Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christophe Kerello | 5068 | 99.61% | 1 | 50.00% |
Krzysztof Kozlowski | 20 | 0.39% | 1 | 50.00% |
Total | 5088 | 2 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics 2020 */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of_platform.h> #include <linux/pinctrl/consumer.h> #include <linux/regmap.h> #include <linux/reset.h> /* FMC2 Controller Registers */ #define FMC2_BCR1 0x0 #define FMC2_BTR1 0x4 #define FMC2_BCR(x) ((x) * 0x8 + FMC2_BCR1) #define FMC2_BTR(x) ((x) * 0x8 + FMC2_BTR1) #define FMC2_PCSCNTR 0x20 #define FMC2_BWTR1 0x104 #define FMC2_BWTR(x) ((x) * 0x8 + FMC2_BWTR1) /* Register: FMC2_BCR1 */ #define FMC2_BCR1_CCLKEN BIT(20) #define FMC2_BCR1_FMC2EN BIT(31) /* Register: FMC2_BCRx */ #define FMC2_BCR_MBKEN BIT(0) #define FMC2_BCR_MUXEN BIT(1) #define FMC2_BCR_MTYP GENMASK(3, 2) #define FMC2_BCR_MWID GENMASK(5, 4) #define FMC2_BCR_FACCEN BIT(6) #define FMC2_BCR_BURSTEN BIT(8) #define FMC2_BCR_WAITPOL BIT(9) #define FMC2_BCR_WAITCFG BIT(11) #define FMC2_BCR_WREN BIT(12) #define FMC2_BCR_WAITEN BIT(13) #define FMC2_BCR_EXTMOD BIT(14) #define FMC2_BCR_ASYNCWAIT BIT(15) #define FMC2_BCR_CPSIZE GENMASK(18, 16) #define FMC2_BCR_CBURSTRW BIT(19) #define FMC2_BCR_NBLSET GENMASK(23, 22) /* Register: FMC2_BTRx/FMC2_BWTRx */ #define FMC2_BXTR_ADDSET GENMASK(3, 0) #define FMC2_BXTR_ADDHLD GENMASK(7, 4) #define FMC2_BXTR_DATAST GENMASK(15, 8) #define FMC2_BXTR_BUSTURN GENMASK(19, 16) #define FMC2_BTR_CLKDIV GENMASK(23, 20) #define FMC2_BTR_DATLAT GENMASK(27, 24) #define FMC2_BXTR_ACCMOD GENMASK(29, 28) #define FMC2_BXTR_DATAHLD GENMASK(31, 30) /* Register: FMC2_PCSCNTR */ #define FMC2_PCSCNTR_CSCOUNT GENMASK(15, 0) #define FMC2_PCSCNTR_CNTBEN(x) BIT((x) + 16) #define FMC2_MAX_EBI_CE 4 #define FMC2_MAX_BANKS 5 #define FMC2_BCR_CPSIZE_0 0x0 #define FMC2_BCR_CPSIZE_128 0x1 #define FMC2_BCR_CPSIZE_256 0x2 #define FMC2_BCR_CPSIZE_512 0x3 #define FMC2_BCR_CPSIZE_1024 0x4 #define FMC2_BCR_MWID_8 0x0 #define FMC2_BCR_MWID_16 0x1 #define FMC2_BCR_MTYP_SRAM 0x0 #define FMC2_BCR_MTYP_PSRAM 0x1 #define FMC2_BCR_MTYP_NOR 0x2 #define FMC2_BXTR_EXTMOD_A 0x0 #define FMC2_BXTR_EXTMOD_B 0x1 #define FMC2_BXTR_EXTMOD_C 0x2 #define FMC2_BXTR_EXTMOD_D 0x3 #define FMC2_BCR_NBLSET_MAX 0x3 #define FMC2_BXTR_ADDSET_MAX 0xf #define FMC2_BXTR_ADDHLD_MAX 0xf #define FMC2_BXTR_DATAST_MAX 0xff #define FMC2_BXTR_BUSTURN_MAX 0xf #define FMC2_BXTR_DATAHLD_MAX 0x3 #define FMC2_BTR_CLKDIV_MAX 0xf #define FMC2_BTR_DATLAT_MAX 0xf #define FMC2_PCSCNTR_CSCOUNT_MAX 0xff enum stm32_fmc2_ebi_bank { FMC2_EBI1 = 0, FMC2_EBI2, FMC2_EBI3, FMC2_EBI4, FMC2_NAND }; enum stm32_fmc2_ebi_register_type { FMC2_REG_BCR = 1, FMC2_REG_BTR, FMC2_REG_BWTR, FMC2_REG_PCSCNTR }; enum stm32_fmc2_ebi_transaction_type { FMC2_ASYNC_MODE_1_SRAM = 0, FMC2_ASYNC_MODE_1_PSRAM, FMC2_ASYNC_MODE_A_SRAM, FMC2_ASYNC_MODE_A_PSRAM, FMC2_ASYNC_MODE_2_NOR, FMC2_ASYNC_MODE_B_NOR, FMC2_ASYNC_MODE_C_NOR, FMC2_ASYNC_MODE_D_NOR, FMC2_SYNC_READ_SYNC_WRITE_PSRAM, FMC2_SYNC_READ_ASYNC_WRITE_PSRAM, FMC2_SYNC_READ_SYNC_WRITE_NOR, FMC2_SYNC_READ_ASYNC_WRITE_NOR }; enum stm32_fmc2_ebi_buswidth { FMC2_BUSWIDTH_8 = 8, FMC2_BUSWIDTH_16 = 16 }; enum stm32_fmc2_ebi_cpsize { FMC2_CPSIZE_0 = 0, FMC2_CPSIZE_128 = 128, FMC2_CPSIZE_256 = 256, FMC2_CPSIZE_512 = 512, FMC2_CPSIZE_1024 = 1024 }; struct stm32_fmc2_ebi { struct device *dev; struct clk *clk; struct regmap *regmap; u8 bank_assigned; u32 bcr[FMC2_MAX_EBI_CE]; u32 btr[FMC2_MAX_EBI_CE]; u32 bwtr[FMC2_MAX_EBI_CE]; u32 pcscntr; }; /* * struct stm32_fmc2_prop - STM32 FMC2 EBI property * @name: the device tree binding name of the property * @bprop: indicate that it is a boolean property * @mprop: