Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Benjamin Mugnier | 10471 | 99.97% | 2 | 66.67% |
Andy Shevchenko | 3 | 0.03% | 1 | 33.33% |
Total | 10474 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* * Driver for VGXY61 global shutter sensor family driver * * Copyright (C) 2022 STMicroelectronics SA */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <linux/units.h> #include <asm/unaligned.h> #include <media/mipi-csi2.h> #include <media/v4l2-async.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-device.h> #include <media/v4l2-fwnode.h> #include <media/v4l2-subdev.h> #define VGXY61_REG_8BIT(n) ((1 << 16) | (n)) #define VGXY61_REG_16BIT(n) ((2 << 16) | (n)) #define VGXY61_REG_32BIT(n) ((4 << 16) | (n)) #define VGXY61_REG_SIZE_SHIFT 16 #define VGXY61_REG_ADDR_MASK 0xffff #define VGXY61_REG_MODEL_ID VGXY61_REG_16BIT(0x0000) #define VG5661_MODEL_ID 0x5661 #define VG5761_MODEL_ID 0x5761 #define VGXY61_REG_REVISION VGXY61_REG_16BIT(0x0002) #define VGXY61_REG_FWPATCH_REVISION VGXY61_REG_16BIT(0x0014) #define VGXY61_REG_FWPATCH_START_ADDR VGXY61_REG_8BIT(0x2000) #define VGXY61_REG_SYSTEM_FSM VGXY61_REG_8BIT(0x0020) #define VGXY61_SYSTEM_FSM_SW_STBY 0x03 #define VGXY61_SYSTEM_FSM_STREAMING 0x04 #define VGXY61_REG_NVM VGXY61_REG_8BIT(0x0023) #define VGXY61_NVM_OK 0x04 #define VGXY61_REG_STBY VGXY61_REG_8BIT(0x0201) #define VGXY61_STBY_NO_REQ 0 #define VGXY61_STBY_REQ_TMP_READ BIT(2) #define VGXY61_REG_STREAMING VGXY61_REG_8BIT(0x0202) #define VGXY61_STREAMING_NO_REQ 0 #define VGXY61_STREAMING_REQ_STOP BIT(0) #define VGXY61_STREAMING_REQ_START BIT(1) #define VGXY61_REG_EXT_CLOCK VGXY61_REG_32BIT(0x0220) #define VGXY61_REG_CLK_PLL_PREDIV VGXY61_REG_8BIT(0x0224) #define VGXY61_REG_CLK_SYS_PLL_MULT VGXY61_REG_8BIT(0x0225) #define VGXY61_REG_GPIO_0_CTRL VGXY61_REG_8BIT(0x0236) #define VGXY61_REG_GPIO_1_CTRL VGXY61_REG_8BIT(0x0237) #define VGXY61_REG_GPIO_2_CTRL VGXY61_REG_8BIT(0x0238) #define VGXY61_REG_GPIO_3_CTRL VGXY61_REG_8BIT(0x0239) #define VGXY61_REG_SIGNALS_POLARITY_CTRL VGXY61_REG_8BIT(0x023b) #define VGXY61_REG_LINE_LENGTH VGXY61_REG_16BIT(0x0300) #define VGXY61_REG_ORIENTATION VGXY61_REG_8BIT(0x0302) #define VGXY61_REG_VT_CTRL VGXY61_REG_8BIT(0x0304) #define VGXY61_REG_FORMAT_CTRL VGXY61_REG_8BIT(0x0305) #define VGXY61_REG_OIF_CTRL VGXY61_REG_16BIT(0x0306) #define VGXY61_REG_OIF_ROI0_CTRL VGXY61_REG_8BIT(0x030a) #define VGXY61_REG_ROI0_START_H VGXY61_REG_16BIT(0x0400) #define VGXY61_REG_ROI0_START_V VGXY61_REG_16BIT(0x0402) #define VGXY61_REG_ROI0_END_H VGXY61_REG_16BIT(0x0404) #define VGXY61_REG_ROI0_END_V VGXY61_REG_16BIT(0x0406) #define VGXY61_REG_PATGEN_CTRL VGXY61_REG_32BIT(0x0440) #define VGXY61_PATGEN_LONG_ENABLE BIT(16) #define VGXY61_PATGEN_SHORT_ENABLE BIT(0) #define VGXY61_PATGEN_LONG_TYPE_SHIFT 18 #define VGXY61_PATGEN_SHORT_TYPE_SHIFT 4 #define VGXY61_REG_FRAME_CONTENT_CTRL VGXY61_REG_8BIT(0x0478) #define VGXY61_REG_COARSE_EXPOSURE_LONG VGXY61_REG_16BIT(0x0500) #define VGXY61_REG_COARSE_EXPOSURE_SHORT VGXY61_REG_16BIT(0x0504) #define VGXY61_REG_ANALOG_GAIN VGXY61_REG_8BIT(0x0508) #define VGXY61_REG_DIGITAL_GAIN_LONG VGXY61_REG_16BIT(0x050a) #define VGXY61_REG_DIGITAL_GAIN_SHORT VGXY61_REG_16BIT(0x0512) #define VGXY61_REG_FRAME_LENGTH VGXY61_REG_16BIT(0x051a) #define VGXY61_REG_SIGNALS_CTRL VGXY61_REG_16BIT(0x0522) #define VGXY61_SIGNALS_GPIO_ID_SHIFT 4 #define VGXY61_REG_READOUT_CTRL VGXY61_REG_8BIT(0x0530) #define VGXY61_REG_HDR_CTRL VGXY61_REG_8BIT(0x0532) #define VGXY61_REG_PATGEN_LONG_DATA_GR VGXY61_REG_16BIT(0x092c) #define VGXY61_REG_PATGEN_LONG_DATA_R VGXY61_REG_16BIT(0x092e) #define VGXY61_REG_PATGEN_LONG_DATA_B VGXY61_REG_16BIT(0x0930) #define VGXY61_REG_PATGEN_LONG_DATA_GB VGXY61_REG_16BIT(0x0932) #define VGXY61_REG_PATGEN_SHORT_DATA_GR VGXY61_REG_16BIT(0x0950) #define VGXY61_REG_PATGEN_SHORT_DATA_R VGXY61_REG_16BIT(0x0952) #define VGXY61_REG_PATGEN_SHORT_DATA_B VGXY61_REG_16BIT(0x0954) #define VGXY61_REG_PATGEN_SHORT_DATA_GB VGXY61_REG_16BIT(0x0956) #define VGXY61_REG_BYPASS_CTRL VGXY61_REG_8BIT(0x0a60) #define VGX661_WIDTH 1464 #define VGX661_HEIGHT 1104 #define VGX761_WIDTH 1944 #define VGX761_HEIGHT 1204 #define VGX661_DEFAULT_MODE 1 #define VGX761_DEFAULT_MODE 1 #define VGX661_SHORT_ROT_TERM 93 #define VGX761_SHORT_ROT_TERM 90 #define VGXY61_EXPOS_ROT_TERM 66 #define VGXY61_WRITE_MULTIPLE_CHUNK_MAX 16 #define VGXY61_NB_GPIOS 4 #define VGXY61_NB_POLARITIES 5 #define VGXY61_FRAME_LENGTH_DEF 1313 #define VGXY61_MIN_FRAME_LENGTH 1288 #define VGXY61_MIN_EXPOSURE 10 #define VGXY61_HDR_LINEAR_RATIO 10 #define VGXY61_TIMEOUT_MS 500 #define VGXY61_MEDIA_BUS_FMT_DEF MEDIA_BUS_FMT_Y8_1X8 #define VGXY61_FWPATCH_REVISION_MAJOR 2 #define VGXY61_FWPATCH_REVISION_MINOR 0 #define VGXY61_FWPATCH_REVISION_MICRO 5 static const u8 patch_array[] = { 0xbf, 0x00, 0x05, 0x20, 0x06, 0x01, 0xe0, 0xe0, 0x04, 0x80, 0xe6, 0x45, 0xed, 0x6f, 0xfe, 0xff, 0x14, 0x80, 0x1f, 0x84, 0x10, 0x42, 0x05, 0x7c, 0x01, 0xc4, 0x1e, 0x80, 0xb6, 0x42, 0x00, 0xe0, 0x1e, 0x82, 0x1e, 0xc0, 0x93, 0xdd, 0xc3, 0xc1, 0x0c, 0x04, 0x00, 0xfa, 0x86, 0x0d, 0x70, 0xe1, 0x04, 0x98, 0x15, 0x00, 0x28, 0xe0, 0x14, 0x02, 0x08, 0xfc, 0x15, 0x40, 0x28, 0xe0, 0x98, 0x58, 0xe0, 0xef, 0x04, 0x98, 0x0e, 0x04, 0x00, 0xf0, 0x15, 0x00, 0x28, 0xe0, 0x19, 0xc8, 0x15, 0x40, 0x28, 0xe0, 0xc6, 0x41, 0xfc, 0xe0, 0x14, 0x80, 0x1f, 0x84, 0x14, 0x02, 0xa0, 0xfc, 0x1e, 0x80, 0x14, 0x80, 0x14, 0x02, 0x80, 0xfb, 0x14, 0x02, 0xe0, 0xfc, 0x1e, 0x80, 0x14, 0xc0, 0x1f, 0x84, 0x14, 0x02, 0xa4, 0xfc, 0x1e, 0xc0, 0x14, 0xc0, 0x14, 0x02, 0x80, 0xfb, 0x14, 0x02, 0xe4, 0xfc, 0x1e, 0xc0, 0x0c, 0x0c, 0x00, 0xf2, 0x93, 0xdd, 0x86, 0x00, 0xf8, 0xe0, 0x04, 0x80, 0xc6, 0x03, 0x70, 0xe1, 0x0e, 0x84, 0x93, 0xdd, 0xc3, 0xc1, 0x0c, 0x04, 0x00, 0xfa, 0x6b, 0x80, 0x06, 0x40, 0x6c, 0xe1, 0x04, 0x80, 0x09, 0x00, 0xe0, 0xe0, 0x0b, 0xa1, 0x95, 0x84, 0x05, 0x0c, 0x1c, 0xe0, 0x86, 0x02, 0xf9, 0x60, 0xe0, 0xcf, 0x78, 0x6e, 0x80, 0xef, 0x25, 0x0c, 0x18, 0xe0, 0x05, 0x4c, 0x1c, 0xe0, 0x86, 0x02, 0xf9, 0x60, 0xe0, 0xcf, 0x0b, 0x84, 0xd8, 0x6d, 0x80, 0xef, 0x05, 0x4c, 0x18, 0xe0, 0x04, 0xd8, 0x0b, 0xa5, 0x95, 0x84, 0x05, 0x0c, 0x2c, 0xe0, 0x06, 0x02, 0x01, 0x60, 0xe0, 0xce, 0x18, 0x6d, 0x80, 0xef, 0x25, 0x0c, 0x30, 0xe0, 0x05, 0x4c, 0x2c, 0xe0, 0x06, 0x02, 0x01, 0x60, 0xe0, 0xce, 0x0b, 0x84, 0x78, 0x6c, 0x80, 0xef, 0x05, 0x4c, 0x30, 0xe0, 0x0c, 0x0c, 0x00, 0xf2, 0x93, 0xdd, 0x46, 0x01, 0x70, 0xe1, 0x08, 0x80, 0x0b, 0xa1, 0x08, 0x5c, 0x00, 0xda, 0x06, 0x01, 0x68, 0xe1, 0x04, 0x80, 0x4a, 0x40, 0x84, 0xe0, 0x08, 0x5c, 0x00, 