Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Srinivas Pandruvada | 2234 | 78.50% | 9 | 29.03% |
Ye Xiang | 296 | 10.40% | 3 | 9.68% |
Andy Shevchenko | 146 | 5.13% | 3 | 9.68% |
Song Hongyan | 112 | 3.94% | 7 | 22.58% |
Archana Patni | 32 | 1.12% | 1 | 3.23% |
Alexander Holler | 11 | 0.39% | 1 | 3.23% |
Colin Ian King | 4 | 0.14% | 1 | 3.23% |
Daniel Lezcano | 3 | 0.11% | 1 | 3.23% |
Kweh, Hock Leong | 2 | 0.07% | 1 | 3.23% |
Thomas Gleixner | 2 | 0.07% | 1 | 3.23% |
Dan Carpenter | 2 | 0.07% | 1 | 3.23% |
Daniel Baluta | 1 | 0.04% | 1 | 3.23% |
Sachin Kamat | 1 | 0.04% | 1 | 3.23% |
Total | 2846 | 31 |
// SPDX-License-Identifier: GPL-2.0-only /* * HID Sensors Driver * Copyright (c) 2012, Intel Corporation. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/time.h> #include <linux/units.h> #include <linux/hid-sensor-hub.h> #include <linux/iio/iio.h> static struct { u32 usage_id; int unit; /* 0 for default others from HID sensor spec */ int scale_val0; /* scale, whole number */ int scale_val1; /* scale, fraction in nanos */ } unit_conversion[] = { {HID_USAGE_SENSOR_ACCEL_3D, 0, 9, 806650000}, {HID_USAGE_SENSOR_ACCEL_3D, HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0}, {HID_USAGE_SENSOR_ACCEL_3D, HID_USAGE_SENSOR_UNITS_G, 9, 806650000}, {HID_USAGE_SENSOR_GRAVITY_VECTOR, 0, 9, 806650000}, {HID_USAGE_SENSOR_GRAVITY_VECTOR, HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0}, {HID_USAGE_SENSOR_GRAVITY_VECTOR, HID_USAGE_SENSOR_UNITS_G, 9, 806650000}, {HID_USAGE_SENSOR_GYRO_3D, 0, 0, 17453293}, {HID_USAGE_SENSOR_GYRO_3D, HID_USAGE_SENSOR_UNITS_RADIANS_PER_SECOND, 1, 0}, {HID_USAGE_SENSOR_GYRO_3D, HID_USAGE_SENSOR_UNITS_DEGREES_PER_SECOND, 0, 17453293}, {HID_USAGE_SENSOR_COMPASS_3D, 0, 0, 1000000}, {HID_USAGE_SENSOR_COMPASS_3D, HID_USAGE_SENSOR_UNITS_GAUSS, 1, 0}, {HID_USAGE_SENSOR_INCLINOMETER_3D, 0, 0, 17453293}, {HID_USAGE_SENSOR_INCLINOMETER_3D, HID_USAGE_SENSOR_UNITS_DEGREES, 0, 17453293}, {HID_USAGE_SENSOR_INCLINOMETER_3D, HID_USAGE_SENSOR_UNITS_RADIANS, 1, 0}, {HID_USAGE_SENSOR_ALS, 0, 1, 0}, {HID_USAGE_SENSOR_ALS, HID_USAGE_SENSOR_UNITS_LUX, 1, 0}, {HID_USAGE_SENSOR_PRESSURE, 0, 100, 0}, {HID_USAGE_SENSOR_PRESSURE, HID_USAGE_SENSOR_UNITS_PASCAL, 0, 1000000}, {HID_USAGE_SENSOR_TIME_TIMESTAMP, 0, 1000000000, 0}, {HID_USAGE_SENSOR_TIME_TIMESTAMP, HID_USAGE_SENSOR_UNITS_MILLISECOND, 1000000, 0}, {HID_USAGE_SENSOR_DEVICE_ORIENTATION, 0, 1, 0}, {HID_USAGE_SENSOR_RELATIVE_ORIENTATION, 0, 1, 0}, {HID_USAGE_SENSOR_GEOMAGNETIC_ORIENTATION, 0, 1, 0}, {HID_USAGE_SENSOR_TEMPERATURE, 0, 1000, 0}, {HID_USAGE_SENSOR_TEMPERATURE, HID_USAGE_SENSOR_UNITS_DEGREES, 1000, 0}, {HID_USAGE_SENSOR_HUMIDITY, 0, 1000, 0}, {HID_USAGE_SENSOR_HINGE, 0, 0, 17453293}, {HID_USAGE_SENSOR_HINGE, HID_USAGE_SENSOR_UNITS_DEGREES, 0, 17453293}, }; static void simple_div(int dividend, int divisor, int *whole, int *micro_frac) { int rem; int exp = 0; *micro_frac = 0; if (divisor == 0) { *whole = 0; return; } *whole = dividend/divisor; rem = dividend % divisor; if (rem) { while (rem <= divisor) { rem *= 10; exp++; } *micro_frac = (rem / divisor) * int_pow(10, 6 - exp); } } static void split_micro_fraction(unsigned int no, int exp, int *val1, int *val2) { int divisor = int_pow(10, exp); *val1 = no / divisor; *val2 = no % divisor * int_pow(10, 6 - exp); } /* VTF format uses exponent and variable size format. For example if the size is 2 bytes 0x0067 with VTF16E14 format -> +1.03 To convert just change to 0x67 to decimal and use two decimal as E14 stands for 10^-2. Negative numbers are 2's complement */ static void convert_from_vtf_format(u32 value, int size, int exp, int *val1, int *val2) { int