1, value);
			if (ret)
				break;
			st->aux_threshlow = value;
			break;
		default:
			ret = -EINVAL;
			goto err_unlock;
		}
		break;
	default:
		ret = -EINVAL;
		goto err_unlock;
	}

err_unlock:
	mutex_unlock(&st->lock);

	return ret;
}

static irqreturn_t ad7280_event_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct ad7280_state *st = iio_priv(indio_dev);
	unsigned int *channels;
	int i, ret;

	channels = kcalloc(st->scan_cnt, sizeof(*channels), GFP_KERNEL);
	if (!channels)
		return IRQ_HANDLED;

	ret = ad7280_read_all_channels(st, st->scan_cnt, channels);
	if (ret < 0)
		goto out;

	for (i = 0; i < st->scan_cnt; i++) {
		unsigned int val;

		val = FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, channels[i]);
		if (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, channels[i]) <=
		    AD7280A_CELL_VOLTAGE_6_REG) {
			if (val >= st->cell_threshhigh) {
				u64 tmp = IIO_EVENT_CODE(IIO_VOLTAGE, 1, 0,
							 IIO_EV_DIR_RISING,
							 IIO_EV_TYPE_THRESH,
							 0, 0, 0);
				iio_push_event(indio_dev, tmp,
					       iio_get_time_ns(indio_dev));
			} else if (val <= st->cell_threshlow) {
				u64 tmp = IIO_EVENT_CODE(IIO_VOLTAGE, 1, 0,
							 IIO_EV_DIR_FALLING,
							 IIO_EV_TYPE_THRESH,
							 0, 0, 0);
				iio_push_event(indio_dev, tmp,
					       iio_get_time_ns(indio_dev));
			}
		} else {
			if (val >= st->aux_threshhigh) {
				u64 tmp = IIO_UNMOD_EVENT_CODE(IIO_TEMP, 0,
							IIO_EV_TYPE_THRESH,
							IIO_EV_DIR_RISING);
				iio_push_event(indio_dev, tmp,
					       iio_get_time_ns(indio_dev));
			} else if (val <= st->aux_threshlow) {
				u64 tmp = IIO_UNMOD_EVENT_CODE(IIO_TEMP, 0,
							IIO_EV_TYPE_THRESH,
							IIO_EV_DIR_FALLING);
				iio_push_event(indio_dev, tmp,
					       iio_get_time_ns(indio_dev));
			}
		}
	}

out:
	kfree(channels);

	return IRQ_HANDLED;
}

static void ad7280_update_delay(struct ad7280_state *st)
{
	/*
	 * Total Conversion Time = ((tACQ + tCONV) *
	 *			   (Number of Conversions per Part)) −
	 *			   tACQ + ((N - 1) * tDELAY)
	 *
	 * Readback Delay = Total Conversion Time + tWAIT
	 */

	st->readback_delay_us =
		((ad7280a_t_acq_ns[st->acquisition_time & 0x3] + 720) *
			(AD7280A_NUM_CH * ad7280a_n_avg[st->oversampling_ratio & 0x3])) -
		ad7280a_t_acq_ns[st->acquisition_time & 0x3] + st->slave_num * 250;

	/* Convert to usecs */
	st->readback_delay_us = DIV_ROUND_UP(st->readback_delay_us, 1000);
	st->readback_delay_us += 5; /* Add tWAIT */
}

static int ad7280_read_raw(struct iio_dev *indio_dev,
			   struct iio_chan_spec const *chan,
			   int *val,
			   int *val2,
			   long m)
{
	struct ad7280_state *st = iio_priv(indio_dev);
	int ret;

	switch (m) {
	case IIO_CHAN_INFO_RAW:
		mutex_lock(&st->lock);
		if (chan->address == AD7280A_ALL_CELLS)
			ret = ad7280_read_all_channels(st, st->scan_cnt, NULL);
		else
			ret = ad7280_read_channel(st, chan->address >> 8,
						  chan->address & 0xFF);
		mutex_unlock(&st->lock);

		if (ret < 0)
			return ret;

		*val = ret;

		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SCALE:
		if ((chan->address & 0xFF) <= AD7280A_CELL_VOLTAGE_6_REG)
			*val = 4000;
		else
			*val = 5000;

		*val2 = AD7280A_BITS;
		return IIO_VAL_FRACTIONAL_LOG2;
	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
		*val = ad7280a_n_avg[st->oversampling_ratio];
		return IIO_VAL_INT;
	}
	return -EINVAL;
}

static int ad7280_write_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *chan,
			    int val, int val2, long mask)
{
	struct ad7280_state *st = iio_priv(indio_dev);
	int i;

	switch (mask) {
	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
		if (val2 != 0)
			return -EINVAL;
		for (i = 0; i < ARRAY_SIZE(ad7280a_n_avg); i++) {
			if (val == ad7280a_n_avg[i]) {
				st->oversampling_ratio = i;
				ad7280_update_delay(st);
				return 0;
			}
		}
		return -EINVAL;
	default:
		return -EINVAL;
	}
}

