Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kent Overstreet | 992 | 91.85% | 7 | 22.58% |
Coly Li | 26 | 2.41% | 5 | 16.13% |
George Spelvin | 17 | 1.57% | 1 | 3.23% |
Peter Zijlstra | 13 | 1.20% | 2 | 6.45% |
Ming Lei | 6 | 0.56% | 1 | 3.23% |
Linus Torvalds (pre-git) | 6 | 0.56% | 4 | 12.90% |
Ingo Molnar | 3 | 0.28% | 1 | 3.23% |
Rusty Russell | 3 | 0.28% | 1 | 3.23% |
Linus Torvalds | 2 | 0.19% | 1 | 3.23% |
Michal Hocko | 2 | 0.19% | 1 | 3.23% |
Thomas Gleixner | 2 | 0.19% | 1 | 3.23% |
Pekka J Enberg | 2 | 0.19% | 1 | 3.23% |
Eric W. Biedermann | 2 | 0.19% | 1 | 3.23% |
Nicholas Swenson | 1 | 0.09% | 1 | 3.23% |
Greg Kroah-Hartman | 1 | 0.09% | 1 | 3.23% |
Michael Lyle | 1 | 0.09% | 1 | 3.23% |
Arnd Bergmann | 1 | 0.09% | 1 | 3.23% |
Total | 1080 | 31 |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _BCACHE_UTIL_H #define _BCACHE_UTIL_H #include <linux/blkdev.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/sched/clock.h> #include <linux/llist.h> #include <linux/ratelimit.h> #include <linux/vmalloc.h> #include <linux/workqueue.h> #include <linux/crc64.h> #include "closure.h" struct closure; #ifdef CONFIG_BCACHE_DEBUG #define EBUG_ON(cond) BUG_ON(cond) #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0) #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i) #else /* DEBUG */ #define EBUG_ON(cond) do { if (cond) do {} while (0); } while (0) #define atomic_dec_bug(v) atomic_dec(v) #define atomic_inc_bug(v, i) atomic_inc(v) #endif #define DECLARE_HEAP(type, name) \ struct { \ size_t size, used; \ type *data; \ } name #define init_heap(heap, _size, gfp) \ ({ \ size_t _bytes; \ (heap)->used = 0; \ (heap)->size = (_size); \ _bytes = (heap)->size * sizeof(*(heap)->data); \ (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \ (heap)->data; \ }) #define free_heap(heap) \ do { \ kvfree((heap)->data); \ (heap)->data = NULL; \ } while (0) #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j]) #define heap_sift(h, i, cmp) \ do { \ size_t _r, _j = i; \ \ for (; _j * 2 + 1 < (h)->used; _j = _r) { \ _r = _j * 2 + 1; \ if (_r + 1 < (h)->used && \ cmp((h)->data[_r], (h)->data[_r + 1])) \ _r++; \ \ if (cmp((h)->data[_r], (h)->data[_j])) \ break; \ heap_swap(h, _r, _j); \ } \ } while (0) #define heap_sift_down(h, i, cmp) \ do { \ while (i) { \ size_t p = (i - 1) / 2; \ if (cmp((h)->data[i], (h)->data[p])) \ break; \ heap_swap(h, i, p); \ i = p; \ } \ } while (0) #define heap_add(h, d, cmp) \ ({ \ bool _r = !heap_full(h); \ if (_r) { \ size_t _i = (h)->used++; \ (h)->data[_i] = d; \ \ heap_sift_down(h, _i, cmp); \ heap_sift(h, _i, cmp); \ } \ _r; \ }) #define heap_pop(h, d, cmp) \ ({ \ bool _r = (h)->used; \ if (_r) { \ (d) = (h)->data[0]; \ (h)->used--; \ heap_swap(h, 0, (h)->used); \ heap_sift(h, 0, cmp); \ } \ _r; \ }) #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL) #define heap_full(h) ((h)->used == (h)->size) #define DECLARE_FIFO(type, name) \ struct { \ size_t front, back, size, mask; \ type *data; \ } name #define fifo_for_each(c, fifo, iter) \ for (iter = (fifo)->front; \ c = (fifo)->data[iter], iter != (fifo)->back; \ iter = (iter + 1) & (fifo)->mask) #define __init_fifo(fifo, gfp) \ ({ \ size_t _allocated_size, _bytes; \ BUG_ON(!