Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Walleij | 2501 | 96.16% | 1 | 10.00% |
Jonathan Bakker | 37 | 1.42% | 1 | 10.00% |
Gregor Riepl | 26 | 1.00% | 1 | 10.00% |
caihuoqing | 20 | 0.77% | 1 | 10.00% |
Jonathan Cameron | 9 | 0.35% | 1 | 10.00% |
Dinghao Liu | 4 | 0.15% | 1 | 10.00% |
Uwe Kleine-König | 2 | 0.08% | 2 | 20.00% |
Wang Qing | 1 | 0.04% | 1 | 10.00% |
Andy Shevchenko | 1 | 0.04% | 1 | 10.00% |
Total | 2601 | 10 |
// SPDX-License-Identifier: GPL-2.0-only /* * These are the two Sharp GP2AP002 variants supported by this driver: * GP2AP002A00F Ambient Light and Proximity Sensor * GP2AP002S00F Proximity Sensor * * Copyright (C) 2020 Linaro Ltd. * Author: Linus Walleij <linus.walleij@linaro.org> * * Based partly on the code in Sony Ericssons GP2AP00200F driver by * Courtney Cavin and Oskar Andero in drivers/input/misc/gp2ap002a00f.c * Based partly on a Samsung misc driver submitted by * Donggeun Kim & Minkyu Kang in 2011: * https://lore.kernel.org/lkml/1315556546-7445-1-git-send-email-dg77.kim@samsung.com/ * Based partly on a submission by * Jonathan Bakker and Paweł Chmiel in january 2019: * https://lore.kernel.org/linux-input/20190125175045.22576-1-pawel.mikolaj.chmiel@gmail.com/ * Based partly on code from the Samsung GT-S7710 by <mjchen@sta.samsung.com> * Based partly on the code in LG Electronics GP2AP00200F driver by * Kenobi Lee <sungyoung.lee@lge.com> and EunYoung Cho <ey.cho@lge.com> */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/events.h> #include <linux/iio/consumer.h> /* To get our ADC channel */ #include <linux/iio/types.h> /* To deal with our ADC channel */ #include <linux/init.h> #include <linux/delay.h> #include <linux/regulator/consumer.h> #include <linux/pm_runtime.h> #include <linux/interrupt.h> #include <linux/bits.h> #include <linux/math64.h> #include <linux/pm.h> #define GP2AP002_PROX_CHANNEL 0 #define GP2AP002_ALS_CHANNEL 1 /* ------------------------------------------------------------------------ */ /* ADDRESS SYMBOL DATA Init R/W */ /* D7 D6 D5 D4 D3 D2 D1 D0 */ /* ------------------------------------------------------------------------ */ /* 0 PROX X X X X X X X VO H'00 R */ /* 1 GAIN X X X X LED0 X X X H'00 W */ /* 2 HYS HYSD HYSC1 HYSC0 X HYSF3 HYSF2 HYSF1 HYSF0 H'00 W */ /* 3 CYCLE X X CYCL2 CYCL1 CYCL0 OSC2 X X H'00 W */ /* 4 OPMOD X X X ASD X X VCON SSD H'00 W */ /* 6 CON X X X OCON1 OCON0 X X X H'00 W */ /* ------------------------------------------------------------------------ */ /* VO :Proximity sensing result(0: no detection, 1: detection) */ /* LED0 :Select switch for LED driver's On-registence(0:2x higher, 1:normal)*/ /* HYSD/HYSF :Adjusts the receiver sensitivity */ /* OSC :Select switch internal clocl frequency hoppling(0:effective) */ /* CYCL :Determine the detection cycle(typically 8ms, up to 128x) */ /* SSD :Software Shutdown function(0:shutdown, 1:operating) */ /* VCON :VOUT output method control(0:normal, 1:interrupt) */ /* ASD :Select switch for analog sleep function(0:ineffective, 1:effective)*/ /* OCON :Select switch for enabling/disabling VOUT (00:enable, 11:disable) */ #define GP2AP002_PROX 0x00 #define GP2AP002_GAIN 0x01 #define GP2AP002_HYS 0x02 #define GP2AP002_CYCLE 0x03 #define