static const struct iio_info ad7280_info = {
	.read_raw = ad7280_read_raw,
	.write_raw = ad7280_write_raw,
	.read_event_value = &ad7280a_read_thresh,
	.write_event_value = &ad7280a_write_thresh,
};

static const struct iio_info ad7280_info_no_irq = {
	.read_raw = ad7280_read_raw,
	.write_raw = ad7280_write_raw,
};

static int ad7280_probe(struct spi_device *spi)
{
	struct device *dev = &spi->dev;
	struct ad7280_state *st;
	int ret;
	struct iio_dev *indio_dev;

	indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
	if (!indio_dev)
		return -ENOMEM;

	st = iio_priv(indio_dev);
	spi_set_drvdata(spi, indio_dev);
	st->spi = spi;
	mutex_init(&st->lock);

	st->thermistor_term_en =
		device_property_read_bool(dev, "adi,thermistor-termination");

	if (device_property_present(dev, "adi,acquisition-time-ns")) {
		u32 val;

		ret = device_property_read_u32(dev, "adi,acquisition-time-ns", &val);
		if (ret)
			return ret;

		switch (val) {
		case 400:
			st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_400ns;
			break;
		case 800:
			st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_800ns;
			break;
		case 1200:
			st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_1200ns;
			break;
		case 1600:
			st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_1600ns;
			break;
		default:
			dev_err(dev, "Firmware provided acquisition time is invalid\n");
			return -EINVAL;
		}
	} else {
		st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_400ns;
	}

	/* Alert masks are intended for when particular inputs are not wired up */
	if (device_property_present(dev, "adi,voltage-alert-last-chan")) {
		u32 val;

		ret = device_property_read_u32(dev, "adi,voltage-alert-last-chan", &val);
		if (ret)
			return ret;

		switch (val) {
		case 3:
			st->chain_last_alert_ignore |= AD7280A_ALERT_REMOVE_VIN4_VIN5;
			break;
		case 4:
			st->chain_last_alert_ignore |= AD7280A_ALERT_REMOVE_VIN5;
			break;
		case 5:
			break;
		default:
			dev_err(dev,
				"Firmware provided last voltage alert channel invalid\n");
			break;
		}
	}
	crc8_populate_msb(st->crc_tab, POLYNOM);

	st->spi->max_speed_hz = AD7280A_MAX_SPI_CLK_HZ;
	st->spi->mode = SPI_MODE_1;
	spi_setup(st->spi);

	st->ctrl_lb = FIELD_PREP(AD7280A_CTRL_LB_ACQ_TIME_MSK, st->acquisition_time) |
		FIELD_PREP(AD7280A_CTRL_LB_THERMISTOR_MSK, st->thermistor_term_en);
	st->oversampling_ratio = 0; /* No oversampling */

	ret = ad7280_chain_setup(st);
	if (ret < 0)
		return ret;

	st->slave_num = ret;
	st->scan_cnt = (st->slave_num + 1) * AD7280A_NUM_CH;
	st->cell_threshhigh = 0xFF;
	st->aux_threshhigh = 0xFF;

	ret = devm_add_action_or_reset(dev, ad7280_sw_power_down, st);
	if (ret)
		return ret;

	ad7280_update_delay(st);

	indio_dev->name = spi_get_device_id(spi)->name;
	indio_dev->modes = INDIO_DIRECT_MODE;

	ret = ad7280_channel_init(st, spi->irq > 0);
	if (ret < 0)
		return ret;

	indio_dev->num_channels = ret;
	indio_dev->channels = st->channels;
	if (spi->irq > 0) {
		ret = ad7280_write(st, AD7280A_DEVADDR_MASTER,
				   AD7280A_ALERT_REG, 1,
				   AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN);
		if (ret)
			return ret;

		ret = ad7280_write(st, ad7280a_devaddr(st->slave_num),
				   AD7280A_ALERT_REG, 0,
				   AD7280A_ALERT_GEN_STATIC_HIGH |
				   FIELD_PREP(AD7280A_ALERT_REMOVE_MSK,
					      st->chain_last_alert_ignore));
		if (ret)
			return ret;

		ret = devm_request_threaded_irq(dev, spi->irq,
						NULL,
						ad7280_event_handler,
						IRQF_TRIGGER_FALLING |
						IRQF_ONESHOT,
						indio_dev->name,
						indio_dev);
		if (ret)
			return ret;

		indio_dev->info = &ad7280_info;
	} else {
		indio_dev->info = &ad7280_info_no_irq;
	}

	return devm_iio_device_register(dev, indio_dev);
}

static const struct spi_device_id ad7280_id[] = {
	{"ad7280a", 0},
	{}
};
MODULE_DEVICE_TABLE(spi, ad7280_id);

static struct spi_driver ad7280_driver = {
	.driver = {
		.name	= "ad7280",
	},
	.probe		= ad7280_probe,
	.id_table	= ad7280_id,
};
module_spi_driver(ad7280_driver);

MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD7280A");
MODULE_LICENSE("GPL v2");