Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Antoniu Miclaus | 2711 | 99.82% | 1 | 50.00% |
Jonathan Cameron | 5 | 0.18% | 1 | 50.00% |
Total | 2716 | 2 |
// SPDX-License-Identifier: GPL-2.0-only /* * ADMV1013 driver * * Copyright 2021 Analog Devices Inc. */ #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/device.h> #include <linux/iio/iio.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/notifier.h> #include <linux/property.h> #include <linux/regulator/consumer.h> #include <linux/spi/spi.h> #include <linux/units.h> #include <asm/unaligned.h> /* ADMV1013 Register Map */ #define ADMV1013_REG_SPI_CONTROL 0x00 #define ADMV1013_REG_ALARM 0x01 #define ADMV1013_REG_ALARM_MASKS 0x02 #define ADMV1013_REG_ENABLE 0x03 #define ADMV1013_REG_LO_AMP_I 0x05 #define ADMV1013_REG_LO_AMP_Q 0x06 #define ADMV1013_REG_OFFSET_ADJUST_I 0x07 #define ADMV1013_REG_OFFSET_ADJUST_Q 0x08 #define ADMV1013_REG_QUAD 0x09 #define ADMV1013_REG_VVA_TEMP_COMP 0x0A /* ADMV1013_REG_SPI_CONTROL Map */ #define ADMV1013_PARITY_EN_MSK BIT(15) #define ADMV1013_SPI_SOFT_RESET_MSK BIT(14) #define ADMV1013_CHIP_ID_MSK GENMASK(11, 4) #define ADMV1013_CHIP_ID 0xA #define ADMV1013_REVISION_ID_MSK GENMASK(3, 0) /* ADMV1013_REG_ALARM Map */ #define ADMV1013_PARITY_ERROR_MSK BIT(15) #define ADMV1013_TOO_FEW_ERRORS_MSK BIT(14) #define ADMV1013_TOO_MANY_ERRORS_MSK BIT(13) #define ADMV1013_ADDRESS_RANGE_ERROR_MSK BIT(12) /* ADMV1013_REG_ENABLE Map */ #define ADMV1013_VGA_PD_MSK BIT(15) #define ADMV1013_MIXER_PD_MSK BIT(14) #define ADMV1013_QUAD_PD_MSK GENMASK(13, 11) #define ADMV1013_BG_PD_MSK BIT(10) #define ADMV1013_MIXER_IF_EN_MSK BIT(7) #define ADMV1013_DET_EN_MSK BIT(5) /* ADMV1013_REG_LO_AMP Map */ #define ADMV1013_LOAMP_PH_ADJ_FINE_MSK GENMASK(13, 7) #define ADMV1013_MIXER_VGATE_MSK GENMASK(6, 0) /* ADMV1013_REG_OFFSET_ADJUST Map */ #define ADMV1013_MIXER_OFF_ADJ_P_MSK GENMASK(15, 9) #define ADMV1013_MIXER_OFF_ADJ_N_MSK GENMASK(8, 2) /* ADMV1013_REG_QUAD Map */ #define ADMV1013_QUAD_SE_MODE_MSK GENMASK(9, 6) #define ADMV1013_QUAD_FILTERS_MSK GENMASK(3, 0) /* ADMV1013_REG_VVA_TEMP_COMP Map */ #define ADMV1013_VVA_TEMP_COMP_MSK GENMASK(15, 0) /* ADMV1013 Miscellaneous Defines */ #define ADMV1013_READ BIT(7) #define ADMV1013_REG_ADDR_READ_MSK GENMASK(6, 1) #define ADMV1013_REG_ADDR_WRITE_MSK GENMASK(22, 17) #define ADMV1013_REG_DATA_MSK GENMASK(16, 1) enum { ADMV1013_IQ_MODE, ADMV1013_IF_MODE }; enum { ADMV1013_RFMOD_I_CALIBPHASE, ADMV1013_RFMOD_Q_CALIBPHASE, }; enum { ADMV1013_SE_MODE_POS = 6, ADMV1013_SE_MODE_NEG = 9, ADMV1013_SE_MODE_DIFF = 12 }; struct admv1013_state { struct spi_device *spi; struct clk *clkin; /* Protect against concurrent accesses to the device and to data */ struct mutex lock; struct regulator *reg; struct notifier_block nb; unsigned int input_mode; unsigned int quad_se_mode; bool det_en; u8 data[3] __aligned(IIO_DMA_MINALIGN); }; static int __admv1013_spi_read(struct admv1013_state *st, unsigned int reg, unsigned int *val) { int