Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anup Patel | 7584 | 99.41% | 9 | 45.00% |
Thomas Gleixner | 13 | 0.17% | 2 | 10.00% |
Rayagonda Kokatanur | 9 | 0.12% | 2 | 10.00% |
Fuqian Huang | 6 | 0.08% | 1 | 5.00% |
Jack Wang | 6 | 0.08% | 1 | 5.00% |
Colin Ian King | 3 | 0.04% | 1 | 5.00% |
Thierry Reding | 3 | 0.04% | 1 | 5.00% |
Nitesh Narayan Lal | 2 | 0.03% | 1 | 5.00% |
Tom Saeger | 2 | 0.03% | 1 | 5.00% |
Souptick Joarder | 1 | 0.01% | 1 | 5.00% |
Total | 7629 | 20 |
// SPDX-License-Identifier: GPL-2.0-only // Copyright (C) 2017 Broadcom /* * Broadcom FlexRM Mailbox Driver * * Each Broadcom FlexSparx4 offload engine is implemented as an * extension to Broadcom FlexRM ring manager. The FlexRM ring * manager provides a set of rings which can be used to submit * work to a FlexSparx4 offload engine. * * This driver creates a mailbox controller using a set of FlexRM * rings where each mailbox channel represents a separate FlexRM ring. */ #include <asm/barrier.h> #include <asm/byteorder.h> #include <linux/atomic.h> #include <linux/bitmap.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mailbox_controller.h> #include <linux/mailbox_client.h> #include <linux/mailbox/brcm-message.h> #include <linux/module.h> #include <linux/msi.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/spinlock.h> /* ====== FlexRM register defines ===== */ /* FlexRM configuration */ #define RING_REGS_SIZE 0x10000 #define RING_DESC_SIZE 8 #define RING_DESC_INDEX(offset) \ ((offset) / RING_DESC_SIZE) #define RING_DESC_OFFSET(index) \ ((index) * RING_DESC_SIZE) #define RING_MAX_REQ_COUNT 1024 #define RING_BD_ALIGN_ORDER 12 #define RING_BD_ALIGN_CHECK(addr) \ (!((addr) & ((0x1 << RING_BD_ALIGN_ORDER) - 1))) #define RING_BD_TOGGLE_INVALID(offset) \ (((offset) >> RING_BD_ALIGN_ORDER) & 0x1) #define RING_BD_TOGGLE_VALID(offset) \ (!RING_BD_TOGGLE_INVALID(offset)) #define RING_BD_DESC_PER_REQ 32 #define RING_BD_DESC_COUNT \ (RING_MAX_REQ_COUNT * RING_BD_DESC_PER_REQ) #define RING_BD_SIZE \ (RING_BD_DESC_COUNT * RING_DESC_SIZE) #define RING_CMPL_ALIGN_ORDER 13 #define RING_CMPL_DESC_COUNT RING_MAX_REQ_COUNT #define RING_CMPL_SIZE \ (RING_CMPL_DESC_COUNT * RING_DESC_SIZE) #define RING_VER_MAGIC 0x76303031 /* Per-Ring register offsets */ #define RING_VER 0x000 #define RING_BD_START_ADDR 0x004 #define RING_BD_READ_PTR 0x008 #define RING_BD_WRITE_PTR 0x00c #define RING_BD_READ_PTR_DDR_LS 0x010 #define RING_BD_READ_PTR_DDR_MS 0x014 #define RING_CMPL_START_ADDR 0x018 #define RING_CMPL_WRITE_PTR 0x01c #define RING_NUM_REQ_RECV_LS 0x020 #define RING_NUM_REQ_RECV_MS 0x024 #define RING_NUM_REQ_TRANS_LS 0x028 #define RING_NUM_REQ_TRANS_MS 0x02c #define RING_NUM_REQ_OUTSTAND 0x030 #define RING_CONTROL 0x034 #define RING_FLUSH_DONE 0x038 #define RING_MSI_ADDR_LS 0x03c #define RING_MSI_ADDR_MS 0x040 #define RING_MSI_CONTROL 0x048 #define RING_BD_READ_PTR_DDR_CONTROL 0x04c #define RING_MSI_DATA_VALUE 0x064 /* Register RING_BD_START_ADDR fields */ #define BD_LAST_UPDATE_HW_SHIFT 28 #define BD_LAST_UPDATE_HW_MASK 0x1 #define BD_START_ADDR_VALUE(pa) \ ((u32)((((dma_addr_t)(pa)) >> RING_BD_ALIGN_ORDER) & 0x0fffffff)) #define BD_START_ADDR_DECODE(val) \ ((dma_addr_t)((val) & 0x0fffffff) << RING_BD_ALIGN_ORDER) /* Register RING_CMPL_START_ADDR fields */ #define CMPL_START_ADDR_VALUE(pa) \ ((u32)((((u64)(pa)) >> RING_CMPL_ALIGN_ORDER) & 0x07ffffff)) /* Register RING_CONTROL fields */ #define CONTROL_MASK_DISABLE_CONTROL 12 #define CONTROL_FLUSH_SHIFT 5 #define CONTROL_ACTIVE_SHIFT 4 #define CONTROL_RATE_ADAPT_MASK 0xf #define CONTROL_RATE_DYNAMIC 0x0 #define CONTROL_RATE_FAST 0x8 #define CONTROL_RATE_MEDIUM 0x9 #define CONTROL_RATE_SLOW 0xa #define CONTROL_RATE_IDLE 0xb /* Register RING_FLUSH_DONE fields */ #define FLUSH_DONE_MASK 0x1 /* Register RING_MSI_CONTROL fields */ #define MSI_TIMER_VAL_SHIFT 16 #define MSI_TIMER_VAL_MASK 0xffff #define MSI_ENABLE_SHIFT 15 #define MSI_ENABLE_MASK 0x1 #define MSI_COUNT_SHIFT 0 #define MSI_COUNT_MASK 0x3ff /* Register RING_BD_READ_PTR_DDR_CONTROL fields */ #define BD_READ_PTR_DDR_TIMER_VAL_SHIFT 16 #define BD_READ_PTR_DDR_TIMER_VAL_MASK 0xffff #define BD_READ_PTR_DDR_ENABLE_SHIFT 15 #define BD_READ_PTR_DDR_ENABLE_MASK 0x1 /* ====== FlexRM ring descriptor defines ===== */ /* Completion descriptor format */ #define CMPL_OPAQUE_SHIFT 0 #define CMPL_OPAQUE_MASK 0xffff #define CMPL_ENGINE_STATUS_SHIFT 16 #define CMPL_ENGINE_STATUS_MASK 0xffff #define CMPL_DME_STATUS_SHIFT 32 #define CMPL_DME_STATUS_MASK 0xffff #define CMPL_RM_STATUS_SHIFT 48 #define CMPL_RM_STATUS_MASK 0xffff /* Completion DME status code */ #define DME_STATUS_MEM_COR_ERR BIT(0) #define DME_STATUS_MEM_UCOR_ERR BIT(1) #define DME_STATUS_FIFO_UNDERFLOW BIT(2) #define DME_STATUS_FIFO_OVERFLOW BIT(3) #define DME_STATUS_RRESP_ERR BIT(4) #define DME_STATUS_BRESP_ERR BIT(5) #define DME_STATUS_ERROR_MASK (DME_STATUS_MEM_COR_ERR | \ DME_STATUS_MEM_UCOR_ERR | \ DME_STATUS_FIFO_UNDERFLOW | \ DME_STATUS_FIFO_OVERFLOW | \ DME_STATUS_RRESP_ERR | \ DME_STATUS_BRESP_ERR) /* Completion RM status code */ #define RM_STATUS_CODE_SHIFT 0 #define RM_STATUS_CODE_MASK 0x3ff #define RM_STATUS_CODE_GOOD 0x0 #define RM_STATUS_CODE_AE_TIMEOUT 0x3ff /* General descriptor format */ #define DESC_TYPE_SHIFT 60 #define DESC_TYPE_MASK 0xf #define DESC_PAYLOAD_SHIFT 0 #define DESC_PAYLOAD_MASK 0x0fffffffffffffff /* Null descriptor format */ #define NULL_TYPE 0 #define NULL_TOGGLE_SHIFT 58 #define