indicate that it is a mandatory property * @reg_type: the register that have to be modified * @reg_mask: the bit that have to be modified in the selected register * in case of it is a boolean property * @reset_val: the default value that have to be set in case the property * has not been defined in the device tree * @check: this callback ckecks that the property is compliant with the * transaction type selected * @calculate: this callback is called to calculate for exemple a timing * set in nanoseconds in the device tree in clock cycles or in * clock period * @set: this callback applies the values in the registers */ struct stm32_fmc2_prop { const char *name; bool bprop; bool mprop; int reg_type; u32 reg_mask; u32 reset_val; int (*check)(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs); u32 (*calculate)(struct stm32_fmc2_ebi *ebi, int cs, u32 setup); int (*set)(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs, u32 setup); }; static int stm32_fmc2_ebi_check_mux(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs) { u32 bcr; regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr); if (bcr & FMC2_BCR_MTYP) return 0; return -EINVAL; } static int stm32_fmc2_ebi_check_waitcfg(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs) { u32 bcr, val = FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR); regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr); if ((bcr & FMC2_BCR_MTYP) == val && bcr & FMC2_BCR_BURSTEN) return 0; return -EINVAL; } static int stm32_fmc2_ebi_check_sync_trans(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs) { u32 bcr; regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr); if (bcr & FMC2_BCR_BURSTEN) return 0; return -EINVAL; } static int stm32_fmc2_ebi_check_async_trans(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs) { u32 bcr; regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr); if (!(bcr & FMC2_BCR_BURSTEN) || !(bcr & FMC2_BCR_CBURSTRW)) return 0; return -EINVAL; } static int stm32_fmc2_ebi_check_cpsize(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs) { u32 bcr, val = FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM); regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr); if ((bcr & FMC2_BCR_MTYP) == val && bcr & FMC2_BCR_BURSTEN) return 0; return -EINVAL; } static int stm32_fmc2_ebi_check_address_hold(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs) { u32 bcr, bxtr, val = FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D); regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr); if (prop->reg_type == FMC2_REG_BWTR) regmap_read(ebi->regmap, FMC2_BWTR(cs), &bxtr); else regmap_read(ebi->regmap, FMC2_BTR(cs), &bxtr); if ((!(bcr & FMC2_BCR_BURSTEN) || !(bcr & FMC2_BCR_CBURSTRW)) && ((bxtr & FMC2_BXTR_ACCMOD) == val || bcr & FMC2_BCR_MUXEN)) return 0; return -EINVAL; } static int stm32_fmc2_ebi_check_clk_period(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs) { u32 bcr, bcr1; regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr); if (cs) regmap_read(ebi->regmap, FMC2_BCR1, &bcr1); else bcr1 = bcr; if (bcr & FMC2_BCR_BURSTEN && (!cs || !(bcr1 & FMC2_BCR1_CCLKEN))) return 0; return -EINVAL; } static int stm32_fmc2_ebi_check_cclk(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs) { if (cs) return -EINVAL; return stm32_fmc2_ebi_check_sync_trans(ebi, prop, cs); } static u32 stm32_fmc2_ebi_ns_to_clock_cycles(struct stm32_fmc2_ebi *ebi, int cs, u32 setup) { unsigned long hclk = clk_get_rate(ebi->clk); unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000); return DIV_ROUND_UP(setup * 1000, hclkp); } static u32 stm32_fmc2_ebi_ns_to_clk_period(struct stm32_fmc2_ebi *ebi, int cs, u32 setup) { u32 