Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Srinivas Kandagatla | 8084 | 63.52% | 17 | 24.29% |
Jorge Ramirez-Ortiz | 1441 | 11.32% | 5 | 7.14% |
Jeya R | 1125 | 8.84% | 5 | 7.14% |
Abel Vesa | 993 | 7.80% | 12 | 17.14% |
Vamsi Krishna Gattupalli | 640 | 5.03% | 4 | 5.71% |
Björn Andersson | 111 | 0.87% | 2 | 2.86% |
Thierry Escande | 104 | 0.82% | 3 | 4.29% |
Jonathan Marek | 44 | 0.35% | 3 | 4.29% |
Dmitry Eremin-Solenikov | 28 | 0.22% | 1 | 1.43% |
Christophe Jaillet | 27 | 0.21% | 1 | 1.43% |
Johan Hovold | 25 | 0.20% | 3 | 4.29% |
YU Bo | 21 | 0.17% | 1 | 1.43% |
Ola Jeppsson | 14 | 0.11% | 1 | 1.43% |
Dmitry Osipenko | 12 | 0.09% | 2 | 2.86% |
Thomas Zimmermann | 12 | 0.09% | 1 | 1.43% |
Elliot Berman | 12 | 0.09% | 2 | 2.86% |
Wei Yongjun | 9 | 0.07% | 1 | 1.43% |
Marek Szyprowski | 6 | 0.05% | 1 | 1.43% |
Navid Emamdoost | 5 | 0.04% | 1 | 1.43% |
Xiaomeng Tong | 5 | 0.04% | 1 | 1.43% |
Greg Kroah-Hartman | 5 | 0.04% | 1 | 1.43% |
Lucas De Marchi | 2 | 0.02% | 1 | 1.43% |
Mathias Krause | 1 | 0.01% | 1 | 1.43% |
Total | 12726 | 70 |
// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2011-2018, The Linux Foundation. All rights reserved. // Copyright (c) 2018, Linaro Limited #include <linux/completion.h> #include <linux/device.h> #include <linux/dma-buf.h> #include <linux/dma-mapping.h> #include <linux/dma-resv.h> #include <linux/idr.h> #include <linux/list.h> #include <linux/miscdevice.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of.h> #include <linux/sort.h> #include <linux/of_platform.h> #include <linux/rpmsg.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/firmware/qcom/qcom_scm.h> #include <uapi/misc/fastrpc.h> #include <linux/of_reserved_mem.h> #define ADSP_DOMAIN_ID (0) #define MDSP_DOMAIN_ID (1) #define SDSP_DOMAIN_ID (2) #define CDSP_DOMAIN_ID (3) #define FASTRPC_DEV_MAX 4 /* adsp, mdsp, slpi, cdsp*/ #define FASTRPC_MAX_SESSIONS 14 #define FASTRPC_MAX_VMIDS 16 #define FASTRPC_ALIGN 128 #define FASTRPC_MAX_FDLIST 16 #define FASTRPC_MAX_CRCLIST 64 #define FASTRPC_PHYS(p) ((p) & 0xffffffff) #define FASTRPC_CTX_MAX (256) #define FASTRPC_INIT_HANDLE 1 #define FASTRPC_DSP_UTILITIES_HANDLE 2 #define FASTRPC_CTXID_MASK (0xFF0) #define INIT_FILELEN_MAX (2 * 1024 * 1024) #define INIT_FILE_NAMELEN_MAX (128) #define FASTRPC_DEVICE_NAME "fastrpc" /* Add memory to static PD pool, protection thru XPU */ #define ADSP_MMAP_HEAP_ADDR 4 /* MAP static DMA buffer on DSP User PD */ #define ADSP_MMAP_DMA_BUFFER 6 /* Add memory to static PD pool protection thru hypervisor */ #define ADSP_MMAP_REMOTE_HEAP_ADDR 8 /* Add memory to userPD pool, for user heap */ #define ADSP_MMAP_ADD_PAGES 0x1000 /* Add memory to userPD pool, for LLC heap */ #define ADSP_MMAP_ADD_PAGES_LLC 0x3000, #define DSP_UNSUPPORTED_API (0x80000414) /* MAX NUMBER of DSP ATTRIBUTES SUPPORTED */ #define FASTRPC_MAX_DSP_ATTRIBUTES (256) #define FASTRPC_MAX_DSP_ATTRIBUTES_LEN (sizeof(u32) * FASTRPC_MAX_DSP_ATTRIBUTES) /* Retrives number of input buffers from the scalars parameter */ #define REMOTE_SCALARS_INBUFS(sc) (((sc) >> 16) & 0x0ff) /* Retrives number of output buffers from the scalars parameter */ #define REMOTE_SCALARS_OUTBUFS(sc) (((sc) >> 8) & 0x0ff) /* Retrives number of input handles from the scalars parameter */ #define REMOTE_SCALARS_INHANDLES(sc) (((sc) >> 