NULL_TOGGLE_MASK 0x1 /* Header descriptor format */ #define HEADER_TYPE 1 #define HEADER_TOGGLE_SHIFT 58 #define HEADER_TOGGLE_MASK 0x1 #define HEADER_ENDPKT_SHIFT 57 #define HEADER_ENDPKT_MASK 0x1 #define HEADER_STARTPKT_SHIFT 56 #define HEADER_STARTPKT_MASK 0x1 #define HEADER_BDCOUNT_SHIFT 36 #define HEADER_BDCOUNT_MASK 0x1f #define HEADER_BDCOUNT_MAX HEADER_BDCOUNT_MASK #define HEADER_FLAGS_SHIFT 16 #define HEADER_FLAGS_MASK 0xffff #define HEADER_OPAQUE_SHIFT 0 #define HEADER_OPAQUE_MASK 0xffff /* Source (SRC) descriptor format */ #define SRC_TYPE 2 #define SRC_LENGTH_SHIFT 44 #define SRC_LENGTH_MASK 0xffff #define SRC_ADDR_SHIFT 0 #define SRC_ADDR_MASK 0x00000fffffffffff /* Destination (DST) descriptor format */ #define DST_TYPE 3 #define DST_LENGTH_SHIFT 44 #define DST_LENGTH_MASK 0xffff #define DST_ADDR_SHIFT 0 #define DST_ADDR_MASK 0x00000fffffffffff /* Immediate (IMM) descriptor format */ #define IMM_TYPE 4 #define IMM_DATA_SHIFT 0 #define IMM_DATA_MASK 0x0fffffffffffffff /* Next pointer (NPTR) descriptor format */ #define NPTR_TYPE 5 #define NPTR_TOGGLE_SHIFT 58 #define NPTR_TOGGLE_MASK 0x1 #define NPTR_ADDR_SHIFT 0 #define NPTR_ADDR_MASK 0x00000fffffffffff /* Mega source (MSRC) descriptor format */ #define MSRC_TYPE 6 #define MSRC_LENGTH_SHIFT 44 #define MSRC_LENGTH_MASK 0xffff #define MSRC_ADDR_SHIFT 0 #define MSRC_ADDR_MASK 0x00000fffffffffff /* Mega destination (MDST) descriptor format */ #define MDST_TYPE 7 #define MDST_LENGTH_SHIFT 44 #define MDST_LENGTH_MASK 0xffff #define MDST_ADDR_SHIFT 0 #define MDST_ADDR_MASK 0x00000fffffffffff /* Source with tlast (SRCT) descriptor format */ #define SRCT_TYPE 8 #define SRCT_LENGTH_SHIFT 44 #define SRCT_LENGTH_MASK 0xffff #define SRCT_ADDR_SHIFT 0 #define SRCT_ADDR_MASK 0x00000fffffffffff /* Destination with tlast (DSTT) descriptor format */ #define DSTT_TYPE 9 #define DSTT_LENGTH_SHIFT 44 #define DSTT_LENGTH_MASK 0xffff #define DSTT_ADDR_SHIFT 0 #define DSTT_ADDR_MASK 0x00000fffffffffff /* Immediate with tlast (IMMT) descriptor format */ #define IMMT_TYPE 10 #define IMMT_DATA_SHIFT 0 #define IMMT_DATA_MASK 0x0fffffffffffffff /* Descriptor helper macros */ #define DESC_DEC(_d, _s, _m) (((_d) >> (_s)) & (_m)) #define DESC_ENC(_d, _v, _s, _m) \ do { \ (_d) &= ~((u64)(_m) << (_s)); \ (_d) |= (((u64)(_v) & (_m)) << (_s)); \ } while (0) /* ====== FlexRM data structures ===== */ struct flexrm_ring { /* Unprotected members */ int num; struct flexrm_mbox *mbox; void __iomem *regs; bool irq_requested; unsigned int irq; cpumask_t irq_aff_hint; unsigned int msi_timer_val; unsigned int msi_count_threshold; struct brcm_message *requests[RING_MAX_REQ_COUNT]; void *bd_base; dma_addr_t bd_dma_base; u32 bd_write_offset; void *cmpl_base; dma_addr_t cmpl_dma_base; /* Atomic stats */ atomic_t msg_send_count; atomic_t msg_cmpl_count; /* Protected members */ spinlock_t lock; DECLARE_BITMAP(requests_bmap, RING_MAX_REQ_COUNT); u32 cmpl_read_offset; }; struct flexrm_mbox { struct device *dev; void __iomem *regs; u32 num_rings; struct flexrm_ring *rings; struct dma_pool *bd_pool; struct dma_pool *cmpl_pool; struct dentry *root; struct mbox_controller controller; }; /* ====== FlexRM ring descriptor helper routines ===== */ static u64 flexrm_read_desc(void *desc_ptr) { return le64_to_cpu(*((u64 *)desc_ptr)); } static void flexrm_write_desc(void *desc_ptr, u64 desc) { *((u64 *)desc_ptr) = cpu_to_le64(desc); } static u32 flexrm_cmpl_desc_to_reqid(u64 cmpl_desc) { return (u32)(cmpl_desc & CMPL_OPAQUE_MASK); } static int flexrm_cmpl_desc_to_error(u64 cmpl_desc) { u32 status; status = DESC_DEC(cmpl_desc, CMPL_DME_STATUS_SHIFT, CMPL_DME_STATUS_MASK); if (status & DME_STATUS_ERROR_MASK) return -EIO; status = DESC_DEC(cmpl_desc, CMPL_RM_STATUS_SHIFT, CMPL_RM_STATUS_MASK); status &= RM_STATUS_CODE_MASK; if (status == RM_STATUS_CODE_AE_TIMEOUT) return -ETIMEDOUT; return 0; } static bool flexrm_is_next_table_desc(void *desc_ptr) { u64 desc = flexrm_read_desc(desc_ptr); u32 type = DESC_DEC(desc, DESC_TYPE_SHIFT, DESC_TYPE_MASK); return (type == NPTR_TYPE) ? true : false; } static u64 flexrm_next_table_desc(u32 toggle, dma_addr_t next_addr) { u64 desc = 0; DESC_ENC(desc, NPTR_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK); DESC_ENC(desc, toggle, NPTR_TOGGLE_SHIFT, NPTR_TOGGLE_MASK); DESC_ENC(desc, next_addr, NPTR_ADDR_SHIFT, NPTR_ADDR_MASK); return desc; } static u64 flexrm_null_desc(u32 toggle) { u64 desc = 0; DESC_ENC(desc, NULL_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK); DESC_ENC(desc, toggle, NULL_TOGGLE_SHIFT, NULL_TOGGLE_MASK); return desc; } static u32 flexrm_estimate_header_desc_count(u32 nhcnt) { u32 hcnt = nhcnt / HEADER_BDCOUNT_MAX; if (!