0x9a, 0x06, 0x01, 0xe0, 0xe0, 0x04, 0x80, 0x15, 0x00, 0x60, 0xe0, 0x19, 0xc4, 0x15, 0x40, 0x60, 0xe0, 0x15, 0x00, 0x78, 0xe0, 0x19, 0xc4, 0x15, 0x40, 0x78, 0xe0, 0x93, 0xdd, 0xc3, 0xc1, 0x46, 0x01, 0x70, 0xe1, 0x08, 0x80, 0x0b, 0xa1, 0x08, 0x5c, 0x00, 0xda, 0x06, 0x01, 0x68, 0xe1, 0x04, 0x80, 0x4a, 0x40, 0x84, 0xe0, 0x08, 0x5c, 0x00, 0x9a, 0x06, 0x01, 0xe0, 0xe0, 0x14, 0x80, 0x25, 0x02, 0x54, 0xe0, 0x29, 0xc4, 0x25, 0x42, 0x54, 0xe0, 0x24, 0x80, 0x35, 0x04, 0x6c, 0xe0, 0x39, 0xc4, 0x35, 0x44, 0x6c, 0xe0, 0x25, 0x02, 0x64, 0xe0, 0x29, 0xc4, 0x25, 0x42, 0x64, 0xe0, 0x04, 0x80, 0x15, 0x00, 0x7c, 0xe0, 0x19, 0xc4, 0x15, 0x40, 0x7c, 0xe0, 0x93, 0xdd, 0xc3, 0xc1, 0x4c, 0x04, 0x7c, 0xfa, 0x86, 0x40, 0x98, 0xe0, 0x14, 0x80, 0x1b, 0xa1, 0x06, 0x00, 0x00, 0xc0, 0x08, 0x42, 0x38, 0xdc, 0x08, 0x64, 0xa0, 0xef, 0x86, 0x42, 0x3c, 0xe0, 0x68, 0x49, 0x80, 0xef, 0x6b, 0x80, 0x78, 0x53, 0xc8, 0xef, 0xc6, 0x54, 0x6c, 0xe1, 0x7b, 0x80, 0xb5, 0x14, 0x0c, 0xf8, 0x05, 0x14, 0x14, 0xf8, 0x1a, 0xac, 0x8a, 0x80, 0x0b, 0x90, 0x38, 0x55, 0x80, 0xef, 0x1a, 0xae, 0x17, 0xc2, 0x03, 0x82, 0x88, 0x65, 0x80, 0xef, 0x1b, 0x80, 0x0b, 0x8e, 0x68, 0x65, 0x80, 0xef, 0x9b, 0x80, 0x0b, 0x8c, 0x08, 0x65, 0x80, 0xef, 0x6b, 0x80, 0x0b, 0x92, 0x1b, 0x8c, 0x98, 0x64, 0x80, 0xef, 0x1a, 0xec, 0x9b, 0x80, 0x0b, 0x90, 0x95, 0x54, 0x10, 0xe0, 0xa8, 0x53, 0x80, 0xef, 0x1a, 0xee, 0x17, 0xc2, 0x03, 0x82, 0xf8, 0x63, 0x80, 0xef, 0x1b, 0x80, 0x0b, 0x8e, 0xd8, 0x63, 0x80, 0xef, 0x1b, 0x8c, 0x68, 0x63, 0x80, 0xef, 0x6b, 0x80, 0x0b, 0x92, 0x65, 0x54, 0x14, 0xe0, 0x08, 0x65, 0x84, 0xef, 0x68, 0x63, 0x80, 0xef, 0x7b, 0x80, 0x0b, 0x8c, 0xa8, 0x64, 0x84, 0xef, 0x08, 0x63, 0x80, 0xef, 0x14, 0xe8, 0x46, 0x44, 0x94, 0xe1, 0x24, 0x88, 0x4a, 0x4e, 0x04, 0xe0, 0x14, 0xea, 0x1a, 0x04, 0x08, 0xe0, 0x0a, 0x40, 0x84, 0xed, 0x0c, 0x04, 0x00, 0xe2, 0x4a, 0x40, 0x04, 0xe0, 0x19, 0x16, 0xc0, 0xe0, 0x0a, 0x40, 0x84, 0xed, 0x21, 0x54, 0x60, 0xe0, 0x0c, 0x04, 0x00, 0xe2, 0x1b, 0xa5, 0x0e, 0xea, 0x01, 0x89, 0x21, 0x54, 0x64, 0xe0, 0x7e, 0xe8, 0x65, 0x82, 0x1b, 0xa7, 0x26, 0x00, 0x00, 0x80, 0xa5, 0x82, 0x1b, 0xa9, 0x65, 0x82, 0x1b, 0xa3, 0x01, 0x85, 0x16, 0x00, 0x00, 0xc0, 0x01, 0x54, 0x04, 0xf8, 0x06, 0xaa, 0x01, 0x83, 0x06, 0xa8, 0x65, 0x81, 0x06, 0xa8, 0x01, 0x54, 0x04, 0xf8, 0x01, 0x83, 0x06, 0xaa, 0x09, 0x14, 0x18, 0xf8, 0x0b, 0xa1, 0x05, 0x84, 0xc6, 0x42, 0xd4, 0xe0, 0x14, 0x84, 0x01, 0x83, 0x01, 0x54, 0x60, 0xe0, 0x01, 0x54, 0x64, 0xe0, 0x0b, 0x02, 0x90, 0xe0, 0x10, 0x02, 0x90, 0xe5, 0x01, 0x54, 0x88, 0xe0, 0xb5, 0x81, 0xc6, 0x40, 0xd4, 0xe0, 0x14, 0x80, 0x0b, 0x02, 0xe0, 0xe4, 0x10, 0x02, 0x31, 0x66, 0x02, 0xc0, 0x01, 0x54, 0x88, 0xe0, 0x1a, 0x84, 0x29, 0x14, 0x10, 0xe0, 0x1c, 0xaa, 0x2b, 0xa1, 0xf5, 0x82, 0x25, 0x14, 0x10, 0xf8, 0x2b, 0x04, 0xa8, 0xe0, 0x20, 0x44, 0x0d, 0x70, 0x03, 0xc0, 0x2b, 0xa1, 0x04, 0x00, 0x80, 0x9a, 0x02, 0x40, 0x84, 0x90, 0x03, 0x54, 0x04, 0x80, 0x4c, 0x0c, 0x7c, 0xf2, 0x93, 0xdd, 0x00, 0x00, 0x02, 0xa9, 0x00, 0x00, 0x64, 0x4a, 0x40, 0x00, 0x08, 0x2d, 0x58, 0xe0, 0xa8, 0x98, 0x40, 0x00, 0x28, 0x07, 0x34, 0xe0, 0x05, 0xb9, 0x00, 0x00, 0x28, 0x00, 0x41, 0x05, 0x88, 0x00, 0x41, 0x3c, 0x98, 0x00, 0x41, 0x52, 0x04, 0x01, 0x41, 0x79, 0x3c, 0x01, 0x41, 0x6a, 0x3d, 0xfe, 0x00, 0x00, }; static const char * const vgxy61_test_pattern_menu[] = { "Disabled", "Solid", "Colorbar", "Gradbar", "Hgrey", "Vgrey", "Dgrey", "PN28", }; static const char * const vgxy61_hdr_mode_menu[] = { "HDR linearize", "HDR substraction", "No HDR", }; static const char * const vgxy61_supply_name[] = { "VCORE", "VDDIO", "VANA", }; static const s64 link_freq[] = { /* * MIPI output freq is 804Mhz / 2, as it uses both rising edge and * falling edges to send data */ 402000000ULL }; enum vgxy61_bin_mode { VGXY61_BIN_MODE_NORMAL, VGXY61_BIN_MODE_DIGITAL_X2, VGXY61_BIN_MODE_DIGITAL_X4, }; enum vgxy61_hdr_mode { VGXY61_HDR_LINEAR, VGXY61_HDR_SUB, VGXY61_NO_HDR, }; enum vgxy61_strobe_mode { VGXY61_STROBE_DISABLED, VGXY61_STROBE_LONG, VGXY61_STROBE_ENABLED, }; struct vgxy61_mode_info { u32 width; u32 height; enum vgxy61_bin_mode bin_mode; struct v4l2_rect crop; }; struct vgxy61_fmt_desc { u32 code; u8 bpp; u8 data_type; }; static const struct vgxy61_fmt_desc vgxy61_supported_codes[] = { { .code = MEDIA_BUS_FMT_Y8_1X8, .bpp = 8, .data_type = MIPI_CSI2_DT_RAW8, }, { .code = MEDIA_BUS_FMT_Y10_1X10, .bpp = 10, .data_type = MIPI_CSI2_DT_RAW10, }, { .code = MEDIA_BUS_FMT_Y12_1X12, .bpp = 12, .data_type = MIPI_CSI2_DT_RAW12, }, { .code = MEDIA_BUS_FMT_Y14_1X14, .bpp = 14, .data_type = MIPI_CSI2_DT_RAW14, }, { .code = MEDIA_BUS_FMT_Y16_1X16, .bpp = 16, .data_type = MIPI_CSI2_DT_RAW16, }, }; static const struct vgxy61_mode_info vgx661_mode_data[] = { { .width = VGX661_WIDTH, .height = VGX661_HEIGHT, .bin_mode = VGXY61_BIN_MODE_NORMAL, .crop = { .left = 0, .top = 0, .width = VGX661_WIDTH, .height = VGX661_HEIGHT, }, }, { .width = 1280, .height = 720, .bin_mode = VGXY61_BIN_MODE_NORMAL, .crop = { .left = 92, .top = 192, .width = 1280, .height = 720, }, }, { .width = 640, .height = 480, .bin_mode = VGXY61_BIN_MODE_DIGITAL_X2, .crop = { .left = 92, .top = 72, .width = 1280, .height = 960, }, }, { .width = 320, .height = 240, .bin_mode = VGXY61_BIN_MODE_DIGITAL_X4, .crop = { .left = 92, .top = 72, .width = 1280, .height = 960, }, }, }; static const struct vgxy61_mode_info vgx761_mode_data[] = { { .width = VGX761_WIDTH, .height = VGX761_HEIGHT, .bin_mode = VGXY61_BIN_MODE_NORMAL, .crop = { .left = 0, .top = 0, .width = VGX761_WIDTH, .height = VGX761_HEIGHT, }, }, { .width = 1920, .height = 1080, .bin_mode = VGXY61_BIN_MODE_NORMAL, .crop = { .left = 12, .top = 62, .width = 1920, .height = 1080, }, }, { .width = 1280, .height = 720, .bin_mode = VGXY61_BIN_MODE_NORMAL, .crop = { .left = 332, .top = 242, .width = 1280, .height = 720, }, }, { .width = 640, .height = 480, .bin_mode = VGXY61_BIN_MODE_DIGITAL_X2, .crop = { .left = 332, .top = 122, .width = 1280, .height = 960, }, }, { .width = 320, .height = 240, .bin_mode = VGXY61_BIN_MODE_DIGITAL_X4, .crop = { .left = 332, .top = 122, .width = 1280, .height = 960, }, }, }; struct vgxy61_dev { struct i2c_client *i2c_client; struct v4l2_subdev sd; struct media_pad pad; struct regulator_bulk_data supplies[ARRAY_SIZE(vgxy61_supply_name)]; struct gpio_desc *reset_gpio; struct clk *xclk; u32 clk_freq; u16 id; u16 sensor_width; u16 sensor_height; u16 oif_ctrl; unsigned int nb_of_lane; u32 data_rate_in_mbps; u32 pclk; u16 line_length; u16 rot_term; bool gpios_polarity; /* Lock to protect all members below */ struct mutex