Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Steve Wise | 4419 | 74.21% | 18 | 27.69% |
Raju Rangoju | 839 | 14.09% | 2 | 3.08% |
Hariprasad Shenai | 219 | 3.68% | 13 | 20.00% |
Bharat Potnuri | 168 | 2.82% | 4 | 6.15% |
Bart Van Assche | 99 | 1.66% | 1 | 1.54% |
Leon Romanovsky | 45 | 0.76% | 5 | 7.69% |
Joe Perches | 33 | 0.55% | 2 | 3.08% |
Matan Barak | 28 | 0.47% | 1 | 1.54% |
Dakshaja Uppalapati | 23 | 0.39% | 1 | 1.54% |
shamir rabinovitch | 17 | 0.29% | 3 | 4.62% |
Kamal Heib | 11 | 0.18% | 1 | 1.54% |
Yann Droneaud | 11 | 0.18% | 1 | 1.54% |
Dan Carpenter | 10 | 0.17% | 1 | 1.54% |
Matthew Wilcox | 10 | 0.17% | 1 | 1.54% |
Adit Ranadive | 5 | 0.08% | 1 | 1.54% |
Kumar Sanghvi | 3 | 0.05% | 1 | 1.54% |
FUJITA Tomonori | 3 | 0.05% | 1 | 1.54% |
Ariel Levkovich | 3 | 0.05% | 1 | 1.54% |
Weihang Li | 2 | 0.03% | 1 | 1.54% |
Jonathan Lallinger | 2 | 0.03% | 2 | 3.08% |
yuan linyu | 2 | 0.03% | 1 | 1.54% |
Jason Gunthorpe | 1 | 0.02% | 1 | 1.54% |
Sagi Grimberg | 1 | 0.02% | 1 | 1.54% |
Nathan Chancellor | 1 | 0.02% | 1 | 1.54% |
Total | 5955 | 65 |
/* * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <rdma/uverbs_ioctl.h> #include "iw_cxgb4.h" static void destroy_cq(struct c4iw_rdev *rdev, struct t4_cq *cq, struct c4iw_dev_ucontext *uctx, struct sk_buff *skb, struct c4iw_wr_wait *wr_waitp) { struct fw_ri_res_wr *res_wr; struct fw_ri_res *res; int wr_len; wr_len = sizeof(*res_wr) + sizeof(*res); set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); res_wr = __skb_put_zero(skb, wr_len); res_wr->op_nres = cpu_to_be32( FW_WR_OP_V(FW_RI_RES_WR) | FW_RI_RES_WR_NRES_V(1) | FW_WR_COMPL_F); res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16)); res_wr->cookie = (uintptr_t)wr_waitp; res = res_wr->res; res->u.cq.restype = FW_RI_RES_TYPE_CQ; res->u.cq.op = FW_RI_RES_OP_RESET; res->u.cq.iqid = cpu_to_be32(cq->cqid); c4iw_init_wr_wait(wr_waitp); c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__); kfree(cq->sw_queue); dma_free_coherent(&(rdev->lldi.pdev->dev), cq->memsize, cq->queue, dma_unmap_addr(cq, mapping)); c4iw_put_cqid(rdev, cq->cqid, uctx); } static int create_cq(struct c4iw_rdev *rdev, struct t4_cq *cq, struct c4iw_dev_ucontext *uctx, struct c4iw_wr_wait *wr_waitp) { struct fw_ri_res_wr *res_wr; struct fw_ri_res *res; int wr_len; int user = (uctx != &rdev->uctx); int ret; struct sk_buff *skb; struct c4iw_ucontext *ucontext = NULL; if (user) ucontext = container_of(uctx, struct c4iw_ucontext, uctx); cq->cqid = c4iw_get_cqid(rdev, uctx); if (!cq->cqid) { ret = -ENOMEM; goto err1; } if (!user) { cq->sw_queue = kzalloc(cq->memsize, GFP_KERNEL); if (!cq->sw_queue) { ret = -ENOMEM; goto err2; } } cq->queue = dma_alloc_coherent(&rdev->lldi.pdev->dev, cq->memsize, &cq->dma_addr, GFP_KERNEL); if (!cq->queue) { ret = -ENOMEM; goto err3; } dma_unmap_addr_set(cq, mapping, cq->dma_addr); if (user && ucontext->is_32b_cqe) { cq->qp_errp = &((struct t4_status_page *) ((u8 *)cq->queue + (cq->size - 1) * (sizeof(*cq->queue) / 2)))->qp_err; } else { cq->qp_errp = &((struct t4_status_page *) ((u8 *)cq->queue + (cq->size - 1) * sizeof(*cq->queue)))->qp_err; } /* build fw_ri_res_wr */ wr_len = sizeof(*res_wr) + sizeof(*res); skb = alloc_skb(wr_len, GFP_KERNEL); if (!skb) { ret = -ENOMEM; goto err4; } set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); res_wr = __skb_put_zero(skb, wr_len); res_wr->op_nres = cpu_to_be32( FW_WR_OP_V(FW_RI_RES_WR) | FW_RI_RES_WR_NRES_V(1) | FW_WR_COMPL_F); res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16)); res_wr->cookie = (uintptr_t)wr_waitp; res = res_wr->res; res->u.cq.restype = FW_RI_RES_TYPE_CQ; res->u.cq.op = FW_RI_RES_OP_WRITE; res->u.cq.iqid = cpu_to_be32(cq->cqid); res->u.cq.iqandst_to_iqandstindex = cpu_to_be32( FW_RI_RES_WR_IQANUS_V(0) | FW_RI_RES_WR_IQANUD_V(1) | FW_RI_RES_WR_IQANDST_F | FW_RI_RES_WR_IQANDSTINDEX_V( rdev->lldi.ciq_ids[cq->vector])); res->u.cq.iqdroprss_to_iqesize = cpu_to_be16( FW_RI_RES_WR_IQDROPRSS_F | FW_RI_RES_WR_IQPCIECH_V(2) | FW_RI_RES_WR_IQINTCNTTHRESH_V(0) | FW_RI_RES_WR_IQO_F | ((user && ucontext->is_32b_cqe) ? FW_RI_RES_WR_IQESIZE_V(1) : FW_RI_RES_WR_IQESIZE_V(2))); res->u.cq.iqsize = cpu_to_be16(cq->size); res->u.cq.iqaddr = cpu_to_be64(cq->dma_addr); c4iw_init_wr_wait(wr_waitp); ret = c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__); if (ret) goto err4; cq->gen = 1; cq->gts = rdev->lldi.gts_reg; cq->rdev = rdev; cq->bar2_va = c4iw_bar2_addrs(rdev, cq->cqid, CXGB4_BAR2_QTYPE_INGRESS, &cq->bar2_qid, user ? &cq->bar2_pa : NULL); if (user && !cq->bar2_pa) { pr_warn("%s: cqid %u not in BAR2 range\n", pci_name(rdev->lldi.pdev), cq->cqid); ret = -EINVAL; goto err4; } return 0; err4: dma_free_coherent(&rdev->lldi.pdev->dev, cq->memsize, cq->queue, dma_unmap_addr(cq, mapping)); err3: kfree(cq->sw_queue); err2: c4iw_put_cqid(rdev, cq->cqid, uctx); err1: return ret; } static void insert_recv_cqe(struct t4_wq *wq, struct t4_cq *cq, u32 srqidx) { struct t4_cqe cqe; pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n", wq, cq, cq->sw_cidx, cq->sw_pidx); memset(&cqe, 0, sizeof(cqe)); cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) | CQE_OPCODE_V(FW_RI_SEND) | CQE_TYPE_V(0) | CQE_SWCQE_V(1) | CQE_QPID_V(wq->sq.qid)); cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen)); if (srqidx) cqe.u.srcqe.abs_rqe_idx = cpu_to_be32(srqidx); cq->sw_queue[cq->sw_pidx] = cqe; t4_swcq_produce(cq); } int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count) { int flushed = 0; int in_use = wq->rq.in_use - count; pr_debug("wq %p cq %p rq.in_use %u skip count %u\n", wq, cq, wq->rq.in_use, count); while (in_use--) { insert_recv_cqe(wq, cq, 0); flushed++; } return flushed; } static void insert_sq_cqe(struct t4_wq *wq, struct t4_cq *cq, struct t4_swsqe *swcqe) { struct t4_cqe cqe; pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n", wq, cq, cq->sw_cidx, cq->sw_pidx); memset(&cqe, 0, sizeof(cqe)); cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) | CQE_OPCODE_V(swcqe->opcode) | CQE_TYPE_V(1) | CQE_SWCQE_V(1) | CQE_QPID_V(wq->sq.qid)); CQE_WRID_SQ_IDX(&cqe) = swcqe->idx; cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen)); cq->sw_queue[cq->sw_pidx] = cqe; t4_swcq_produce(cq); } static void advance_oldest_read(struct t4_wq *wq); int c4iw_flush_sq(struct c4iw_qp *qhp) { int flushed = 0; struct t4_wq *wq = &qhp->wq; struct c4iw_cq *chp = to_c4iw_cq(qhp->ibqp.send_cq); struct t4_cq *cq = &chp->cq; int idx; struct t4_swsqe *swsqe; if (wq->sq.flush_cidx == -1) wq->sq.flush_cidx = wq->sq.cidx; idx = wq->sq.flush_cidx; while (idx != wq->sq.pidx) { swsqe = &wq->sq.sw_sq[idx]; swsqe->flushed = 1; insert_sq_cqe(wq, cq, swsqe); if (wq->sq.oldest_read == swsqe) { advance_oldest_read(wq); } flushed++; if (++idx == wq->sq.size) idx = 0; } wq->sq.flush_cidx += flushed; if (wq->sq.flush_cidx >= wq->sq.size) wq->sq.flush_cidx -= wq->sq.size; return flushed; } static void flush_completed_wrs(struct t4_wq *wq, struct t4_cq *cq) { struct t4_swsqe *swsqe; int cidx; if (wq->sq.flush_cidx == -1) wq->sq.flush_cidx = wq->sq.cidx; cidx = wq->sq.flush_cidx; while (cidx != wq->sq.pidx) { swsqe = &wq->sq.sw_sq[cidx]; if (!swsqe->signaled) { if (++cidx == wq->sq.size) cidx = 0; } else if (swsqe->complete) { /* * Insert this completed cqe into the swcq. */ pr_debug("moving cqe into swcq sq idx %u cq idx %u\n", cidx, cq->sw_pidx); swsqe->cqe.header |= htonl(CQE_SWCQE_V(1)); cq->sw_queue[cq->sw_pidx] = swsqe->cqe; t4_swcq_produce(cq); swsqe->flushed = 1; if (++cidx == wq->sq.size) cidx = 0; wq->sq.flush_cidx = cidx; } else break; } } static void create_read_req_cqe(struct t4_wq *wq, struct t4_cqe *hw_cqe, struct t4_cqe *read_cqe) { read_cqe->u.scqe.cidx = wq->sq.oldest_read->idx; read_cqe->len = htonl(wq->sq.oldest_read->read_len); read_cqe->header = htonl(CQE_QPID_V(CQE_QPID(hw_cqe)) | CQE_SWCQE_V(SW_CQE(hw_cqe)) | CQE_OPCODE_V(FW_RI_READ_REQ) | CQE_TYPE_V(1)); read_cqe->bits_type_ts = hw_cqe->bits_type_ts; } static void advance_oldest_read(struct t4_wq *wq) { u32 rptr = wq->sq.oldest_read - wq->sq.sw_sq + 1; if (rptr == wq->sq.size) rptr = 0; while (rptr != wq->sq.pidx) { wq->sq.oldest_read = &wq->sq.sw_sq[rptr]; if (wq->sq.oldest_read->opcode == FW_RI_READ_REQ) return; if (++rptr == wq->sq.size) rptr = 0; } wq->sq.oldest_read = NULL; } /* * Move all CQEs from the HWCQ into the SWCQ. * Deal with out-of-order and/or completions that complete * prior unsignalled WRs. */ void c4iw_flush_hw_cq(struct c4iw_cq *chp, struct c4iw_qp *flush_qhp) { struct t4_cqe *hw_cqe, *swcqe, read_cqe; struct c4iw_qp *qhp; struct t4_swsqe *swsqe; int ret; pr_debug("cqid 0x%x\n", chp->cq.cqid); ret = t4_next_hw_cqe(&chp->cq, &hw_cqe); /* * This logic is similar to poll_cq(), but not quite the same * unfortunately. Need to move pertinent HW CQEs to the SW CQ but * also do any translation magic that poll_cq() normally does. */ while (!ret) { qhp = get_qhp(chp->rhp, CQE_QPID(hw_cqe)); /* * drop CQEs with no associated QP */ if (qhp == NULL) goto next_cqe; if (flush_qhp != qhp) { spin_lock(&qhp->lock); if (qhp->wq.flushed == 1) goto next_cqe; } if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) goto next_cqe; if (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP) { /* If we have reached here because of async * event or other error, and have egress error * then drop */ if (CQE_TYPE(hw_cqe) == 1) goto next_cqe; /* drop peer2peer RTR reads. */ if (CQE_WRID_STAG(hw_cqe) == 1) goto next_cqe; /* * Eat completions for unsignaled read WRs. */ if (!qhp->wq.sq.oldest_read->signaled) { advance_oldest_read(&qhp->wq); goto next_cqe; } /* * Don't write to the HWCQ, create a new read req CQE * in local memory and move it into the swcq. */ create_read_req_cqe(&qhp->wq, hw_cqe, &read_cqe); hw_cqe = &read_cqe; advance_oldest_read(&qhp->wq); } /* if its a SQ completion, then do the magic to move all the * unsignaled and now in-order completions into the swcq. */ if (SQ_TYPE(hw_cqe)) { swsqe = &qhp->wq.sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)]; swsqe->cqe = *hw_cqe; swsqe->complete = 1; flush_completed_wrs(&qhp->wq, &chp->cq); } else { swcqe = &chp->cq.sw_queue[chp->cq.sw_pidx]; *swcqe = *hw_cqe; swcqe->header |= cpu_to_be32(CQE_SWCQE_V(1)); t4_swcq_produce(&chp->cq); } next_cqe: t4_hwcq_consume(&chp->cq); ret = t4_next_hw_cqe(&chp->cq, &hw_cqe); if (qhp && flush_qhp != qhp) spin_unlock(&qhp->lock); } } static int cqe_completes_wr(struct t4_cqe *cqe, struct t4_wq *wq) { if (DRAIN_CQE(cqe)) { WARN_ONCE(1, "Unexpected DRAIN CQE qp id %u!