nb_clk_cycles = stm32_fmc2_ebi_ns_to_clock_cycles(ebi, cs, setup); u32 bcr, btr, clk_period; regmap_read(ebi->regmap, FMC2_BCR1, &bcr); if (bcr & FMC2_BCR1_CCLKEN || !cs) regmap_read(ebi->regmap, FMC2_BTR1, &btr); else regmap_read(ebi->regmap, FMC2_BTR(cs), &btr); clk_period = FIELD_GET(FMC2_BTR_CLKDIV, btr) + 1; return DIV_ROUND_UP(nb_clk_cycles, clk_period); } static int stm32_fmc2_ebi_get_reg(int reg_type, int cs, u32 *reg) { switch (reg_type) { case FMC2_REG_BCR: *reg = FMC2_BCR(cs); break; case FMC2_REG_BTR: *reg = FMC2_BTR(cs); break; case FMC2_REG_BWTR: *reg = FMC2_BWTR(cs); break; case FMC2_REG_PCSCNTR: *reg = FMC2_PCSCNTR; break; default: return -EINVAL; } return 0; } static int stm32_fmc2_ebi_set_bit_field(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs, u32 setup) { u32 reg; int ret; ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, ®); if (ret) return ret; regmap_update_bits(ebi->regmap, reg, prop->reg_mask, setup ? prop->reg_mask : 0); return 0; } static int stm32_fmc2_ebi_set_trans_type(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs, u32 setup) { u32 bcr_mask, bcr = FMC2_BCR_WREN; u32 btr_mask, btr = 0; u32 bwtr_mask, bwtr = 0; bwtr_mask = FMC2_BXTR_ACCMOD; btr_mask = FMC2_BXTR_ACCMOD; bcr_mask = FMC2_BCR_MUXEN | FMC2_BCR_MTYP | FMC2_BCR_FACCEN | FMC2_BCR_WREN | FMC2_BCR_WAITEN | FMC2_BCR_BURSTEN | FMC2_BCR_EXTMOD | FMC2_BCR_CBURSTRW; switch (setup) { case FMC2_ASYNC_MODE_1_SRAM: bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_SRAM); /* * MUXEN = 0, MTYP = 0, FACCEN = 0, BURSTEN = 0, WAITEN = 0, * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0 */ break; case FMC2_ASYNC_MODE_1_PSRAM: /* * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 0, WAITEN = 0, * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0 */ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM); break; case FMC2_ASYNC_MODE_A_SRAM: /* * MUXEN = 0, MTYP = 0, FACCEN = 0, BURSTEN = 0, WAITEN = 0, * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 0 */ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_SRAM); bcr |= FMC2_BCR_EXTMOD; btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A); bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A); break; case FMC2_ASYNC_MODE_A_PSRAM: /* * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 0, WAITEN = 0, * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 0 */ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM); bcr |= FMC2_BCR_EXTMOD; btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A); bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A); break; case FMC2_ASYNC_MODE_2_NOR: /* * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0, * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0 */ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR); bcr |= FMC2_BCR_FACCEN; break; case FMC2_ASYNC_MODE_B_NOR: /* * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0, * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 1 */ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR); bcr |= FMC2_BCR_FACCEN | FMC2_BCR_EXTMOD; btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_B); bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_B); break; case FMC2_ASYNC_MODE_C_NOR: /* * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0, * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 2 */ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR); bcr |= FMC2_BCR_FACCEN | FMC2_BCR_EXTMOD; btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_C); bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_C); break; case FMC2_ASYNC_MODE_D_NOR: /* * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0, * WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 