lock; struct v4l2_ctrl_handler ctrl_handler; struct v4l2_ctrl *pixel_rate_ctrl; struct v4l2_ctrl *expo_ctrl; struct v4l2_ctrl *vblank_ctrl; struct v4l2_ctrl *vflip_ctrl; struct v4l2_ctrl *hflip_ctrl; bool streaming; struct v4l2_mbus_framefmt fmt; const struct vgxy61_mode_info *sensor_modes; unsigned int sensor_modes_nb; const struct vgxy61_mode_info *default_mode; const struct vgxy61_mode_info *current_mode; bool hflip; bool vflip; enum vgxy61_hdr_mode hdr; u16 expo_long; u16 expo_short; u16 expo_max; u16 expo_min; u16 vblank; u16 vblank_min; u16 frame_length; u16 digital_gain; u8 analog_gain; enum vgxy61_strobe_mode strobe_mode; u32 pattern; }; static u8 get_bpp_by_code(__u32 code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(vgxy61_supported_codes); i++) { if (vgxy61_supported_codes[i].code == code) return vgxy61_supported_codes[i].bpp; } /* Should never happen */ WARN(1, "Unsupported code %d. default to 8 bpp", code); return 8; } static u8 get_data_type_by_code(__u32 code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(vgxy61_supported_codes); i++) { if (vgxy61_supported_codes[i].code == code) return vgxy61_supported_codes[i].data_type; } /* Should never happen */ WARN(1, "Unsupported code %d. default to MIPI_CSI2_DT_RAW8 data type", code); return MIPI_CSI2_DT_RAW8; } static void compute_pll_parameters_by_freq(u32 freq, u8 *prediv, u8 *mult) { const unsigned int predivs[] = {1, 2, 4}; unsigned int i; /* * Freq range is [6Mhz-27Mhz] already checked. * Output of divider should be in [6Mhz-12Mhz[. */ for (i = 0; i < ARRAY_SIZE(predivs); i++) { *prediv = predivs[i]; if (freq / *prediv < 12 * HZ_PER_MHZ) break; } WARN_ON(i == ARRAY_SIZE(predivs)); /* * Target freq is 804Mhz. Don't change this as it will impact image * quality. */ *mult = ((804 * HZ_PER_MHZ) * (*prediv) + freq / 2) / freq; } static s32 get_pixel_rate(struct vgxy61_dev *sensor) { return div64_u64((u64)sensor->data_rate_in_mbps * sensor->nb_of_lane, get_bpp_by_code(sensor->fmt.code)); } static inline struct vgxy61_dev *to_vgxy61_dev(struct v4l2_subdev *sd) { return container_of(sd, struct vgxy61_dev, sd); } static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl) { return &container_of(ctrl->handler, struct vgxy61_dev, ctrl_handler)->sd; } static unsigned int get_chunk_size(struct vgxy61_dev *sensor) { struct i2c_adapter *adapter = sensor->i2c_client->adapter; int max_write_len = VGXY61_WRITE_MULTIPLE_CHUNK_MAX; if (adapter->quirks && adapter->quirks->max_write_len) max_write_len = adapter->quirks->max_write_len - 2; max_write_len = min(max_write_len, VGXY61_WRITE_MULTIPLE_CHUNK_MAX); return max(max_write_len, 1); } static int vgxy61_read_multiple(struct vgxy61_dev *sensor, u32 reg, unsigned int len) { struct i2c_client *client = sensor->i2c_client; struct i2c_msg msg[2]; u8 buf[2]; u8 val[sizeof(u32)] = {0}; int ret; if (len > sizeof(u32)) return -EINVAL; buf[0] = reg >> 8; buf[1] = reg & 0xff; msg[0].addr = client->addr; msg[0].flags = client->flags; msg[0].buf = buf; msg[0].len = sizeof(buf); msg[1].addr = client->addr; msg[1].flags = client->flags | I2C_M_RD; msg[1].buf = val; msg[1].len = len; ret = i2c_transfer(client->adapter, msg, 2); if (ret < 0) { dev_dbg(&client->dev, "%s: %x i2c_transfer, reg: %x => %d\n", __func__, client->addr, reg, ret); return ret; } return get_unaligned_le32(val); } static inline int vgxy61_read_reg(struct vgxy61_dev *sensor, u32 reg) { return vgxy61_read_multiple(sensor, reg & VGXY61_REG_ADDR_MASK, (reg >> VGXY61_REG_SIZE_SHIFT) & 7); } static int vgxy61_write_multiple(struct vgxy61_dev *sensor, u32 reg, const u8 *data, unsigned int len, int *err) { struct i2c_client *client = sensor->i2c_client; struct i2c_msg msg; u8 buf[VGXY61_WRITE_MULTIPLE_CHUNK_MAX + 2]; unsigned int i; int ret; if (err && *err) return *err; if (len > VGXY61_WRITE_MULTIPLE_CHUNK_MAX) return -EINVAL; buf[0] = reg >> 8; buf[1] = reg & 0xff; for (i = 0; i < len; i++) buf[i + 2] = data[i]; msg.addr = client->addr; msg.flags = client->flags; msg.buf = buf; msg.len = len + 2; ret = i2c_transfer(client->adapter, &msg, 1); if (ret < 0) { dev_dbg(&client->dev, "%s: i2c_transfer, reg: %x => %d\n", __func__, reg, ret); if (err) *err = ret; return ret; } return 0; } static int vgxy61_write_array(struct vgxy61_dev *sensor, u32 reg, unsigned int nb, const u8 *array) { const unsigned int chunk_size = get_chunk_size(sensor); int ret; unsigned int sz; while (nb) { sz = min(nb, chunk_size); ret = vgxy61_write_multiple(sensor, reg, array, sz, NULL); if (ret < 0) return ret; nb -= sz; reg += sz; array += sz; } return 0; } static inline int vgxy61_write_reg(struct vgxy61_dev *sensor, u32 reg, u32 val, int *err) { return vgxy61_write_multiple(sensor, reg & VGXY61_REG_ADDR_MASK, (u8 *)&val, (reg >> VGXY61_REG_SIZE_SHIFT) & 7, err); } static int vgxy61_poll_reg(struct vgxy61_dev *sensor, u32 reg, u8 poll_val, unsigned int timeout_ms) { const unsigned int loop_delay_ms = 10; int ret; return read_poll_timeout(vgxy61_read_reg, ret, ((ret < 0) || (ret == poll_val)), loop_delay_ms * 1000, timeout_ms * 1000, false, sensor, reg); } static int vgxy61_wait_state(struct vgxy61_dev *sensor, int state, unsigned int timeout_ms) { return vgxy61_poll_reg(sensor, VGXY61_REG_SYSTEM_FSM, state, timeout_ms); } static int vgxy61_check_bw(struct vgxy61_dev *sensor) { /* * Simplification of time needed to send short packets and for the MIPI * to add transition times (EoT, LPS, and SoT packet delimiters) needed * by the protocol to go in low power between 2 packets of data. This * is a mipi IP constant for the sensor. */ const unsigned int mipi_margin = 1056; unsigned int binning_scale = sensor->current_mode->crop.height / sensor->current_mode->height; u8 bpp = get_bpp_by_code(sensor->fmt.code); unsigned int max_bit_per_line; unsigned int bit_per_line; u64 line_rate; line_rate = sensor->nb_of_lane * (u64)sensor->data_rate_in_mbps * sensor->line_length; max_bit_per_line = div64_u64(line_rate, sensor->pclk) - mipi_margin; bit_per_line = (bpp * sensor->current_mode->width) / binning_scale; return bit_per_line > max_bit_per_line ? -EINVAL : 0; } static int vgxy61_apply_exposure(struct vgxy61_dev *sensor) { int ret = 0; /* We first set expo to zero to avoid forbidden parameters couple */ vgxy61_write_reg(sensor, VGXY61_REG_COARSE_EXPOSURE_SHORT, 0, &ret); vgxy61_write_reg(sensor, VGXY61_REG_COARSE_EXPOSURE_LONG, sensor->expo_long, &ret); vgxy61_write_reg(sensor, VGXY61_REG_COARSE_EXPOSURE_SHORT, sensor->expo_short, &ret); return