Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Artemy Kovalyov | 1880 | 23.06% | 18 | 12.41% |
Haggai Eran | 1691 | 20.75% | 8 | 5.52% |
Jason Gunthorpe | 1236 | 15.16% | 32 | 22.07% |
Saeed Mahameed | 1061 | 13.02% | 8 | 5.52% |
Moni Shoua | 927 | 11.37% | 19 | 13.10% |
Yishai Hadas | 299 | 3.67% | 7 | 4.83% |
Jianxin Xiong | 258 | 3.17% | 1 | 0.69% |
Leon Romanovsky | 167 | 2.05% | 10 | 6.90% |
Eli Cohen | 129 | 1.58% | 1 | 0.69% |
Maor Gottlieb | 82 | 1.01% | 4 | 2.76% |
Yuval Avnery | 78 | 0.96% | 2 | 1.38% |
Shay Drory | 73 | 0.90% | 2 | 1.38% |
Michael Guralnik | 70 | 0.86% | 5 | 3.45% |
Aharon Landau | 62 | 0.76% | 9 | 6.21% |
Erez Alfasi | 32 | 0.39% | 1 | 0.69% |
Sagi Grimberg | 23 | 0.28% | 2 | 1.38% |
Majd Dibbiny | 20 | 0.25% | 1 | 0.69% |
Or Har-Toov | 15 | 0.18% | 2 | 1.38% |
Danit Goldberg | 10 | 0.12% | 1 | 0.69% |
Daniel Jurgens | 7 | 0.09% | 2 | 1.38% |
Jérôme Glisse | 7 | 0.09% | 2 | 1.38% |
Huy Nguyen | 5 | 0.06% | 1 | 0.69% |
Matan Barak | 5 | 0.06% | 1 | 0.69% |
Kamal Heib | 4 | 0.05% | 1 | 0.69% |
Matthew Wilcox | 4 | 0.05% | 1 | 0.69% |
Jérémy Lefaure | 3 | 0.04% | 1 | 0.69% |
Tariq Toukan | 1 | 0.01% | 1 | 0.69% |
Shiraz Saleem | 1 | 0.01% | 1 | 0.69% |
Jack Morgenstein | 1 | 0.01% | 1 | 0.69% |
Total | 8151 | 145 |
/* * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <rdma/ib_umem_odp.h> #include <linux/kernel.h> #include <linux/dma-buf.h> #include <linux/dma-resv.h> #include "mlx5_ib.h" #include "cmd.h" #include "umr.h" #include "qp.h" #include <linux/mlx5/eq.h> /* Contains the details of a pagefault. */ struct mlx5_pagefault { u32 bytes_committed; u32 token; u8 event_subtype; u8 type; union { /* Initiator or send message responder pagefault details. */ struct { /* Received packet size, only valid for responders. */ u32 packet_size; /* * Number of resource holding WQE, depends on type. */ u32 wq_num; /* * WQE index. Refers to either the send queue or * receive queue, according to event_subtype. */ u16 wqe_index; } wqe; /* RDMA responder pagefault details */ struct { u32 r_key; /* * Received packet size, minimal size page fault * resolution required for forward progress. */ u32 packet_size; u32 rdma_op_len; u64 rdma_va; } rdma; }; struct mlx5_ib_pf_eq *eq; struct work_struct work; }; #define MAX_PREFETCH_LEN (4*1024*1024U) /* Timeout in ms to wait for an active mmu notifier to complete when handling * a pagefault. */ #define MMU_NOTIFIER_TIMEOUT 1000 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT static u64 mlx5_imr_ksm_entries; static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries, struct mlx5_ib_mr *imr, int flags) { struct mlx5_klm *end = pklm + nentries; if (flags & MLX5_IB_UPD_XLT_ZAP) { for (; pklm != end; pklm++, idx++) { pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); pklm->key = mr_to_mdev(imr)->mkeys.null_mkey; pklm->va = 0; } return; } /* * The locking here is pretty subtle. Ideally the implicit_children * xarray would be protected by the umem_mutex, however that is not * possible. Instead this uses a weaker update-then-lock pattern: * * xa_store() * mutex_lock(umem_mutex) * mlx5r_umr_update_xlt() * mutex_unlock(umem_mutex) * destroy lkey * * ie any change the xarray must be followed by the locked update_xlt * before destroying. * * The umem_mutex provides the acquire/release semantic needed to make * the xa_store() visible to a racing thread. */ lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex); for (; pklm != end; pklm++, idx++) { struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx); pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); if (mtt) { pklm->key = cpu_to_be32(mtt->ibmr.lkey); pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE); } else { pklm->key = mr_to_mdev(imr)->mkeys.null_mkey; pklm->va = 0; } } } static u64 umem_dma_to_mtt(dma_addr_t umem_dma) { u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK; if (umem_dma & ODP_READ_ALLOWED_BIT) mtt_entry |= MLX5_IB_MTT_READ; if (umem_dma & ODP_WRITE_ALLOWED_BIT) mtt_entry |= MLX5_IB_MTT_WRITE; return mtt_entry; } static void populate_mtt(__be64 *pas, size_t idx, size_t nentries, struct mlx5_ib_mr *mr, int flags) { struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); dma_addr_t pa; size_t i; if (flags & MLX5_IB_UPD_XLT_ZAP) return; for (i = 0; i < nentries; i++) { pa = odp->dma_list[idx + i]; pas[i] = cpu_to_be64(umem_dma_to_mtt(pa)); } } void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries, struct mlx5_ib_mr *mr, int flags) { if (flags & MLX5_IB_UPD_XLT_INDIRECT) { populate_klm(xlt, idx, nentries, mr, flags); } else { populate_mtt(xlt, idx, nentries, mr, flags); } } /* * This must be called after the mr has been removed from implicit_children. * NOTE: The MR does not necessarily have to be * empty here, parallel page faults could have raced with the free process and * added pages to it. */ static void free_implicit_child_mr_work(struct work_struct *work) { struct mlx5_ib_mr *mr = container_of(work, struct mlx5_ib_mr, odp_destroy.work); struct mlx5_ib_mr *imr = mr->parent; struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); mlx5r_deref_wait_odp_mkey(&mr->mmkey); mutex_lock(&odp_imr->umem_mutex); mlx5r_umr_update_xlt(mr->parent, ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 1, 0, MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC); mutex_unlock(&odp_imr->umem_mutex); mlx5_ib_dereg_mr(&mr->ibmr, NULL); mlx5r_deref_odp_mkey(&imr->mmkey); } static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr) { struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; struct mlx5_ib_mr *imr = mr->parent; if (!refcount_inc_not_zero(&imr->mmkey.usecount)) return; xa_erase(&imr->implicit_children, idx); /* Freeing a MR is a sleeping operation, so bounce to a work queue */ INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work); queue_work(system_unbound_wq, &mr->odp_destroy.work); } static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni, const struct mmu_notifier_range *range, unsigned long cur_seq) { struct ib_umem_odp *umem_odp = container_of(mni, struct ib_umem_odp, notifier); struct mlx5_ib_mr *mr; const u64 umr_block_mask = MLX5_UMR_MTT_NUM_ENTRIES_ALIGNMENT - 1; u64 idx = 0, blk_start_idx = 0; u64 invalidations = 0; unsigned long start; unsigned long end; int in_block = 0; u64 addr; if (!mmu_notifier_range_blockable(range)) return false; mutex_lock(&umem_odp->umem_mutex); mmu_interval_set_seq(mni, cur_seq); /* * If npages is zero then umem_odp->private may not be setup yet. This * does not complete until after the first page is mapped for DMA. */ if (!umem_odp->npages) goto out; mr = umem_odp->private; start = max_t(u64, ib_umem_start(umem_odp), range->start); end = min_t(u64, ib_umem_end(umem_odp), range->end); /* * Iteration one - zap the HW's MTTs. The notifiers_count ensures that * while we are doing the invalidation, no page fault will attempt to * overwrite the same MTTs. Concurent invalidations might race us, * but they will write 0s as well, so no difference in the end result. */ for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) { idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; /* * Strive to write the MTTs in chunks, but avoid overwriting * non-existing MTTs. The huristic here can be improved to * estimate the cost of another UMR vs. the cost of bigger * UMR. */ if (umem_odp->dma_list[idx] & (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { if (!in_block) { blk_start_idx = idx; in_block = 1; } /* Count page invalidations */ invalidations += idx - blk_start_idx + 1; } else { u64 umr_offset = idx & umr_block_mask; if (in_block && umr_offset == 0) { mlx5r_umr_update_xlt(mr, blk_start_idx, idx - blk_start_idx, 0, MLX5_IB_UPD_XLT_ZAP | MLX5_IB_UPD_XLT_ATOMIC); in_block = 0; } } } if (in_block) mlx5r_umr_update_xlt(mr, blk_start_idx, idx - blk_start_idx + 1, 0, MLX5_IB_UPD_XLT_ZAP | MLX5_IB_UPD_XLT_ATOMIC); mlx5_update_odp_stats(mr, invalidations, invalidations); /* * We are now sure that the device will not access the * memory. We can safely unmap it, and mark it as dirty if * needed. */ ib_umem_odp_unmap_dma_pages(umem_odp, start, end); if (unlikely(!umem_odp->npages && mr->parent)) destroy_unused_implicit_child_mr(mr); out: mutex_unlock(&umem_odp->umem_mutex); return true; } const struct mmu_interval_notifier_ops mlx5_mn_ops = { .invalidate = mlx5_ib_invalidate_range, }; static void internal_fill_odp_caps(struct mlx5_ib_dev *dev) { struct ib_odp_caps *caps = &dev->odp_caps; memset(caps, 0, sizeof(*caps)); if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0)) return; caps->general_caps = IB_ODP_SUPPORT; if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) dev->odp_max_size = U64_MAX; else dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send)) caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive)) caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send)) caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive)) caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write)) caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read)) caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic)) caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive)) caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send)) caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND; if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive)) caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV; if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write)) caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE; if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read)) caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ; if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic)) caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive)) caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && MLX5_CAP_GEN(dev->mdev, null_mkey) && MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) && !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled)) caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; } static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, int error) { int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? pfault->wqe.wq_num : pfault->token; u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {}; int err; MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME); MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type); MLX5_SET(page_fault_resume_in, in, token, pfault->token); MLX5_SET(page_fault_resume_in, in, wq_number, wq_num); MLX5_SET(page_fault_resume_in, in, error, !!error); err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in); if (err) mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n", wq_num, err); } static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr, unsigned long idx) { struct mlx5_ib_dev *dev = mr_to_mdev(imr); struct ib_umem_odp *odp; struct mlx5_ib_mr *mr; struct mlx5_ib_mr *ret; int err; odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem), idx * MLX5_IMR_MTT_SIZE, MLX5_IMR_MTT_SIZE, &mlx5_mn_ops); if (IS_ERR(odp)) return ERR_CAST(odp); mr = mlx5_mr_cache_alloc(dev, imr->access_flags, MLX5_MKC_ACCESS_MODE_MTT, MLX5_IMR_MTT_ENTRIES); if (IS_ERR(mr)) { ib_umem_odp_release(odp); return mr; } mr->access_flags = imr->access_flags; mr->ibmr.pd = imr->ibmr.pd; mr->ibmr.device = &mr_to_mdev(imr)->ib_dev; mr->umem = &odp->umem; mr->ibmr.lkey = mr->mmkey.key; mr->ibmr.rkey = mr->mmkey.key; mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE; mr->parent = imr; odp->private = mr; /* * First refcount is owned by the xarray and second refconut * is returned to the caller. */ refcount_set(&mr->mmkey.usecount, 2); err = mlx5r_umr_update_xlt(mr, 0, MLX5_IMR_MTT_ENTRIES, PAGE_SHIFT, MLX5_IB_UPD_XLT_ZAP | MLX5_IB_UPD_XLT_ENABLE); if (err) { ret = ERR_PTR(err); goto out_mr; } xa_lock(&imr->implicit_children); ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr, GFP_KERNEL); if (unlikely(ret)) { if (xa_is_err(ret)) { ret = ERR_PTR(xa_err(ret)); goto out_lock; } /* * Another thread beat us to creating the child mr, use * theirs. */ refcount_inc(&ret->mmkey.usecount); goto out_lock; } xa_unlock(&imr->implicit_children); mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr); return mr; out_lock: xa_unlock(&imr->implicit_children); out_mr: mlx5_ib_dereg_mr(&mr->ibmr, NULL); return ret; } struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, int access_flags) { struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device); struct ib_umem_odp *umem_odp; struct mlx5_ib_mr *imr; int err; if (!mlx5r_umr_can_load_pas(dev, MLX5_IMR_MTT_ENTRIES * PAGE_SIZE)) return ERR_PTR(-EOPNOTSUPP); umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags); if (IS_ERR(umem_odp)) return ERR_CAST(umem_odp); imr = mlx5_mr_cache_alloc(dev, access_flags, MLX5_MKC_ACCESS_MODE_KSM, mlx5_imr_ksm_entries); if (IS_ERR(imr)) { ib_umem_odp_release(umem_odp); return imr; } imr->access_flags = access_flags; imr->ibmr.pd = &pd->ibpd; imr->ibmr.iova = 0; imr->umem = &umem_odp->umem; imr->ibmr.lkey = imr->mmkey.key; imr->ibmr.rkey = imr->mmkey.key; imr->ibmr.device = &dev->ib_dev; imr->is_odp_implicit = true; xa_init(&imr->implicit_children); err = mlx5r_umr_update_xlt(imr, 0, mlx5_imr_ksm_entries, MLX5_KSM_PAGE_SHIFT, MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ZAP | MLX5_IB_UPD_XLT_ENABLE); if (err) goto out_mr; err = mlx5r_store_odp_mkey(dev, &imr->mmkey); if (err) goto out_mr; mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr); return imr; out_mr: mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); mlx5_ib_dereg_mr(&imr->ibmr, NULL); return ERR_PTR(err); } void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr) { struct mlx5_ib_mr *mtt; unsigned long idx; /* * If this is an implicit MR it is already invalidated so we can just * delete the children mkeys. */ xa_for_each(&mr->implicit_children, idx, mtt) { xa_erase(&mr->implicit_children, idx); mlx5_ib_dereg_mr(&mtt->ibmr, NULL); } } #define MLX5_PF_FLAGS_DOWNGRADE BIT(1) #define MLX5_PF_FLAGS_SNAPSHOT BIT(2) #define MLX5_PF_FLAGS_ENABLE BIT(3) static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp, u64 user_va, size_t bcnt, u32 *bytes_mapped, u32 flags) { int page_shift, ret, np; bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE; u64 access_mask; u64 start_idx; bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT); u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC; if (flags & MLX5_PF_FLAGS_ENABLE) xlt_flags |= MLX5_IB_UPD_XLT_ENABLE; page_shift = odp->page_shift; start_idx = (user_va - ib_umem_start(odp)) >> page_shift; access_mask = ODP_READ_ALLOWED_BIT; if (odp->umem.writable && !downgrade) access_mask |= ODP_WRITE_ALLOWED_BIT; np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault); if (np < 0) return np; /* * No need to check whether the MTTs really belong to this MR, since * ib_umem_odp_map_dma_and_lock already checks this. */ ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags); mutex_unlock(&odp->umem_mutex); if (ret < 0) { if (ret != -EAGAIN) mlx5_ib_err(mr_to_mdev(mr), "Failed to update mkey page tables\n"); goto out; } if (bytes_mapped) { u32 new_mappings = (np << page_shift) - (user_va - round_down(user_va, 1 << page_shift)); *bytes_mapped += min_t(u32, new_mappings, bcnt); } return np << (page_shift - PAGE_SHIFT); out: return ret; } static int pagefault_implicit_mr(struct mlx5_ib_mr *imr, struct ib_umem_odp *odp_imr, u64 user_va, size_t bcnt, u32 *bytes_mapped, u32 flags) { unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT; unsigned long upd_start_idx = end_idx + 1; unsigned long upd_len = 0; unsigned long npages = 0; int err; int ret; if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE || mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt)) return -EFAULT; /* Fault each child mr that intersects with our interval. */ while (bcnt) { unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT; struct ib_umem_odp *umem_odp; struct mlx5_ib_mr *mtt; u64 len; xa_lock(&imr->implicit_children); mtt = xa_load(&imr->implicit_children, idx); if (unlikely(!mtt)) { xa_unlock(&imr->implicit_children); mtt = implicit_get_child_mr(imr, idx); if (IS_ERR(mtt)) { ret = PTR_ERR(mtt); goto out; } upd_start_idx = min(upd_start_idx, idx); upd_len = idx - upd_start_idx + 1; } else { refcount_inc(&mtt->mmkey.usecount); xa_unlock(&imr->implicit_children); } umem_odp = to_ib_umem_odp(mtt->umem); len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) - user_va; ret = pagefault_real_mr(mtt, umem_odp, user_va, len, bytes_mapped, flags); mlx5r_deref_odp_mkey(&mtt->mmkey); if (ret < 0) goto out; user_va += len; bcnt -= len; npages += ret; } ret = npages; /* * Any time the implicit_children are changed we must perform an * update of the xlt before exiting to ensure the HW and the * implicit_children remains synchronized. */ out: if (likely(!upd_len)) return ret; /* * Notice this is not strictly ordered right, the KSM is updated after * the implicit_children is updated, so a parallel page fault could * see a MR that is not yet visible in the KSM. This is similar to a * parallel page fault seeing a MR that is being concurrently removed * from the KSM. Both of these improbable situations are resolved * safely by resuming the HW and then taking another page fault. The * next pagefault handler will see the new information. */ mutex_lock(&odp_imr->umem_mutex); err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0, MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC); mutex_unlock(&odp_imr->umem_mutex); if (err) { mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n"); return err; } return ret; } static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt, u32 *bytes_mapped, u32 flags) { struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem); u32 xlt_flags = 0; int err; unsigned int page_size; if (flags & MLX5_PF_FLAGS_ENABLE) xlt_flags |= MLX5_IB_UPD_XLT_ENABLE; dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL); err = ib_umem_dmabuf_map_pages(umem_dmabuf); if (err) { dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv); return err; } page_size = mlx5_umem_find_best_pgsz(&umem_dmabuf->umem, mkc, log_page_size, 0, umem_dmabuf->umem.iova); if (unlikely(page_size < PAGE_SIZE)) { ib_umem_dmabuf_unmap_pages(umem_dmabuf); err = -EINVAL; } else { err = mlx5r_umr_update_mr_pas(mr, xlt_flags); } dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv); if (err) return err; if (bytes_mapped) *bytes_mapped += bcnt; return ib_umem_num_pages(mr->umem); } /* * Returns: * -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are * not accessible, or the MR is no longer valid. * -EAGAIN/-ENOMEM: The operation should be retried * * -EINVAL/others: General internal malfunction * >0: Number of pages mapped */ static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt, u32 *bytes_mapped, u32 flags) { struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); if (unlikely(io_virt < mr->ibmr.iova)) return -EFAULT; if (mr->umem->is_dmabuf) return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags); if (!odp->is_implicit_odp) { u64 user_va; if (check_add_overflow(io_virt - mr->ibmr.iova, (u64)odp->umem.address, &user_va)) return -EFAULT; if (unlikely(user_va >= ib_umem_end(odp) || ib_umem_end(odp) - user_va < bcnt)) return -EFAULT; return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped, flags); } return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped, flags); } int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr) { int ret; ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address, mr->umem->length, NULL, MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE); return ret >= 0 ? 0 : ret; } int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr) { int ret; ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL, MLX5_PF_FLAGS_ENABLE); return ret >= 0 ? 0 : ret; } struct pf_frame { struct pf_frame *next; u32 key; u64 io_virt; size_t bcnt; int depth; }; static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key) { if (!mmkey) return false; if (mmkey->type == MLX5_MKEY_MW || mmkey->type == MLX5_MKEY_INDIRECT_DEVX) return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key); return mmkey->key == key; } /* * Handle a single data segment in a page-fault WQE or RDMA region. * * Returns number of OS pages retrieved on success. The caller may continue to * the next data segment. * Can return the following error codes: * -EAGAIN to designate a temporary error. The caller will abort handling the * page fault and resolve it. * -EFAULT when there's an error mapping the requested pages. The caller will * abort the page fault handling. */ static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, struct ib_pd *pd, u32 key, u64 io_virt, size_t bcnt, u32 *bytes_committed, u32 *bytes_mapped) { int npages = 0, ret, i, outlen, cur_outlen = 0, depth = 0; struct pf_frame *head = NULL, *frame; struct mlx5_ib_mkey *mmkey; struct mlx5_ib_mr *mr; struct mlx5_klm *pklm; u32 *out = NULL; size_t offset; io_virt += *bytes_committed; bcnt -= *bytes_committed; next_mr: xa_lock(&dev->odp_mkeys); mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key)); if (!mmkey) { xa_unlock(&dev->odp_mkeys); mlx5_ib_dbg( dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", key); if (bytes_mapped) *bytes_mapped += bcnt; /* * The user could specify a SGL with multiple lkeys and only * some of them are ODP. Treat the non-ODP ones as fully * faulted. */ ret = 0; goto end; } refcount_inc(&mmkey->usecount); xa_unlock(&dev->odp_mkeys); if (!mkey_is_eq(mmkey, key)) { mlx5_ib_dbg(dev, "failed to find mkey %x\n", key); ret = -EFAULT; goto