sign = 1; if (value & BIT(size*8 - 1)) { value = ((1LL << (size * 8)) - value); sign = -1; } exp = hid_sensor_convert_exponent(exp); if (exp >= 0) { *val1 = sign * value * int_pow(10, exp); *val2 = 0; } else { split_micro_fraction(value, -exp, val1, val2); if (*val1) *val1 = sign * (*val1); else *val2 = sign * (*val2); } } static u32 convert_to_vtf_format(int size, int exp, int val1, int val2) { int divisor; u32 value; int sign = 1; if (val1 < 0 || val2 < 0) sign = -1; exp = hid_sensor_convert_exponent(exp); if (exp < 0) { divisor = int_pow(10, 6 + exp); value = abs(val1) * int_pow(10, -exp); value += abs(val2) / divisor; } else { divisor = int_pow(10, exp); value = abs(val1) / divisor; } if (sign < 0) value = ((1LL << (size * 8)) - value); return value; } s32 hid_sensor_read_poll_value(struct hid_sensor_common *st) { s32 value = 0; int ret; ret = sensor_hub_get_feature(st->hsdev, st->poll.report_id, st->poll.index, sizeof(value), &value); if (ret < 0 || value < 0) { return -EINVAL; } else { if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND) value = value * 1000; } return value; } EXPORT_SYMBOL_NS(hid_sensor_read_poll_value, IIO_HID_ATTRIBUTES); int hid_sensor_read_samp_freq_value(struct hid_sensor_common *st, int *val1, int *val2) { s32 value; int ret; ret = sensor_hub_get_feature(st->hsdev, st->poll.report_id, st->poll.index, sizeof(value), &value); if (ret < 0 || value < 0) { *val1 = *val2 = 0; return -EINVAL; } else { if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND) simple_div(1000, value, val1, val2); else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND) simple_div(1, value, val1, val2); else { *val1 = *val2 = 0; return -EINVAL; } } return IIO_VAL_INT_PLUS_MICRO; } EXPORT_SYMBOL_NS(hid_sensor_read_samp_freq_value, IIO_HID); int hid_sensor_write_samp_freq_value(struct hid_sensor_common *st, int val1, int val2) { s32 value; int ret; if (val1 < 0 || val2 < 0) return -EINVAL; value = val1 * HZ_PER_MHZ + val2; if (value) { if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND) value = NSEC_PER_SEC / value; else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND) value = USEC_PER_SEC / value; else value = 0; } ret = sensor_hub_set_feature(st->hsdev, st->poll.report_id, st->poll.index, sizeof(value), &value); if (ret < 0 || value < 0) return -EINVAL; ret = sensor_hub_get_feature(st->hsdev, st->poll.report_id, st->poll.index, sizeof(value), &value); if (ret < 0 || value < 0) return -EINVAL; st->poll_interval = value; return 0; } EXPORT_SYMBOL_NS(hid_sensor_write_samp_freq_value, IIO_HID); int hid_sensor_read_raw_hyst_value(struct hid_sensor_common *st, int *val1, int *val2) { s32 value; int ret; ret = sensor_hub_get_feature(st->hsdev, st->sensitivity.report_id, st->sensitivity.index, sizeof(value), &value); if (ret < 0 || value < 0) { *val1 = *val2 = 0; return -EINVAL; } else { convert_from_vtf_format(value, st->sensitivity.size, st->sensitivity.unit_expo, val1, val2); } return IIO_VAL_INT_PLUS_MICRO; } EXPORT_SYMBOL_NS(hid_sensor_read_raw_hyst_value, IIO_HID); int hid_sensor_read_raw_hyst_rel_value(struct hid_sensor_common *st, int *val1, int *val2) { s32 value; int ret; ret = sensor_hub_get_feature(st->hsdev, st->sensitivity_rel.report_id, st->sensitivity_rel.index, sizeof(value), &value); if (ret < 0 || value < 0) { *val1 = *val2 = 0; return -EINVAL; } convert_from_vtf_format(value, st->sensitivity_rel.size, st->sensitivity_rel.unit_expo, val1, val2); return IIO_VAL_INT_PLUS_MICRO; } EXPORT_SYMBOL_NS(hid_sensor_read_raw_hyst_rel_value, IIO_HID); int hid_sensor_write_raw_hyst_value(struct hid_sensor_common *st, int val1, int val2) { s32 