ret; } static int vgxy61_get_regulators(struct vgxy61_dev *sensor) { unsigned int i; for (i = 0; i < ARRAY_SIZE(vgxy61_supply_name); i++) sensor->supplies[i].supply = vgxy61_supply_name[i]; return devm_regulator_bulk_get(&sensor->i2c_client->dev, ARRAY_SIZE(vgxy61_supply_name), sensor->supplies); } static int vgxy61_apply_reset(struct vgxy61_dev *sensor) { gpiod_set_value_cansleep(sensor->reset_gpio, 0); usleep_range(5000, 10000); gpiod_set_value_cansleep(sensor->reset_gpio, 1); usleep_range(5000, 10000); gpiod_set_value_cansleep(sensor->reset_gpio, 0); usleep_range(40000, 100000); return vgxy61_wait_state(sensor, VGXY61_SYSTEM_FSM_SW_STBY, VGXY61_TIMEOUT_MS); } static void vgxy61_fill_framefmt(struct vgxy61_dev *sensor, const struct vgxy61_mode_info *mode, struct v4l2_mbus_framefmt *fmt, u32 code) { fmt->code = code; fmt->width = mode->width; fmt->height = mode->height; fmt->colorspace = V4L2_COLORSPACE_RAW; fmt->field = V4L2_FIELD_NONE; fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT; fmt->quantization = V4L2_QUANTIZATION_DEFAULT; fmt->xfer_func = V4L2_XFER_FUNC_DEFAULT; } static int vgxy61_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, const struct vgxy61_mode_info **new_mode) { struct vgxy61_dev *sensor = to_vgxy61_dev(sd); const struct vgxy61_mode_info *mode = sensor->sensor_modes; unsigned int index; for (index = 0; index < ARRAY_SIZE(vgxy61_supported_codes); index++) { if (vgxy61_supported_codes[index].code == fmt->code) break; } if (index == ARRAY_SIZE(vgxy61_supported_codes)) index = 0; mode = v4l2_find_nearest_size(sensor->sensor_modes, sensor->sensor_modes_nb, width, height, fmt->width, fmt->height); if (new_mode) *new_mode = mode; vgxy61_fill_framefmt(sensor, mode, fmt, vgxy61_supported_codes[index].code); return 0; } static int vgxy61_get_selection(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_selection *sel) { struct vgxy61_dev *sensor = to_vgxy61_dev(sd); switch (sel->target) { case V4L2_SEL_TGT_CROP: sel->r = sensor->current_mode->crop; return 0; case V4L2_SEL_TGT_NATIVE_SIZE: case V4L2_SEL_TGT_CROP_DEFAULT: case V4L2_SEL_TGT_CROP_BOUNDS: sel->r.top = 0; sel->r.left = 0; sel->r.width = sensor->sensor_width; sel->r.height = sensor->sensor_height; return 0; } return -EINVAL; } static int vgxy61_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { if (code->index >= ARRAY_SIZE(vgxy61_supported_codes)) return -EINVAL; code->code = vgxy61_supported_codes[code->index].code; return 0; } static int vgxy61_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct vgxy61_dev *sensor = to_vgxy61_dev(sd); struct v4l2_mbus_framefmt *fmt; mutex_lock(&sensor->lock); if (format->which == V4L2_SUBDEV_FORMAT_TRY) fmt = v4l2_subdev_get_try_format(&sensor->sd, sd_state, format->pad); else fmt = &sensor->fmt; format->format = *fmt; mutex_unlock(&sensor->lock); return 0; } static u16 vgxy61_get_vblank_min(struct vgxy61_dev *sensor, enum vgxy61_hdr_mode hdr) { u16 min_vblank = VGXY61_MIN_FRAME_LENGTH - sensor->current_mode->crop.height; /* Ensure the first rule of thumb can't be negative */ u16 min_vblank_hdr = VGXY61_MIN_EXPOSURE + sensor->rot_term + 1; if (hdr != VGXY61_NO_HDR) return max(min_vblank, min_vblank_hdr); return min_vblank; } static int vgxy61_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { struct vgxy61_dev *sensor = to_vgxy61_dev(sd); if (fse->index >= sensor->sensor_modes_nb) return -EINVAL; fse->min_width = sensor->sensor_modes[fse->index].width; fse->max_width = fse->min_width; fse->min_height = sensor->sensor_modes[fse->index].height; fse->max_height = fse->min_height; return 0; } static int vgxy61_update_analog_gain(struct vgxy61_dev *sensor, u32 target) { sensor->analog_gain = target; if (sensor->streaming) return vgxy61_write_reg(sensor, VGXY61_REG_ANALOG_GAIN, target, NULL); return 0; } static int vgxy61_apply_digital_gain(struct vgxy61_dev *sensor, u32 digital_gain) { int ret = 0; /* * For a monochrome version, configuring DIGITAL_GAIN_LONG_CH0 and * DIGITAL_GAIN_SHORT_CH0 is enough to configure the gain of all * four sub pixels. */ vgxy61_write_reg(sensor, VGXY61_REG_DIGITAL_GAIN_LONG, digital_gain, &ret); vgxy61_write_reg(sensor, VGXY61_REG_DIGITAL_GAIN_SHORT, digital_gain, &ret); return ret; } static int vgxy61_update_digital_gain(struct vgxy61_dev *sensor, u32 target) { sensor->digital_gain = target; if (sensor->streaming) return vgxy61_apply_digital_gain(sensor, sensor->digital_gain); return 0; } static int vgxy61_apply_patgen(struct vgxy61_dev *sensor, u32 index) { static const u8 index2val[] = { 0x0, 0x1, 0x2, 0x3, 0x10, 0x11, 0x12, 0x13 }; u32 pattern = index2val[index]; u32 reg = (pattern << VGXY61_PATGEN_LONG_TYPE_SHIFT) | (pattern << VGXY61_PATGEN_SHORT_TYPE_SHIFT); if (pattern) reg |= VGXY61_PATGEN_LONG_ENABLE | VGXY61_PATGEN_SHORT_ENABLE; return vgxy61_write_reg(sensor, VGXY61_REG_PATGEN_CTRL, reg, NULL); } static int vgxy61_update_patgen(struct vgxy61_dev *sensor, u32 pattern) { sensor->pattern = pattern; if (sensor->streaming) return vgxy61_apply_patgen(sensor, sensor->pattern); return 0; } static int vgxy61_apply_gpiox_strobe_mode(struct vgxy61_dev *sensor, enum vgxy61_strobe_mode mode, unsigned int idx) { static const u8 index2val[] = {0x0, 0x1, 0x3}; int reg; reg = vgxy61_read_reg(sensor, VGXY61_REG_SIGNALS_CTRL); if (reg < 0) return reg; reg &= ~(0xf << (idx * VGXY61_SIGNALS_GPIO_ID_SHIFT)); reg |= index2val[mode] << (idx * VGXY61_SIGNALS_GPIO_ID_SHIFT); return vgxy61_write_reg(sensor, VGXY61_REG_SIGNALS_CTRL, reg, NULL); } static int vgxy61_update_gpios_strobe_mode(struct vgxy61_dev *sensor, enum vgxy61_hdr_mode hdr) { unsigned int i; int ret; switch (hdr) { case VGXY61_HDR_LINEAR: sensor->strobe_mode = VGXY61_STROBE_ENABLED; break; case VGXY61_HDR_SUB: case VGXY61_NO_HDR: sensor->strobe_mode = VGXY61_STROBE_LONG; break; default: /* Should never happen */ WARN_ON(true); break; } if (!sensor->streaming) return 0; for (i = 0; i < VGXY61_NB_GPIOS; i++) { ret = vgxy61_apply_gpiox_strobe_mode(sensor, sensor->strobe_mode, i); if (ret) return ret; } return 0; } static int vgxy61_update_gpios_strobe_polarity(struct vgxy61_dev *sensor, bool polarity) { int ret = 0; if (sensor->streaming) return -EBUSY; vgxy61_write_reg(sensor, VGXY61_REG_GPIO_0_CTRL, polarity << 1, &ret); vgxy61_write_reg(sensor, VGXY61_REG_GPIO_1_CTRL, polarity << 1, &ret); vgxy61_write_reg(sensor, VGXY61_REG_GPIO_2_CTRL, polarity << 1, &ret); vgxy61_write_reg(sensor, VGXY61_REG_GPIO_3_CTRL, polarity << 