Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jonathan Cameron | 1571 | 71.74% | 11 | 34.38% |
Daniel Baluta | 370 | 16.89% | 2 | 6.25% |
Lars-Peter Clausen | 167 | 7.63% | 7 | 21.88% |
Jin Feng | 32 | 1.46% | 1 | 3.12% |
Xiaoke Wang | 26 | 1.19% | 1 | 3.12% |
Alexandru Ardelean | 10 | 0.46% | 1 | 3.12% |
Alison Schofield | 5 | 0.23% | 2 | 6.25% |
Lee Jones | 3 | 0.14% | 1 | 3.12% |
Peter Meerwald-Stadler | 1 | 0.05% | 1 | 3.12% |
Bhumika Goyal | 1 | 0.05% | 1 | 3.12% |
Thomas Gleixner | 1 | 0.05% | 1 | 3.12% |
Cristina Opriceana | 1 | 0.05% | 1 | 3.12% |
Alexander Stein | 1 | 0.05% | 1 | 3.12% |
Irina Tirdea | 1 | 0.05% | 1 | 3.12% |
Total | 2190 | 32 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2011 Jonathan Cameron * * A reference industrial I/O driver to illustrate the functionality available. * * There are numerous real drivers to illustrate the finer points. * The purpose of this driver is to provide a driver with far more comments * and explanatory notes than any 'real' driver would have. * Anyone starting out writing an IIO driver should first make sure they * understand all of this driver except those bits specifically marked * as being present to allow us to 'fake' the presence of hardware. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/string.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/events.h> #include <linux/iio/buffer.h> #include <linux/iio/sw_device.h> #include "iio_simple_dummy.h" static const struct config_item_type iio_dummy_type = { .ct_owner = THIS_MODULE, }; /** * struct iio_dummy_accel_calibscale - realworld to register mapping * @val: first value in read_raw - here integer part. * @val2: second value in read_raw etc - here micro part. * @regval: register value - magic device specific numbers. */ struct iio_dummy_accel_calibscale { int val; int val2; int regval; /* what would be written to hardware */ }; static const struct iio_dummy_accel_calibscale dummy_scales[] = { { 0, 100, 0x8 }, /* 0.000100 */ { 0, 133, 0x7 }, /* 0.000133 */ { 733, 13, 0x9 }, /* 733.000013 */ }; #ifdef CONFIG_IIO_SIMPLE_DUMMY_EVENTS /* * simple event - triggered when value rises above * a threshold */ static const struct iio_event_spec iio_dummy_event = { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }; /* * simple step detect event - triggered when a step is detected */ static const struct iio_event_spec step_detect_event = { .type = IIO_EV_TYPE_CHANGE, .dir = IIO_EV_DIR_NONE, .mask_separate = BIT(IIO_EV_INFO_ENABLE), }; /* * simple transition event - triggered when the reported running confidence * value rises above a threshold value */ static const struct iio_event_spec iio_running_event = { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }; /* * simple transition event - triggered when the reported walking confidence * value falls under a threshold value */ static const struct iio_event_spec iio_walking_event = { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }; #endif /* * iio_dummy_channels - Description of available channels * * This array of structures tells the IIO core about what the device * actually provides for a given channel. */ static const struct iio_chan_spec iio_dummy_channels[] = { /* indexed ADC channel in_voltage0_raw etc */ { .type = IIO_VOLTAGE, /* Channel has a numeric index of 0 */ .indexed = 1, .channel = 0, /* What other information is available? */ .info_mask_separate = /* * in_voltage0_raw * Raw (unscaled no bias removal etc) measurement * from the device. */ BIT(IIO_CHAN_INFO_RAW) | /* * in_voltage0_offset * Offset for userspace to apply prior to scale * when converting to standard units (microvolts) */ BIT(IIO_CHAN_INFO_OFFSET) | /* * in_voltage0_scale * Multipler for userspace to apply post offset * when converting to standard units (microvolts) */ BIT(IIO_CHAN_INFO_SCALE), /* * sampling_frequency * The frequency in Hz at which the channels are sampled */ .info_mask_shared_by_dir = BIT(IIO_CHAN_INFO_SAMP_FREQ), /* The ordering of elements in the buffer via an enum */ .scan_index = DUMMY_INDEX_VOLTAGE_0, .scan_type = { /* Description of storage in buffer */ .sign = 'u', /* unsigned */ .realbits = 13, /* 13 bits */ .storagebits = 16, /* 16 bits used for storage */ .shift = 0, /* zero shift */ }, #ifdef CONFIG_IIO_SIMPLE_DUMMY_EVENTS .event_spec = &iio_dummy_event, .num_event_specs = 1, #endif /* CONFIG_IIO_SIMPLE_DUMMY_EVENTS */ }, /* Differential ADC channel in_voltage1-voltage2_raw etc*/ { .type = IIO_VOLTAGE, .differential = 1, /* * Indexing for differential channels uses channel * for the positive part, channel2 for the negative. */ .indexed = 1, .channel = 1, .channel2 = 2, /* * in_voltage1-voltage2_raw * Raw (unscaled no bias removal etc) measurement * from the device. */ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), /* * in_voltage-voltage_scale * Shared version of scale - shared by differential * input channels of type IIO_VOLTAGE. */ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), /* * sampling_frequency * The frequency in Hz at which the channels are sampled */ .scan_index = DUMMY_INDEX_DIFFVOLTAGE_1M2, .scan_type = { /* Description of storage in buffer */ .sign = 's', /* signed */ .realbits = 12, /* 12 bits */ .storagebits = 16, /* 16 bits used for storage */ .shift = 0, /* zero shift */ }, }, /* Differential ADC channel in_voltage3-voltage4_raw etc*/ { .type = IIO_VOLTAGE, .differential = 1, .indexed = 1, .channel = 3, .channel2 = 4, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), .info_mask_shared_by_dir = BIT(IIO_CHAN_INFO_SAMP_FREQ), .scan_index = DUMMY_INDEX_DIFFVOLTAGE_3M4, .scan_type = { .sign = 's', .realbits = 11, .storagebits = 16, .shift = 0, }, }, /* * 'modified' (i.e. axis specified) acceleration channel * in_accel_z_raw */ { .type = IIO_ACCEL, .modified = 1, /* Channel 2 is use for modifiers */ .channel2 = IIO_MOD_X, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | /* * Internal bias and gain correction values. Applied * by the hardware or driver prior to userspace * seeing the readings. Typically part of hardware * calibration. */ BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS), .info_mask_shared_by_dir = BIT(IIO_CHAN_INFO_SAMP_FREQ), .scan_index = DUMMY_INDEX_ACCELX, .scan_type = { /* Description of storage in buffer */ .sign = 's', /* signed */ .realbits = 16, /* 16 bits */ .storagebits = 16, /* 16 bits used for storage */ .shift = 0, /* zero shift */ }, }, /* * Convenience macro for timestamps. 4 is the index in * the buffer. */ IIO_CHAN_SOFT_TIMESTAMP(4), /* DAC channel out_voltage0_raw */ { .type = IIO_VOLTAGE, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .scan_index = -1, /* No buffer support */ .output = 1, .indexed = 1, .channel = 0, }, { .type = IIO_STEPS, .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_ENABLE) | BIT(IIO_CHAN_INFO_CALIBHEIGHT), .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), .scan_index = -1, /* No buffer support */ #ifdef CONFIG_IIO_SIMPLE_DUMMY_EVENTS .event_spec = &step_detect_event, .num_event_specs = 1, #endif /* CONFIG_IIO_SIMPLE_DUMMY_EVENTS */ }, { .type = IIO_ACTIVITY, .modified = 1, .channel2 = IIO_MOD_RUNNING, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), .scan_index = -1, /* No buffer support */ #ifdef CONFIG_IIO_SIMPLE_DUMMY_EVENTS .event_spec = &iio_running_event, .num_event_specs = 1, #endif /* CONFIG_IIO_SIMPLE_DUMMY_EVENTS */ }, { .type = IIO_ACTIVITY, .modified = 1, .channel2 = IIO_MOD_WALKING, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), .scan_index = -1, /* No buffer support */ #ifdef CONFIG_IIO_SIMPLE_DUMMY_EVENTS .event_spec = &iio_walking_event, .num_event_specs = 1, #endif /* CONFIG_IIO_SIMPLE_DUMMY_EVENTS */ }, }; /** * iio_dummy_read_raw() - data read function. * @indio_dev: the struct iio_dev associated with this device instance * @chan: the channel whose data is to be read * @val: first element of returned value (typically INT) * @val2: second element of returned value (typically MICRO) * @mask: what we actually want to read as per the info_mask_* * in iio_chan_spec. */ static int iio_dummy_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct iio_dummy_state *st = iio_priv(indio_dev); int ret = -EINVAL; mutex_lock(&st->lock); switch (mask) { case IIO_CHAN_INFO_RAW: /* magic value - channel value read */ switch (chan->type) { case IIO_VOLTAGE: if (chan->output) { /* Set integer part to cached value */ *val = st->dac_val; ret = IIO_VAL_INT; } else if (chan->differential) { if (chan->channel == 1) *val = st->differential_adc_val[0]; else *val = st->differential_adc_val[1]; ret = IIO_VAL_INT; } else { *val = st->single_ended_adc_val; ret = IIO_VAL_INT; } break; case IIO_ACCEL: *val = st->accel_val; ret = IIO_VAL_INT; break; default: break; } break; case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_STEPS: *val = st->steps; ret = IIO_VAL_INT; break; case IIO_ACTIVITY: switch (chan->channel2) { case IIO_MOD_RUNNING: *val = st->activity_running; ret = IIO_VAL_INT; break; case IIO_MOD_WALKING: *val = st->activity_walking; ret = IIO_VAL_INT; break; default: break; } break; default: break; } break; case IIO_CHAN_INFO_OFFSET: /* only single ended adc -> 7 */ *val = 7; ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_VOLTAGE: switch (chan->differential) { case 0: /* only single ended adc -> 0.001333 */ *val = 0; *val2 = 1333; ret = IIO_VAL_INT_PLUS_MICRO; break; case 1: /* all differential adc -> 0.000001344 */ *val = 0; *val2 = 1344; ret = IIO_VAL_INT_PLUS_NANO; } break; default: break; } break; case IIO_CHAN_INFO_CALIBBIAS: /* only the acceleration axis - read from cache */ *val = st->accel_calibbias; ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_CALIBSCALE: *val = st->accel_calibscale->val; *val2 = st->accel_calibscale->val2; ret = IIO_VAL_INT_PLUS_MICRO; break; case IIO_CHAN_INFO_SAMP_FREQ: *val = 3; *val2 = 33; ret = IIO_VAL_INT_PLUS_NANO; break; case IIO_CHAN_INFO_ENABLE: switch (chan->type) { case IIO_STEPS: *val = st->steps_enabled; ret = IIO_VAL_INT; break; default: break; } break; case IIO_CHAN_INFO_CALIBHEIGHT: switch (chan->type) { case IIO_STEPS: *val = st->height; ret = IIO_VAL_INT; break; default: break; } break; default: break; } mutex_unlock(&st->lock); return ret; } /** * iio_dummy_write_raw() - data write function. * @indio_dev: the struct iio_dev associated with this device instance * @chan: the channel whose data is to be written * @val: first element of value to set (typically INT) * @val2: second element of value to set (typically MICRO) * @mask: what we actually want to write as per the info_mask_* * in iio_chan_spec. * * Note that all raw writes are assumed IIO_VAL_INT and info mask elements * are assumed to be IIO_INT_PLUS_MICRO unless the callback write_raw_get_fmt * in struct iio_info is provided by the driver. */ static int iio_dummy_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { int i; int ret = 0; struct iio_dummy_state *st = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_VOLTAGE: if (chan->output == 0) return -EINVAL; /* Locking not required as writing single value */ mutex_lock(&st->lock); st->dac_val = val; mutex_unlock(&st->lock); return 0; default: return -EINVAL; } case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_STEPS: mutex_lock(&st->lock); st->steps = val; mutex_unlock(&st->lock); return 0; case IIO_ACTIVITY: if (val < 0) val = 0; if (val > 100) val = 100; switch (chan->channel2) { case IIO_MOD_RUNNING: st->activity_running = val; return 0; case IIO_MOD_WALKING: st->activity_walking = val; return 0; default: return -EINVAL; } break; default: return -EINVAL; } case IIO_CHAN_INFO_CALIBSCALE: mutex_lock(&st->lock); /* Compare against table - hard matching here */ for (i = 0; i < ARRAY_SIZE(dummy_scales); i++) if (val == dummy_scales[i].val && val2 == dummy_scales[i].val2) break; if (i == ARRAY_SIZE(dummy_scales)) ret = -EINVAL; else st->accel_calibscale = &dummy_scales[i]; mutex_unlock(&st->lock); return ret; case IIO_CHAN_INFO_CALIBBIAS: mutex_lock(&st->lock); st->accel_calibbias = val; mutex_unlock(&st->lock); return 0; case IIO_CHAN_INFO_ENABLE: switch (chan->type) { case IIO_STEPS: mutex_lock(&st->lock); st->steps_enabled = val; mutex_unlock(&st->lock); return 0; default: return -EINVAL; } case IIO_CHAN_INFO_CALIBHEIGHT: switch (chan->type) { case IIO_STEPS: st->height = val; return 0; default: return -EINVAL; } default: return -EINVAL; } } /* * Device type specific information. */ static const struct iio_info iio_dummy_info = { .read_raw = &iio_dummy_read_raw, .write_raw = &iio_dummy_write_raw, #ifdef CONFIG_IIO_SIMPLE_DUMMY_EVENTS .read_event_config = &iio_simple_dummy_read_event_config, .write_event_config = &iio_simple_dummy_write_event_config, .read_event_value = &iio_simple_dummy_read_event_value, .write_event_value = &iio_simple_dummy_write_event_value, #endif /* CONFIG_IIO_SIMPLE_DUMMY_EVENTS */ }; /** * iio_dummy_init_device() - device instance specific init * @indio_dev: the iio device structure * * Most drivers have one of these to set up default values, * reset the device to known state etc. */ static int iio_dummy_init_device(struct iio_dev *indio_dev) { struct iio_dummy_state *st = iio_priv(indio_dev); st->dac_val = 0; st->single_ended_adc_val = 73; st->differential_adc_val[0] = 33; st->differential_adc_val[1] = -34; st->accel_val = 34; st->accel_calibbias = -7; st->accel_calibscale = &dummy_scales[0]; st->steps = 47; st->activity_running = 98; st->activity_walking = 4; return 0; } /** * iio_dummy_probe() - device instance probe * @name: name of this instance. * * Arguments are bus type specific. * I2C: iio_dummy_probe(struct i2c_client *client, * const struct i2c_device_id *id) * SPI: iio_dummy_probe(struct spi_device *spi) */ static struct iio_sw_device *iio_dummy_probe(const char *name) { int ret; struct iio_dev *indio_dev; struct iio_dummy_state *st; struct iio_sw_device *swd; struct device *parent = NULL; /* * With hardware: Set the parent device. * parent = &spi->dev; * parent = &client->dev; */ swd = kzalloc(sizeof(*swd), GFP_KERNEL); if (!swd) return ERR_PTR(-ENOMEM); /* * Allocate an IIO device. * * This structure contains all generic state * information about the device instance. * It also has a region (accessed by iio_priv() * for chip specific state information. */ indio_dev = iio_device_alloc(parent, sizeof(*st)); if (!indio_dev) { ret = -ENOMEM; goto error_free_swd; } st = iio_priv(indio_dev); mutex_init(&st->lock); iio_dummy_init_device(indio_dev); /* * Make the iio_dev struct available to remove function. * Bus equivalents * i2c_set_clientdata(client, indio_dev); * spi_set_drvdata(spi, indio_dev); */ swd->device = indio_dev; /* * Set the device name. * * This is typically a part number and obtained from the module * id table. * e.g. for i2c and spi: * indio_dev->name = id->name; * indio_dev->name = spi_get_device_id(spi)->name; */ indio_dev->name = kstrdup(name, GFP_KERNEL); if (!indio_dev->name) { ret = -ENOMEM; goto error_free_device; } /* Provide description of available channels */ indio_dev->channels = iio_dummy_channels; indio_dev->num_channels = ARRAY_SIZE(iio_dummy_channels); /* * Provide device type specific interface functions and * constant data. */ indio_dev->info = &iio_dummy_info; /* Specify that device provides sysfs type interfaces */ indio_dev->modes = INDIO_DIRECT_MODE; ret = iio_simple_dummy_events_register(indio_dev); if (ret < 0) goto error_free_name; ret = iio_simple_dummy_configure_buffer(indio_dev); if (ret < 0) goto error_unregister_events; ret = iio_device_register(indio_dev); if (ret < 0) goto error_unconfigure_buffer; iio_swd_group_init_type_name(swd, name, &iio_dummy_type); return swd; error_unconfigure_buffer: iio_simple_dummy_unconfigure_buffer(indio_dev); error_unregister_events: iio_simple_dummy_events_unregister(indio_dev); error_free_name: kfree(indio_dev->name); error_free_device: iio_device_free(indio_dev); error_free_swd: kfree(swd); return ERR_PTR(ret); } /** * iio_dummy_remove() - device instance removal function * @swd: pointer to software IIO device abstraction * * Parameters follow those of iio_dummy_probe for buses. */ static int iio_dummy_remove(struct iio_sw_device *swd) { /* * Get a pointer to the device instance iio_dev structure * from the bus subsystem. E.g. * struct iio_dev *indio_dev = i2c_get_clientdata(client); * struct iio_dev *indio_dev = spi_get_drvdata(spi); */ struct iio_dev *indio_dev = swd->device; /* Unregister the device */ iio_device_unregister(indio_dev); /* Device specific code to power down etc */ /* Buffered capture related cleanup */ iio_simple_dummy_unconfigure_buffer(indio_dev); iio_simple_dummy_events_unregister(indio_dev); /* Free all structures */ kfree(indio_dev->name); iio_device_free(indio_dev); return 0; } /* * module_iio_sw_device_driver() - device driver registration * * Varies depending on bus type of the device. As there is no device * here, call probe directly. For information on device registration * i2c: * Documentation/i2c/writing-clients.rst * spi: * Documentation/spi/spi-summary.rst */ static const struct iio_sw_device_ops iio_dummy_device_ops = { .probe = iio_dummy_probe, .remove = iio_dummy_remove, }; static struct iio_sw_device_type iio_dummy_device = { .name = "dummy", .owner = THIS_MODULE, .ops = &iio_dummy_device_ops, }; module_iio_sw_device_driver(iio_dummy_device); MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>"); MODULE_DESCRIPTION("IIO dummy driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1