3 */ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR); bcr |= FMC2_BCR_FACCEN | FMC2_BCR_EXTMOD; btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D); bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D); break; case FMC2_SYNC_READ_SYNC_WRITE_PSRAM: /* * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 1, WAITEN = 0, * WREN = 1, EXTMOD = 0, CBURSTRW = 1, ACCMOD = 0 */ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM); bcr |= FMC2_BCR_BURSTEN | FMC2_BCR_CBURSTRW; break; case FMC2_SYNC_READ_ASYNC_WRITE_PSRAM: /* * MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 1, WAITEN = 0, * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0 */ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM); bcr |= FMC2_BCR_BURSTEN; break; case FMC2_SYNC_READ_SYNC_WRITE_NOR: /* * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 1, WAITEN = 0, * WREN = 1, EXTMOD = 0, CBURSTRW = 1, ACCMOD = 0 */ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR); bcr |= FMC2_BCR_FACCEN | FMC2_BCR_BURSTEN | FMC2_BCR_CBURSTRW; break; case FMC2_SYNC_READ_ASYNC_WRITE_NOR: /* * MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 1, WAITEN = 0, * WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0 */ bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR); bcr |= FMC2_BCR_FACCEN | FMC2_BCR_BURSTEN; break; default: /* Type of transaction not supported */ return -EINVAL; } if (bcr & FMC2_BCR_EXTMOD) regmap_update_bits(ebi->regmap, FMC2_BWTR(cs), bwtr_mask, bwtr); regmap_update_bits(ebi->regmap, FMC2_BTR(cs), btr_mask, btr); regmap_update_bits(ebi->regmap, FMC2_BCR(cs), bcr_mask, bcr); return 0; } static int stm32_fmc2_ebi_set_buswidth(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs, u32 setup) { u32 val; switch (setup) { case FMC2_BUSWIDTH_8: val = FIELD_PREP(FMC2_BCR_MWID, FMC2_BCR_MWID_8); break; case FMC2_BUSWIDTH_16: val = FIELD_PREP(FMC2_BCR_MWID, FMC2_BCR_MWID_16); break; default: /* Buswidth not supported */ return -EINVAL; } regmap_update_bits(ebi->regmap, FMC2_BCR(cs), FMC2_BCR_MWID, val); return 0; } static int stm32_fmc2_ebi_set_cpsize(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs, u32 setup) { u32 val; switch (setup) { case FMC2_CPSIZE_0: val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_0); break; case FMC2_CPSIZE_128: val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_128); break; case FMC2_CPSIZE_256: val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_256); break; case FMC2_CPSIZE_512: val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_512); break; case FMC2_CPSIZE_1024: val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_1024); break; default: /* Cpsize not supported */ return -EINVAL; } regmap_update_bits(ebi->regmap, FMC2_BCR(cs), FMC2_BCR_CPSIZE, val); return 0; } static int stm32_fmc2_ebi_set_bl_setup(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs, u32 setup) { u32 val; val = min_t(u32, setup, FMC2_BCR_NBLSET_MAX); val = FIELD_PREP(FMC2_BCR_NBLSET, val); regmap_update_bits(ebi->regmap, FMC2_BCR(cs), FMC2_BCR_NBLSET, val); return 0; } static int stm32_fmc2_ebi_set_address_setup(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs, u32 setup) { u32 bcr, bxtr, reg; u32 val = FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D); int ret; ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, ®); if (ret) return ret; regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr); if (prop->reg_type == FMC2_REG_BWTR) regmap_read(ebi->regmap, FMC2_BWTR(cs), &bxtr); else regmap_read(ebi->regmap, FMC2_BTR(cs), &bxtr); if ((bxtr & FMC2_BXTR_ACCMOD) == val || bcr & FMC2_BCR_MUXEN) val = clamp_val(setup, 1, FMC2_BXTR_ADDSET_MAX); else