value; int ret; if (val1 < 0 || val2 < 0) return -EINVAL; value = convert_to_vtf_format(st->sensitivity.size, st->sensitivity.unit_expo, val1, val2); ret = sensor_hub_set_feature(st->hsdev, st->sensitivity.report_id, st->sensitivity.index, sizeof(value), &value); if (ret < 0 || value < 0) return -EINVAL; ret = sensor_hub_get_feature(st->hsdev, st->sensitivity.report_id, st->sensitivity.index, sizeof(value), &value); if (ret < 0 || value < 0) return -EINVAL; st->raw_hystersis = value; return 0; } EXPORT_SYMBOL_NS(hid_sensor_write_raw_hyst_value, IIO_HID); int hid_sensor_write_raw_hyst_rel_value(struct hid_sensor_common *st, int val1, int val2) { s32 value; int ret; if (val1 < 0 || val2 < 0) return -EINVAL; value = convert_to_vtf_format(st->sensitivity_rel.size, st->sensitivity_rel.unit_expo, val1, val2); ret = sensor_hub_set_feature(st->hsdev, st->sensitivity_rel.report_id, st->sensitivity_rel.index, sizeof(value), &value); if (ret < 0 || value < 0) return -EINVAL; ret = sensor_hub_get_feature(st->hsdev, st->sensitivity_rel.report_id, st->sensitivity_rel.index, sizeof(value), &value); if (ret < 0 || value < 0) return -EINVAL; st->raw_hystersis = value; return 0; } EXPORT_SYMBOL_NS(hid_sensor_write_raw_hyst_rel_value, IIO_HID); /* * This fuction applies the unit exponent to the scale. * For example: * 9.806650000 ->exp:2-> val0[980]val1[665000000] * 9.000806000 ->exp:2-> val0[900]val1[80600000] * 0.174535293 ->exp:2-> val0[17]val1[453529300] * 1.001745329 ->exp:0-> val0[1]val1[1745329] * 1.001745329 ->exp:2-> val0[100]val1[174532900] * 1.001745329 ->exp:4-> val0[10017]val1[453290000] * 9.806650000 ->exp:-2-> val0[0]val1[98066500] */ static void adjust_exponent_nano(int *val0, int *val1, int scale0, int scale1, int exp) { int divisor; int i; int x; int res; int rem; if (exp > 0) { *val0 = scale0 * int_pow(10, exp); res = 0; if (exp > 9) { *val1 = 0; return; } for (i = 0; i < exp; ++i) { divisor = int_pow(10, 8 - i); x = scale1 / divisor; res += int_pow(10, exp - 1 - i) * x; scale1 = scale1 % divisor; } *val0 += res; *val1 = scale1 * int_pow(10, exp); } else if (exp < 0) { exp = abs(exp); if (exp > 9) { *val0 = *val1 = 0; return; } divisor = int_pow(10, exp); *val0 = scale0 / divisor; rem = scale0 % divisor; res = 0; for (i = 0; i < (9 - exp); ++i) { divisor = int_pow(10, 8 - i); x = scale1 / divisor; res += int_pow(10, 8 - exp - i) * x; scale1 = scale1 % divisor; } *val1 = rem * int_pow(10, 9 - exp) + res; } else { *val0 = scale0; *val1 = scale1; } } int hid_sensor_format_scale(u32 usage_id, struct hid_sensor_hub_attribute_info *attr_info, int *val0, int *val1) { int i; int exp; *val0 = 1; *val1 = 0; for (i = 0; i < ARRAY_SIZE(unit_conversion); ++i) { if (unit_conversion[i].usage_id == usage_id && unit_conversion[i].unit == attr_info->units) { exp = hid_sensor_convert_exponent( attr_info->unit_expo); adjust_exponent_nano(val0, val1, unit_conversion[i].scale_val0, unit_conversion[i].scale_val1, exp); break; } } return IIO_VAL_INT_PLUS_NANO; } EXPORT_SYMBOL_NS(hid_sensor_format_scale, IIO_HID); int64_t hid_sensor_convert_timestamp(struct hid_sensor_common *st, int64_t raw_value) { return st->timestamp_ns_scale * raw_value; } EXPORT_SYMBOL_NS(hid_sensor_convert_timestamp, IIO_HID); static int hid_sensor_get_reporting_interval(struct hid_sensor_hub_device *hsdev, u32 usage_id, struct hid_sensor_common *st) { sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_PROP_REPORT_INTERVAL, &st->poll); /* Default unit of measure is milliseconds */ if (st->poll.units == 0) st->poll.units = HID_USAGE_SENSOR_UNITS_MILLISECOND; st->poll_interval = -1; return 0; } static void