Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andreas Klinger | 1630 | 99.45% | 1 | 50.00% |
Uwe Kleine-König | 9 | 0.55% | 1 | 50.00% |
Total | 1639 | 2 |
// SPDX-License-Identifier: GPL-2.0+ /* * sgp40.c - Support for Sensirion SGP40 Gas Sensor * * Copyright (C) 2021 Andreas Klinger <ak@it-klinger.de> * * I2C slave address: 0x59 * * Datasheet can be found here: * https://www.sensirion.com/file/datasheet_sgp40 * * There are two functionalities supported: * * 1) read raw logarithmic resistance value from sensor * --> useful to pass it to the algorithm of the sensor vendor for * measuring deteriorations and improvements of air quality. * * 2) calculate an estimated absolute voc index (0 - 500 index points) for * measuring the air quality. * For this purpose the value of the resistance for which the voc index * will be 250 can be set up using calibbias. * * Compensation values of relative humidity and temperature can be set up * by writing to the out values of temp and humidityrelative. */ #include <linux/delay.h> #include <linux/crc8.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/i2c.h> #include <linux/iio/iio.h> /* * floating point calculation of voc is done as integer * where numbers are multiplied by 1 << SGP40_CALC_POWER */ #define SGP40_CALC_POWER 14 #define SGP40_CRC8_POLYNOMIAL 0x31 #define SGP40_CRC8_INIT 0xff DECLARE_CRC8_TABLE(sgp40_crc8_table); struct sgp40_data { struct device *dev; struct i2c_client *client; int rht; int temp; int res_calibbias; /* Prevent concurrent access to rht, tmp, calibbias */ struct mutex lock; }; struct sgp40_tg_measure { u8 command[2]; __be16 rht_ticks; u8 rht_crc; __be16 temp_ticks; u8 temp_crc; } __packed; struct sgp40_tg_result { __be16 res_ticks; u8 res_crc; } __packed; static const struct iio_chan_spec sgp40_channels[] = { { .type = IIO_CONCENTRATION, .channel2 = IIO_MOD_VOC, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), }, { .type = IIO_RESISTANCE, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBBIAS), }, { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .output = 1, }, { .type = IIO_HUMIDITYRELATIVE, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .output = 1, }, }; /* * taylor approximation of e^x: * y = 1 + x + x^2 / 2 + x^3 / 6 + x^4 / 24 + ... + x^n / n! * * Because we are calculating x real value multiplied by 2^power we get * an additional 2^power^n to divide for every element. For a reasonable * precision this would overflow after a few iterations. Therefore we * divide the x^n part whenever its about to overflow (xmax). */ static u32 sgp40_exp(int exp, u32 power, u32 rounds) { u32 x, y, xp; u32 factorial, divider, xmax; int sign = 1; int i; if (exp == 0) return 1 << power; else if (exp < 0) { sign = -1; exp *= -1; } xmax = 0x7FFFFFFF / exp; x = exp; xp = 1; factorial = 1; y = 1 << power; divider = 0; for (i = 1; i <= rounds; i++) { xp *= x; factorial *= i; y += (xp >> divider) / factorial; divider += power; /* divide when next multiplication would overflow */ if (xp >= xmax) { xp >>= power; divider -= power; } } if (sign == -1) return (1 << (power * 2)) / y; else return y; } static int sgp40_calc_voc(struct sgp40_data *data, u16 resistance_raw, int *voc) { int x; u32 exp = 0; /* we calculate as a multiple of 16384 (2^14) */ mutex_lock(&data->lock); x = ((int)resistance_raw - data->res_calibbias) * 106; mutex_unlock(&data->lock); /* voc = 500 / (1 + e^x) */ exp = sgp40_exp(x, SGP40_CALC_POWER, 18); *voc = 500 * ((1 << (SGP40_CALC_POWER * 2)) / ((1<<SGP40_CALC_POWER) + exp)); dev_dbg(data->dev, "raw: %d res_calibbias: %d x: %d exp: %d voc: %d\n", resistance_raw, data->res_calibbias, x, exp, *voc); return 0; } static int sgp40_measure_resistance_raw(struct sgp40_data *data, u16 *resistance_raw) { int ret; struct i2c_client *client = data->client; u32 ticks; u16 ticks16; u8 crc; struct sgp40_tg_measure tg = {.command = {0x26, 0x0F}}; struct sgp40_tg_result tgres; mutex_lock(&data->lock); ticks = (data->rht / 10) * 65535 / 10000; ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between 0 .. 