end; } switch (mmkey->type) { case MLX5_MKEY_MR: mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0); if (ret < 0) goto end; mlx5_update_odp_stats(mr, faults, ret); npages += ret; ret = 0; break; case MLX5_MKEY_MW: case MLX5_MKEY_INDIRECT_DEVX: if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) { mlx5_ib_dbg(dev, "indirection level exceeded\n"); ret = -EFAULT; goto end; } outlen = MLX5_ST_SZ_BYTES(query_mkey_out) + sizeof(*pklm) * (mmkey->ndescs - 2); if (outlen > cur_outlen) { kfree(out); out = kzalloc(outlen, GFP_KERNEL); if (!out) { ret = -ENOMEM; goto end; } cur_outlen = outlen; } pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out, bsf0_klm0_pas_mtt0_1); ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen); if (ret) goto end; offset = io_virt - MLX5_GET64(query_mkey_out, out, memory_key_mkey_entry.start_addr); for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) { if (offset >= be32_to_cpu(pklm->bcount)) { offset -= be32_to_cpu(pklm->bcount); continue; } frame = kzalloc(sizeof(*frame), GFP_KERNEL); if (!frame) { ret = -ENOMEM; goto end; } frame->key = be32_to_cpu(pklm->key); frame->io_virt = be64_to_cpu(pklm->va) + offset; frame->bcnt = min_t(size_t, bcnt, be32_to_cpu(pklm->bcount) - offset); frame->depth = depth + 1; frame->next = head; head = frame; bcnt -= frame->bcnt; offset = 0; } break; default: mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type); ret = -EFAULT; goto end; } if (head) { frame = head; head = frame->next; key = frame->key; io_virt = frame->io_virt; bcnt = frame->bcnt; depth = frame->depth; kfree(frame); mlx5r_deref_odp_mkey(mmkey); goto next_mr; } end: if (mmkey) mlx5r_deref_odp_mkey(mmkey); while (head) { frame = head; head = frame->next; kfree(frame); } kfree(out); *bytes_committed = 0; return ret ? ret : npages; } /* * Parse a series of data segments for page fault handling. * * @dev: Pointer to mlx5 IB device * @pfault: contains page fault information. * @wqe: points at the first data segment in the WQE. * @wqe_end: points after the end of the WQE. * @bytes_mapped: receives the number of bytes that the function was able to * map. This allows the caller to decide intelligently whether * enough memory was mapped to resolve the page fault * successfully (e.g. enough for the next MTU, or the entire * WQE). * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus * the committed bytes). * @receive_queue: receive WQE end of sg list * * Returns the number of pages loaded if positive, zero for an empty WQE, or a * negative error code. */ static int pagefault_data_segments(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, void *wqe, void *wqe_end, u32 *bytes_mapped, u32 *total_wqe_bytes, bool receive_queue) { int ret = 0, npages = 0; u64 io_virt; __be32 key; u32 byte_count; size_t bcnt; int inline_segment; if (bytes_mapped) *bytes_mapped = 0; if (total_wqe_bytes) *total_wqe_bytes = 0; while (wqe < wqe_end) { struct mlx5_wqe_data_seg *dseg = wqe; io_virt = be64_to_cpu(dseg->addr); key = dseg->lkey; byte_count = be32_to_cpu(dseg->byte_count); inline_segment = !!(byte_count & MLX5_INLINE_SEG); bcnt = byte_count & ~MLX5_INLINE_SEG; if (inline_segment) { bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, 16); } else { wqe += sizeof(*dseg); } /* receive WQE end of sg list. */ if (receive_queue && bcnt == 0 && key == dev->mkeys.terminate_scatter_list_mkey && io_virt == 0) break; if (!inline_segment && total_wqe_bytes) { *total_wqe_bytes += bcnt - min_t(size_t, bcnt, pfault->bytes_committed); } /* A zero length data segment designates a length of 2GB. */ if (bcnt == 0) bcnt = 1U << 31; if (inline_segment || bcnt <= pfault->bytes_committed) { pfault->bytes_committed -= min_t(size_t, bcnt, pfault->bytes_committed); continue; } ret = pagefault_single_data_segment(dev, NULL, be32_to_cpu(key), io_virt, bcnt, &pfault->bytes_committed, bytes_mapped); if (ret < 0) break; npages += ret; } return ret < 0 ? ret : npages; } /* * Parse initiator WQE. Advances the wqe pointer to point at the * scatter-gather list, and set wqe_end to the end of the WQE. */ static int mlx5_ib_mr_initiator_pfault_handler( struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) { struct mlx5_wqe_ctrl_seg *ctrl = *wqe; u16 wqe_index = pfault->wqe.wqe_index; struct mlx5_base_av *av; unsigned ds, opcode; u32 qpn = qp->trans_qp.base.mqp.qpn; ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; if (ds * MLX5_WQE_DS_UNITS > wqe_length) { mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", ds, wqe_length); return -EFAULT; } if (ds == 0) { mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", wqe_index, qpn); return -EFAULT; } *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; *wqe += sizeof(*ctrl); opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & MLX5_WQE_CTRL_OPCODE_MASK; if (qp->type == IB_QPT_XRC_INI) *wqe += sizeof(struct mlx5_wqe_xrc_seg); if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) { av = *wqe; if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV)) *wqe += sizeof(struct mlx5_av); else *wqe += sizeof(struct mlx5_base_av); } switch (opcode) { case MLX5_OPCODE_RDMA_WRITE: case MLX5_OPCODE_RDMA_WRITE_IMM: case MLX5_OPCODE_RDMA_READ: *wqe += sizeof(struct mlx5_wqe_raddr_seg); break; case MLX5_OPCODE_ATOMIC_CS: case MLX5_OPCODE_ATOMIC_FA: *wqe += sizeof(struct mlx5_wqe_raddr_seg); *wqe += sizeof(struct mlx5_wqe_atomic_seg); break; } return 0; } /* * Parse