\n", wq->sq.qid); return 0; } if (CQE_OPCODE(cqe) == FW_RI_TERMINATE) return 0; if ((CQE_OPCODE(cqe) == FW_RI_RDMA_WRITE) && RQ_TYPE(cqe)) return 0; if ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) && SQ_TYPE(cqe)) return 0; if (CQE_SEND_OPCODE(cqe) && RQ_TYPE(cqe) && t4_rq_empty(wq)) return 0; return 1; } void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count) { struct t4_cqe *cqe; u32 ptr; *count = 0; pr_debug("count zero %d\n", *count); ptr = cq->sw_cidx; while (ptr != cq->sw_pidx) { cqe = &cq->sw_queue[ptr]; if (RQ_TYPE(cqe) && (CQE_OPCODE(cqe) != FW_RI_READ_RESP) && (CQE_QPID(cqe) == wq->sq.qid) && cqe_completes_wr(cqe, wq)) (*count)++; if (++ptr == cq->size) ptr = 0; } pr_debug("cq %p count %d\n", cq, *count); } static void post_pending_srq_wrs(struct t4_srq *srq) { struct t4_srq_pending_wr *pwr; u16 idx = 0; while (srq->pending_in_use) { pwr = &srq->pending_wrs[srq->pending_cidx]; srq->sw_rq[srq->pidx].wr_id = pwr->wr_id; srq->sw_rq[srq->pidx].valid = 1; pr_debug("%s posting pending cidx %u pidx %u wq_pidx %u in_use %u rq_size %u wr_id %llx\n", __func__, srq->cidx, srq->pidx, srq->wq_pidx, srq->in_use, srq->size, (unsigned long long)pwr->wr_id); c4iw_copy_wr_to_srq(srq, &pwr->wqe, pwr->len16); t4_srq_consume_pending_wr(srq); t4_srq_produce(srq, pwr->len16); idx += DIV_ROUND_UP(pwr->len16 * 16, T4_EQ_ENTRY_SIZE); } if (idx) { t4_ring_srq_db(srq, idx, pwr->len16, &pwr->wqe); srq->queue[srq->size].status.host_wq_pidx = srq->wq_pidx; } } static u64 reap_srq_cqe(struct t4_cqe *hw_cqe, struct t4_srq *srq) { int rel_idx = CQE_ABS_RQE_IDX(hw_cqe) - srq->rqt_abs_idx; u64 wr_id; srq->sw_rq[rel_idx].valid = 0; wr_id = srq->sw_rq[rel_idx].wr_id; if (rel_idx == srq->cidx) { pr_debug("%s in order cqe rel_idx %u cidx %u pidx %u wq_pidx %u in_use %u rq_size %u wr_id %llx\n", __func__, rel_idx, srq->cidx, srq->pidx, srq->wq_pidx, srq->in_use, srq->size, (unsigned long long)srq->sw_rq[rel_idx].wr_id); t4_srq_consume(srq); while (srq->ooo_count && !srq->sw_rq[srq->cidx].valid) { pr_debug("%s eat ooo cidx %u pidx %u wq_pidx %u in_use %u rq_size %u ooo_count %u wr_id %llx\n", __func__, srq->cidx, srq->pidx, srq->wq_pidx, srq->in_use, srq->size, srq->ooo_count, (unsigned long long) srq->sw_rq[srq->cidx].wr_id); t4_srq_consume_ooo(srq); } if (srq->ooo_count == 0 && srq->pending_in_use) post_pending_srq_wrs(srq); } else { pr_debug("%s ooo cqe rel_idx %u cidx %u pidx %u wq_pidx %u in_use %u rq_size %u ooo_count %u wr_id %llx\n", __func__, rel_idx, srq->cidx, srq->pidx, srq->wq_pidx, srq->in_use, srq->size, srq->ooo_count, (unsigned long long)srq->sw_rq[rel_idx].wr_id); t4_srq_produce_ooo(srq); } return wr_id; } /* * poll_cq * * Caller must: * check the validity of the first CQE, * supply the wq assicated with the qpid. * * credit: cq credit to return to sge. * cqe_flushed: 1 iff the CQE is flushed. * cqe: copy of the polled CQE. * * return value: * 0 CQE returned ok. * -EAGAIN CQE skipped, try again. * -EOVERFLOW CQ overflow detected. */ static int poll_cq(struct t4_wq *wq, struct t4_cq *cq, struct t4_cqe *cqe, u8 *cqe_flushed, u64 *cookie, u32 *credit, struct t4_srq *srq) { int ret = 0; struct t4_cqe *hw_cqe, read_cqe; *cqe_flushed = 0; *credit = 0; ret = t4_next_cqe(cq, &hw_cqe); if (ret) return ret; pr_debug("CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n", CQE_OVFBIT(hw_cqe), CQE_QPID(hw_cqe), CQE_GENBIT(hw_cqe), CQE_TYPE(hw_cqe), CQE_STATUS(hw_cqe), CQE_OPCODE(hw_cqe), CQE_LEN(hw_cqe), CQE_WRID_HI(hw_cqe), CQE_WRID_LOW(hw_cqe)); /* * skip cqe's not affiliated with a QP. */ if (wq == NULL) { ret = -EAGAIN; goto