100 %rH */ tg.rht_ticks = cpu_to_be16(ticks16); tg.rht_crc = crc8(sgp40_crc8_table, (u8 *)&tg.rht_ticks, 2, SGP40_CRC8_INIT); ticks = ((data->temp + 45000) / 10 ) * 65535 / 17500; ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between -45 .. +130 °C */ tg.temp_ticks = cpu_to_be16(ticks16); tg.temp_crc = crc8(sgp40_crc8_table, (u8 *)&tg.temp_ticks, 2, SGP40_CRC8_INIT); mutex_unlock(&data->lock); ret = i2c_master_send(client, (const char *)&tg, sizeof(tg)); if (ret != sizeof(tg)) { dev_warn(data->dev, "i2c_master_send ret: %d sizeof: %zu\n", ret, sizeof(tg)); return -EIO; } msleep(30); ret = i2c_master_recv(client, (u8 *)&tgres, sizeof(tgres)); if (ret < 0) return ret; if (ret != sizeof(tgres)) { dev_warn(data->dev, "i2c_master_recv ret: %d sizeof: %zu\n", ret, sizeof(tgres)); return -EIO; } crc = crc8(sgp40_crc8_table, (u8 *)&tgres.res_ticks, 2, SGP40_CRC8_INIT); if (crc != tgres.res_crc) { dev_err(data->dev, "CRC error while measure-raw\n"); return -EIO; } *resistance_raw = be16_to_cpu(tgres.res_ticks); return 0; } static int sgp40_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct sgp40_data *data = iio_priv(indio_dev); int ret, voc; u16 resistance_raw; switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_RESISTANCE: ret = sgp40_measure_resistance_raw(data, &resistance_raw); if (ret) return ret; *val = resistance_raw; return IIO_VAL_INT; case IIO_TEMP: mutex_lock(&data->lock); *val = data->temp; mutex_unlock(&data->lock); return IIO_VAL_INT; case IIO_HUMIDITYRELATIVE: mutex_lock(&data->lock); *val = data->rht; mutex_unlock(&data->lock); return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_PROCESSED: ret = sgp40_measure_resistance_raw(data, &resistance_raw); if (ret) return ret; ret = sgp40_calc_voc(data, resistance_raw, &voc); if (ret) return ret; *val = voc / (1 << SGP40_CALC_POWER); /* * calculation should fit into integer, where: * voc <= (500 * 2^SGP40_CALC_POWER) = 8192000 * (with SGP40_CALC_POWER = 14) */ *val2 = ((voc % (1 << SGP40_CALC_POWER)) * 244) / (1 << (SGP40_CALC_POWER - 12)); dev_dbg(data->dev, "voc: %d val: %d.%06d\n", voc, *val, *val2); return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_CALIBBIAS: mutex_lock(&data->lock); *val = data->res_calibbias; mutex_unlock(&data->lock); return IIO_VAL_INT; default: return -EINVAL; } } static int sgp40_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct sgp40_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_TEMP: if ((val < -45000) || (val > 130000)) return -EINVAL; mutex_lock(&data->lock); data->temp = val; mutex_unlock(&data->lock); return 0; case IIO_HUMIDITYRELATIVE: if ((val < 0) || (val > 100000)) return -EINVAL; mutex_lock(&data->lock); data->rht = val; mutex_unlock(&data->lock); return 0; default: return -EINVAL; } case IIO_CHAN_INFO_CALIBBIAS: if ((val < 20000) || (val > 52768)) return -EINVAL; mutex_lock(&data->lock); data->res_calibbias = val; mutex_unlock(&data->lock); return 0; } return -EINVAL; } static const struct iio_info sgp40_info = { .read_raw = sgp40_read_raw, .write_raw = sgp40_write_raw, }; static int sgp40_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct device *dev = &client->dev; struct iio_dev *indio_dev; struct sgp40_data *data; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); data->client = client; data->dev = dev; crc8_populate_msb(sgp40_crc8_table, SGP40_CRC8_POLYNOMIAL); mutex_init(&data->lock); /* set default values */ data->rht = 50000; /* 50 % */ data->temp = 25000; /* 25 °C */ data->res_calibbias = 30000; /* resistance raw value for voc index of 250 */ indio_dev->info = &sgp40_info; indio_dev->name = id->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = sgp40_channels; indio_dev->num_channels = ARRAY_SIZE(sgp40_channels); ret = devm_iio_device_register(dev, indio_dev); if (ret) dev_err(dev, "failed to register iio device\n"); return ret; } static const struct i2c_device_id sgp40_id[] = { { "sgp40" }, { } }; MODULE_DEVICE_TABLE(i2c, sgp40_id); static const struct of_device_id sgp40_dt_ids[] = { { .compatible = "sensirion,sgp40" }, { } }; MODULE_DEVICE_TABLE(of, sgp40_dt_ids); static struct i2c_driver sgp40_driver = { .driver = { .name = "sgp40", .of_match_table = sgp40_dt_ids, }, .probe_new = sgp40_probe, .id_table = sgp40_id, }; module_i2c_driver(sgp40_driver); MODULE_AUTHOR("Andreas Klinger <ak@it-klinger.de>"); MODULE_DESCRIPTION("Sensirion SGP40 gas sensor"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1