responder WQE and set wqe_end to the end of the WQE. */ static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev, struct mlx5_ib_srq *srq, void **wqe, void **wqe_end, int wqe_length) { int wqe_size = 1 << srq->msrq.wqe_shift; if (wqe_size > wqe_length) { mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); return -EFAULT; } *wqe_end = *wqe + wqe_size; *wqe += sizeof(struct mlx5_wqe_srq_next_seg); return 0; } static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev, struct mlx5_ib_qp *qp, void *wqe, void **wqe_end, int wqe_length) { struct mlx5_ib_wq *wq = &qp->rq; int wqe_size = 1 << wq->wqe_shift; if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) { mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); return -EFAULT; } if (wqe_size > wqe_length) { mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); return -EFAULT; } *wqe_end = wqe + wqe_size; return 0; } static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev, u32 wq_num, int pf_type) { struct mlx5_core_rsc_common *common = NULL; struct mlx5_core_srq *srq; switch (pf_type) { case MLX5_WQE_PF_TYPE_RMP: srq = mlx5_cmd_get_srq(dev, wq_num); if (srq) common = &srq->common; break; case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE: case MLX5_WQE_PF_TYPE_RESP: case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC: common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP); break; default: break; } return common; } static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res) { struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res; return to_mibqp(mqp); } static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res) { struct mlx5_core_srq *msrq = container_of(res, struct mlx5_core_srq, common); return to_mibsrq(msrq); } static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) { bool sq = pfault->type & MLX5_PFAULT_REQUESTOR; u16 wqe_index = pfault->wqe.wqe_index; void *wqe, *wqe_start = NULL, *wqe_end = NULL; u32 bytes_mapped, total_wqe_bytes; struct mlx5_core_rsc_common *res; int resume_with_error = 1; struct mlx5_ib_qp *qp; size_t bytes_copied; int ret = 0; res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type); if (!res) { mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num); return; } if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ && res->res != MLX5_RES_XSRQ) { mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", pfault->type); goto resolve_page_fault; } wqe_start = (void *)__get_free_page(GFP_KERNEL); if (!wqe_start) { mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); goto resolve_page_fault; } wqe = wqe_start; qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL; if (qp && sq) { ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE, &bytes_copied); if (ret) goto read_user; ret = mlx5_ib_mr_initiator_pfault_handler( dev, pfault, qp, &wqe, &wqe_end, bytes_copied); } else if (qp && !sq) { ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE, &bytes_copied); if (ret) goto read_user; ret = mlx5_ib_mr_responder_pfault_handler_rq( dev, qp, wqe, &wqe_end, bytes_copied); } else if (!qp) { struct mlx5_ib_srq *srq = res_to_srq(res); ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE, &bytes_copied); if (ret) goto read_user; ret = mlx5_ib_mr_responder_pfault_handler_srq( dev, srq, &wqe, &wqe_end, bytes_copied); } if (ret < 0 || wqe >= wqe_end) goto resolve_page_fault; ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped, &total_wqe_bytes, !sq); if (ret == -EAGAIN) goto out; if (ret < 0 || total_wqe_bytes > bytes_mapped) goto resolve_page_fault; out: ret = 0; resume_with_error = 0; read_user: if (ret) mlx5_ib_err( dev, "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n", ret, wqe_index, pfault->token); resolve_page_fault: mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", pfault->wqe.wq_num, resume_with_error, pfault->type); mlx5_core_res_put(res); free_page((unsigned long)wqe_start); } static int pages_in_range(u64 address, u32 length) { return (ALIGN(address + length, PAGE_SIZE) - (address & PAGE_MASK)) >> PAGE_SHIFT; } static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) { u64 address; u32 length; u32 prefetch_len = pfault->bytes_committed; int prefetch_activated = 0; u32 rkey = pfault->rdma.r_key; int ret; /* The RDMA responder handler handles the page fault in two parts. * First it brings the necessary pages for the current packet * (and uses the pfault context), and then (after resuming the QP) * prefetches more pages. The second operation cannot use the pfault * context and therefore uses the dummy_pfault context allocated on * the stack */ pfault->rdma.rdma_va += pfault->bytes_committed; pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, pfault->rdma.rdma_op_len); pfault->bytes_committed = 0; address = pfault->rdma.rdma_va; length = pfault->rdma.rdma_op_len; /* For some operations, the hardware cannot tell the exact message * length, and in those cases it reports zero. Use prefetch * logic. */ if (length == 0) { prefetch_activated = 1; length = pfault->rdma.packet_size; prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); } ret = pagefault_single_data_segment(dev, NULL, rkey, address, length, &pfault->bytes_committed, NULL); if (ret == -EAGAIN) { /* We're racing with an invalidation, don't prefetch */ prefetch_activated = 0; } else if (ret < 0 || pages_in_range(address, length) > ret) { mlx5_ib_page_fault_resume(dev, pfault, 