(nhcnt % HEADER_BDCOUNT_MAX)) hcnt += 1; return hcnt; } static void flexrm_flip_header_toggle(void *desc_ptr) { u64 desc = flexrm_read_desc(desc_ptr); if (desc & ((u64)0x1 << HEADER_TOGGLE_SHIFT)) desc &= ~((u64)0x1 << HEADER_TOGGLE_SHIFT); else desc |= ((u64)0x1 << HEADER_TOGGLE_SHIFT); flexrm_write_desc(desc_ptr, desc); } static u64 flexrm_header_desc(u32 toggle, u32 startpkt, u32 endpkt, u32 bdcount, u32 flags, u32 opaque) { u64 desc = 0; DESC_ENC(desc, HEADER_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK); DESC_ENC(desc, toggle, HEADER_TOGGLE_SHIFT, HEADER_TOGGLE_MASK); DESC_ENC(desc, startpkt, HEADER_STARTPKT_SHIFT, HEADER_STARTPKT_MASK); DESC_ENC(desc, endpkt, HEADER_ENDPKT_SHIFT, HEADER_ENDPKT_MASK); DESC_ENC(desc, bdcount, HEADER_BDCOUNT_SHIFT, HEADER_BDCOUNT_MASK); DESC_ENC(desc, flags, HEADER_FLAGS_SHIFT, HEADER_FLAGS_MASK); DESC_ENC(desc, opaque, HEADER_OPAQUE_SHIFT, HEADER_OPAQUE_MASK); return desc; } static void flexrm_enqueue_desc(u32 nhpos, u32 nhcnt, u32 reqid, u64 desc, void **desc_ptr, u32 *toggle, void *start_desc, void *end_desc) { u64 d; u32 nhavail, _toggle, _startpkt, _endpkt, _bdcount; /* Sanity check */ if (nhcnt <= nhpos) return; /* * Each request or packet start with a HEADER descriptor followed * by one or more non-HEADER descriptors (SRC, SRCT, MSRC, DST, * DSTT, MDST, IMM, and IMMT). The number of non-HEADER descriptors * following a HEADER descriptor is represented by BDCOUNT field * of HEADER descriptor. The max value of BDCOUNT field is 31 which * means we can only have 31 non-HEADER descriptors following one * HEADER descriptor. * * In general use, number of non-HEADER descriptors can easily go * beyond 31. To tackle this situation, we have packet (or request) * extension bits (STARTPKT and ENDPKT) in the HEADER descriptor. * * To use packet extension, the first HEADER descriptor of request * (or packet) will have STARTPKT=1 and ENDPKT=0. The intermediate * HEADER descriptors will have STARTPKT=0 and ENDPKT=0. The last * HEADER descriptor will have STARTPKT=0 and ENDPKT=1. Also, the * TOGGLE bit of the first HEADER will be set to invalid state to * ensure that FlexRM does not start fetching descriptors till all * descriptors are enqueued. The user of this function will flip * the TOGGLE bit of first HEADER after all descriptors are * enqueued. */ if ((nhpos % HEADER_BDCOUNT_MAX == 0) && (nhcnt - nhpos)) { /* Prepare the header descriptor */ nhavail = (nhcnt - nhpos); _toggle = (nhpos == 0) ? !(*toggle) : (*toggle); _startpkt = (nhpos == 0) ? 0x1 : 0x0; _endpkt = (nhavail <= HEADER_BDCOUNT_MAX) ? 0x1 : 0x0; _bdcount = (nhavail <= HEADER_BDCOUNT_MAX) ? nhavail : HEADER_BDCOUNT_MAX; if (nhavail <= HEADER_BDCOUNT_MAX) _bdcount = nhavail; else _bdcount = HEADER_BDCOUNT_MAX; d = flexrm_header_desc(_toggle, _startpkt, _endpkt, _bdcount, 0x0, reqid); /* Write header descriptor */ flexrm_write_desc(*desc_ptr, d); /* Point to next descriptor */ *desc_ptr += sizeof(desc); if (*desc_ptr == end_desc) *desc_ptr = start_desc; /* Skip next pointer descriptors */ while (flexrm_is_next_table_desc(*desc_ptr)) { *toggle = (*toggle) ? 0 : 1; *desc_ptr += sizeof(desc); if (*desc_ptr == end_desc) *desc_ptr = start_desc; } } /* Write desired descriptor */ flexrm_write_desc(*desc_ptr, desc); /* Point to next descriptor */ *desc_ptr += sizeof(desc); if (*desc_ptr == end_desc) *desc_ptr = start_desc; /* Skip next pointer descriptors */ while (flexrm_is_next_table_desc(*desc_ptr)) { *toggle = (*toggle) ? 0 : 1; *desc_ptr += sizeof(desc); if (*desc_ptr == end_desc) *desc_ptr = start_desc; } } static u64 flexrm_src_desc(dma_addr_t addr, unsigned int length) { u64 desc = 0; DESC_ENC(desc, SRC_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK); DESC_ENC(desc, length, SRC_LENGTH_SHIFT, SRC_LENGTH_MASK); DESC_ENC(desc, addr, SRC_ADDR_SHIFT, SRC_ADDR_MASK); return desc; } static u64 flexrm_msrc_desc(dma_addr_t addr, unsigned int length_div_16) { u64 desc = 0; DESC_ENC(desc, MSRC_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK); DESC_ENC(desc, length_div_16, MSRC_LENGTH_SHIFT, MSRC_LENGTH_MASK); DESC_ENC(desc, addr, MSRC_ADDR_SHIFT, MSRC_ADDR_MASK); return desc; } static u64 flexrm_dst_desc(dma_addr_t addr, unsigned int length) { u64 desc = 0; DESC_ENC(desc, DST_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK); DESC_ENC(desc, length, DST_LENGTH_SHIFT, DST_LENGTH_MASK); DESC_ENC(desc, addr, DST_ADDR_SHIFT, DST_ADDR_MASK); return desc; } static u64 flexrm_mdst_desc(dma_addr_t addr, unsigned int length_div_16) { u64 desc = 0; DESC_ENC(desc, MDST_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK); DESC_ENC(desc, length_div_16, MDST_LENGTH_SHIFT, MDST_LENGTH_MASK); DESC_ENC(desc, addr, MDST_ADDR_SHIFT, MDST_ADDR_MASK); return desc; } static u64 flexrm_imm_desc(u64 data) { u64 desc = 0; DESC_ENC(desc, IMM_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK); DESC_ENC(desc, data, IMM_DATA_SHIFT, IMM_DATA_MASK); return desc; } static u64 flexrm_srct_desc(dma_addr_t addr, unsigned int length) { u64 desc = 0; DESC_ENC(desc, SRCT_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK); DESC_ENC(desc, length, SRCT_LENGTH_SHIFT, SRCT_LENGTH_MASK); DESC_ENC(desc, addr, SRCT_ADDR_SHIFT, SRCT_ADDR_MASK); return desc; } static u64 flexrm_dstt_desc(dma_addr_t addr, unsigned int length) { u64 desc = 0; DESC_ENC(desc, DSTT_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK); DESC_ENC(desc, length, DSTT_LENGTH_SHIFT, DSTT_LENGTH_MASK); DESC_ENC(desc, addr, DSTT_ADDR_SHIFT, DSTT_ADDR_MASK); return desc; } static u64 flexrm_immt_desc(u64 data) { u64 desc = 0; DESC_ENC(desc, IMMT_TYPE, DESC_TYPE_SHIFT, DESC_TYPE_MASK); DESC_ENC(desc, data, IMMT_DATA_SHIFT, IMMT_DATA_MASK); return desc; } static bool flexrm_spu_sanity_check(struct brcm_message *msg) { struct scatterlist *sg; if (!msg->spu.src || !msg->spu.dst) return false; for (sg = msg->spu.src; sg; sg = sg_next(sg)) { if (sg->length & 0xf) { if (sg->length > SRC_LENGTH_MASK) return false; } else { if (sg->length > (MSRC_LENGTH_MASK * 16)) return false; } } for (sg = msg->spu.dst; sg; sg = sg_next(sg)) { if (sg->length & 0xf) { if (sg->length > DST_LENGTH_MASK) return false; } else { if (sg->length > (MDST_LENGTH_MASK * 16)) return false; } } return true; } static u32 flexrm_spu_estimate_nonheader_desc_count(struct brcm_message *msg) { u32 cnt = 0; unsigned int dst_target = 0; struct scatterlist *src_sg = msg->spu.src, *dst_sg = msg->spu.dst; while (src_sg || dst_sg) { if (src_sg) { cnt++; dst_target = src_sg->length; src_sg = sg_next(src_sg); } else dst_target = UINT_MAX; while (dst_target && dst_sg) { cnt++; if (dst_sg->length < dst_target) dst_target -= dst_sg->length; else dst_target = 0; dst_sg = sg_next(dst_sg); } } return cnt; } static int flexrm_spu_dma_map(struct device *dev, struct brcm_message *msg) { int rc; rc = dma_map_sg(dev, msg->spu.src, sg_nents(msg->spu.src), DMA_TO_DEVICE); if (!rc) return -EIO; rc = dma_map_sg(dev, msg->spu.dst, sg_nents(msg->spu.dst), DMA_FROM_DEVICE); if (!rc) { dma_unmap_sg(dev, msg->spu.src, sg_nents(msg->spu.src), DMA_TO_DEVICE); return -EIO; } return 0; } static void flexrm_spu_dma_unmap(struct device *dev, struct brcm_message *msg) { dma_unmap_sg(dev, msg->spu.dst, sg_nents(msg->spu.dst), DMA_FROM_DEVICE); dma_unmap_sg(dev, msg->spu.src, sg_nents(msg->spu.src), DMA_TO_DEVICE); } static void *flexrm_spu_write_descs(struct brcm_message *msg, u32 nhcnt, u32 reqid, void *desc_ptr, u32 toggle, void *start_desc, void *end_desc) { u64 d; u32 nhpos = 0; void *orig_desc_ptr = desc_ptr; unsigned int dst_target = 0; struct scatterlist *src_sg = msg->spu.src, *dst_sg = msg->spu.dst; while (src_sg || dst_sg) { if (src_sg) { if (sg_dma_len(src_sg) & 0xf) d = flexrm_src_desc(sg_dma_address(src_sg), sg_dma_len(src_sg)); else d = flexrm_msrc_desc(sg_dma_address(src_sg), sg_dma_len(src_sg)/16); flexrm_enqueue_desc(nhpos, nhcnt, reqid, d, &desc_ptr, &toggle, start_desc, end_desc); nhpos++; dst_target = sg_dma_len(src_sg); src_sg = sg_next(src_sg); } else dst_target = UINT_MAX; while (dst_target && dst_sg) { if (sg_dma_len(dst_sg) & 0xf) d = flexrm_dst_desc(sg_dma_address(dst_sg), sg_dma_len(dst_sg)); else d = flexrm_mdst_desc(sg_dma_address(dst_sg), sg_dma_len(dst_sg)/16); flexrm_enqueue_desc(nhpos, nhcnt, reqid, d, &desc_ptr, &toggle, start_desc, end_desc); nhpos++; if (sg_dma_len(dst_sg) < dst_target) dst_target -= sg_dma_len(dst_sg); else dst_target = 0; dst_sg = sg_next(dst_sg); } } /* Null descriptor with invalid toggle bit */ flexrm_write_desc(desc_ptr, flexrm_null_desc(!toggle)); /* Ensure that descriptors have been written to memory */ wmb(); /* Flip toggle bit in header */ flexrm_flip_header_toggle(orig_desc_ptr); return desc_ptr; } static bool flexrm_sba_sanity_check(struct brcm_message *msg) { u32 i; if (!msg->sba.cmds || !msg->sba.cmds_count) return false; for (i = 0; i < msg->sba.cmds_count; i++) { if (((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_B) || (msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_C)) && (msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_OUTPUT)) return false; if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_B) && (msg->sba.cmds[i].data_len > SRCT_LENGTH_MASK)) return false; if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_C) && (msg->sba.cmds[i].data_len > SRCT_LENGTH_MASK)) return false; if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_RESP) && (msg->sba.cmds[i].resp_len > DSTT_LENGTH_MASK)) return false; if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_OUTPUT) && (msg->sba.cmds[i].data_len > DSTT_LENGTH_MASK)) return false; } return true; } static u32 flexrm_sba_estimate_nonheader_desc_count(struct brcm_message *msg) { u32 i, cnt; cnt = 0; for (i = 0; i < msg->sba.cmds_count; i++) { cnt++; if ((msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_B) || (msg->sba.cmds[i].flags & BRCM_SBA_CMD_TYPE_C)) cnt++; if (msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_RESP) cnt++; if (msg->sba.cmds[i].flags & BRCM_SBA_CMD_HAS_OUTPUT) cnt++; } return cnt; } static void *flexrm_sba_write_descs(struct brcm_message *msg, u32 nhcnt, u32 reqid, void *desc_ptr, u32 toggle, void *start_desc, void *end_desc) { u64 d; u32 i, nhpos = 0; struct brcm_sba_command *c; void *orig_desc_ptr = desc_ptr; /* Convert SBA commands into descriptors */ for (i = 0; i < msg->sba.cmds_count; i++) { c = &msg->sba.cmds[i]; if ((c->flags & BRCM_SBA_CMD_HAS_RESP) && (c->flags & BRCM_SBA_CMD_HAS_OUTPUT)) { /* Destination response descriptor */ d = flexrm_dst_desc(c->resp, c->resp_len); flexrm_enqueue_desc(nhpos, nhcnt, reqid, d, &desc_ptr, &toggle, start_desc, end_desc); nhpos++; } else if (c->flags & BRCM_SBA_CMD_HAS_RESP) { /* Destination response with tlast descriptor */ d = flexrm_dstt_desc(c->resp, c->resp_len); flexrm_enqueue_desc(nhpos, nhcnt, reqid, d, &desc_ptr, &toggle, start_desc, end_desc); nhpos++; } if (c->flags & BRCM_SBA_CMD_HAS_OUTPUT) { /* Destination with tlast descriptor */ d = flexrm_dstt_desc(c->data, c->data_len); flexrm_enqueue_desc(nhpos, nhcnt, reqid, d, &desc_ptr, &toggle, start_desc, end_desc); nhpos++; } if (c->flags & BRCM_SBA_CMD_TYPE_B) { /* Command as immediate descriptor */ d = flexrm_imm_desc(c->cmd); flexrm_enqueue_desc(nhpos, nhcnt, reqid, d, &desc_ptr, &toggle, start_desc, end_desc); nhpos++; } else { /* Command as immediate descriptor with tlast */ d = flexrm_immt_desc(c->cmd); flexrm_enqueue_desc(nhpos, nhcnt, reqid, d, &desc_ptr, &toggle, start_desc, end_desc); nhpos++; } if ((c->flags & BRCM_SBA_CMD_TYPE_B) || (c->flags & BRCM_SBA_CMD_TYPE_C)) { /* Source with tlast descriptor */ d = flexrm_srct_desc(c->data, c->data_len); flexrm_enqueue_desc(nhpos, nhcnt, reqid, d, &desc_ptr, &toggle, start_desc, end_desc); nhpos++; } } /* Null descriptor with invalid toggle bit */ flexrm_write_desc(desc_ptr, flexrm_null_desc(!toggle)); /* Ensure that descriptors have been written to memory */ wmb(); /* Flip toggle bit in header */ flexrm_flip_header_toggle(orig_desc_ptr); return desc_ptr; } static bool flexrm_sanity_check(struct brcm_message *msg) { if (!msg) return false; switch (msg->type) { case BRCM_MESSAGE_SPU: return flexrm_spu_sanity_check(msg); case BRCM_MESSAGE_SBA: return flexrm_sba_sanity_check(msg); default: return false; }; } static u32 flexrm_estimate_nonheader_desc_count(struct brcm_message *msg) { if (!msg) return 0; switch (msg->type) { case BRCM_MESSAGE_SPU: return flexrm_spu_estimate_nonheader_desc_count(msg); case BRCM_MESSAGE_SBA: return flexrm_sba_estimate_nonheader_desc_count(msg); default: return 0; }; } static int flexrm_dma_map(struct device *dev, struct brcm_message *msg) { if (!dev || !msg) return -EINVAL; switch (msg->type) { case BRCM_MESSAGE_SPU: return flexrm_spu_dma_map(dev, msg); default: break; } return 0; } static void flexrm_dma_unmap(struct device *dev, struct brcm_message *msg) { if (!dev || !msg) return; switch (msg->type) { case BRCM_MESSAGE_SPU: flexrm_spu_dma_unmap(dev, msg); break; default: break; } } static void *flexrm_write_descs(struct brcm_message *msg, u32 nhcnt, u32 reqid, void *desc_ptr, u32 toggle, void *start_desc, void *end_desc) { if (!msg || !desc_ptr || !start_desc || !end_desc) return ERR_PTR(-ENOTSUPP); if ((desc_ptr < start_desc) || (end_desc <= desc_ptr)) return ERR_PTR(-ERANGE); switch (msg->type) { case BRCM_MESSAGE_SPU: return flexrm_spu_write_descs(msg, nhcnt, reqid, desc_ptr, toggle, start_desc, end_desc); case BRCM_MESSAGE_SBA: return flexrm_sba_write_descs(msg, nhcnt, reqid, desc_ptr, toggle, start_desc, end_desc); default: return ERR_PTR(-ENOTSUPP); }; } /* ====== FlexRM driver helper routines ===== */ static void flexrm_write_config_in_seqfile(struct flexrm_mbox *mbox, struct seq_file *file) { int i; const char *state; struct flexrm_ring *ring; seq_printf(file, "%-5s %-9s %-18s %-10s %-18s %-10s\n", "Ring#", "State", "BD_Addr", "BD_Size", "Cmpl_Addr", "Cmpl_Size"); for (i = 0; i < mbox->num_rings; i++) { ring = &mbox->rings[i]; if (readl(ring->regs + RING_CONTROL) & BIT(CONTROL_ACTIVE_SHIFT)) state = "active"; else state = "inactive"; seq_printf(file, "%-5d %-9s 0x%016llx 0x%08x 0x%016llx 0x%08x\n", ring->num, state, (unsigned long long)ring->bd_dma_base, (u32)RING_BD_SIZE, (unsigned long long)ring->cmpl_dma_base, (u32)RING_CMPL_SIZE); } } static void flexrm_write_stats_in_seqfile(struct flexrm_mbox *mbox, struct seq_file *file) { int i; u32 val, bd_read_offset; struct flexrm_ring *ring; seq_printf(file, "%-5s %-10s %-10s %-10s %-11s %-11s\n", "Ring#", "BD_Read", "BD_Write", "Cmpl_Read", "Submitted", "Completed"); for (i = 0; i < mbox->num_rings; i++) { ring = &mbox->rings[i]; bd_read_offset = readl_relaxed(ring->regs + RING_BD_READ_PTR); val = readl_relaxed(ring->regs + RING_BD_START_ADDR); bd_read_offset *= RING_DESC_SIZE; bd_read_offset += (u32)(BD_START_ADDR_DECODE(val) - ring->bd_dma_base); seq_printf(file, "%-5d 0x%08x 0x%08x 0x%08x %-11d %-11d\n", ring->num, (u32)bd_read_offset, (u32)ring->bd_write_offset, (u32)ring->cmpl_read_offset, (u32)atomic_read(&ring->msg_send_count), (u32)atomic_read(&ring->msg_cmpl_count)); } } static int flexrm_new_request(struct flexrm_ring *ring, struct brcm_message *batch_msg, struct brcm_message *msg) { void *next; unsigned long flags; u32 val, count, nhcnt; u32 read_offset, write_offset; bool exit_cleanup = false; int ret = 0, reqid; /* Do sanity check on message */ if (!flexrm_sanity_check(msg)) return -EIO; msg->error = 0; /* If no requests possible then save data pointer and goto done. */ spin_lock_irqsave(&ring->lock, flags); reqid = bitmap_find_free_region(ring->requests_bmap, RING_MAX_REQ_COUNT, 0); spin_unlock_irqrestore(&ring->lock, flags); if (reqid < 0) return -ENOSPC; ring->requests[reqid] = msg; /* Do DMA mappings for the message */ ret = flexrm_dma_map(ring->mbox->dev, msg); if (ret < 0) { ring->requests[reqid] = NULL; spin_lock_irqsave(&ring->lock, flags); bitmap_release_region(ring->requests_bmap, reqid, 0); spin_unlock_irqrestore(&ring->lock, flags); return ret; } /* Determine current HW BD read offset */ read_offset = readl_relaxed(ring->regs + RING_BD_READ_PTR); val = readl_relaxed(ring->regs + RING_BD_START_ADDR); read_offset *= RING_DESC_SIZE; read_offset += (u32)(BD_START_ADDR_DECODE(val) - ring->bd_dma_base); /* * Number required descriptors = number of non-header descriptors + * number of header descriptors + * 1x null descriptor */ nhcnt = flexrm_estimate_nonheader_desc_count(msg); count = flexrm_estimate_header_desc_count(nhcnt) + nhcnt + 1; /* Check for available descriptor space. */ write_offset = ring->bd_write_offset; while (count) { if (!flexrm_is_next_table_desc(ring->bd_base + write_offset)) count--; write_offset += RING_DESC_SIZE; if (write_offset == RING_BD_SIZE) write_offset = 0x0; if (write_offset == read_offset) break; } if (count) { ret = -ENOSPC; exit_cleanup = true; goto exit; } /* Write descriptors to ring */ next = flexrm_write_descs(msg, nhcnt, reqid, ring->bd_base + ring->bd_write_offset, RING_BD_TOGGLE_VALID(ring->bd_write_offset), ring->bd_base, ring->bd_base + RING_BD_SIZE); if (IS_ERR(next)) { ret = PTR_ERR(next); exit_cleanup = true; goto exit; } /* Save ring BD write offset */ ring->bd_write_offset = (unsigned long)(next - ring->bd_base); /* Increment number of messages sent */ atomic_inc_return(&ring->msg_send_count); exit: /* Update error status in message */ msg->error = ret; /* Cleanup if we failed */ if (exit_cleanup) { flexrm_dma_unmap(ring->mbox->dev, msg); ring->requests[reqid] = NULL; spin_lock_irqsave(&ring->lock, flags); bitmap_release_region(ring->requests_bmap, reqid, 0); spin_unlock_irqrestore(&ring->lock, flags); } return ret; } static int flexrm_process_completions(struct flexrm_ring *ring) { u64 desc; int err, count = 0; unsigned long flags; struct brcm_message *msg = NULL; u32 reqid, cmpl_read_offset, cmpl_write_offset; struct mbox_chan *chan = &ring->mbox->controller.chans[ring->num]; spin_lock_irqsave(&ring->lock, flags); /* * Get current completion read and write offset * * Note: We should read completion write pointer at least once * after we get a MSI interrupt because HW maintains internal * MSI status which will allow next MSI interrupt only after * completion write pointer is read. */ cmpl_write_offset = readl_relaxed(ring->regs + RING_CMPL_WRITE_PTR); cmpl_write_offset *= RING_DESC_SIZE; cmpl_read_offset = ring->cmpl_read_offset; ring->cmpl_read_offset = cmpl_write_offset; spin_unlock_irqrestore(&ring->lock, flags); /* For each completed request notify mailbox clients */ reqid = 0; while (cmpl_read_offset != cmpl_write_offset) { /* Dequeue next completion descriptor */ desc = *((u64 *)(ring->cmpl_base + cmpl_read_offset)); /* Next read offset */ cmpl_read_offset += RING_DESC_SIZE; if (cmpl_read_offset == RING_CMPL_SIZE) cmpl_read_offset = 0; /* Decode error from completion descriptor */ err = flexrm_cmpl_desc_to_error(desc); if (err < 0) { dev_warn(ring->mbox->dev, "ring%d got completion desc=0x%lx with error %d\n", ring->num, (unsigned long)desc, err); } /* Determine request id from completion descriptor */ reqid = flexrm_cmpl_desc_to_reqid(desc); /* Determine message pointer based on reqid */ msg = ring->requests[reqid]; if (!msg) { dev_warn(ring->mbox->dev, "ring%d null msg pointer for completion desc=0x%lx\n", ring->num, (unsigned long)desc); continue; } /* Release reqid for recycling */ ring->requests[reqid] = NULL; spin_lock_irqsave(&ring->lock, flags); bitmap_release_region(ring->requests_bmap, reqid, 0); spin_unlock_irqrestore(&ring->lock, flags); /* Unmap DMA mappings */ flexrm_dma_unmap(ring->mbox->dev, msg); /* Give-back message to mailbox client */ msg->error = err; mbox_chan_received_data(chan, msg); /* Increment number of completions processed */ atomic_inc_return(&ring->msg_cmpl_count); count++; } return count; } /* ====== FlexRM Debugfs callbacks ====== */ static int flexrm_debugfs_conf_show(struct seq_file *file, void *offset) { struct flexrm_mbox *mbox = dev_get_drvdata(file->private); /* Write config in file */ flexrm_write_config_in_seqfile(mbox, file); return 0; } static int flexrm_debugfs_stats_show(struct seq_file *file, void *offset) { struct flexrm_mbox *mbox = dev_get_drvdata(file->private); /* Write stats in file */ flexrm_write_stats_in_seqfile(mbox, file); return 0; } /* ====== FlexRM interrupt handler ===== */ static irqreturn_t flexrm_irq_event(int irq, void *dev_id) { /* We only have MSI for completions so just wakeup IRQ thread */ /* Ring related errors will be informed via completion descriptors */ return IRQ_WAKE_THREAD; } static irqreturn_t flexrm_irq_thread(int irq, void *dev_id) { flexrm_process_completions(dev_id); return IRQ_HANDLED; } /* ====== FlexRM mailbox callbacks ===== */ static int flexrm_send_data(struct mbox_chan *chan, void *data) { int i, rc; struct flexrm_ring *ring = chan->con_priv; struct brcm_message *msg = data; if (msg->type == BRCM_MESSAGE_BATCH) { for (i = msg->batch.msgs_queued; i < msg->batch.msgs_count; i++) { rc = flexrm_new_request(ring, msg, &msg->batch.msgs[i]); if (rc) { msg->error = rc; return rc; } msg->batch.msgs_queued++; } return 0; } return flexrm_new_request(ring, NULL, data); } static bool flexrm_peek_data(struct mbox_chan *chan) { int cnt = flexrm_process_completions(chan->con_priv); return (cnt > 0) ? true : false; } static int flexrm_startup(struct mbox_chan *chan) { u64 d; u32 val, off; int ret = 0; dma_addr_t next_addr; struct flexrm_ring *ring = chan->con_priv; /* Allocate BD memory */ ring->bd_base = dma_pool_alloc(ring->mbox->bd_pool, GFP_KERNEL, &ring->bd_dma_base); if (!ring->bd_base) { dev_err(ring->mbox->dev, "can't allocate BD memory for ring%d\n", ring->num); ret = -ENOMEM; goto fail; } /* Configure next table pointer entries in BD memory */ for (off = 0; off < RING_BD_SIZE; off += RING_DESC_SIZE) { next_addr = off + RING_DESC_SIZE; if (next_addr == RING_BD_SIZE) next_addr = 0; next_addr += ring->bd_dma_base; if (RING_BD_ALIGN_CHECK(next_addr)) d = flexrm_next_table_desc(RING_BD_TOGGLE_VALID(off), next_addr); else d = flexrm_null_desc(RING_BD_TOGGLE_INVALID(off)); flexrm_write_desc(ring->bd_base + off, d); } /* Allocate completion memory */ ring->cmpl_base = dma_pool_zalloc(ring->mbox->cmpl_pool, GFP_KERNEL, &ring->cmpl_dma_base); if (!ring->cmpl_base) { dev_err(ring->mbox->dev, "can't allocate completion memory for ring%d\n", ring->num); ret = -ENOMEM; goto fail_free_bd_memory; } /* Request IRQ */ if (ring->irq == UINT_MAX) { dev_err(ring->mbox->dev, "ring%d