skip_cqe; } /* * skip hw cqe's if the wq is flushed. */ if (wq->flushed && !SW_CQE(hw_cqe)) { ret = -EAGAIN; goto skip_cqe; } /* * skip TERMINATE cqes... */ if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) { ret = -EAGAIN; goto skip_cqe; } /* * Special cqe for drain WR completions... */ if (DRAIN_CQE(hw_cqe)) { *cookie = CQE_DRAIN_COOKIE(hw_cqe); *cqe = *hw_cqe; goto skip_cqe; } /* * Gotta tweak READ completions: * 1) the cqe doesn't contain the sq_wptr from the wr. * 2) opcode not reflected from the wr. * 3) read_len not reflected from the wr. * 4) cq_type is RQ_TYPE not SQ_TYPE. */ if (RQ_TYPE(hw_cqe) && (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP)) { /* If we have reached here because of async * event or other error, and have egress error * then drop */ if (CQE_TYPE(hw_cqe) == 1) { if (CQE_STATUS(hw_cqe)) t4_set_wq_in_error(wq, 0); ret = -EAGAIN; goto skip_cqe; } /* If this is an unsolicited read response, then the read * was generated by the kernel driver as part of peer-2-peer * connection setup. So ignore the completion. */ if (CQE_WRID_STAG(hw_cqe) == 1) { if (CQE_STATUS(hw_cqe)) t4_set_wq_in_error(wq, 0); ret = -EAGAIN; goto skip_cqe; } /* * Eat completions for unsignaled read WRs. */ if (!wq->sq.oldest_read->signaled) { advance_oldest_read(wq); ret = -EAGAIN; goto skip_cqe; } /* * Don't write to the HWCQ, so create a new read req CQE * in local memory. */ create_read_req_cqe(wq, hw_cqe, &read_cqe); hw_cqe = &read_cqe; advance_oldest_read(wq); } if (CQE_STATUS(hw_cqe) || t4_wq_in_error(wq)) { *cqe_flushed = (CQE_STATUS(hw_cqe) == T4_ERR_SWFLUSH); t4_set_wq_in_error(wq, 0); } /* * RECV completion. */ if (RQ_TYPE(hw_cqe)) { /* * HW only validates 4 bits of MSN. So we must validate that * the MSN in the SEND is the next expected MSN. If its not, * then we complete this with T4_ERR_MSN and mark the wq in * error. */ if (unlikely(!CQE_STATUS(hw_cqe) && CQE_WRID_MSN(hw_cqe) != wq->rq.msn)) { t4_set_wq_in_error(wq, 0); hw_cqe->header |= cpu_to_be32(CQE_STATUS_V(T4_ERR_MSN)); } goto proc_cqe; } /* * If we get here its a send completion. * * Handle out of order completion. These get stuffed * in the SW SQ. Then the SW SQ is walked to move any * now in-order completions into the SW CQ. This handles * 2 cases: * 1) reaping unsignaled WRs when the first subsequent * signaled WR is completed. * 2) out of order read completions. */ if (!SW_CQE(hw_cqe) && (CQE_WRID_SQ_IDX(hw_cqe) != wq->sq.cidx)) { struct t4_swsqe *swsqe; pr_debug("out of order completion going in sw_sq at idx %u\n", CQE_WRID_SQ_IDX(hw_cqe)); swsqe = &wq->sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)]; swsqe->cqe = *hw_cqe; swsqe->complete = 1; ret = -EAGAIN; goto flush_wq; } proc_cqe: *cqe = *hw_cqe; /* * Reap the associated WR(s) that are freed up with this * completion. */ if (SQ_TYPE(hw_cqe)) { int idx = CQE_WRID_SQ_IDX(hw_cqe); /* * Account for any unsignaled completions completed by * this signaled completion. In this case, cidx points * to the first unsignaled one, and idx points to the * signaled one. So adjust in_use based on this delta. * if this is not completing any unsigned wrs, then the * delta will be 0. Handle wrapping also! */ if (idx < wq->sq.cidx) wq->sq.in_use -= wq->sq.size + idx - wq->sq.cidx; else wq->sq.in_use -= idx - wq->sq.cidx; wq->sq.cidx = (uint16_t)idx; pr_debug("completing sq idx %u\n", wq->sq.cidx); *cookie = wq->sq.sw_sq[wq->sq.cidx].wr_id; if (c4iw_wr_log) c4iw_log_wr_stats(wq, hw_cqe); t4_sq_consume(wq); } else { if (!srq) { pr_debug("completing rq idx %u\n", wq->rq.cidx); *cookie = wq->rq.sw_rq[wq->rq.cidx].wr_id; if (c4iw_wr_log) c4iw_log_wr_stats(wq, hw_cqe); t4_rq_consume(wq); } else { *cookie = reap_srq_cqe(hw_cqe, srq); } wq->rq.msn++; goto skip_cqe; } flush_wq: /* * Flush any completed cqes that are now in-order. */ flush_completed_wrs(wq, cq); skip_cqe: if (SW_CQE(hw_cqe)) { pr_debug("cq %p cqid 0x%x skip sw cqe cidx %u\n", cq, cq->cqid, cq->sw_cidx); t4_swcq_consume(cq); } else { pr_debug("cq %p cqid 0x%x skip hw cqe cidx %u\n", cq, cq->cqid, cq->cidx); t4_hwcq_consume(cq); } return ret; } static int __c4iw_poll_cq_one(struct c4iw_cq *chp, struct c4iw_qp *qhp, struct ib_wc *wc, struct c4iw_srq *srq) { struct t4_cqe cqe; struct t4_wq *wq = qhp ? &qhp->wq : NULL; u32 credit = 0; u8 cqe_flushed; u64 cookie = 0; int ret; ret = poll_cq(wq, &(chp->cq), &cqe, &cqe_flushed, &cookie, &credit, srq ? &srq->wq : NULL); if (ret) goto out; wc->wr_id = cookie; wc->qp = &qhp->ibqp; wc->vendor_err = CQE_STATUS(&cqe); wc->wc_flags = 0; /* * Simulate a SRQ_LIMIT_REACHED HW notification if required. */ if (srq && !(srq->flags & T4_SRQ_LIMIT_SUPPORT) && srq->armed && srq->wq.in_use < srq->srq_limit) c4iw_dispatch_srq_limit_reached_event(srq); pr_debug("qpid 0x%x type %d opcode %d status 0x%x len %u wrid hi 0x%x lo 0x%x cookie 0x%llx\n", CQE_QPID(&cqe), CQE_TYPE(&cqe), CQE_OPCODE(&cqe), CQE_STATUS(&cqe), CQE_LEN(&cqe), CQE_WRID_HI(&cqe), CQE_WRID_LOW(&cqe), (unsigned long long)cookie); if (CQE_TYPE(&cqe) == 0) { if (!CQE_STATUS(&cqe)) wc->byte_len = CQE_LEN(&cqe); else wc->byte_len = 0; switch (CQE_OPCODE(&cqe)) { case FW_RI_SEND: wc->opcode = IB_WC_RECV; break; case FW_RI_SEND_WITH_INV: case FW_RI_SEND_WITH_SE_INV: wc->opcode = IB_WC_RECV; wc->ex.invalidate_rkey = CQE_WRID_STAG(&cqe); wc->wc_flags |= IB_WC_WITH_INVALIDATE; c4iw_invalidate_mr(qhp->rhp, wc->ex.invalidate_rkey); break; case FW_RI_WRITE_IMMEDIATE: wc->opcode = IB_WC_RECV_RDMA_WITH_IMM; wc->ex.imm_data = CQE_IMM_DATA(&cqe); wc->wc_flags |= IB_WC_WITH_IMM; break; default: pr_err("Unexpected opcode %d in the CQE received for QPID=0x%0x\n", CQE_OPCODE(&cqe), CQE_QPID(&cqe)); ret = -EINVAL; goto out; } } else { switch (CQE_OPCODE(&cqe)) { case FW_RI_WRITE_IMMEDIATE: case FW_RI_RDMA_WRITE: wc->opcode = IB_WC_RDMA_WRITE; break; case FW_RI_READ_REQ: wc->opcode = IB_WC_RDMA_READ; wc->byte_len = CQE_LEN(&cqe); break; case FW_RI_SEND_WITH_INV: case FW_RI_SEND_WITH_SE_INV: wc->opcode = IB_WC_SEND; wc->wc_flags |= IB_WC_WITH_INVALIDATE; break; case FW_RI_SEND: case FW_RI_SEND_WITH_SE: wc->opcode = IB_WC_SEND; break; case FW_RI_LOCAL_INV: wc->opcode = IB_WC_LOCAL_INV; break; case FW_RI_FAST_REGISTER: wc->opcode = IB_WC_REG_MR; /* Invalidate the MR if the fastreg failed */ if (CQE_STATUS(&cqe) != T4_ERR_SUCCESS) c4iw_invalidate_mr(qhp->rhp, CQE_WRID_FR_STAG(&cqe)); break; default: pr_err("Unexpected opcode %d in the CQE received for QPID=0x%0x\n", CQE_OPCODE(&cqe), CQE_QPID(&cqe)); ret = -EINVAL; goto out; } } if (cqe_flushed) wc->status = IB_WC_WR_FLUSH_ERR; else { switch (CQE_STATUS(&cqe)) { case T4_ERR_SUCCESS: wc->status = IB_WC_SUCCESS; break; case T4_ERR_STAG: wc->status = IB_WC_LOC_ACCESS_ERR; break; case T4_ERR_PDID: wc->status = IB_WC_LOC_PROT_ERR; break; case T4_ERR_QPID: case T4_ERR_ACCESS: wc->status = IB_WC_LOC_ACCESS_ERR; break; case T4_ERR_WRAP: wc->status = IB_WC_GENERAL_ERR; break; case T4_ERR_BOUND: wc->status = IB_WC_LOC_LEN_ERR; break; case T4_ERR_INVALIDATE_SHARED_MR: case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND: wc->status = IB_WC_MW_BIND_ERR; break; case T4_ERR_CRC: case T4_ERR_MARKER: case T4_ERR_PDU_LEN_ERR: case T4_ERR_OUT_OF_RQE: case T4_ERR_DDP_VERSION: case T4_ERR_RDMA_VERSION: case T4_ERR_DDP_QUEUE_NUM: case T4_ERR_MSN: case T4_ERR_TBIT: case T4_ERR_MO: case T4_ERR_MSN_RANGE: case T4_ERR_IRD_OVERFLOW: case T4_ERR_OPCODE: case T4_ERR_INTERNAL_ERR: wc->status = IB_WC_FATAL_ERR; break; case T4_ERR_SWFLUSH: wc->status = IB_WC_WR_FLUSH_ERR; break; default: pr_err("Unexpected cqe_status 0x%x for QPID=0x%0x\n", CQE_STATUS(&cqe), CQE_QPID(&cqe)); wc->status = IB_WC_FATAL_ERR; } } out: return ret; } /* * Get one cq entry from c4iw and map it to openib. * * Returns: * 0 cqe returned * -ENODATA EMPTY; * -EAGAIN caller must try again * any other -errno fatal error */ static int c4iw_poll_cq_one(struct c4iw_cq *chp, struct ib_wc *wc) { struct c4iw_srq *srq = NULL; struct c4iw_qp *qhp = NULL; struct t4_cqe *rd_cqe; int ret; ret = t4_next_cqe(&chp->cq, &rd_cqe); if (ret) return ret; qhp = get_qhp(chp->rhp, CQE_QPID(rd_cqe)); if (qhp) { spin_lock(&qhp->lock); srq = qhp->srq; if (srq) spin_lock(&srq->lock); ret = __c4iw_poll_cq_one(chp, qhp, wc, srq); spin_unlock(&qhp->lock); if (srq) spin_unlock(&srq->lock); } else { ret = __c4iw_poll_cq_one(chp, NULL, wc, NULL); } return ret; } int c4iw_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc) { struct c4iw_cq *chp; unsigned long flags; int npolled; int err = 0; chp = to_c4iw_cq(ibcq); spin_lock_irqsave(&chp->lock, flags); for (npolled = 0; npolled < num_entries; ++npolled) { do { err = c4iw_poll_cq_one(chp, wc + npolled); } while (err == -EAGAIN); if (err) break; } spin_unlock_irqrestore(&chp->lock, flags); return !err || err == -ENODATA ? npolled : err; } void c4iw_cq_rem_ref(struct c4iw_cq *chp) { if (refcount_dec_and_test(&chp->refcnt)) complete(&chp->cq_rel_comp); } int c4iw_destroy_cq(struct ib_cq *ib_cq, struct ib_udata *udata) { struct c4iw_cq *chp; struct c4iw_ucontext *ucontext; pr_debug("ib_cq %p\n", ib_cq); chp = to_c4iw_cq(ib_cq); xa_erase_irq(&chp->rhp->cqs, chp->cq.cqid); c4iw_cq_rem_ref(chp); wait_for_completion(&chp->cq_rel_comp); ucontext = rdma_udata_to_drv_context(udata, struct c4iw_ucontext, ibucontext); destroy_cq(&chp->rhp->rdev, &chp->cq, ucontext ? &ucontext->uctx : &chp->cq.rdev->uctx, chp->destroy_skb, chp->wr_waitp); c4iw_put_wr_wait(chp->wr_waitp); return 0; } int c4iw_create_cq(struct ib_cq *ibcq, const struct ib_cq_init_attr *attr, struct ib_udata *udata) { struct ib_device *ibdev = ibcq->device; int entries = attr->cqe; int vector = attr->comp_vector; struct c4iw_dev *rhp = to_c4iw_dev(ibcq->device); struct c4iw_cq *chp = to_c4iw_cq(ibcq); struct c4iw_create_cq ucmd; struct c4iw_create_cq_resp uresp; int ret, wr_len; size_t memsize, hwentries; struct c4iw_mm_entry *mm, *mm2; struct c4iw_ucontext *ucontext = rdma_udata_to_drv_context( udata, struct c4iw_ucontext, ibucontext); pr_debug("ib_dev %p entries %d\n", ibdev, entries); if (attr->flags) return -EOPNOTSUPP; if (entries < 1 || entries > ibdev->attrs.max_cqe) return -EINVAL; if (vector >= rhp->rdev.lldi.nciq) return -EINVAL; if (udata) { if (udata->inlen < sizeof(ucmd)) ucontext->is_32b_cqe = 1; } chp->wr_waitp = c4iw_alloc_wr_wait(GFP_KERNEL); if (!chp->wr_waitp) { ret = -ENOMEM; goto err_free_chp; } c4iw_init_wr_wait(chp->wr_waitp); wr_len = sizeof(struct fw_ri_res_wr) + sizeof(struct fw_ri_res); chp->destroy_skb = alloc_skb(wr_len, GFP_KERNEL); if (!chp->destroy_skb) { ret = -ENOMEM; goto err_free_wr_wait; } /* account