GP2AP002_OPMOD 0x04 #define GP2AP002_CON 0x06 #define GP2AP002_PROX_VO_DETECT BIT(0) /* Setting this bit to 0 means 2x higher LED resistance */ #define GP2AP002_GAIN_LED_NORMAL BIT(3) /* * These bits adjusts the proximity sensitivity, determining characteristics * of the detection distance and its hysteresis. */ #define GP2AP002_HYS_HYSD_SHIFT 7 #define GP2AP002_HYS_HYSD_MASK BIT(7) #define GP2AP002_HYS_HYSC_SHIFT 5 #define GP2AP002_HYS_HYSC_MASK GENMASK(6, 5) #define GP2AP002_HYS_HYSF_SHIFT 0 #define GP2AP002_HYS_HYSF_MASK GENMASK(3, 0) #define GP2AP002_HYS_MASK (GP2AP002_HYS_HYSD_MASK | \ GP2AP002_HYS_HYSC_MASK | \ GP2AP002_HYS_HYSF_MASK) /* * These values determine the detection cycle response time * 0: 8ms, 1: 16ms, 2: 32ms, 3: 64ms, 4: 128ms, * 5: 256ms, 6: 512ms, 7: 1024ms */ #define GP2AP002_CYCLE_CYCL_SHIFT 3 #define GP2AP002_CYCLE_CYCL_MASK GENMASK(5, 3) /* * Select switch for internal clock frequency hopping * 0: effective, * 1: ineffective */ #define GP2AP002_CYCLE_OSC_EFFECTIVE 0 #define GP2AP002_CYCLE_OSC_INEFFECTIVE BIT(2) #define GP2AP002_CYCLE_OSC_MASK BIT(2) /* Analog sleep effective */ #define GP2AP002_OPMOD_ASD BIT(4) /* Enable chip */ #define GP2AP002_OPMOD_SSD_OPERATING BIT(0) /* IRQ mode */ #define GP2AP002_OPMOD_VCON_IRQ BIT(1) #define GP2AP002_OPMOD_MASK (BIT(0) | BIT(1) | BIT(4)) /* * Select switch for enabling/disabling Vout pin * 0: enable * 2: force to go Low * 3: force to go High */ #define GP2AP002_CON_OCON_SHIFT 3 #define GP2AP002_CON_OCON_ENABLE (0x0 << GP2AP002_CON_OCON_SHIFT) #define GP2AP002_CON_OCON_LOW (0x2 << GP2AP002_CON_OCON_SHIFT) #define GP2AP002_CON_OCON_HIGH (0x3 << GP2AP002_CON_OCON_SHIFT) #define GP2AP002_CON_OCON_MASK (0x3 << GP2AP002_CON_OCON_SHIFT) /** * struct gp2ap002 - GP2AP002 state * @map: regmap pointer for the i2c regmap * @dev: pointer to parent device * @vdd: regulator controlling VDD * @vio: regulator controlling VIO * @alsout: IIO ADC channel to convert the ALSOUT signal * @hys_far: hysteresis control from device tree * @hys_close: hysteresis control from device tree * @is_gp2ap002s00f: this is the GP2AP002F variant of the chip * @irq: the IRQ line used by this device * @enabled: we cannot read the status of the hardware so we need to * keep track of whether the event is enabled using this state variable */ struct gp2ap002 { struct regmap *map; struct device *dev; struct regulator *vdd; struct regulator *vio; struct iio_channel *alsout; u8 hys_far; u8 hys_close; bool is_gp2ap002s00f; int irq; bool enabled; }; static irqreturn_t gp2ap002_prox_irq(int irq, void *d) { struct iio_dev *indio_dev = d; struct gp2ap002 *gp2ap002 = iio_priv(indio_dev); u64 ev; int val; int ret; if (!gp2ap002->enabled) goto err_retrig; ret = regmap_read(gp2ap002->map, GP2AP002_PROX, &val); if (ret) { dev_err(gp2ap002->dev, "error reading proximity\n"); goto err_retrig; } if (val & GP2AP002_PROX_VO_DETECT) { /* Close */ dev_dbg(gp2ap002->dev, "close\n"); ret = regmap_write(gp2ap002->map, GP2AP002_HYS, gp2ap002->hys_far); if (ret) dev_err(gp2ap002->dev, "error setting up proximity hysteresis\n"); ev = IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, GP2AP002_PROX_CHANNEL, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING); } else { /* Far */ dev_dbg(gp2ap002->dev, "far\n"); ret = regmap_write(gp2ap002->map, GP2AP002_HYS, gp2ap002->hys_close); if (ret) dev_err(gp2ap002->dev, "error setting up proximity hysteresis\n"); ev = IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, GP2AP002_PROX_CHANNEL, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING); } iio_push_event(indio_dev, ev, iio_get_time_ns(indio_dev)); /* * After changing hysteresis, we need to wait for one detection * cycle to see if anything changed, or we will just trigger the * previous interrupt again. A detection cycle depends on the CYCLE * register, we are hard-coding ~8 ms in probe() so wait some more * than this, 20-30 ms. */ usleep_range(20000, 30000); err_retrig: ret = regmap_write(gp2ap002->map, GP2AP002_CON, GP2AP002_CON_OCON_ENABLE); if (ret) dev_err(gp2ap002->dev, "error setting up VOUT control\n"); return IRQ_HANDLED; } /* * This array maps current and lux. * * Ambient light sensing range is 3 to 55000 lux. * * This mapping is based on the following formula. * illuminance = 10 ^ (current[mA] / 10) * * When the ADC measures 0, return 0 lux. */ static const u16 gp2ap002_illuminance_table[] = { 0, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50, 63, 79, 100, 126, 158, 200, 251, 316, 398, 501, 631, 794, 1000, 1259, 1585, 1995, 2512, 3162, 3981, 5012, 6310, 7943, 10000, 12589, 15849, 19953, 25119, 31623, 39811, 50119, }; static int gp2ap002_get_lux(struct gp2ap002 *gp2ap002) { int ret, res; u16 lux; ret = iio_read_channel_processed(gp2ap002->alsout, &res); if (ret < 0) return ret; dev_dbg(gp2ap002->dev, "read %d mA from ADC\n", res); /* ensure we don't under/overflow */ res = clamp(res, 0, (int)ARRAY_SIZE(gp2ap002_illuminance_table) - 1); lux = gp2ap002_illuminance_table[res]; return (int)lux; } static int gp2ap002_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct gp2ap002 *gp2ap002 = iio_priv(indio_dev); int ret; pm_runtime_get_sync(gp2ap002->dev); switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_LIGHT: ret = gp2ap002_get_lux(gp2ap002); if (ret < 0) return ret; *val = ret; ret = IIO_VAL_INT; goto out; default: ret = -EINVAL; goto out; } default: ret = -EINVAL; } out: pm_runtime_mark_last_busy(gp2ap002->dev); pm_runtime_put_autosuspend(gp2ap002->dev); return ret; } static int gp2ap002_init(struct gp2ap002 *gp2ap002) { int ret; /* Set up the IR LED resistance */ ret = regmap_write(gp2ap002->map, GP2AP002_GAIN, GP2AP002_GAIN_LED_NORMAL); if (ret) { dev_err(gp2ap002->dev, "error setting up LED gain\n"); return ret; } ret = regmap_write(gp2ap002->map, GP2AP002_HYS, gp2ap002->hys_far); if (ret) { dev_err(gp2ap002->dev, "error setting up proximity hysteresis\n"); return ret; } /* Disable internal frequency hopping */ ret = regmap_write(gp2ap002->map, GP2AP002_CYCLE, GP2AP002_CYCLE_OSC_INEFFECTIVE); if (ret) { dev_err(gp2ap002->dev, "error setting up internal frequency hopping\n"); return ret; } /* Enable chip and IRQ, disable analog sleep */ ret = regmap_write(gp2ap002->map, GP2AP002_OPMOD, GP2AP002_OPMOD_SSD_OPERATING | GP2AP002_OPMOD_VCON_IRQ); if (ret) { dev_err(gp2ap002->dev, "error setting up operation mode\n"); return ret; } /* Interrupt on VOUT enabled */ ret = regmap_write(gp2ap002->map, GP2AP002_CON, GP2AP002_CON_OCON_ENABLE); if (ret) dev_err(gp2ap002->dev, "error setting up VOUT control\n"); return ret; } static int gp2ap002_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct gp2ap002 *gp2ap002 = iio_priv(indio_dev); /* * We just keep track of this internally, as it is not possible to * query the hardware. */ return gp2ap002->enabled; } static int gp2ap002_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct gp2ap002 *gp2ap002 = iio_priv(indio_dev); if (state) { /* * This will bring the regulators up (unless they are on * already) and reintialize the sensor by using runtime_pm * callbacks. */ pm_runtime_get_sync(gp2ap002->dev); gp2ap002->enabled = true; } else { pm_runtime_mark_last_busy(gp2ap002->dev); pm_runtime_put_autosuspend(gp2ap002->dev); gp2ap002->enabled = false; } return 0; } static const struct iio_info gp2ap002_info = { .read_raw = gp2ap002_read_raw, .read_event_config = gp2ap002_read_event_config, .write_event_config = gp2ap002_write_event_config, }; static const struct iio_event_spec gp2ap002_events[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_ENABLE), }, }; static const struct iio_chan_spec gp2ap002_channels[] = { { .type = IIO_PROXIMITY, .event_spec = gp2ap002_events, .num_event_specs = ARRAY_SIZE(gp2ap002_events), }, { .type = IIO_LIGHT, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .channel = GP2AP002_ALS_CHANNEL, }, }; /* * We need a special regmap because this hardware expects to * write single bytes to registers but read a 16bit word on some * variants and discard the lower 8 bits so combine * i2c_smbus_read_word_data() with i2c_smbus_write_byte_data() * selectively like this. */ static int gp2ap002_regmap_i2c_read(void *context, unsigned int reg, unsigned int *val) { struct device *dev = context; struct i2c_client *i2c = to_i2c_client(dev); int ret; ret = i2c_smbus_read_word_data(i2c, reg); if (ret < 0) return ret; *val = (ret >> 8) & 0xFF; return 0; } static int gp2ap002_regmap_i2c_write(void *context, unsigned int reg, unsigned int val) { struct device *dev = context; struct i2c_client *i2c = to_i2c_client(dev); return i2c_smbus_write_byte_data(i2c, reg, val); } static struct regmap_bus gp2ap002_regmap_bus = { .reg_read = gp2ap002_regmap_i2c_read, .reg_write = gp2ap002_regmap_i2c_write, }; static int gp2ap002_probe(struct i2c_client *client) { struct gp2ap002 *gp2ap002; struct iio_dev *indio_dev; struct device *dev = &client->dev; enum iio_chan_type ch_type; static const struct regmap_config config = { .reg_bits = 8, .val_bits = 8, .max_register = GP2AP002_CON, }; struct regmap *regmap; int num_chan; const char *compat; u8 val; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*gp2ap002)); if (!indio_dev) return -ENOMEM; i2c_set_clientdata(client, indio_dev); gp2ap002 = iio_priv(indio_dev); gp2ap002->dev = dev; /* * Check the device compatible like this makes it possible to use * ACPI PRP0001 for registering the sensor using device tree * properties. */ ret = device_property_read_string(dev, "compatible", &compat); if (ret) { dev_err(dev, "cannot check compatible\n"); return ret; } gp2ap002->is_gp2ap002s00f = !strcmp(compat, "sharp,gp2ap002s00f"); regmap = devm_regmap_init(dev, &gp2ap002_regmap_bus, dev, &config); if (IS_ERR(regmap)) { dev_err(dev, "Failed to register i2c regmap %ld\n", PTR_ERR(regmap)); return PTR_ERR(regmap); } gp2ap002->map = regmap; /* * The hysteresis settings are coded into the device tree as values * to be written into the hysteresis register. The datasheet defines * modes "A", "B1" and "B2" with fixed values to be use but vendor * code trees for actual devices are tweaking these values and refer to * modes named things like "B1.5". To be able to support any devices, * we allow passing an arbitrary hysteresis setting for "near" and * "far". */ /* Check the device tree for the IR LED hysteresis */ ret = device_property_read_u8(dev, "sharp,proximity-far-hysteresis", &val); if (ret) { dev_err(dev, "failed to obtain proximity far setting\n"); return ret; } dev_dbg(dev, "proximity far setting %02x\n", val); gp2ap002->hys_far = val; ret = device_property_read_u8(dev, "sharp,proximity-close-hysteresis", &val); if (ret) { dev_err(dev, "failed to obtain proximity close setting\n"); return ret; } dev_dbg(dev, "proximity close setting %02x\n", val); gp2ap002->hys_close = val; /* The GP2AP002A00F has a light sensor too */ if (!gp2ap002->is_gp2ap002s00f) { gp2ap002->alsout = devm_iio_channel_get(dev, "alsout"); if (IS_ERR(gp2ap002->alsout)) { ret = PTR_ERR(gp2ap002->alsout); ret = (ret == -ENODEV) ? -EPROBE_DEFER : ret; return dev_err_probe(dev, ret, "failed to get ALSOUT ADC channel\n"); } ret = iio_get_channel_type(gp2ap002->alsout, &ch_type); if (ret < 0) return ret; if (ch_type != IIO_CURRENT) { dev_err(dev, "wrong type of IIO channel specified for ALSOUT\n"); return -EINVAL; } } gp2ap002->vdd = devm_regulator_get(dev, "vdd"); if (IS_ERR(gp2ap002->vdd)) return dev_err_probe(dev, PTR_ERR(gp2ap002->vdd), "failed to get VDD regulator\n"); gp2ap002->vio = devm_regulator_get(dev, "vio"); if (IS_ERR(gp2ap002->vio)) return dev_err_probe(dev, PTR_ERR(gp2ap002->vio), "failed to get VIO regulator\n"); /* Operating voltage 2.4V .. 3.6V according to datasheet */ ret = regulator_set_voltage(gp2ap002->vdd, 2400000, 3600000); if (ret) { dev_err(dev, "failed to sett VDD voltage\n"); return ret; } /* VIO should be between 1.65V and VDD */ ret = regulator_get_voltage(gp2ap002->vdd); if (ret < 0) { dev_err(dev, "failed to get VDD voltage\n"); return ret; } ret = regulator_set_voltage(gp2ap002->vio, 1650000, ret); if (ret) { dev_err(dev, "failed to set VIO voltage\n"); return ret; } ret = regulator_enable(gp2ap002->vdd); if (ret) { dev_err(dev, "failed to enable VDD regulator\n"); return ret; } ret = regulator_enable(gp2ap002->vio); if (ret) { dev_err(dev, "failed to enable VIO regulator\n"); goto out_disable_vdd; } msleep(20); /* * Initialize the device and signal to runtime PM that now we are * definitely up and using power. */ ret = gp2ap002_init(gp2ap002); if (ret) { dev_err(dev, "initialization failed\n"); goto out_disable_vio; } pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); gp2ap002->enabled = false; ret = devm_request_threaded_irq(dev, client->irq, NULL, gp2ap002_prox_irq, IRQF_ONESHOT, "gp2ap002", indio_dev); if (ret) { dev_err(dev, "unable to request IRQ\n"); goto out_put_pm; } gp2ap002->irq = client->irq; /* * As the device takes 20 ms + regulator delay to