4) & 0x0f) /* Retrives number of output handles from the scalars parameter */ #define REMOTE_SCALARS_OUTHANDLES(sc) ((sc) & 0x0f) #define REMOTE_SCALARS_LENGTH(sc) (REMOTE_SCALARS_INBUFS(sc) + \ REMOTE_SCALARS_OUTBUFS(sc) + \ REMOTE_SCALARS_INHANDLES(sc)+ \ REMOTE_SCALARS_OUTHANDLES(sc)) #define FASTRPC_BUILD_SCALARS(attr, method, in, out, oin, oout) \ (((attr & 0x07) << 29) | \ ((method & 0x1f) << 24) | \ ((in & 0xff) << 16) | \ ((out & 0xff) << 8) | \ ((oin & 0x0f) << 4) | \ (oout & 0x0f)) #define FASTRPC_SCALARS(method, in, out) \ FASTRPC_BUILD_SCALARS(0, method, in, out, 0, 0) #define FASTRPC_CREATE_PROCESS_NARGS 6 #define FASTRPC_CREATE_STATIC_PROCESS_NARGS 3 /* Remote Method id table */ #define FASTRPC_RMID_INIT_ATTACH 0 #define FASTRPC_RMID_INIT_RELEASE 1 #define FASTRPC_RMID_INIT_MMAP 4 #define FASTRPC_RMID_INIT_MUNMAP 5 #define FASTRPC_RMID_INIT_CREATE 6 #define FASTRPC_RMID_INIT_CREATE_ATTR 7 #define FASTRPC_RMID_INIT_CREATE_STATIC 8 #define FASTRPC_RMID_INIT_MEM_MAP 10 #define FASTRPC_RMID_INIT_MEM_UNMAP 11 /* Protection Domain(PD) ids */ #define ROOT_PD (0) #define USER_PD (1) #define SENSORS_PD (2) #define miscdev_to_fdevice(d) container_of(d, struct fastrpc_device, miscdev) static const char *domains[FASTRPC_DEV_MAX] = { "adsp", "mdsp", "sdsp", "cdsp"}; struct fastrpc_phy_page { u64 addr; /* physical address */ u64 size; /* size of contiguous region */ }; struct fastrpc_invoke_buf { u32 num; /* number of contiguous regions */ u32 pgidx; /* index to start of contiguous region */ }; struct fastrpc_remote_dmahandle { s32 fd; /* dma handle fd */ u32 offset; /* dma handle offset */ u32 len; /* dma handle length */ }; struct fastrpc_remote_buf { u64 pv; /* buffer pointer */ u64 len; /* length of buffer */ }; union fastrpc_remote_arg { struct fastrpc_remote_buf buf; struct fastrpc_remote_dmahandle dma; }; struct fastrpc_mmap_rsp_msg { u64 vaddr; }; struct fastrpc_mmap_req_msg { s32 pgid; u32 flags; u64 vaddr; s32 num; }; struct fastrpc_mem_map_req_msg { s32 pgid; s32 fd; s32 offset; u32 flags; u64 vaddrin; s32 num; s32 data_len; }; struct fastrpc_munmap_req_msg { s32 pgid; u64 vaddr; u64 size; }; struct fastrpc_mem_unmap_req_msg { s32 pgid; s32 fd; u64 vaddrin; u64 len; }; struct fastrpc_msg { int pid; /* process group id */ int tid; /* thread id */ u64 ctx; /* invoke caller context */ u32 handle; /* handle to invoke */ u32 sc; /* scalars structure describing the data */ u64 addr; /* physical address */ u64 size; /* size of contiguous region */ }; struct fastrpc_invoke_rsp { u64 ctx; /* invoke caller context */ int retval; /* invoke return value */ }; struct fastrpc_buf_overlap { u64 start; u64 end; int raix; u64 mstart; u64 mend; u64 offset; }; struct fastrpc_buf { struct fastrpc_user *fl; struct dma_buf *dmabuf; struct device *dev; void *virt; u64 phys; u64 size; /* Lock for dma buf attachments */ struct mutex lock; struct list_head attachments; /* mmap support */ struct list_head node; /* list of user requested mmaps */ uintptr_t raddr; }; struct fastrpc_dma_buf_attachment { struct device *dev; struct sg_table sgt; struct list_head node; }; struct fastrpc_map { struct list_head node; struct fastrpc_user *fl; int fd; struct dma_buf *buf; struct sg_table *table; struct dma_buf_attachment *attach; u64 phys; u64 size; void *va; u64 len; u64 raddr; u32 