ret; struct spi_transfer t = {0}; st->data[0] = ADMV1013_READ | FIELD_PREP(ADMV1013_REG_ADDR_READ_MSK, reg); st->data[1] = 0x0; st->data[2] = 0x0; t.rx_buf = &st->data[0]; t.tx_buf = &st->data[0]; t.len = 3; ret = spi_sync_transfer(st->spi, &t, 1); if (ret) return ret; *val = FIELD_GET(ADMV1013_REG_DATA_MSK, get_unaligned_be24(&st->data[0])); return ret; } static int admv1013_spi_read(struct admv1013_state *st, unsigned int reg, unsigned int *val) { int ret; mutex_lock(&st->lock); ret = __admv1013_spi_read(st, reg, val); mutex_unlock(&st->lock); return ret; } static int __admv1013_spi_write(struct admv1013_state *st, unsigned int reg, unsigned int val) { put_unaligned_be24(FIELD_PREP(ADMV1013_REG_DATA_MSK, val) | FIELD_PREP(ADMV1013_REG_ADDR_WRITE_MSK, reg), &st->data[0]); return spi_write(st->spi, &st->data[0], 3); } static int admv1013_spi_write(struct admv1013_state *st, unsigned int reg, unsigned int val) { int ret; mutex_lock(&st->lock); ret = __admv1013_spi_write(st, reg, val); mutex_unlock(&st->lock); return ret; } static int __admv1013_spi_update_bits(struct admv1013_state *st, unsigned int reg, unsigned int mask, unsigned int val) { int ret; unsigned int data, temp; ret = __admv1013_spi_read(st, reg, &data); if (ret) return ret; temp = (data & ~mask) | (val & mask); return __admv1013_spi_write(st, reg, temp); } static int admv1013_spi_update_bits(struct admv1013_state *st, unsigned int reg, unsigned int mask, unsigned int val) { int ret; mutex_lock(&st->lock); ret = __admv1013_spi_update_bits(st, reg, mask, val); mutex_unlock(&st->lock); return ret; } static int admv1013_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long info) { struct admv1013_state *st = iio_priv(indio_dev); unsigned int data, addr; int ret; switch (info) { case IIO_CHAN_INFO_CALIBBIAS: switch (chan->channel) { case IIO_MOD_I: addr = ADMV1013_REG_OFFSET_ADJUST_I; break; case IIO_MOD_Q: addr = ADMV1013_REG_OFFSET_ADJUST_Q; break; default: return -EINVAL; } ret = admv1013_spi_read(st, addr, &data); if (ret) return ret; if (!chan->channel) *val = FIELD_GET(ADMV1013_MIXER_OFF_ADJ_P_MSK, data); else *val = FIELD_GET(ADMV1013_MIXER_OFF_ADJ_N_MSK, data); return IIO_VAL_INT; default: return -EINVAL; } } static int admv1013_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long info) { struct admv1013_state *st = iio_priv(indio_dev); unsigned int addr, data, msk; switch (info) { case IIO_CHAN_INFO_CALIBBIAS: switch (chan->channel2) { case IIO_MOD_I: addr = ADMV1013_REG_OFFSET_ADJUST_I; break; case IIO_MOD_Q: addr = ADMV1013_REG_OFFSET_ADJUST_Q; break; default: return -EINVAL; } if (!chan->channel) { msk = ADMV1013_MIXER_OFF_ADJ_P_MSK; data = FIELD_PREP(ADMV1013_MIXER_OFF_ADJ_P_MSK, val); } else { msk = ADMV1013_MIXER_OFF_ADJ_N_MSK; data = FIELD_PREP(ADMV1013_MIXER_OFF_ADJ_N_MSK, val); } return admv1013_spi_update_bits(st, addr, msk, data); default: return -EINVAL; } } static ssize_t admv1013_read(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, char *buf) { struct admv1013_state *st = iio_priv(indio_dev); unsigned int data, addr; int ret; switch ((u32)private) { case ADMV1013_RFMOD_I_CALIBPHASE: addr = ADMV1013_REG_LO_AMP_I; break; case ADMV1013_RFMOD_Q_CALIBPHASE: addr = ADMV1013_REG_LO_AMP_Q; break; default: return -EINVAL; } ret = admv1013_spi_read(st, addr, &data); if (ret) return ret; data = FIELD_GET(ADMV1013_LOAMP_PH_ADJ_FINE_MSK, data); return sysfs_emit(buf, "%u\n", data); } static ssize_t admv1013_write(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, const char *buf, size_t len) { struct admv1013_state *st = iio_priv(indio_dev); unsigned int data; int ret; ret = kstrtou32(buf, 10, &data); if (ret) return ret; data = FIELD_PREP(ADMV1013_LOAMP_PH_ADJ_FINE_MSK, data); switch ((u32)private) { case ADMV1013_RFMOD_I_CALIBPHASE: ret = admv1013_spi_update_bits(st, ADMV1013_REG_LO_AMP_I, ADMV1013_LOAMP_PH_ADJ_FINE_MSK, data); if (ret) return ret; break; case ADMV1013_RFMOD_Q_CALIBPHASE: ret = admv1013_spi_update_bits(st, ADMV1013_REG_LO_AMP_Q, ADMV1013_LOAMP_PH_ADJ_FINE_MSK, data); if (ret) return ret; break; default: return -EINVAL; } return ret ? ret : len; } static int admv1013_update_quad_filters(struct admv1013_state *st) { unsigned int filt_raw; u64 rate = clk_get_rate(st->clkin); if (rate >= (5400 * HZ_PER_MHZ) && rate <= (7000 * HZ_PER_MHZ)) filt_raw = 15; else if (rate >= (5400 * HZ_PER_MHZ) && rate <= (8000 * HZ_PER_MHZ)) filt_raw = 10; else if (rate >= (6600 * HZ_PER_MHZ) && rate <= (9200 * HZ_PER_MHZ)) filt_raw = 5; else filt_raw = 0; return __admv1013_spi_update_bits(st, ADMV1013_REG_QUAD, ADMV1013_QUAD_FILTERS_MSK, FIELD_PREP(ADMV1013_QUAD_FILTERS_MSK, filt_raw)); } static int admv1013_update_mixer_vgate(struct admv1013_state *st) { unsigned int vcm, mixer_vgate; vcm = regulator_get_voltage(st->reg); if (vcm < 1800000) mixer_vgate = (2389 * vcm / 1000000 + 8100) / 100; else if (vcm > 1800000 && vcm < 2600000) mixer_vgate = (2375 * vcm / 1000000 + 125) / 100; else return -EINVAL; return __admv1013_spi_update_bits(st, ADMV1013_REG_LO_AMP_I, ADMV1013_MIXER_VGATE_MSK, FIELD_PREP(ADMV1013_MIXER_VGATE_MSK, mixer_vgate)); } static int admv1013_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int write_val, unsigned int *read_val) { struct admv1013_state *st = iio_priv(indio_dev); if (read_val) return admv1013_spi_read(st, reg, read_val); else return admv1013_spi_write(st, reg, write_val); } static const struct iio_info admv1013_info = { .read_raw = admv1013_read_raw, .write_raw = admv1013_write_raw, .debugfs_reg_access = &admv1013_reg_access, }; static int admv1013_freq_change(struct notifier_block *nb, unsigned long action, void *data) { struct admv1013_state *st = container_of(nb, struct admv1013_state, nb); int ret; if (action == POST_RATE_CHANGE) { mutex_lock(&st->lock); ret = notifier_from_errno(admv1013_update_quad_filters(st)); mutex_unlock(&st->lock); return ret; } return NOTIFY_OK; } #define _ADMV1013_EXT_INFO(_name, _shared, _ident) { \ .name = _name, \ .read = admv1013_read, \ .write = admv1013_write, \ .private = _ident, \ .shared = _shared, \ } static const struct iio_chan_spec_ext_info admv1013_ext_info[] = { _ADMV1013_EXT_INFO("i_calibphase", IIO_SEPARATE, ADMV1013_RFMOD_I_CALIBPHASE), _ADMV1013_EXT_INFO("q_calibphase", IIO_SEPARATE, ADMV1013_RFMOD_Q_CALIBPHASE), { }, }; #define ADMV1013_CHAN_PHASE(_channel, _channel2, _admv1013_ext_info) { \ .type = IIO_ALTVOLTAGE, \ .output = 0, \ .indexed = 1, \ .channel2 = _channel2, \ .channel = _channel, \ .differential = 1, \ .ext_info = _admv1013_ext_info, \ } #define ADMV1013_CHAN_CALIB(_channel, rf_comp) { \ .type = IIO_ALTVOLTAGE, \ .output = 0, \ .indexed = 1, \ .channel = _channel, \ .channel2 = IIO_MOD_##rf_comp, \ .info_mask_separate = BIT(IIO_CHAN_INFO_CALIBBIAS), \ } static const struct iio_chan_spec admv1013_channels[] = { ADMV1013_CHAN_PHASE(0, 1, admv1013_ext_info), ADMV1013_CHAN_CALIB(0, I), ADMV1013_CHAN_CALIB(0, Q), ADMV1013_CHAN_CALIB(1, I), ADMV1013_CHAN_CALIB(1, Q), }; static int admv1013_init(struct admv1013_state *st) { int ret; unsigned int data; struct spi_device *spi = st->spi; /* Perform a software reset */ ret = __admv1013_spi_update_bits(st, ADMV1013_REG_SPI_CONTROL, ADMV1013_SPI_SOFT_RESET_MSK, FIELD_PREP(ADMV1013_SPI_SOFT_RESET_MSK, 1)); if (ret) return ret; ret = __admv1013_spi_update_bits(st, ADMV1013_REG_SPI_CONTROL, ADMV1013_SPI_SOFT_RESET_MSK, FIELD_PREP(ADMV1013_SPI_SOFT_RESET_MSK, 0)); if (ret) return ret; ret = __admv1013_spi_read(st, ADMV1013_REG_SPI_CONTROL, &data); if (ret) return ret; data = FIELD_GET(ADMV1013_CHIP_ID_MSK, data); if (data != ADMV1013_CHIP_ID) { dev_err(&spi->dev, "Invalid Chip ID.\n"); return -EINVAL; } ret = __admv1013_spi_write(st, ADMV1013_REG_VVA_TEMP_COMP, 0xE700); if (ret) return ret; data = FIELD_PREP(ADMV1013_QUAD_SE_MODE_MSK, st->quad_se_mode); ret = __admv1013_spi_update_bits(st, ADMV1013_REG_QUAD, ADMV1013_QUAD_SE_MODE_MSK, data); if (ret) return ret; ret = admv1013_update_mixer_vgate(st); if (ret) return ret; ret = admv1013_update_quad_filters(st); if (ret) return ret; return __admv1013_spi_update_bits(st, ADMV1013_REG_ENABLE, ADMV1013_DET_EN_MSK | ADMV1013_MIXER_IF_EN_MSK, st->det_en | st->input_mode); } static void admv1013_clk_disable(void *data) { clk_disable_unprepare(data); } static void admv1013_reg_disable(void *data) { regulator_disable(data); } static void admv1013_powerdown(void *data) { unsigned int enable_reg, enable_reg_msk; /* Disable all components in the Enable Register */ enable_reg_msk = ADMV1013_VGA_PD_MSK | ADMV1013_MIXER_PD_MSK | ADMV1013_QUAD_PD_MSK | ADMV1013_BG_PD_MSK | ADMV1013_MIXER_IF_EN_MSK | ADMV1013_DET_EN_MSK; enable_reg = FIELD_PREP(ADMV1013_VGA_PD_MSK, 1) | FIELD_PREP(ADMV1013_MIXER_PD_MSK, 1) | FIELD_PREP(ADMV1013_QUAD_PD_MSK, 7) | FIELD_PREP(ADMV1013_BG_PD_MSK, 1) | FIELD_PREP(ADMV1013_MIXER_IF_EN_MSK, 0) | FIELD_PREP(ADMV1013_DET_EN_MSK, 0); admv1013_spi_update_bits(data, ADMV1013_REG_ENABLE, enable_reg_msk, enable_reg); } static