for the status page. */ entries++; /* IQ needs one extra entry to differentiate full vs empty. */ entries++; /* * entries must be multiple of 16 for HW. */ entries = roundup(entries, 16); /* * Make actual HW queue 2x to avoid cdix_inc overflows. */ hwentries = min(entries * 2, rhp->rdev.hw_queue.t4_max_iq_size); /* * Make HW queue at least 64 entries so GTS updates aren't too * frequent. */ if (hwentries < 64) hwentries = 64; memsize = hwentries * ((ucontext && ucontext->is_32b_cqe) ? (sizeof(*chp->cq.queue) / 2) : sizeof(*chp->cq.queue)); /* * memsize must be a multiple of the page size if its a user cq. */ if (udata) memsize = roundup(memsize, PAGE_SIZE); chp->cq.size = hwentries; chp->cq.memsize = memsize; chp->cq.vector = vector; ret = create_cq(&rhp->rdev, &chp->cq, ucontext ? &ucontext->uctx : &rhp->rdev.uctx, chp->wr_waitp); if (ret) goto err_free_skb; chp->rhp = rhp; chp->cq.size--; /* status page */ chp->ibcq.cqe = entries - 2; spin_lock_init(&chp->lock); spin_lock_init(&chp->comp_handler_lock); refcount_set(&chp->refcnt, 1); init_completion(&chp->cq_rel_comp); ret = xa_insert_irq(&rhp->cqs, chp->cq.cqid, chp, GFP_KERNEL); if (ret) goto err_destroy_cq; if (ucontext) { ret = -ENOMEM; mm = kmalloc(sizeof(*mm), GFP_KERNEL); if (!mm) goto err_remove_handle; mm2 = kmalloc(sizeof(*mm2), GFP_KERNEL); if (!mm2) goto err_free_mm; memset(&uresp, 0, sizeof(uresp)); uresp.qid_mask = rhp->rdev.cqmask; uresp.cqid = chp->cq.cqid; uresp.size = chp->cq.size; uresp.memsize = chp->cq.memsize; spin_lock(&ucontext->mmap_lock); uresp.key = ucontext->key; ucontext->key += PAGE_SIZE; uresp.gts_key = ucontext->key; ucontext->key += PAGE_SIZE; /* communicate to the userspace that * kernel driver supports 64B CQE */ uresp.flags |= C4IW_64B_CQE; spin_unlock(&ucontext->mmap_lock); ret = ib_copy_to_udata(udata, &uresp, ucontext->is_32b_cqe ? sizeof(uresp) - sizeof(uresp.flags) : sizeof(uresp)); if (ret) goto err_free_mm2; mm->key = uresp.key; mm->addr = virt_to_phys(chp->cq.queue); mm->len = chp->cq.memsize; insert_mmap(ucontext, mm); mm2->key = uresp.gts_key; mm2->addr = chp->cq.bar2_pa; mm2->len = PAGE_SIZE; insert_mmap(ucontext, mm2); } pr_debug("cqid 0x%0x chp %p size %u memsize %zu, dma_addr %pad\n", chp->cq.cqid, chp, chp->cq.size, chp->cq.memsize, &chp->cq.dma_addr); return 0; err_free_mm2: kfree(mm2); err_free_mm: kfree(mm); err_remove_handle: xa_erase_irq(&rhp->cqs, chp->cq.cqid); err_destroy_cq: destroy_cq(&chp->rhp->rdev, &chp->cq, ucontext ? &ucontext->uctx : &rhp->rdev.uctx, chp->destroy_skb, chp->wr_waitp); err_free_skb: kfree_skb(chp->destroy_skb); err_free_wr_wait: c4iw_put_wr_wait(chp->wr_waitp); err_free_chp: return ret; } int c4iw_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags) { struct c4iw_cq *chp; int ret = 0; unsigned long flag; chp = to_c4iw_cq(ibcq); spin_lock_irqsave(&chp->lock, flag); t4_arm_cq(&chp->cq, (flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED); if (flags & IB_CQ_REPORT_MISSED_EVENTS) ret = t4_cq_notempty(&chp->cq); spin_unlock_irqrestore(&chp->lock, flag); return ret; } void c4iw_flush_srqidx(struct c4iw_qp *qhp, u32 srqidx) { struct c4iw_cq *rchp = to_c4iw_cq(qhp->ibqp.recv_cq); unsigned long flag; /* locking heirarchy: cq lock first, then qp lock. */ spin_lock_irqsave(&rchp->lock, flag); spin_lock(&qhp->lock); /* create a SRQ RECV CQE for srqidx */ insert_recv_cqe(&qhp->wq, &rchp->cq, srqidx); spin_unlock(&qhp->lock); spin_unlock_irqrestore(&rchp->lock, flag); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1