hid_sensor_get_report_latency_info(struct hid_sensor_hub_device *hsdev, u32 usage_id, struct hid_sensor_common *st) { sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_PROP_REPORT_LATENCY, &st->report_latency); hid_dbg(hsdev->hdev, "Report latency attributes: %x:%x\n", st->report_latency.index, st->report_latency.report_id); } int hid_sensor_get_report_latency(struct hid_sensor_common *st) { int ret; int value; ret = sensor_hub_get_feature(st->hsdev, st->report_latency.report_id, st->report_latency.index, sizeof(value), &value); if (ret < 0) return ret; return value; } EXPORT_SYMBOL_NS(hid_sensor_get_report_latency, IIO_HID_ATTRIBUTES); int hid_sensor_set_report_latency(struct hid_sensor_common *st, int latency_ms) { return sensor_hub_set_feature(st->hsdev, st->report_latency.report_id, st->report_latency.index, sizeof(latency_ms), &latency_ms); } EXPORT_SYMBOL_NS(hid_sensor_set_report_latency, IIO_HID_ATTRIBUTES); bool hid_sensor_batch_mode_supported(struct hid_sensor_common *st) { return st->report_latency.index > 0 && st->report_latency.report_id > 0; } EXPORT_SYMBOL_NS(hid_sensor_batch_mode_supported, IIO_HID_ATTRIBUTES); int hid_sensor_parse_common_attributes(struct hid_sensor_hub_device *hsdev, u32 usage_id, struct hid_sensor_common *st, const u32 *sensitivity_addresses, u32 sensitivity_addresses_len) { struct hid_sensor_hub_attribute_info timestamp; s32 value; int ret; int i; hid_sensor_get_reporting_interval(hsdev, usage_id, st); sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_PROP_REPORT_STATE, &st->report_state); sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_PROY_POWER_STATE, &st->power_state); st->power_state.logical_minimum = 1; st->report_state.logical_minimum = 1; sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_PROP_SENSITIVITY_ABS, &st->sensitivity); sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_PROP_SENSITIVITY_REL_PCT, &st->sensitivity_rel); /* * Set Sensitivity field ids, when there is no individual modifier, will * check absolute sensitivity and relative sensitivity of data field */ for (i = 0; i < sensitivity_addresses_len; i++) { if (st->sensitivity.index < 0) sensor_hub_input_get_attribute_info( hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS | sensitivity_addresses[i], &st->sensitivity); if (st->sensitivity_rel.index < 0) sensor_hub_input_get_attribute_info( hsdev, HID_FEATURE_REPORT, usage_id, HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_REL_PCT | sensitivity_addresses[i], &st->sensitivity_rel); } st->raw_hystersis = -1; sensor_hub_input_get_attribute_info(hsdev, HID_INPUT_REPORT, usage_id, HID_USAGE_SENSOR_TIME_TIMESTAMP, ×tamp); if (timestamp.index >= 0 && timestamp.report_id) { int val0, val1; hid_sensor_format_scale(HID_USAGE_SENSOR_TIME_TIMESTAMP, ×tamp, &val0, &val1); st->timestamp_ns_scale = val0; } else st->timestamp_ns_scale = 1000000000; hid_sensor_get_report_latency_info(hsdev, usage_id, st); hid_dbg(hsdev->hdev, "common attributes: %x:%x, %x:%x, %x:%x %x:%x %x:%x\n", st->poll.index, st->poll.report_id, st->report_state.index, st->report_state.report_id, st->power_state.index, st->power_state.report_id, st->sensitivity.index, st->sensitivity.report_id, timestamp.index, timestamp.report_id); ret = sensor_hub_get_feature(hsdev, st->power_state.report_id, st->power_state.index, sizeof(value), &value); if (ret < 0) return ret; if (value < 0) return -EINVAL; return 0; } EXPORT_SYMBOL_NS(hid_sensor_parse_common_attributes, IIO_HID); MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@intel.com>"); MODULE_DESCRIPTION("HID Sensor common attribute processing"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1