1, &ret); vgxy61_write_reg(sensor, VGXY61_REG_SIGNALS_POLARITY_CTRL, polarity, &ret); return ret; } static u32 vgxy61_get_expo_long_max(struct vgxy61_dev *sensor, unsigned int short_expo_ratio) { u32 first_rot_max_expo, second_rot_max_expo, third_rot_max_expo; /* Apply sensor's rules of thumb */ /* * Short exposure + height must be less than frame length to avoid bad * pixel line at the botom of the image */ first_rot_max_expo = ((sensor->frame_length - sensor->current_mode->crop.height - sensor->rot_term) * short_expo_ratio) - 1; /* * Total exposition time must be less than frame length to avoid sensor * crash */ second_rot_max_expo = (((sensor->frame_length - VGXY61_EXPOS_ROT_TERM) * short_expo_ratio) / (short_expo_ratio + 1)) - 1; /* * Short exposure times 71 must be less than frame length to avoid * sensor crash */ third_rot_max_expo = (sensor->frame_length / 71) * short_expo_ratio; /* Take the minimum from all rules */ return min(min(first_rot_max_expo, second_rot_max_expo), third_rot_max_expo); } static int vgxy61_update_exposure(struct vgxy61_dev *sensor, u16 new_expo_long, enum vgxy61_hdr_mode hdr) { struct i2c_client *client = sensor->i2c_client; u16 new_expo_short = 0; u16 expo_short_max = 0; u16 expo_long_min = VGXY61_MIN_EXPOSURE; u16 expo_long_max = 0; /* Compute short exposure according to hdr mode and long exposure */ switch (hdr) { case VGXY61_HDR_LINEAR: /* * Take ratio into account for minimal exposures in * VGXY61_HDR_LINEAR */ expo_long_min = VGXY61_MIN_EXPOSURE * VGXY61_HDR_LINEAR_RATIO; new_expo_long = max(expo_long_min, new_expo_long); expo_long_max = vgxy61_get_expo_long_max(sensor, VGXY61_HDR_LINEAR_RATIO); expo_short_max = (expo_long_max + (VGXY61_HDR_LINEAR_RATIO / 2)) / VGXY61_HDR_LINEAR_RATIO; new_expo_short = (new_expo_long + (VGXY61_HDR_LINEAR_RATIO / 2)) / VGXY61_HDR_LINEAR_RATIO; break; case VGXY61_HDR_SUB: new_expo_long = max(expo_long_min, new_expo_long); expo_long_max = vgxy61_get_expo_long_max(sensor, 1); /* Short and long are the same in VGXY61_HDR_SUB */ expo_short_max = expo_long_max; new_expo_short = new_expo_long; break; case VGXY61_NO_HDR: new_expo_long = max(expo_long_min, new_expo_long); /* * As short expo is 0 here, only the second rule of thumb * applies, see vgxy61_get_expo_long_max for more */ expo_long_max = sensor->frame_length - VGXY61_EXPOS_ROT_TERM; break; default: /* Should never happen */ WARN_ON(true); break; } /* If this happens, something is wrong with formulas */ WARN_ON(expo_long_min > expo_long_max); if (new_expo_long > expo_long_max) { dev_warn(&client->dev, "Exposure %d too high, clamping to %d\n", new_expo_long, expo_long_max); new_expo_long = expo_long_max; new_expo_short = expo_short_max; } sensor->expo_long = new_expo_long; sensor->expo_short = new_expo_short; sensor->expo_max = expo_long_max; sensor->expo_min = expo_long_min; if (sensor->streaming) return vgxy61_apply_exposure(sensor); return 0; } static int vgxy61_apply_framelength(struct vgxy61_dev *sensor) { return vgxy61_write_reg(sensor, VGXY61_REG_FRAME_LENGTH, sensor->frame_length, NULL); } static int vgxy61_update_vblank(struct vgxy61_dev *sensor, u16 vblank, enum vgxy61_hdr_mode hdr) { int ret; sensor->vblank_min = vgxy61_get_vblank_min(sensor, hdr); sensor->vblank = max(sensor->vblank_min, vblank); sensor->frame_length = sensor->current_mode->crop.height + sensor->vblank; /* Update exposure according to vblank */ ret = vgxy61_update_exposure(sensor, sensor->expo_long, hdr); if (ret) return ret; if (sensor->streaming) return vgxy61_apply_framelength(sensor); return 0; } static int vgxy61_apply_hdr(struct vgxy61_dev *sensor, enum vgxy61_hdr_mode index) { static const u8 index2val[] = {0x1, 0x4, 0xa}; return vgxy61_write_reg(sensor, VGXY61_REG_HDR_CTRL, index2val[index], NULL); } static int vgxy61_update_hdr(struct vgxy61_dev *sensor, enum vgxy61_hdr_mode index) { int ret; /* * vblank and short exposure change according to HDR mode, do it first * as it can violate sensors 'rule of thumbs' and therefore will require * to change the long exposure. */ ret = vgxy61_update_vblank(sensor, sensor->vblank, index); if (ret) return ret; /* Update strobe mode according to HDR */ ret = vgxy61_update_gpios_strobe_mode(sensor, index); if (ret) return ret; sensor->hdr = index; if (sensor->streaming) return vgxy61_apply_hdr(sensor, sensor->hdr); return 0; } static int vgxy61_apply_settings(struct vgxy61_dev *sensor) { int ret; unsigned int i; ret = vgxy61_apply_hdr(sensor, sensor->hdr); if (ret) return ret; ret = vgxy61_apply_framelength(sensor); if (ret) return ret; ret = vgxy61_apply_exposure(sensor); if (ret) return ret; ret = vgxy61_write_reg(sensor, VGXY61_REG_ANALOG_GAIN, sensor->analog_gain, NULL); if (ret) return ret; ret = vgxy61_apply_digital_gain(sensor, sensor->digital_gain); if (ret) return ret; ret = vgxy61_write_reg(sensor, VGXY61_REG_ORIENTATION, sensor->hflip | (sensor->vflip << 1), NULL); if (ret) return ret; ret = vgxy61_apply_patgen(sensor, sensor->pattern); if (ret) return ret; for (i = 0; i < VGXY61_NB_GPIOS; i++) { ret = vgxy61_apply_gpiox_strobe_mode(sensor, sensor->strobe_mode, i); if (ret) return ret; } return 0; } static int vgxy61_stream_enable(struct vgxy61_dev *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->sd); const struct v4l2_rect *crop = &sensor->current_mode->crop; int ret = 0; ret = vgxy61_check_bw(sensor); if (ret) return ret; ret = pm_runtime_get_sync(&client->dev); if (ret < 0) { pm_runtime_put_autosuspend(&client->dev); return ret; } /* pm_runtime_get_sync() can return 1 as a valid return code */ ret = 0; vgxy61_write_reg(sensor, VGXY61_REG_FORMAT_CTRL, get_bpp_by_code(sensor->fmt.code), &ret); vgxy61_write_reg(sensor, VGXY61_REG_OIF_ROI0_CTRL, get_data_type_by_code(sensor->fmt.code), &ret); vgxy61_write_reg(sensor, VGXY61_REG_READOUT_CTRL, sensor->current_mode->bin_mode, &ret); vgxy61_write_reg(sensor, VGXY61_REG_ROI0_START_H, crop->left, &ret); vgxy61_write_reg(sensor, VGXY61_REG_ROI0_END_H, crop->left + crop->width - 1, &ret); vgxy61_write_reg(sensor, VGXY61_REG_ROI0_START_V, crop->top, &ret); vgxy61_write_reg(sensor, VGXY61_REG_ROI0_END_V, crop->top + crop->height - 1, &ret); if (ret) goto err_rpm_put; ret = vgxy61_apply_settings(sensor); if (ret) goto err_rpm_put; ret = vgxy61_write_reg(sensor, VGXY61_REG_STREAMING, VGXY61_STREAMING_REQ_START, NULL); if (ret) goto err_rpm_put; ret = vgxy61_poll_reg(sensor, VGXY61_REG_STREAMING, VGXY61_STREAMING_NO_REQ, VGXY61_TIMEOUT_MS); if (ret) goto