attr; struct kref refcount; }; struct fastrpc_invoke_ctx { int nscalars; int nbufs; int retval; int pid; int tgid; u32 sc; u32 *crc; u64 ctxid; u64 msg_sz; struct kref refcount; struct list_head node; /* list of ctxs */ struct completion work; struct work_struct put_work; struct fastrpc_msg msg; struct fastrpc_user *fl; union fastrpc_remote_arg *rpra; struct fastrpc_map **maps; struct fastrpc_buf *buf; struct fastrpc_invoke_args *args; struct fastrpc_buf_overlap *olaps; struct fastrpc_channel_ctx *cctx; }; struct fastrpc_session_ctx { struct device *dev; int sid; bool used; bool valid; }; struct fastrpc_channel_ctx { int domain_id; int sesscount; int vmcount; u32 perms; struct qcom_scm_vmperm vmperms[FASTRPC_MAX_VMIDS]; struct rpmsg_device *rpdev; struct fastrpc_session_ctx session[FASTRPC_MAX_SESSIONS]; spinlock_t lock; struct idr ctx_idr; struct list_head users; struct kref refcount; /* Flag if dsp attributes are cached */ bool valid_attributes; u32 dsp_attributes[FASTRPC_MAX_DSP_ATTRIBUTES]; struct fastrpc_device *secure_fdevice; struct fastrpc_device *fdevice; struct fastrpc_buf *remote_heap; struct list_head invoke_interrupted_mmaps; bool secure; bool unsigned_support; u64 dma_mask; }; struct fastrpc_device { struct fastrpc_channel_ctx *cctx; struct miscdevice miscdev; bool secure; }; struct fastrpc_user { struct list_head user; struct list_head maps; struct list_head pending; struct list_head mmaps; struct fastrpc_channel_ctx *cctx; struct fastrpc_session_ctx *sctx; struct fastrpc_buf *init_mem; int tgid; int pd; bool is_secure_dev; /* Lock for lists */ spinlock_t lock; /* lock for allocations */ struct mutex mutex; }; static void fastrpc_free_map(struct kref *ref) { struct fastrpc_map *map; map = container_of(ref, struct fastrpc_map, refcount); if (map->table) { if (map->attr & FASTRPC_ATTR_SECUREMAP) { struct qcom_scm_vmperm perm; int err = 0; perm.vmid = QCOM_SCM_VMID_HLOS; perm.perm = QCOM_SCM_PERM_RWX; err = qcom_scm_assign_mem(map->phys, map->size, &map->fl->cctx->perms, &perm, 1); if (err) { dev_err(map->fl->sctx->dev, "Failed to assign memory phys 0x%llx size 0x%llx err %d", map->phys, map->size, err); return; } } dma_buf_unmap_attachment_unlocked(map->attach, map->table, DMA_BIDIRECTIONAL); dma_buf_detach(map->buf, map->attach); dma_buf_put(map->buf); } if (map->fl) { spin_lock(&map->fl->lock); list_del(&map->node); spin_unlock(&map->fl->lock); map->fl = NULL; } kfree(map); } static void fastrpc_map_put(struct fastrpc_map *map) { if (map) kref_put(&map->refcount, fastrpc_free_map); } static int fastrpc_map_get(struct fastrpc_map *map) { if (!map) return -ENOENT; return kref_get_unless_zero(&map->refcount) ? 0 : -ENOENT; } static int fastrpc_map_lookup(struct fastrpc_user *fl, int fd, struct fastrpc_map **ppmap, bool take_ref) { struct fastrpc_session_ctx *sess = fl->sctx; struct fastrpc_map *map = NULL; int ret = -ENOENT; spin_lock(&fl->lock); list_for_each_entry(map, &fl->maps, node) { if (map->fd != fd) continue; if (take_ref) { ret = fastrpc_map_get(map); if (ret) { dev_dbg(sess->dev, "%s: Failed to get map fd=%d ret=%d\n", __func__, fd, ret); break; } } *ppmap = map; ret = 0; break; } spin_unlock(&fl->lock); return ret; } static void fastrpc_buf_free(struct fastrpc_buf *buf) { dma_free_coherent(buf->dev, buf->size, buf->virt, FASTRPC_PHYS(buf->phys)); kfree(buf); } static