(fifo)->size); \ \ _allocated_size = roundup_pow_of_two((fifo)->size + 1); \ _bytes = _allocated_size * sizeof(*(fifo)->data); \ \ (fifo)->mask = _allocated_size - 1; \ (fifo)->front = (fifo)->back = 0; \ \ (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \ (fifo)->data; \ }) #define init_fifo_exact(fifo, _size, gfp) \ ({ \ (fifo)->size = (_size); \ __init_fifo(fifo, gfp); \ }) #define init_fifo(fifo, _size, gfp) \ ({ \ (fifo)->size = (_size); \ if ((fifo)->size > 4) \ (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \ __init_fifo(fifo, gfp); \ }) #define free_fifo(fifo) \ do { \ kvfree((fifo)->data); \ (fifo)->data = NULL; \ } while (0) #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask) #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo)) #define fifo_empty(fifo) (!fifo_used(fifo)) #define fifo_full(fifo) (!fifo_free(fifo)) #define fifo_front(fifo) ((fifo)->data[(fifo)->front]) #define fifo_back(fifo) \ ((fifo)->data[((fifo)->back - 1) & (fifo)->mask]) #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask) #define fifo_push_back(fifo, i) \ ({ \ bool _r = !fifo_full((fifo)); \ if (_r) { \ (fifo)->data[(fifo)->back++] = (i); \ (fifo)->back &= (fifo)->mask; \ } \ _r; \ }) #define fifo_pop_front(fifo, i) \ ({ \ bool _r = !fifo_empty((fifo)); \ if (_r) { \ (i) = (fifo)->data[(fifo)->front++]; \ (fifo)->front &= (fifo)->mask; \ } \ _r; \ }) #define fifo_push_front(fifo, i) \ ({ \ bool _r = !fifo_full((fifo)); \ if (_r) { \ --(fifo)->front; \ (fifo)->front &= (fifo)->mask; \ (fifo)->data[(fifo)->front] = (i); \ } \ _r; \ }) #define fifo_pop_back(fifo, i) \ ({ \ bool _r = !fifo_empty((fifo)); \ if (_r) { \ --(fifo)->back; \ (fifo)->back &= (fifo)->mask; \ (i) = (fifo)->data[(fifo)->back] \ } \ _r; \ }) #define fifo_push(fifo, i) fifo_push_back(fifo, (i)) #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i)) #define fifo_swap(l, r) \ do { \ swap((l)->front, (r)->front); \ swap((l)->back, (r)->back); \ swap((l)->size, (r)->size); \ swap((l)->mask, (r)->mask); \ swap((l)->data, (r)->data); \ } while (0) #define fifo_move(dest, src) \ do { \ typeof(*((dest)->data)) _t; \ while (!fifo_full(dest) && \ fifo_pop(src, _t)) \ fifo_push(dest, _t); \ } while (0) /* * Simple array based allocator - preallocates a number of elements and you can * never allocate more than that, also has no locking. * * Handy because if you know you only need a fixed number of elements you don't * have to worry about memory allocation failure, and sometimes a mempool isn't * what you want. * * We treat the free elements as entries in a singly linked list, and the * freelist as a stack - allocating and freeing push and pop off the freelist. */ #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \ struct { \ type *freelist; \ type data[size]; \ } name #define array_alloc(array) \ ({ \ typeof((array)->freelist) _ret = (array)->freelist; \ \ if (_ret) \ (array)->freelist = *((typeof((array)->freelist) *) _ret);\ \ _ret; \ }) #define array_free(array, ptr) \ do { \ typeof((array)->freelist) _ptr = ptr; \ \ *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \ (array)->freelist = _ptr; \ } while (0) #define array_allocator_init(array) \ do { \ typeof((array)->freelist) _i; \ \ BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \ (array)->freelist = NULL; \ \ for (_i = (array)->data; \ _i < (array)->data + ARRAY_SIZE((array)->data); \ _i++) \ array_free(array, _i); \ } while (0) #define array_freelist_empty(array) ((array)->freelist == NULL) #define ANYSINT_MAX(t) \ ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) int bch_strtoint_h(const char *cp, int *res); int bch_strtouint_h(const char *cp, unsigned