err_rpm_put; ret = vgxy61_wait_state(sensor, VGXY61_SYSTEM_FSM_STREAMING, VGXY61_TIMEOUT_MS); if (ret) goto err_rpm_put; /* vflip and hflip cannot change during streaming */ __v4l2_ctrl_grab(sensor->vflip_ctrl, true); __v4l2_ctrl_grab(sensor->hflip_ctrl, true); return 0; err_rpm_put: pm_runtime_put(&client->dev); return ret; } static int vgxy61_stream_disable(struct vgxy61_dev *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->sd); int ret; ret = vgxy61_write_reg(sensor, VGXY61_REG_STREAMING, VGXY61_STREAMING_REQ_STOP, NULL); if (ret) goto err_str_dis; ret = vgxy61_poll_reg(sensor, VGXY61_REG_STREAMING, VGXY61_STREAMING_NO_REQ, 2000); if (ret) goto err_str_dis; ret = vgxy61_wait_state(sensor, VGXY61_SYSTEM_FSM_SW_STBY, VGXY61_TIMEOUT_MS); if (ret) goto err_str_dis; __v4l2_ctrl_grab(sensor->vflip_ctrl, false); __v4l2_ctrl_grab(sensor->hflip_ctrl, false); err_str_dis: if (ret) WARN(1, "Can't disable stream"); pm_runtime_put(&client->dev); return ret; } static int vgxy61_s_stream(struct v4l2_subdev *sd, int enable) { struct vgxy61_dev *sensor = to_vgxy61_dev(sd); int ret = 0; mutex_lock(&sensor->lock); ret = enable ? vgxy61_stream_enable(sensor) : vgxy61_stream_disable(sensor); if (!ret) sensor->streaming = enable; mutex_unlock(&sensor->lock); return ret; } static int vgxy61_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct vgxy61_dev *sensor = to_vgxy61_dev(sd); const struct vgxy61_mode_info *new_mode; struct v4l2_mbus_framefmt *fmt; int ret; mutex_lock(&sensor->lock); if (sensor->streaming) { ret = -EBUSY; goto out; } ret = vgxy61_try_fmt_internal(sd, &format->format, &new_mode); if (ret) goto out; if (format->which == V4L2_SUBDEV_FORMAT_TRY) { fmt = v4l2_subdev_get_try_format(sd, sd_state, 0); *fmt = format->format; } else if (sensor->current_mode != new_mode || sensor->fmt.code != format->format.code) { fmt = &sensor->fmt; *fmt = format->format; sensor->current_mode = new_mode; /* Reset vblank and framelength to default */ ret = vgxy61_update_vblank(sensor, VGXY61_FRAME_LENGTH_DEF - new_mode->crop.height, sensor->hdr); /* Update controls to reflect new mode */ __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_ctrl, get_pixel_rate(sensor)); __v4l2_ctrl_modify_range(sensor->vblank_ctrl, sensor->vblank_min, 0xffff - new_mode->crop.height, 1, sensor->vblank); __v4l2_ctrl_s_ctrl(sensor->vblank_ctrl, sensor->vblank); __v4l2_ctrl_modify_range(sensor->expo_ctrl, sensor->expo_min, sensor->expo_max, 1, sensor->expo_long); } out: mutex_unlock(&sensor->lock); return ret; } static int vgxy61_init_cfg(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state) { struct vgxy61_dev *sensor = to_vgxy61_dev(sd); struct v4l2_subdev_format fmt = { 0 }; sensor->current_mode = sensor->default_mode; vgxy61_fill_framefmt(sensor, sensor->current_mode, &fmt.format, VGXY61_MEDIA_BUS_FMT_DEF); return vgxy61_set_fmt(sd, sd_state, &fmt); } static int vgxy61_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = ctrl_to_sd(ctrl); struct vgxy61_dev *sensor = to_vgxy61_dev(sd); const struct vgxy61_mode_info *cur_mode = sensor->current_mode; int ret; switch (ctrl->id) { case V4L2_CID_EXPOSURE: ret = vgxy61_update_exposure(sensor, ctrl->val, sensor->hdr); ctrl->val = sensor->expo_long; break; case V4L2_CID_ANALOGUE_GAIN: ret = vgxy61_update_analog_gain(sensor, ctrl->val); break; case V4L2_CID_DIGITAL_GAIN: ret = vgxy61_update_digital_gain(sensor, ctrl->val); break; case V4L2_CID_VFLIP: case V4L2_CID_HFLIP: if (sensor->streaming) { ret = -EBUSY; break; } if (ctrl->id == V4L2_CID_VFLIP) sensor->vflip = ctrl->val; if (ctrl->id == V4L2_CID_HFLIP) sensor->hflip = ctrl->val; ret = 0; break; case V4L2_CID_TEST_PATTERN: ret = vgxy61_update_patgen(sensor, ctrl->val); break; case V4L2_CID_HDR_SENSOR_MODE: ret = vgxy61_update_hdr(sensor, ctrl->val); /* Update vblank and exposure controls to match new hdr */ __v4l2_ctrl_modify_range(sensor->vblank_ctrl, sensor->vblank_min, 0xffff - cur_mode->crop.height, 1, sensor->vblank); __v4l2_ctrl_modify_range(sensor->expo_ctrl, sensor->expo_min, sensor->expo_max, 1, sensor->expo_long); break; case V4L2_CID_VBLANK: ret = vgxy61_update_vblank(sensor, ctrl->val, sensor->hdr); /* Update exposure control to match new vblank */ __v4l2_ctrl_modify_range(sensor->expo_ctrl, sensor->expo_min, sensor->expo_max, 1, sensor->expo_long); break; default: ret = -EINVAL; break; } return ret; } static const struct v4l2_ctrl_ops vgxy61_ctrl_ops = { .s_ctrl = vgxy61_s_ctrl, }; static int vgxy61_init_controls(struct vgxy61_dev *sensor) { const struct v4l2_ctrl_ops *ops = &vgxy61_ctrl_ops; struct v4l2_ctrl_handler *hdl = &sensor->ctrl_handler; const struct vgxy61_mode_info *cur_mode = sensor->current_mode; struct v4l2_ctrl *ctrl; int ret; v4l2_ctrl_handler_init(hdl, 16); /* We can use our own mutex for the ctrl lock */ hdl->lock = &sensor->lock; v4l2_ctrl_new_std(hdl, ops, V4L2_CID_ANALOGUE_GAIN, 0, 0x1c, 1, sensor->analog_gain); v4l2_ctrl_new_std(hdl, ops, V4L2_CID_DIGITAL_GAIN, 0, 0xfff, 1, sensor->digital_gain); v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(vgxy61_test_pattern_menu) - 1, 0, 0, vgxy61_test_pattern_menu); ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HBLANK, 0, sensor->line_length, 1, sensor->line_length - cur_mode->width); if (ctrl) ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; ctrl = v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_LINK_FREQ, ARRAY_SIZE(link_freq) - 1, 0, link_freq); if (ctrl) ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_HDR_SENSOR_MODE, ARRAY_SIZE(vgxy61_hdr_mode_menu) - 1, 0, VGXY61_NO_HDR, vgxy61_hdr_mode_menu); /* * Keep a pointer to these controls as we need to update them when * setting the format */ sensor->pixel_rate_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, get_pixel_rate(sensor)); if (sensor->pixel_rate_ctrl) sensor->pixel_rate_ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; sensor->expo_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, sensor->expo_min, sensor->expo_max, 1, sensor->expo_long); sensor->vblank_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VBLANK, sensor->vblank_min, 0xffff - cur_mode->crop.height, 1, sensor->vblank); sensor->vflip_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, sensor->vflip); sensor->hflip_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, sensor->hflip); if (hdl->error) { ret = hdl->error; goto free_ctrls; } sensor->sd.ctrl_handler = hdl; return 0; free_ctrls: v4l2_ctrl_handler_free(hdl); return