1); if (ret != -ENOENT) mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n", ret, pfault->token, pfault->type); return; } mlx5_ib_page_fault_resume(dev, pfault, 0); mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n", pfault->token, pfault->type, prefetch_activated); /* At this point, there might be a new pagefault already arriving in * the eq, switch to the dummy pagefault for the rest of the * processing. We're still OK with the objects being alive as the * work-queue is being fenced. */ if (prefetch_activated) { u32 bytes_committed = 0; ret = pagefault_single_data_segment(dev, NULL, rkey, address, prefetch_len, &bytes_committed, NULL); if (ret < 0 && ret != -EAGAIN) { mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n", ret, pfault->token, address, prefetch_len); } } } static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) { u8 event_subtype = pfault->event_subtype; switch (event_subtype) { case MLX5_PFAULT_SUBTYPE_WQE: mlx5_ib_mr_wqe_pfault_handler(dev, pfault); break; case MLX5_PFAULT_SUBTYPE_RDMA: mlx5_ib_mr_rdma_pfault_handler(dev, pfault); break; default: mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", event_subtype); mlx5_ib_page_fault_resume(dev, pfault, 1); } } static void mlx5_ib_eqe_pf_action(struct work_struct *work) { struct mlx5_pagefault *pfault = container_of(work, struct mlx5_pagefault, work); struct mlx5_ib_pf_eq *eq = pfault->eq; mlx5_ib_pfault(eq->dev, pfault); mempool_free(pfault, eq->pool); } static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq) { struct mlx5_eqe_page_fault *pf_eqe; struct mlx5_pagefault *pfault; struct mlx5_eqe *eqe; int cc = 0; while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) { pfault = mempool_alloc(eq->pool, GFP_ATOMIC); if (!pfault) { schedule_work(&eq->work); break; } pf_eqe = &eqe->data.page_fault; pfault->event_subtype = eqe->sub_type; pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed); mlx5_ib_dbg(eq->dev, "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n", eqe->sub_type, pfault->bytes_committed); switch (eqe->sub_type) { case MLX5_PFAULT_SUBTYPE_RDMA: /* RDMA based event */ pfault->type = be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24; pfault->token = be32_to_cpu(pf_eqe->rdma.pftype_token) & MLX5_24BIT_MASK; pfault->rdma.r_key = be32_to_cpu(pf_eqe->rdma.r_key); pfault->rdma.packet_size = be16_to_cpu(pf_eqe->rdma.packet_length); pfault->rdma.rdma_op_len = be32_to_cpu(pf_eqe->rdma.rdma_op_len); pfault->rdma.rdma_va = be64_to_cpu(pf_eqe->rdma.rdma_va); mlx5_ib_dbg(eq->dev, "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n", pfault->type, pfault->token, pfault->rdma.r_key); mlx5_ib_dbg(eq->dev, "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n", pfault->rdma.rdma_op_len, pfault->rdma.rdma_va); break; case MLX5_PFAULT_SUBTYPE_WQE: /* WQE based event */ pfault->type = (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7; pfault->token = be32_to_cpu(pf_eqe->wqe.token); pfault->wqe.wq_num = be32_to_cpu(pf_eqe->wqe.pftype_wq) & MLX5_24BIT_MASK; pfault->wqe.wqe_index = be16_to_cpu(pf_eqe->wqe.wqe_index); pfault->wqe.packet_size = be16_to_cpu(pf_eqe->wqe.packet_length); mlx5_ib_dbg(eq->dev, "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n", pfault->type, pfault->token, pfault->wqe.wq_num, pfault->wqe.wqe_index); break; default: mlx5_ib_warn(eq->dev, "Unsupported page fault event sub-type: 0x%02hhx\n", eqe->sub_type); /* Unsupported page faults should still be * resolved by the page fault handler */ } pfault->eq = eq; INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action); queue_work(eq->wq, &pfault->work); cc = mlx5_eq_update_cc(eq->core, ++cc); } mlx5_eq_update_ci(eq->core, cc, 1); } static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type, void *data) { struct mlx5_ib_pf_eq *eq = container_of(nb, struct mlx5_ib_pf_eq, irq_nb); unsigned long flags; if (spin_trylock_irqsave(&eq->lock, flags)) { mlx5_ib_eq_pf_process(eq); spin_unlock_irqrestore(&eq->lock, flags); } else { schedule_work(&eq->work); } return IRQ_HANDLED; } /* mempool_refill() was proposed but unfortunately wasn't accepted * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html * Cheap workaround. */ static void mempool_refill(mempool_t *pool) { while (pool->curr_nr < pool->min_nr) mempool_free(mempool_alloc(pool, GFP_KERNEL), pool); } static void mlx5_ib_eq_pf_action(struct work_struct *work) { struct mlx5_ib_pf_eq *eq = container_of(work, struct mlx5_ib_pf_eq, work); mempool_refill(eq->pool); spin_lock_irq(&eq->lock); mlx5_ib_eq_pf_process(eq); spin_unlock_irq(&eq->lock); } enum { MLX5_IB_NUM_PF_EQE = 0x1000, MLX5_IB_NUM_PF_DRAIN = 64, }; int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) { struct mlx5_eq_param param = {}; int err = 0; mutex_lock(&dev->odp_eq_mutex); if (eq->core) goto unlock; INIT_WORK(&eq->work, mlx5_ib_eq_pf_action); spin_lock_init(&eq->lock); eq->dev = dev; eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN, sizeof(struct mlx5_pagefault)); if (!eq->pool) { err = -ENOMEM; goto unlock; } eq->wq = alloc_workqueue("mlx5_ib_page_fault", WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM, MLX5_NUM_CMD_EQE); if (!eq->wq) { err = -ENOMEM; goto err_mempool; } eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int; param = (struct mlx5_eq_param) { .nent = MLX5_IB_NUM_PF_EQE, }; param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT; eq->core = mlx5_eq_create_generic(dev->mdev, ¶m); if (IS_ERR(eq->core)) { err = PTR_ERR(eq->core); goto err_wq; } err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb); if (err) { mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err); goto err_eq; } mutex_unlock(&dev->odp_eq_mutex); return 0; err_eq: mlx5_eq_destroy_generic(dev->mdev, eq->core); err_wq: eq->core = NULL; destroy_workqueue(eq->wq); err_mempool: mempool_destroy(eq->pool); unlock: mutex_unlock(&dev->odp_eq_mutex); return err; } static int mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) { int err; if (!eq->core) return 0; mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb); err = mlx5_eq_destroy_generic(dev->mdev, eq->core); cancel_work_sync(&eq->work); destroy_workqueue(eq->wq); mempool_destroy(eq->pool); return err; } int mlx5_odp_init_mkey_cache(struct mlx5_ib_dev *dev) { struct mlx5r_cache_rb_key rb_key = { .access_mode = MLX5_MKC_ACCESS_MODE_KSM, .ndescs = mlx5_imr_ksm_entries, }; struct mlx5_cache_ent *ent; if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) return 0; ent = mlx5r_cache_create_ent_locked(dev, rb_key, true); if (IS_ERR(ent)) return PTR_ERR(ent); return 0; } static const struct ib_device_ops mlx5_ib_dev_odp_ops = { .advise_mr = mlx5_ib_advise_mr, }; int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) { internal_fill_odp_caps(dev); if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) return 0; ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops); mutex_init(&dev->odp_eq_mutex); return 0; } void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev) { if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) return; mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq); } int mlx5_ib_odp_init(void) { mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - MLX5_IMR_MTT_BITS); return 0; } struct prefetch_mr_work { struct work_struct work; u32 pf_flags; u32 num_sge; struct { u64 io_virt; struct mlx5_ib_mr *mr; size_t length; } frags[]; }; static void destroy_prefetch_work(struct prefetch_mr_work *work) { u32 i; for (i = 0; i < work->num_sge; ++i) mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey); kvfree(work); } static struct mlx5_ib_mr * get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, u32 lkey) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_ib_mr *mr = NULL; struct mlx5_ib_mkey *mmkey; xa_lock(&dev->odp_mkeys); mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey)); if (!mmkey || mmkey->key != lkey) { mr = ERR_PTR(-ENOENT); goto end; } if (mmkey->type != MLX5_MKEY_MR) { mr = ERR_PTR(-EINVAL); goto end; } mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); if (mr->ibmr.pd != pd) { mr = ERR_PTR(-EPERM); goto end; } /* prefetch with write-access must be supported by the MR */ if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && !mr->umem->writable) { mr = ERR_PTR(-EPERM); goto end; } refcount_inc(&mmkey->usecount); end: xa_unlock(&dev->odp_mkeys); return mr; } static void mlx5_ib_prefetch_mr_work(struct work_struct *w) { struct prefetch_mr_work *work = container_of(w, struct prefetch_mr_work, work); u32 bytes_mapped = 0; int ret; u32 i; /* We rely on IB/core that work is executed if we have num_sge != 0 only. */ WARN_ON(!work->num_sge); for (i = 0; i < work->num_sge; ++i) { ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt, work->frags[i].length, &bytes_mapped, work->pf_flags); if (ret <= 0) continue; mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret); } destroy_prefetch_work(work); } static int init_prefetch_work(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, u32 pf_flags, struct prefetch_mr_work *work, struct ib_sge *sg_list, u32 num_sge) { u32 i; INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work); work->pf_flags = pf_flags; for (i = 0; i < num_sge; ++i) { struct mlx5_ib_mr *mr; mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); if (IS_ERR(mr)) { work->num_sge = i; return PTR_ERR(mr); } work->frags[i].io_virt = sg_list[i].addr; work->frags[i].length = sg_list[i].length; work->frags[i].mr = mr; } work->num_sge = num_sge; return 0; } static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, u32 pf_flags, struct ib_sge *sg_list, u32 num_sge) { u32 bytes_mapped = 0; int ret = 0; u32 i; for (i = 0; i < num_sge; ++i) { struct mlx5_ib_mr *mr; mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); if (IS_ERR(mr)) return PTR_ERR(mr); ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length, &bytes_mapped, pf_flags); if (ret < 0) { mlx5r_deref_odp_mkey(&mr->mmkey); return ret; } mlx5_update_odp_stats(mr, prefetch, ret); mlx5r_deref_odp_mkey(&mr->mmkey); } return 0; } int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, u32 flags, struct ib_sge *sg_list, u32 num_sge) { u32 pf_flags = 0; struct prefetch_mr_work *work; int rc; if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH) pf_flags |= MLX5_PF_FLAGS_DOWNGRADE; if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) pf_flags |= MLX5_PF_FLAGS_SNAPSHOT; if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH) return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list, num_sge); work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL); if (!work) return -ENOMEM; rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge); if (rc) { destroy_prefetch_work(work); return rc; } queue_work(system_unbound_wq, &work->work); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1