come up with a fresh * measurement after power-on, do not shut it down unnecessarily. * Set autosuspend to a one second. */ pm_runtime_set_autosuspend_delay(dev, 1000); pm_runtime_use_autosuspend(dev); pm_runtime_put(dev); indio_dev->info = &gp2ap002_info; indio_dev->name = "gp2ap002"; indio_dev->channels = gp2ap002_channels; /* Skip light channel for the proximity-only sensor */ num_chan = ARRAY_SIZE(gp2ap002_channels); if (gp2ap002->is_gp2ap002s00f) num_chan--; indio_dev->num_channels = num_chan; indio_dev->modes = INDIO_DIRECT_MODE; ret = iio_device_register(indio_dev); if (ret) goto out_disable_pm; dev_dbg(dev, "Sharp GP2AP002 probed successfully\n"); return 0; out_put_pm: pm_runtime_put_noidle(dev); out_disable_pm: pm_runtime_disable(dev); out_disable_vio: regulator_disable(gp2ap002->vio); out_disable_vdd: regulator_disable(gp2ap002->vdd); return ret; } static void gp2ap002_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct gp2ap002 *gp2ap002 = iio_priv(indio_dev); struct device *dev = &client->dev; pm_runtime_get_sync(dev); pm_runtime_put_noidle(dev); pm_runtime_disable(dev); iio_device_unregister(indio_dev); regulator_disable(gp2ap002->vio); regulator_disable(gp2ap002->vdd); } static int gp2ap002_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct gp2ap002 *gp2ap002 = iio_priv(indio_dev); int ret; /* Deactivate the IRQ */ disable_irq(gp2ap002->irq); /* Disable chip and IRQ, everything off */ ret = regmap_write(gp2ap002->map, GP2AP002_OPMOD, 0x00); if (ret) { dev_err(gp2ap002->dev, "error setting up operation mode\n"); return ret; } /* * As these regulators may be shared, at least we are now in * sleep even if the regulators aren't really turned off. */ regulator_disable(gp2ap002->vio); regulator_disable(gp2ap002->vdd); return 0; } static int gp2ap002_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct gp2ap002 *gp2ap002 = iio_priv(indio_dev); int ret; ret = regulator_enable(gp2ap002->vdd); if (ret) { dev_err(dev, "failed to enable VDD regulator in resume path\n"); return ret; } ret = regulator_enable(gp2ap002->vio); if (ret) { dev_err(dev, "failed to enable VIO regulator in resume path\n"); return ret; } msleep(20); ret = gp2ap002_init(gp2ap002); if (ret) { dev_err(dev, "re-initialization failed\n"); return ret; } /* Re-activate the IRQ */ enable_irq(gp2ap002->irq); return 0; } static DEFINE_RUNTIME_DEV_PM_OPS(gp2ap002_dev_pm_ops, gp2ap002_runtime_suspend, gp2ap002_runtime_resume, NULL); static const struct i2c_device_id gp2ap002_id_table[] = { { "gp2ap002", 0 }, { }, }; MODULE_DEVICE_TABLE(i2c, gp2ap002_id_table); static const struct of_device_id gp2ap002_of_match[] = { { .compatible = "sharp,gp2ap002a00f" }, { .compatible = "sharp,gp2ap002s00f" }, { }, }; MODULE_DEVICE_TABLE(of, gp2ap002_of_match); static struct i2c_driver gp2ap002_driver = { .driver = { .name = "gp2ap002", .of_match_table = gp2ap002_of_match, .pm = pm_ptr(&gp2ap002_dev_pm_ops), }, .probe_new = gp2ap002_probe, .remove = gp2ap002_remove, .id_table = gp2ap002_id_table, }; module_i2c_driver(gp2ap002_driver); MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>"); MODULE_DESCRIPTION("GP2AP002 ambient light and proximity sensor driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1