ret; } static const struct v4l2_subdev_video_ops vgxy61_video_ops = { .s_stream = vgxy61_s_stream, }; static const struct v4l2_subdev_pad_ops vgxy61_pad_ops = { .init_cfg = vgxy61_init_cfg, .enum_mbus_code = vgxy61_enum_mbus_code, .get_fmt = vgxy61_get_fmt, .set_fmt = vgxy61_set_fmt, .get_selection = vgxy61_get_selection, .enum_frame_size = vgxy61_enum_frame_size, }; static const struct v4l2_subdev_ops vgxy61_subdev_ops = { .video = &vgxy61_video_ops, .pad = &vgxy61_pad_ops, }; static const struct media_entity_operations vgxy61_subdev_entity_ops = { .link_validate = v4l2_subdev_link_validate, }; static int vgxy61_tx_from_ep(struct vgxy61_dev *sensor, struct fwnode_handle *handle) { struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_CSI2_DPHY }; struct i2c_client *client = sensor->i2c_client; u32 log2phy[VGXY61_NB_POLARITIES] = {~0, ~0, ~0, ~0, ~0}; u32 phy2log[VGXY61_NB_POLARITIES] = {~0, ~0, ~0, ~0, ~0}; int polarities[VGXY61_NB_POLARITIES] = {0, 0, 0, 0, 0}; int l_nb; unsigned int p, l, i; int ret; ret = v4l2_fwnode_endpoint_alloc_parse(handle, &ep); if (ret) return -EINVAL; l_nb = ep.bus.mipi_csi2.num_data_lanes; if (l_nb != 1 && l_nb != 2 && l_nb != 4) { dev_err(&client->dev, "invalid data lane number %d\n", l_nb); goto error_ep; } /* Build log2phy, phy2log and polarities from ep info */ log2phy[0] = ep.bus.mipi_csi2.clock_lane; phy2log[log2phy[0]] = 0; for (l = 1; l < l_nb + 1; l++) { log2phy[l] = ep.bus.mipi_csi2.data_lanes[l - 1]; phy2log[log2phy[l]] = l; } /* * Then fill remaining slots for every physical slot to have something * valid for hardware stuff. */ for (p = 0; p < VGXY61_NB_POLARITIES; p++) { if (phy2log[p] != ~0) continue; phy2log[p] = l; log2phy[l] = p; l++; } for (l = 0; l < l_nb + 1; l++) polarities[l] = ep.bus.mipi_csi2.lane_polarities[l]; if (log2phy[0] != 0) { dev_err(&client->dev, "clk lane must be map to physical lane 0\n"); goto error_ep; } sensor->oif_ctrl = (polarities[4] << 15) + ((phy2log[4] - 1) << 13) + (polarities[3] << 12) + ((phy2log[3] - 1) << 10) + (polarities[2] << 9) + ((phy2log[2] - 1) << 7) + (polarities[1] << 6) + ((phy2log[1] - 1) << 4) + (polarities[0] << 3) + l_nb; sensor->nb_of_lane = l_nb; dev_dbg(&client->dev, "tx uses %d lanes", l_nb); for (i = 0; i < 5; i++) { dev_dbg(&client->dev, "log2phy[%d] = %d\n", i, log2phy[i]); dev_dbg(&client->dev, "phy2log[%d] = %d\n", i, phy2log[i]); dev_dbg(&client->dev, "polarity[%d] = %d\n", i, polarities[i]); } dev_dbg(&client->dev, "oif_ctrl = 0x%04x\n", sensor->oif_ctrl); v4l2_fwnode_endpoint_free(&ep); return 0; error_ep: v4l2_fwnode_endpoint_free(&ep); return -EINVAL; } static int vgxy61_configure(struct vgxy61_dev *sensor) { u32 sensor_freq; u8 prediv, mult; int line_length; int ret = 0; compute_pll_parameters_by_freq(sensor->clk_freq, &prediv, &mult); sensor_freq = (mult * sensor->clk_freq) / prediv; /* Frequency to data rate is 1:1 ratio for MIPI */ sensor->data_rate_in_mbps = sensor_freq; /* Video timing ISP path (pixel clock) requires 804/5 mhz = 160 mhz */ sensor->pclk = sensor_freq / 5; line_length = vgxy61_read_reg(sensor, VGXY61_REG_LINE_LENGTH); if (line_length < 0) return line_length; sensor->line_length = line_length; vgxy61_write_reg(sensor, VGXY61_REG_EXT_CLOCK, sensor->clk_freq, &ret); vgxy61_write_reg(sensor, VGXY61_REG_CLK_PLL_PREDIV, prediv, &ret); vgxy61_write_reg(sensor, VGXY61_REG_CLK_SYS_PLL_MULT, mult, &ret); vgxy61_write_reg(sensor, VGXY61_REG_OIF_CTRL, sensor->oif_ctrl, &ret); vgxy61_write_reg(sensor, VGXY61_REG_FRAME_CONTENT_CTRL, 0, &ret); vgxy61_write_reg(sensor, VGXY61_REG_BYPASS_CTRL, 4, &ret); if (ret) return ret; vgxy61_update_gpios_strobe_polarity(sensor, sensor->gpios_polarity); /* Set pattern generator solid to middle value */ vgxy61_write_reg(sensor, VGXY61_REG_PATGEN_LONG_DATA_GR, 0x800, &ret); vgxy61_write_reg(sensor, VGXY61_REG_PATGEN_LONG_DATA_R, 0x800, &ret); vgxy61_write_reg(sensor, VGXY61_REG_PATGEN_LONG_DATA_B, 0x800, &ret); vgxy61_write_reg(sensor, VGXY61_REG_PATGEN_LONG_DATA_GB, 0x800, &ret); vgxy61_write_reg(sensor, VGXY61_REG_PATGEN_SHORT_DATA_GR, 0x800, &ret); vgxy61_write_reg(sensor, VGXY61_REG_PATGEN_SHORT_DATA_R, 0x800, &ret); vgxy61_write_reg(sensor, VGXY61_REG_PATGEN_SHORT_DATA_B, 0x800, &ret); vgxy61_write_reg(sensor, VGXY61_REG_PATGEN_SHORT_DATA_GB, 0x800, &ret); if (ret) return ret; return 0; } static int vgxy61_patch(struct vgxy61_dev *sensor) { struct i2c_client *client = sensor->i2c_client; int patch, ret; ret = vgxy61_write_array(sensor, VGXY61_REG_FWPATCH_START_ADDR, sizeof(patch_array), patch_array); if (ret) return ret; ret = vgxy61_write_reg(sensor, VGXY61_REG_STBY, 0x10, NULL); if (ret) return ret; ret = vgxy61_poll_reg(sensor, VGXY61_REG_STBY, 0, VGXY61_TIMEOUT_MS); if (ret) return ret; patch = vgxy61_read_reg(sensor, VGXY61_REG_FWPATCH_REVISION); if (patch < 0) return patch; if (patch != (VGXY61_FWPATCH_REVISION_MAJOR << 12) + (VGXY61_FWPATCH_REVISION_MINOR << 8) + VGXY61_FWPATCH_REVISION_MICRO) { dev_err(&client->dev, "bad patch version expected %d.%d.%d got %d.%d.%d\n", VGXY61_FWPATCH_REVISION_MAJOR, VGXY61_FWPATCH_REVISION_MINOR, VGXY61_FWPATCH_REVISION_MICRO, patch >> 12, (patch >> 8) & 0x0f, patch & 0xff); return -ENODEV; } dev_dbg(&client->dev, "patch %d.%d.%d applied\n", patch >> 12, (patch >> 8) & 0x0f, patch & 0xff); return 0; } static int vgxy61_detect_cut_version(struct vgxy61_dev *sensor) { struct i2c_client *client = sensor->i2c_client; int device_rev; device_rev = vgxy61_read_reg(sensor, VGXY61_REG_REVISION); if (device_rev < 0) return device_rev; switch (device_rev >> 8) { case 0xA: dev_dbg(&client->dev, "Cut1 detected\n"); dev_err(&client->dev, "Cut1 not supported by this driver\n"); return -ENODEV; case 0xB: dev_dbg(&client->dev, "Cut2 detected\n"); return 0; case 0xC: dev_dbg(&client->dev, "Cut3 detected\n"); return 0; default: dev_err(&client->dev, "Unable to detect cut version\n"); return -ENODEV; } } static int vgxy61_detect(struct vgxy61_dev *sensor) { struct i2c_client *client = sensor->i2c_client; int id = 0; int ret, st; id = vgxy61_read_reg(sensor, VGXY61_REG_MODEL_ID); if (id < 0) return id; if (id != VG5661_MODEL_ID && id != VG5761_MODEL_ID) { dev_warn(&client->dev, "Unsupported sensor id %x\n", id); return -ENODEV; } dev_dbg(&client->dev, "detected sensor id = 0x%04x\n", id); sensor->id = id; ret = vgxy61_wait_state(sensor, VGXY61_SYSTEM_FSM_SW_STBY, VGXY61_TIMEOUT_MS); if (ret) return ret; st = vgxy61_read_reg(sensor, VGXY61_REG_NVM); if (st < 0) return st; if (st != VGXY61_NVM_OK) dev_warn(&client->dev, "Bad nvm state got %d\n", st); ret = vgxy61_detect_cut_version(sensor); if (ret) return ret; return 0; } /* Power/clock management functions */ static int vgxy61_power_on(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct v4l2_subdev *sd = i2c_get_clientdata(client); struct vgxy61_dev *sensor = to_vgxy61_dev(sd); int ret; ret = regulator_bulk_enable(ARRAY_SIZE(vgxy61_supply_name), sensor->supplies); if (ret) { dev_err(&client->dev, "failed to enable regulators %d\n", ret); return ret; } ret = clk_prepare_enable(sensor->xclk); if (ret) { dev_err(&client->dev, "failed to enable clock %d\n", ret); goto disable_bulk; } if (sensor->reset_gpio) { ret = vgxy61_apply_reset(sensor); if (ret) { dev_err(&client->dev, "sensor reset failed %d\n", ret); goto disable_clock; } } ret = vgxy61_patch(sensor); if (ret) { dev_err(&client->dev, "sensor patch failed %d\n", ret); goto disable_clock; } ret = vgxy61_configure(sensor); if (ret) { dev_err(&client->dev, "sensor configuration failed %d\n", ret); goto disable_clock; } return 0; disable_clock: clk_disable_unprepare(sensor->xclk); disable_bulk: regulator_bulk_disable(ARRAY_SIZE(vgxy61_supply_name), sensor->supplies); return ret; } static int vgxy61_power_off(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct v4l2_subdev *sd = i2c_get_clientdata(client); struct vgxy61_dev *sensor = to_vgxy61_dev(sd); clk_disable_unprepare(sensor->xclk); regulator_bulk_disable(ARRAY_SIZE(vgxy61_supply_name), sensor->supplies); return 0; } static void vgxy61_fill_sensor_param(struct vgxy61_dev *sensor) { if (sensor->id == VG5761_MODEL_ID) { sensor->sensor_width = VGX761_WIDTH; sensor->sensor_height = VGX761_HEIGHT; sensor->sensor_modes = vgx761_mode_data; sensor->sensor_modes_nb = ARRAY_SIZE(vgx761_mode_data); sensor->default_mode = &vgx761_mode_data[VGX761_DEFAULT_MODE]; sensor->rot_term = VGX761_SHORT_ROT_TERM; } else if (sensor->id == VG5661_MODEL_ID) { sensor->sensor_width = VGX661_WIDTH; sensor->sensor_height = VGX661_HEIGHT; sensor->sensor_modes = vgx661_mode_data; sensor->sensor_modes_nb = ARRAY_SIZE(vgx661_mode_data); sensor->default_mode = &vgx661_mode_data[VGX661_DEFAULT_MODE]; sensor->rot_term = VGX661_SHORT_ROT_TERM; } else { /* Should never happen */ WARN_ON(true); } sensor->current_mode = sensor->default_mode; } static int vgxy61_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct fwnode_handle *handle; struct vgxy61_dev *sensor; int ret; sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL); if (!sensor) return -ENOMEM; sensor->i2c_client = client; sensor->streaming = false; sensor->hdr = VGXY61_NO_HDR; sensor->expo_long = 200; sensor->expo_short = 0; sensor->hflip = false; sensor->vflip = false; sensor->analog_gain = 0; sensor->digital_gain = 256; handle = fwnode_graph_get_endpoint_by_id(dev_fwnode(dev), 0, 0, 0); if (!handle) { dev_err(dev, "handle node not found\n"); return -EINVAL; } ret = vgxy61_tx_from_ep(sensor, handle); fwnode_handle_put(handle); if (ret) { dev_err(dev, "Failed to parse handle %d\n", ret); return ret; } sensor->xclk = devm_clk_get(dev, NULL); if (IS_ERR(sensor->xclk)) { dev_err(dev, "failed to get xclk\n"); return PTR_ERR(sensor->xclk); } sensor->clk_freq = clk_get_rate(sensor->xclk); if (sensor->clk_freq < 6 * HZ_PER_MHZ || sensor->clk_freq > 27 * HZ_PER_MHZ) { dev_err(dev, "Only 6Mhz-27Mhz clock range supported. provide %lu MHz\n", sensor->clk_freq / HZ_PER_MHZ); return -EINVAL; } sensor->gpios_polarity = device_property_read_bool(dev, "st,strobe-gpios-polarity"); v4l2_i2c_subdev_init(&sensor->sd, client, &vgxy61_subdev_ops); sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; sensor->pad.flags = MEDIA_PAD_FL_SOURCE; sensor->sd.entity.ops = &vgxy61_subdev_entity_ops; sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); ret = vgxy61_get_regulators(sensor); if (ret) { dev_err(&client->dev, "failed to get regulators %d\n", ret); return ret; } ret = vgxy61_power_on(dev); if (ret) return ret; ret = vgxy61_detect(sensor); if (ret) { dev_err(&client->dev, "sensor detect failed %d\n", ret); return ret; } vgxy61_fill_sensor_param(sensor); vgxy61_fill_framefmt(sensor, sensor->current_mode, &sensor->fmt, VGXY61_MEDIA_BUS_FMT_DEF); ret = vgxy61_update_hdr(sensor, sensor->hdr); if (ret) return ret; mutex_init(&sensor->lock); ret = vgxy61_init_controls(sensor); if (ret) { dev_err(&client->dev, "controls initialization failed %d\n", ret); goto error_power_off; } ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad); if (ret) { dev_err(&client->dev, "pads init failed %d\n", ret); goto error_handler_free; } /* Enable runtime PM and turn off the device */ pm_runtime_set_active(dev); pm_runtime_enable(dev); pm_runtime_idle(dev); ret = v4l2_async_register_subdev(&sensor->sd); if (ret) { dev_err(&client->dev, "async subdev register failed %d\n", ret); goto error_pm_runtime; } pm_runtime_set_autosuspend_delay(&client->dev, 1000); pm_runtime_use_autosuspend(&client->dev); dev_dbg(&client->dev, "vgxy61 probe successfully\n"); return 0; error_pm_runtime: pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); media_entity_cleanup(&sensor->sd.entity); error_handler_free: v4l2_ctrl_handler_free(sensor->sd.ctrl_handler); mutex_destroy(&sensor->lock); error_power_off: vgxy61_power_off(dev); return ret; } static void vgxy61_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct vgxy61_dev *sensor = to_vgxy61_dev(sd); v4l2_async_unregister_subdev(&sensor->sd); mutex_destroy(&sensor->lock); media_entity_cleanup(&sensor->sd.entity); pm_runtime_disable(&client->dev); if (!pm_runtime_status_suspended(&client->dev)) vgxy61_power_off(&client->dev); pm_runtime_set_suspended(&client->dev); } static const struct of_device_id vgxy61_dt_ids[] = { { .compatible = "st,st-vgxy61" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, vgxy61_dt_ids); static const struct dev_pm_ops vgxy61_pm_ops = { SET_RUNTIME_PM_OPS(vgxy61_power_off, vgxy61_power_on, NULL) }; static struct i2c_driver vgxy61_i2c_driver = { .driver = { .name = "st-vgxy61", .of_match_table = vgxy61_dt_ids, .pm = &vgxy61_pm_ops, }, .probe_new = vgxy61_probe, .remove = vgxy61_remove, }; module_i2c_driver(vgxy61_i2c_driver); MODULE_AUTHOR("Benjamin Mugnier <benjamin.mugnier@foss.st.com>"); MODULE_AUTHOR("Mickael Guene <mickael.guene@st.com>"); MODULE_AUTHOR("Sylvain Petinot <sylvain.petinot@foss.st.com>"); MODULE_DESCRIPTION("VGXY61 camera subdev driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1