IRQ not available\n", ring->num); ret = -ENODEV; goto fail_free_cmpl_memory; } ret = request_threaded_irq(ring->irq, flexrm_irq_event, flexrm_irq_thread, 0, dev_name(ring->mbox->dev), ring); if (ret) { dev_err(ring->mbox->dev, "failed to request ring%d IRQ\n", ring->num); goto fail_free_cmpl_memory; } ring->irq_requested = true; /* Set IRQ affinity hint */ ring->irq_aff_hint = CPU_MASK_NONE; val = ring->mbox->num_rings; val = (num_online_cpus() < val) ? val / num_online_cpus() : 1; cpumask_set_cpu((ring->num / val) % num_online_cpus(), &ring->irq_aff_hint); ret = irq_update_affinity_hint(ring->irq, &ring->irq_aff_hint); if (ret) { dev_err(ring->mbox->dev, "failed to set IRQ affinity hint for ring%d\n", ring->num); goto fail_free_irq; } /* Disable/inactivate ring */ writel_relaxed(0x0, ring->regs + RING_CONTROL); /* Program BD start address */ val = BD_START_ADDR_VALUE(ring->bd_dma_base); writel_relaxed(val, ring->regs + RING_BD_START_ADDR); /* BD write pointer will be same as HW write pointer */ ring->bd_write_offset = readl_relaxed(ring->regs + RING_BD_WRITE_PTR); ring->bd_write_offset *= RING_DESC_SIZE; /* Program completion start address */ val = CMPL_START_ADDR_VALUE(ring->cmpl_dma_base); writel_relaxed(val, ring->regs + RING_CMPL_START_ADDR); /* Completion read pointer will be same as HW write pointer */ ring->cmpl_read_offset = readl_relaxed(ring->regs + RING_CMPL_WRITE_PTR); ring->cmpl_read_offset *= RING_DESC_SIZE; /* Read ring Tx, Rx, and Outstanding counts to clear */ readl_relaxed(ring->regs + RING_NUM_REQ_RECV_LS); readl_relaxed(ring->regs + RING_NUM_REQ_RECV_MS); readl_relaxed(ring->regs + RING_NUM_REQ_TRANS_LS); readl_relaxed(ring->regs + RING_NUM_REQ_TRANS_MS); readl_relaxed(ring->regs + RING_NUM_REQ_OUTSTAND); /* Configure RING_MSI_CONTROL */ val = 0; val |= (ring->msi_timer_val << MSI_TIMER_VAL_SHIFT); val |= BIT(MSI_ENABLE_SHIFT); val |= (ring->msi_count_threshold & MSI_COUNT_MASK) << MSI_COUNT_SHIFT; writel_relaxed(val, ring->regs + RING_MSI_CONTROL); /* Enable/activate ring */ val = BIT(CONTROL_ACTIVE_SHIFT); writel_relaxed(val, ring->regs + RING_CONTROL); /* Reset stats to zero */ atomic_set(&ring->msg_send_count, 0); atomic_set(&ring->msg_cmpl_count, 0); return 0; fail_free_irq: free_irq(ring->irq, ring); ring->irq_requested = false; fail_free_cmpl_memory: dma_pool_free(ring->mbox->cmpl_pool, ring->cmpl_base, ring->cmpl_dma_base); ring->cmpl_base = NULL; fail_free_bd_memory: dma_pool_free(ring->mbox->bd_pool, ring->bd_base, ring->bd_dma_base); ring->bd_base = NULL; fail: return ret; } static void flexrm_shutdown(struct mbox_chan *chan) { u32 reqid; unsigned int timeout; struct brcm_message *msg; struct flexrm_ring *ring = chan->con_priv; /* Disable/inactivate ring */ writel_relaxed(0x0, ring->regs + RING_CONTROL); /* Set ring flush state */ timeout = 1000; /* timeout of 1s */ writel_relaxed(BIT(CONTROL_FLUSH_SHIFT), ring->regs + RING_CONTROL); do { if (readl_relaxed(ring->regs + RING_FLUSH_DONE) & FLUSH_DONE_MASK) break; mdelay(1); } while (--timeout); if (!timeout) dev_err(ring->mbox->dev, "setting ring%d flush state timedout\n", ring->num); /* Clear ring flush state */ timeout = 1000; /* timeout of 1s */ writel_relaxed(0x0, ring->regs + RING_CONTROL); do { if (!(readl_relaxed(ring->regs + RING_FLUSH_DONE) & FLUSH_DONE_MASK)) break; mdelay(1); } while (--timeout); if (!timeout) dev_err(ring->mbox->dev, "clearing ring%d flush state timedout\n", ring->num); /* Abort all in-flight requests */ for (reqid = 0; reqid < RING_MAX_REQ_COUNT; reqid++) { msg = ring->requests[reqid]; if (!msg) continue; /* Release reqid for recycling */ ring->requests[reqid] = NULL; /* Unmap DMA mappings */ flexrm_dma_unmap(ring->mbox->dev, msg); /* Give-back message to mailbox client */ msg->error = -EIO; mbox_chan_received_data(chan, msg); } /* Clear requests bitmap */ bitmap_zero(ring->requests_bmap, RING_MAX_REQ_COUNT); /* Release IRQ */ if (ring->irq_requested) { irq_update_affinity_hint(ring->irq, NULL); free_irq(ring->irq, ring); ring->irq_requested = false; } /* Free-up completion descriptor ring */ if (ring->cmpl_base) { dma_pool_free(ring->mbox->cmpl_pool, ring->cmpl_base, ring->cmpl_dma_base); ring->cmpl_base = NULL; } /* Free-up BD descriptor ring */ if (ring->bd_base) { dma_pool_free(ring->mbox->bd_pool, ring->bd_base, ring->bd_dma_base); ring->bd_base = NULL; } } static const struct mbox_chan_ops flexrm_mbox_chan_ops = { .send_data = flexrm_send_data, .startup = flexrm_startup, .shutdown = flexrm_shutdown, .peek_data = flexrm_peek_data, }; static struct mbox_chan *flexrm_mbox_of_xlate(struct mbox_controller *cntlr, const struct of_phandle_args *pa) { struct mbox_chan *chan; struct flexrm_ring *ring; if (pa->args_count < 3) return ERR_PTR(-EINVAL); if (pa->args[0] >= cntlr->num_chans) return ERR_PTR(-ENOENT); if (pa->args[1] > MSI_COUNT_MASK) return ERR_PTR(-EINVAL); if (pa->args[2] > MSI_TIMER_VAL_MASK) return ERR_PTR(-EINVAL); chan = &cntlr->chans[pa->args[0]]; ring = chan->con_priv; ring->msi_count_threshold = pa->args[1]; ring->msi_timer_val = pa->args[2]; return chan; } /* ====== FlexRM platform driver ===== */ static void flexrm_mbox_msi_write(struct msi_desc *desc, struct msi_msg *msg) { struct device *dev = msi_desc_to_dev(desc); struct flexrm_mbox *mbox = dev_get_drvdata(dev); struct flexrm_ring *ring = &mbox->rings[desc->msi_index]; /* Configure per-Ring MSI registers */ writel_relaxed(msg->address_lo, ring->regs + RING_MSI_ADDR_LS); writel_relaxed(msg->address_hi, ring->regs + RING_MSI_ADDR_MS); writel_relaxed(msg->data, ring->regs + RING_MSI_DATA_VALUE); } static int flexrm_mbox_probe(struct platform_device *pdev) { int index, ret = 0; void __iomem *regs; void __iomem *regs_end; struct resource *iomem; struct flexrm_ring *ring; struct flexrm_mbox *mbox; struct device *dev = &pdev->dev; /* Allocate driver mailbox struct */ mbox = devm_kzalloc(dev, sizeof(*mbox), GFP_KERNEL); if (!mbox) { ret = -ENOMEM; goto fail; } mbox->dev = dev; platform_set_drvdata(pdev, mbox); /* Get resource for registers */ iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!iomem || (resource_size(iomem) < RING_REGS_SIZE)) { ret = -ENODEV; goto fail; } /* Map registers of all rings */ mbox->regs = devm_ioremap_resource(&pdev->dev, iomem); if (IS_ERR(mbox->regs)) { ret = PTR_ERR(mbox->regs); goto fail; } regs_end = mbox->regs + resource_size(iomem); /* Scan and count available rings */ mbox->num_rings = 0; for (regs = mbox->regs; regs < regs_end; regs += RING_REGS_SIZE) { if (readl_relaxed(regs + RING_VER) == RING_VER_MAGIC) mbox->num_rings++; } if (!mbox->num_rings) { ret = -ENODEV; goto fail; } /* Allocate driver ring structs */ ring = devm_kcalloc(dev, mbox->num_rings, sizeof(*ring), GFP_KERNEL); if (!ring) { ret = -ENOMEM; goto fail; } mbox->rings = ring; /* Initialize members of driver ring structs */ regs = mbox->regs; for (index = 0; index < mbox->num_rings; index++) { ring = &mbox->rings[index]; ring->num = index; ring->mbox = mbox; while ((regs < regs_end) && (readl_relaxed(regs + RING_VER) != RING_VER_MAGIC)) regs += RING_REGS_SIZE; if (regs_end <= regs) { ret = -ENODEV; goto fail; } ring->regs = regs; regs += RING_REGS_SIZE; ring->irq = UINT_MAX; ring->irq_requested = false; ring->msi_timer_val = MSI_TIMER_VAL_MASK; ring->msi_count_threshold = 0x1; memset(ring->requests, 0, sizeof(ring->requests)); ring->bd_base = NULL; ring->bd_dma_base = 0; ring->cmpl_base = NULL; ring->cmpl_dma_base = 0; atomic_set(&ring->msg_send_count, 0); atomic_set(&ring->msg_cmpl_count, 0); spin_lock_init(&ring->lock); bitmap_zero(ring->requests_bmap, RING_MAX_REQ_COUNT); ring->cmpl_read_offset = 0; } /* FlexRM is capable of 40-bit physical addresses only */ ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40)); if (ret) { ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); if (ret) goto fail; } /* Create DMA pool for ring BD memory */ mbox->bd_pool = dma_pool_create("bd", dev, RING_BD_SIZE, 1 << RING_BD_ALIGN_ORDER, 0); if (!mbox->bd_pool) { ret = -ENOMEM; goto fail; } /* Create DMA pool for ring completion memory */ mbox->cmpl_pool = dma_pool_create("cmpl", dev, RING_CMPL_SIZE, 1 << RING_CMPL_ALIGN_ORDER, 0); if (!mbox->cmpl_pool) { ret = -ENOMEM; goto fail_destroy_bd_pool; } /* Allocate platform MSIs for each ring */ ret = platform_msi_domain_alloc_irqs(dev, mbox->num_rings, flexrm_mbox_msi_write); if (ret) goto fail_destroy_cmpl_pool; /* Save alloced IRQ numbers for each ring */ for (index = 0; index < mbox->num_rings; index++) mbox->rings[index].irq = msi_get_virq(dev, index); /* Check availability of debugfs */ if (!debugfs_initialized()) goto skip_debugfs; /* Create debugfs root entry */ mbox->root = debugfs_create_dir(dev_name(mbox->dev), NULL); /* Create debugfs config entry */ debugfs_create_devm_seqfile(mbox->dev, "config", mbox->root, flexrm_debugfs_conf_show); /* Create debugfs stats entry */ debugfs_create_devm_seqfile(mbox->dev, "stats", mbox->root, flexrm_debugfs_stats_show); skip_debugfs: /* Initialize mailbox controller */ mbox->controller.txdone_irq = false; mbox->controller.txdone_poll = false; mbox->controller.ops = &flexrm_mbox_chan_ops; mbox->controller.dev = dev; mbox->controller.num_chans = mbox->num_rings; mbox->controller.of_xlate = flexrm_mbox_of_xlate; mbox->controller.chans = devm_kcalloc(dev, mbox->num_rings, sizeof(*mbox->controller.chans), GFP_KERNEL); if (!mbox->controller.chans) { ret = -ENOMEM; goto fail_free_debugfs_root; } for (index = 0; index < mbox->num_rings; index++) mbox->controller.chans[index].con_priv = &mbox->rings[index]; /* Register mailbox controller */ ret = devm_mbox_controller_register(dev, &mbox->controller); if (ret) goto fail_free_debugfs_root; dev_info(dev, "registered flexrm mailbox with %d channels\n", mbox->controller.num_chans); return 0; fail_free_debugfs_root: debugfs_remove_recursive(mbox->root); platform_msi_domain_free_irqs(dev); fail_destroy_cmpl_pool: dma_pool_destroy(mbox->cmpl_pool); fail_destroy_bd_pool: dma_pool_destroy(mbox->bd_pool); fail: return ret; } static int flexrm_mbox_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct flexrm_mbox *mbox = platform_get_drvdata(pdev); debugfs_remove_recursive(mbox->root); platform_msi_domain_free_irqs(dev); dma_pool_destroy(mbox->cmpl_pool); dma_pool_destroy(mbox->bd_pool); return 0; } static const struct of_device_id flexrm_mbox_of_match[] = { { .compatible = "brcm,iproc-flexrm-mbox", }, {}, }; MODULE_DEVICE_TABLE(of, flexrm_mbox_of_match); static struct platform_driver flexrm_mbox_driver = { .driver = { .name = "brcm-flexrm-mbox", .of_match_table = flexrm_mbox_of_match, }, .probe = flexrm_mbox_probe, .remove = flexrm_mbox_remove, }; module_platform_driver(flexrm_mbox_driver); MODULE_AUTHOR("Anup Patel <anup.patel@broadcom.com>"); MODULE_DESCRIPTION("Broadcom FlexRM mailbox driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1