val = min_t(u32, setup, FMC2_BXTR_ADDSET_MAX); val = FIELD_PREP(FMC2_BXTR_ADDSET, val); regmap_update_bits(ebi->regmap, reg, FMC2_BXTR_ADDSET, val); return 0; } static int stm32_fmc2_ebi_set_address_hold(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs, u32 setup) { u32 val, reg; int ret; ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, ®); if (ret) return ret; val = clamp_val(setup, 1, FMC2_BXTR_ADDHLD_MAX); val = FIELD_PREP(FMC2_BXTR_ADDHLD, val); regmap_update_bits(ebi->regmap, reg, FMC2_BXTR_ADDHLD, val); return 0; } static int stm32_fmc2_ebi_set_data_setup(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs, u32 setup) { u32 val, reg; int ret; ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, ®); if (ret) return ret; val = clamp_val(setup, 1, FMC2_BXTR_DATAST_MAX); val = FIELD_PREP(FMC2_BXTR_DATAST, val); regmap_update_bits(ebi->regmap, reg, FMC2_BXTR_DATAST, val); return 0; } static int stm32_fmc2_ebi_set_bus_turnaround(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs, u32 setup) { u32 val, reg; int ret; ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, ®); if (ret) return ret; val = setup ? min_t(u32, setup - 1, FMC2_BXTR_BUSTURN_MAX) : 0; val = FIELD_PREP(FMC2_BXTR_BUSTURN, val); regmap_update_bits(ebi->regmap, reg, FMC2_BXTR_BUSTURN, val); return 0; } static int stm32_fmc2_ebi_set_data_hold(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs, u32 setup) { u32 val, reg; int ret; ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, ®); if (ret) return ret; if (prop->reg_type == FMC2_REG_BWTR) val = setup ? min_t(u32, setup - 1, FMC2_BXTR_DATAHLD_MAX) : 0; else val = min_t(u32, setup, FMC2_BXTR_DATAHLD_MAX); val = FIELD_PREP(FMC2_BXTR_DATAHLD, val); regmap_update_bits(ebi->regmap, reg, FMC2_BXTR_DATAHLD, val); return 0; } static int stm32_fmc2_ebi_set_clk_period(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs, u32 setup) { u32 val; val = setup ? clamp_val(setup - 1, 1, FMC2_BTR_CLKDIV_MAX) : 1; val = FIELD_PREP(FMC2_BTR_CLKDIV, val); regmap_update_bits(ebi->regmap, FMC2_BTR(cs), FMC2_BTR_CLKDIV, val); return 0; } static int stm32_fmc2_ebi_set_data_latency(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs, u32 setup) { u32 val; val = setup > 1 ? min_t(u32, setup - 2, FMC2_BTR_DATLAT_MAX) : 0; val = FIELD_PREP(FMC2_BTR_DATLAT, val); regmap_update_bits(ebi->regmap, FMC2_BTR(cs), FMC2_BTR_DATLAT, val); return 0; } static int stm32_fmc2_ebi_set_max_low_pulse(struct stm32_fmc2_ebi *ebi, const struct stm32_fmc2_prop *prop, int cs, u32 setup) { u32 old_val, new_val, pcscntr; if (setup < 1) return 0; regmap_read(ebi->regmap, FMC2_PCSCNTR, &pcscntr); /* Enable counter for the bank */ regmap_update_bits(ebi->regmap, FMC2_PCSCNTR, FMC2_PCSCNTR_CNTBEN(cs), FMC2_PCSCNTR_CNTBEN(cs)); new_val = min_t(u32, setup - 1, FMC2_PCSCNTR_CSCOUNT_MAX); old_val = FIELD_GET(FMC2_PCSCNTR_CSCOUNT, pcscntr); if (old_val && new_val > old_val) /* Keep current counter value */ return 0; new_val = FIELD_PREP(FMC2_PCSCNTR_CSCOUNT, new_val); regmap_update_bits(ebi->regmap, FMC2_PCSCNTR, FMC2_PCSCNTR_CSCOUNT, new_val); return 0; } static const struct stm32_fmc2_prop stm32_fmc2_child_props[] = { /* st,fmc2-ebi-cs-trans-type must be the first property */ { .name = "st,fmc2-ebi-cs-transaction-type", .mprop = true, .set = stm32_fmc2_ebi_set_trans_type, }, { .name = "st,fmc2-ebi-cs-cclk-enable", .bprop = true, .reg_type = FMC2_REG_BCR, .reg_mask = FMC2_BCR1_CCLKEN, .check = stm32_fmc2_ebi_check_cclk, .set = stm32_fmc2_ebi_set_bit_field, }, { .name = "st,fmc2-ebi-cs-mux-enable", .bprop = true, .reg_type = FMC2_REG_BCR, .reg_mask = FMC2_BCR_MUXEN, .check = stm32_fmc2_ebi_check_mux, .set = stm32_fmc2_ebi_set_bit_field, }, { .name = "st,fmc2-ebi-cs-buswidth", .reset_val = FMC2_BUSWIDTH_16, .set = stm32_fmc2_ebi_set_buswidth, }, { .name = "st,fmc2-ebi-cs-waitpol-high", .bprop = true, .reg_type = FMC2_REG_BCR, .reg_mask = FMC2_BCR_WAITPOL, .set = stm32_fmc2_ebi_set_bit_field, }, { .name = "st,fmc2-ebi-cs-waitcfg-enable", .bprop = true, .reg_type = FMC2_REG_BCR, .reg_mask = FMC2_BCR_WAITCFG, .check = stm32_fmc2_ebi_check_waitcfg, .set = stm32_fmc2_ebi_set_bit_field, }, { .name = "st,fmc2-ebi-cs-wait-enable", .bprop = true, .reg_type = FMC2_REG_BCR, .reg_mask = FMC2_BCR_WAITEN, .check = stm32_fmc2_ebi_check_sync_trans, .set = stm32_fmc2_ebi_set_bit_field, }, { .name = "st,fmc2-ebi-cs-asyncwait-enable", .bprop = true, .reg_type = FMC2_REG_BCR, .reg_mask = FMC2_BCR_ASYNCWAIT, .check = stm32_fmc2_ebi_check_async_trans, .set = stm32_fmc2_ebi_set_bit_field, }, { .name = "st,fmc2-ebi-cs-cpsize", .check = stm32_fmc2_ebi_check_cpsize, .set = stm32_fmc2_ebi_set_cpsize, }, { .name = "st,fmc2-ebi-cs-byte-lane-setup-ns", .calculate = stm32_fmc2_ebi_ns_to_clock_cycles, .set = stm32_fmc2_ebi_set_bl_setup, }, { .name = "st,fmc2-ebi-cs-address-setup-ns", .reg_type = FMC2_REG_BTR, .reset_val = FMC2_BXTR_ADDSET_MAX, .check = stm32_fmc2_ebi_check_async_trans, .calculate = stm32_fmc2_ebi_ns_to_clock_cycles, .set = stm32_fmc2_ebi_set_address_setup, }, { .name = "st,fmc2-ebi-cs-address-hold-ns", .reg_type = FMC2_REG_BTR, .reset_val = FMC2_BXTR_ADDHLD_MAX, .check = stm32_fmc2_ebi_check_address_hold, .calculate = stm32_fmc2_ebi_ns_to_clock_cycles, .set = stm32_fmc2_ebi_set_address_hold, }, { .name = "st,fmc2-ebi-cs-data-setup-ns", .reg_type = FMC2_REG_BTR, .reset_val = FMC2_BXTR_DATAST_MAX, .check = stm32_fmc2_ebi_check_async_trans, .calculate = stm32_fmc2_ebi_ns_to_clock_cycles, .set = stm32_fmc2_ebi_set_data_setup, }, { .name = "st,fmc2-ebi-cs-bus-turnaround-ns", .reg_type = FMC2_REG_BTR, .reset_val = FMC2_BXTR_BUSTURN_MAX + 1, .calculate = stm32_fmc2_ebi_ns_to_clock_cycles, .set = stm32_fmc2_ebi_set_bus_turnaround, }, { .name = "st,fmc2-ebi-cs-data-hold-ns", .reg_type = FMC2_REG_BTR, .check = stm32_fmc2_ebi_check_async_trans, .calculate = stm32_fmc2_ebi_ns_to_clock_cycles, .set = stm32_fmc2_ebi_set_data_hold, }, { .name = "st,fmc2-ebi-cs-clk-period-ns", .reset_val = FMC2_BTR_CLKDIV_MAX + 1, .check = stm32_fmc2_ebi_check_clk_period, .calculate = stm32_fmc2_ebi_ns_to_clock_cycles, .set = stm32_fmc2_ebi_set_clk_period, }, { .name = "st,fmc2-ebi-cs-data-latency-ns", .check = stm32_fmc2_ebi_check_sync_trans, .calculate = stm32_fmc2_ebi_ns_to_clk_period, .set = stm32_fmc2_ebi_set_data_latency, }, { .name = "st,fmc2-ebi-cs-write-address-setup-ns", .reg_type = FMC2_REG_BWTR, .reset_val = FMC2_BXTR_ADDSET_MAX, .check = stm32_fmc2_ebi_check_async_trans, .calculate = stm32_fmc2_ebi_ns_to_clock_cycles, .set = stm32_fmc2_ebi_set_address_setup, }, { .name = "st,fmc2-ebi-cs-write-address-hold-ns", .reg_type = FMC2_REG_BWTR, .reset_val = FMC2_BXTR_ADDHLD_MAX, .check = stm32_fmc2_ebi_check_address_hold, .calculate = stm32_fmc2_ebi_ns_to_clock_cycles, .set = stm32_fmc2_ebi_set_address_hold, }, { .name = "st,fmc2-ebi-cs-write-data-setup-ns", .reg_type = FMC2_REG_BWTR, .reset_val = FMC2_BXTR_DATAST_MAX, .check = stm32_fmc2_ebi_check_async_trans, .calculate = stm32_fmc2_ebi_ns_to_clock_cycles, .set = stm32_fmc2_ebi_set_data_setup, }, { .name = "st,fmc2-ebi-cs-write-bus-turnaround-ns", .reg_type = FMC2_REG_BWTR, .reset_val = FMC2_BXTR_BUSTURN_MAX + 1, .calculate = stm32_fmc2_ebi_ns_to_clock_cycles, .set = stm32_fmc2_ebi_set_bus_turnaround, }, { .name = "st,fmc2-ebi-cs-write-data-hold-ns", .reg_type = FMC2_REG_BWTR, .check = stm32_fmc2_ebi_check_async_trans, .calculate = stm32_fmc2_ebi_ns_to_clock_cycles, .set = stm32_fmc2_ebi_set_data_hold, }, { .name = "st,fmc2-ebi-cs-max-low-pulse-ns", .calculate = stm32_fmc2_ebi_ns_to_clock_cycles, .set = stm32_fmc2_ebi_set_max_low_pulse, }, }; static int stm32_fmc2_ebi_parse_prop(struct stm32_fmc2_ebi *ebi, struct device_node *dev_node, const struct stm32_fmc2_prop *prop, int cs) { struct device *dev = ebi->dev; u32 setup = 0; if (!prop->set) { dev_err(dev, "property %s is not well defined\n", prop->name); return -EINVAL; } if (prop->check && prop->check(ebi, prop, cs)) /* Skeep this property */ return 0; if (prop->bprop) { bool bprop; bprop = of_property_read_bool(dev_node, prop->name); if (prop->mprop && !bprop) { dev_err(dev, "mandatory property %s not defined in the device tree\n", prop->name); return -EINVAL; } if (bprop) setup = 1; } else { u32 val; int ret; ret = of_property_read_u32(dev_node, prop->name, &val); if (prop->mprop && ret) { dev_err(dev, "mandatory property %s not defined in the device tree\n", prop->name); return ret; } if (ret) setup = prop->reset_val; else if (prop->calculate) setup = prop->calculate(ebi, cs, val); else setup = val; } return prop->set(ebi, prop, cs, setup); } static void stm32_fmc2_ebi_enable_bank(struct stm32_fmc2_ebi *ebi, int cs) { regmap_update_bits(ebi->regmap, FMC2_BCR(cs), FMC2_BCR_MBKEN, FMC2_BCR_MBKEN); } static void stm32_fmc2_ebi_disable_bank(struct stm32_fmc2_ebi *ebi, int cs) { regmap_update_bits(ebi->regmap, FMC2_BCR(cs), FMC2_BCR_MBKEN, 0); } static void stm32_fmc2_ebi_save_setup(struct stm32_fmc2_ebi *ebi) { unsigned int cs; for (cs = 0; cs < FMC2_MAX_EBI_CE; cs++) { regmap_read(ebi->regmap, FMC2_BCR(cs), &ebi->bcr[cs]); regmap_read(ebi->regmap, FMC2_BTR(cs), &ebi->btr[cs]); regmap_read(ebi->regmap, FMC2_BWTR(cs), &ebi->bwtr[cs]); } regmap_read(ebi->regmap, FMC2_PCSCNTR, &ebi->pcscntr); } static void stm32_fmc2_ebi_set_setup(struct stm32_fmc2_ebi *ebi) { unsigned int cs; for (cs = 0; cs < FMC2_MAX_EBI_CE; cs++) { regmap_write(ebi->regmap, FMC2_BCR(cs), ebi->bcr[cs]); regmap_write(ebi->regmap, FMC2_BTR(cs), ebi->btr[cs]); regmap_write(ebi->regmap, FMC2_BWTR(cs), ebi->bwtr[cs]); } regmap_write(ebi->regmap, FMC2_PCSCNTR, ebi->pcscntr); } static void stm32_fmc2_ebi_disable_banks(struct stm32_fmc2_ebi *ebi) { unsigned int cs; for (cs = 0; cs < FMC2_MAX_EBI_CE; cs++) { if (!(ebi->bank_assigned & BIT(cs))) continue; stm32_fmc2_ebi_disable_bank(ebi, cs); } } /* NWAIT signal can not be connected to EBI controller and NAND controller */ static bool stm32_fmc2_ebi_nwait_used_by_ctrls(struct stm32_fmc2_ebi *ebi) { unsigned int cs; u32 bcr; for (cs = 0; cs < FMC2_MAX_EBI_CE; cs++) { if (!(ebi->bank_assigned & BIT(cs))) continue; regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr); if ((bcr & FMC2_BCR_WAITEN || bcr & FMC2_BCR_ASYNCWAIT) && ebi->bank_assigned & BIT(FMC2_NAND)) return true; } return false; } static void stm32_fmc2_ebi_enable(struct stm32_fmc2_ebi *ebi) { regmap_update_bits(ebi->regmap, FMC2_BCR1, FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN); } static void stm32_fmc2_ebi_disable(struct stm32_fmc2_ebi *ebi) { regmap_update_bits(ebi->regmap, FMC2_BCR1, FMC2_BCR1_FMC2EN, 0); } static int stm32_fmc2_ebi_setup_cs(struct stm32_fmc2_ebi *ebi, struct device_node *dev_node, u32 cs) { unsigned int i; int ret; stm32_fmc2_ebi_disable_bank(ebi, cs); for (i = 0; i < ARRAY_SIZE(stm32_fmc2_child_props); i++) { const struct stm32_fmc2_prop *p = &stm32_fmc2_child_props[i]; ret = stm32_fmc2_ebi_parse_prop(ebi, dev_node, p, cs); if (ret) { dev_err(ebi->dev, "property %s could not be set: %d\n", p->name, ret); return ret; } } stm32_fmc2_ebi_enable_bank(ebi, cs); return 