int *res); int bch_strtoll_h(const char *cp, long long *res); int bch_strtoull_h(const char *cp, unsigned long long *res); static inline int bch_strtol_h(const char *cp, long *res) { #if BITS_PER_LONG == 32 return bch_strtoint_h(cp, (int *) res); #else return bch_strtoll_h(cp, (long long *) res); #endif } static inline int bch_strtoul_h(const char *cp, long *res) { #if BITS_PER_LONG == 32 return bch_strtouint_h(cp, (unsigned int *) res); #else return bch_strtoull_h(cp, (unsigned long long *) res); #endif } #define strtoi_h(cp, res) \ (__builtin_types_compatible_p(typeof(*res), int) \ ? bch_strtoint_h(cp, (void *) res) \ : __builtin_types_compatible_p(typeof(*res), long) \ ? bch_strtol_h(cp, (void *) res) \ : __builtin_types_compatible_p(typeof(*res), long long) \ ? bch_strtoll_h(cp, (void *) res) \ : __builtin_types_compatible_p(typeof(*res), unsigned int) \ ? bch_strtouint_h(cp, (void *) res) \ : __builtin_types_compatible_p(typeof(*res), unsigned long) \ ? bch_strtoul_h(cp, (void *) res) \ : __builtin_types_compatible_p(typeof(*res), unsigned long long)\ ? bch_strtoull_h(cp, (void *) res) : -EINVAL) #define strtoul_safe(cp, var) \ ({ \ unsigned long _v; \ int _r = kstrtoul(cp, 10, &_v); \ if (!_r) \ var = _v; \ _r; \ }) #define strtoul_safe_clamp(cp, var, min, max) \ ({ \ unsigned long _v; \ int _r = kstrtoul(cp, 10, &_v); \ if (!_r) \ var = clamp_t(typeof(var), _v, min, max); \ _r; \ }) ssize_t bch_hprint(char *buf, int64_t v); bool bch_is_zero(const char *p, size_t n); int bch_parse_uuid(const char *s, char *uuid); struct time_stats { spinlock_t lock; /* * all fields are in nanoseconds, averages are ewmas stored left shifted * by 8 */ uint64_t max_duration; uint64_t average_duration; uint64_t average_frequency; uint64_t last; }; void bch_time_stats_update(struct time_stats *stats, uint64_t time); static inline unsigned int local_clock_us(void) { return local_clock() >> 10; } #define NSEC_PER_ns 1L #define NSEC_PER_us NSEC_PER_USEC #define NSEC_PER_ms NSEC_PER_MSEC #define NSEC_PER_sec NSEC_PER_SEC #define __print_time_stat(stats, name, stat, units) \ sysfs_print(name ## _ ## stat ## _ ## units, \ div_u64((stats)->stat >> 8, NSEC_PER_ ## units)) #define sysfs_print_time_stats(stats, name, \ frequency_units, \ duration_units) \ do { \ __print_time_stat(stats, name, \ average_frequency, frequency_units); \ __print_time_stat(stats, name, \ average_duration, duration_units); \ sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \ div_u64((stats)->max_duration, \ NSEC_PER_ ## duration_units)); \ \ sysfs_print(name ## _last_ ## frequency_units, (stats)->last \ ? div_s64(local_clock() - (stats)->last, \ NSEC_PER_ ## frequency_units) \ : -1LL); \ } while (0) #define sysfs_time_stats_attribute(name, \ frequency_units, \ duration_units) \ read_attribute(name ## _average_frequency_ ## frequency_units); \ read_attribute(name ## _average_duration_ ## duration_units); \ read_attribute(name ## _max_duration_ ## duration_units); \ read_attribute(name ## _last_ ## frequency_units) #define sysfs_time_stats_attribute_list(name, \ frequency_units, \ duration_units) \ &sysfs_ ## name ## _average_frequency_ ## frequency_units, \ &sysfs_ ## name ## _average_duration_ ## duration_units, \ &sysfs_ ## name ## _max_duration_ ## duration_units, \ &sysfs_ ## name ## _last_ ## frequency_units, #define ewma_add(ewma, val, weight, factor) \ ({ \ (ewma) *= (weight) - 1; \ (ewma) += (val) << factor; \ (ewma) /= (weight); \ (ewma) >> factor; \ }) struct bch_ratelimit { /* Next time we want to do some work, in nanoseconds */ uint64_t next; /* * Rate at which we want to do work, in units per second * The units here correspond to the units passed to bch_next_delay() */ atomic_long_t rate; }; static inline void bch_ratelimit_reset(struct bch_ratelimit *d) { d->next = local_clock(); } uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done); #define __DIV_SAFE(n, d, zero) \ ({ \ typeof(n) _n = (n); \ typeof(d) _d = (d); \ _d ? _n / _d : zero; \ }) #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0) #define container_of_or_null(ptr, type, member) \ ({ \ typeof(ptr) _ptr = ptr; \ _ptr ? container_of(_ptr, type, member) : NULL; \ }) #define RB_INSERT(root, new, member, cmp) \ ({ \ __label__ dup; \ struct rb_node **n = &(root)->rb_node, *parent = NULL; \ typeof(new) this; \ int res, ret = -1; \ \ while (*n) { \ parent = *n; \ this = container_of(*n, typeof(*(new)), member); \ res = cmp(new, this); \ if (!res) \ goto dup; \ n = res < 0 \ ? &(*n)->rb_left \ : &(*n)->rb_right; \ } \ \ rb_link_node(&(new)->member, parent, n); \ rb_insert_color(&(new)->member, root); \ ret = 0; \ dup: \ ret; \ }) #define RB_SEARCH(root, search, member, cmp) \ ({ \ struct rb_node *n = (root)->rb_node; \ typeof(&(search)) this, ret = NULL; \ int res; \ \ while (n) { \ this = container_of(n, typeof(search), member); \ res = cmp(&(search), this); \ if (!res) { \ ret = this; \ break; \ } \ n = res < 0 \ ? n->rb_left \ : n->rb_right; \ } \ ret; \ }) #define RB_GREATER(root, search, member, cmp) \ ({ \ struct rb_node *n = (root)->rb_node; \ typeof(&(search)) this, ret = NULL; \ int res; \ \ while (n) { \ this = container_of(n, typeof(search), member); \ res = cmp(&(search), this); \ if (res < 0) { \ ret = this; \ n = n->rb_left; \ } else \ n = n->rb_right; \ } \ ret; \ }) #define RB_FIRST(root, type, member) \ container_of_or_null(rb_first(root), type, member) #define RB_LAST(root, type, member) \ container_of_or_null(rb_last(root), type, member) #define RB_NEXT(ptr, member) \ container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member) #define RB_PREV(ptr, member) \ container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member) static inline uint64_t bch_crc64(const void *p, size_t len) { uint64_t crc = 0xffffffffffffffffULL; crc = crc64_be(crc, p, len); return crc ^ 0xffffffffffffffffULL; } /* * A stepwise-linear pseudo-exponential. This returns 1 << (x >> * frac_bits), with the less-significant bits filled in by linear * interpolation. * * This can also be interpreted as a floating-point number format, * where the low frac_bits are the mantissa (with implicit leading * 1 bit), and the more significant bits are the exponent. * The return value is 1.mantissa * 2^exponent. * * The way this is used, fract_bits is 6 and the largest possible * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc), * so the maximum output is 0x1fc00. */ static inline unsigned int fract_exp_two(unsigned int x, unsigned int fract_bits) { unsigned int mantissa = 1 << fract_bits; /* Implicit bit */ mantissa += x & (mantissa - 1); x >>= fract_bits; /* The exponent */ /* Largest intermediate value 0x7f0000 */ return mantissa << x >> fract_bits; } void bch_bio_map(struct bio *bio, void *base); int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask); #endif /* _BCACHE_UTIL_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1