int admv1013_properties_parse(struct admv1013_state *st) { int ret; const char *str; struct spi_device *spi = st->spi; st->det_en = device_property_read_bool(&spi->dev, "adi,detector-enable"); ret = device_property_read_string(&spi->dev, "adi,input-mode", &str); if (ret) st->input_mode = ADMV1013_IQ_MODE; if (!strcmp(str, "iq")) st->input_mode = ADMV1013_IQ_MODE; else if (!strcmp(str, "if")) st->input_mode = ADMV1013_IF_MODE; else return -EINVAL; ret = device_property_read_string(&spi->dev, "adi,quad-se-mode", &str); if (ret) st->quad_se_mode = ADMV1013_SE_MODE_DIFF; if (!strcmp(str, "diff")) st->quad_se_mode = ADMV1013_SE_MODE_DIFF; else if (!strcmp(str, "se-pos")) st->quad_se_mode = ADMV1013_SE_MODE_POS; else if (!strcmp(str, "se-neg")) st->quad_se_mode = ADMV1013_SE_MODE_NEG; else return -EINVAL; st->reg = devm_regulator_get(&spi->dev, "vcm"); if (IS_ERR(st->reg)) return dev_err_probe(&spi->dev, PTR_ERR(st->reg), "failed to get the common-mode voltage\n"); st->clkin = devm_clk_get(&spi->dev, "lo_in"); if (IS_ERR(st->clkin)) return dev_err_probe(&spi->dev, PTR_ERR(st->clkin), "failed to get the LO input clock\n"); return 0; } static int admv1013_probe(struct spi_device *spi) { struct iio_dev *indio_dev; struct admv1013_state *st; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); indio_dev->info = &admv1013_info; indio_dev->name = "admv1013"; indio_dev->channels = admv1013_channels; indio_dev->num_channels = ARRAY_SIZE(admv1013_channels); st->spi = spi; ret = admv1013_properties_parse(st); if (ret) return ret; ret = regulator_enable(st->reg); if (ret) { dev_err(&spi->dev, "Failed to enable specified Common-Mode Voltage!\n"); return ret; } ret = devm_add_action_or_reset(&spi->dev, admv1013_reg_disable, st->reg); if (ret) return ret; ret = clk_prepare_enable(st->clkin); if (ret) return ret; ret = devm_add_action_or_reset(&spi->dev, admv1013_clk_disable, st->clkin); if (ret) return ret; st->nb.notifier_call = admv1013_freq_change; ret = devm_clk_notifier_register(&spi->dev, st->clkin, &st->nb); if (ret) return ret; mutex_init(&st->lock); ret = admv1013_init(st); if (ret) { dev_err(&spi->dev, "admv1013 init failed\n"); return ret; } ret = devm_add_action_or_reset(&spi->dev, admv1013_powerdown, st); if (ret) return ret; return devm_iio_device_register(&spi->dev, indio_dev); } static const struct spi_device_id admv1013_id[] = { { "admv1013", 0 }, {} }; MODULE_DEVICE_TABLE(spi, admv1013_id); static const struct of_device_id admv1013_of_match[] = { { .compatible = "adi,admv1013" }, {}, }; MODULE_DEVICE_TABLE(of, admv1013_of_match); static struct spi_driver admv1013_driver = { .driver = { .name = "admv1013", .of_match_table = admv1013_of_match, }, .probe = admv1013_probe, .id_table = admv1013_id, }; module_spi_driver(admv1013_driver); MODULE_AUTHOR("Antoniu Miclaus <antoniu.miclaus@analog.com"); MODULE_DESCRIPTION("Analog Devices ADMV1013"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1