0; } static int stm32_fmc2_ebi_parse_dt(struct stm32_fmc2_ebi *ebi) { struct device *dev = ebi->dev; struct device_node *child; bool child_found = false; u32 bank; int ret; for_each_available_child_of_node(dev->of_node, child) { ret = of_property_read_u32(child, "reg", &bank); if (ret) { dev_err(dev, "could not retrieve reg property: %d\n", ret); of_node_put(child); return ret; } if (bank >= FMC2_MAX_BANKS) { dev_err(dev, "invalid reg value: %d\n", bank); of_node_put(child); return -EINVAL; } if (ebi->bank_assigned & BIT(bank)) { dev_err(dev, "bank already assigned: %d\n", bank); of_node_put(child); return -EINVAL; } if (bank < FMC2_MAX_EBI_CE) { ret = stm32_fmc2_ebi_setup_cs(ebi, child, bank); if (ret) { dev_err(dev, "setup chip select %d failed: %d\n", bank, ret); of_node_put(child); return ret; } } ebi->bank_assigned |= BIT(bank); child_found = true; } if (!child_found) { dev_warn(dev, "no subnodes found, disable the driver.\n"); return -ENODEV; } if (stm32_fmc2_ebi_nwait_used_by_ctrls(ebi)) { dev_err(dev, "NWAIT signal connected to EBI and NAND controllers\n"); return -EINVAL; } stm32_fmc2_ebi_enable(ebi); return of_platform_populate(dev->of_node, NULL, NULL, dev); } static int stm32_fmc2_ebi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct stm32_fmc2_ebi *ebi; struct reset_control *rstc; int ret; ebi = devm_kzalloc(&pdev->dev, sizeof(*ebi), GFP_KERNEL); if (!ebi) return -ENOMEM; ebi->dev = dev; ebi->regmap = device_node_to_regmap(dev->of_node); if (IS_ERR(ebi->regmap)) return PTR_ERR(ebi->regmap); ebi->clk = devm_clk_get(dev, NULL); if (IS_ERR(ebi->clk)) return PTR_ERR(ebi->clk); rstc = devm_reset_control_get(dev, NULL); if (PTR_ERR(rstc) == -EPROBE_DEFER) return -EPROBE_DEFER; ret = clk_prepare_enable(ebi->clk); if (ret) return ret; if (!IS_ERR(rstc)) { reset_control_assert(rstc); reset_control_deassert(rstc); } ret = stm32_fmc2_ebi_parse_dt(ebi); if (ret) goto err_release; stm32_fmc2_ebi_save_setup(ebi); platform_set_drvdata(pdev, ebi); return 0; err_release: stm32_fmc2_ebi_disable_banks(ebi); stm32_fmc2_ebi_disable(ebi); clk_disable_unprepare(ebi->clk); return ret; } static int stm32_fmc2_ebi_remove(struct platform_device *pdev) { struct stm32_fmc2_ebi *ebi = platform_get_drvdata(pdev); of_platform_depopulate(&pdev->dev); stm32_fmc2_ebi_disable_banks(ebi); stm32_fmc2_ebi_disable(ebi); clk_disable_unprepare(ebi->clk); return 0; } static int __maybe_unused stm32_fmc2_ebi_suspend(struct device *dev) { struct stm32_fmc2_ebi *ebi = dev_get_drvdata(dev); stm32_fmc2_ebi_disable(ebi); clk_disable_unprepare(ebi->clk); pinctrl_pm_select_sleep_state(dev); return 0; } static int __maybe_unused stm32_fmc2_ebi_resume(struct device *dev) { struct stm32_fmc2_ebi *ebi = dev_get_drvdata(dev); int ret; pinctrl_pm_select_default_state(dev); ret = clk_prepare_enable(ebi->clk); if (ret) return ret; stm32_fmc2_ebi_set_setup(ebi); stm32_fmc2_ebi_enable(ebi); return 0; } static SIMPLE_DEV_PM_OPS(stm32_fmc2_ebi_pm_ops, stm32_fmc2_ebi_suspend, stm32_fmc2_ebi_resume); static const struct of_device_id stm32_fmc2_ebi_match[] = { {.compatible = "st,stm32mp1-fmc2-ebi"}, {} }; MODULE_DEVICE_TABLE(of, stm32_fmc2_ebi_match); static struct platform_driver stm32_fmc2_ebi_driver = { .probe = stm32_fmc2_ebi_probe, .remove = stm32_fmc2_ebi_remove, .driver = { .name = "stm32_fmc2_ebi", .of_match_table = stm32_fmc2_ebi_match, .pm = &stm32_fmc2_ebi_pm_ops, }, }; module_platform_driver(stm32_fmc2_ebi_driver); MODULE_ALIAS("platform:stm32_fmc2_ebi"); MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>"); MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 ebi driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1