int __fastrpc_buf_alloc(struct fastrpc_user *fl, struct device *dev, u64 size, struct fastrpc_buf **obuf) { struct fastrpc_buf *buf; buf = kzalloc(sizeof(*buf), GFP_KERNEL); if (!buf) return -ENOMEM; INIT_LIST_HEAD(&buf->attachments); INIT_LIST_HEAD(&buf->node); mutex_init(&buf->lock); buf->fl = fl; buf->virt = NULL; buf->phys = 0; buf->size = size; buf->dev = dev; buf->raddr = 0; buf->virt = dma_alloc_coherent(dev, buf->size, (dma_addr_t *)&buf->phys, GFP_KERNEL); if (!buf->virt) { mutex_destroy(&buf->lock); kfree(buf); return -ENOMEM; } *obuf = buf; return 0; } static int fastrpc_buf_alloc(struct fastrpc_user *fl, struct device *dev, u64 size, struct fastrpc_buf **obuf) { int ret; struct fastrpc_buf *buf; ret = __fastrpc_buf_alloc(fl, dev, size, obuf); if (ret) return ret; buf = *obuf; if (fl->sctx && fl->sctx->sid) buf->phys += ((u64)fl->sctx->sid << 32); return 0; } static int fastrpc_remote_heap_alloc(struct fastrpc_user *fl, struct device *dev, u64 size, struct fastrpc_buf **obuf) { struct device *rdev = &fl->cctx->rpdev->dev; return __fastrpc_buf_alloc(fl, rdev, size, obuf); } static void fastrpc_channel_ctx_free(struct kref *ref) { struct fastrpc_channel_ctx *cctx; cctx = container_of(ref, struct fastrpc_channel_ctx, refcount); kfree(cctx); } static void fastrpc_channel_ctx_get(struct fastrpc_channel_ctx *cctx) { kref_get(&cctx->refcount); } static void fastrpc_channel_ctx_put(struct fastrpc_channel_ctx *cctx) { kref_put(&cctx->refcount, fastrpc_channel_ctx_free); } static void fastrpc_context_free(struct kref *ref) { struct fastrpc_invoke_ctx *ctx; struct fastrpc_channel_ctx *cctx; unsigned long flags; int i; ctx = container_of(ref, struct fastrpc_invoke_ctx, refcount); cctx = ctx->cctx; for (i = 0; i < ctx->nbufs; i++) fastrpc_map_put(ctx->maps[i]); if (ctx->buf) fastrpc_buf_free(ctx->buf); spin_lock_irqsave(&cctx->lock, flags); idr_remove(&cctx->ctx_idr, ctx->ctxid >> 4); spin_unlock_irqrestore(&cctx->lock, flags); kfree(ctx->maps); kfree(ctx->olaps); kfree(ctx); fastrpc_channel_ctx_put(cctx); } static void fastrpc_context_get(struct fastrpc_invoke_ctx *ctx) { kref_get(&ctx->refcount); } static void fastrpc_context_put(struct fastrpc_invoke_ctx *ctx) { kref_put(&ctx->refcount, fastrpc_context_free); } static void fastrpc_context_put_wq(struct work_struct *work) { struct fastrpc_invoke_ctx *ctx = container_of(work, struct fastrpc_invoke_ctx, put_work); fastrpc_context_put(ctx); } #define CMP(aa, bb) ((aa) == (bb) ? 0 : (aa) < (bb) ? -1 : 1) static int olaps_cmp(const void *a, const void *b) { struct fastrpc_buf_overlap *pa = (struct fastrpc_buf_overlap *)a; struct fastrpc_buf_overlap *pb = (struct fastrpc_buf_overlap *)b; /* sort with lowest starting buffer first */ int st = CMP(pa->start, pb->start); /* sort with highest ending buffer first */ int ed = CMP(pb->end, pa->end); return st == 0 ? ed : st; } static void fastrpc_get_buff_overlaps(struct fastrpc_invoke_ctx *ctx) { u64 max_end = 0; int i; for (i = 0; i < ctx->nbufs; ++i) { ctx->olaps[i].start = ctx->args[i].ptr; ctx->olaps[i].end = ctx->olaps[i].start + ctx->args[i].length; ctx->olaps[i].raix = i; } sort(ctx->olaps, ctx->nbufs, sizeof(*ctx->olaps), olaps_cmp, NULL); for (i = 0; i < ctx->nbufs; ++i) { /* Falling inside previous range */ if (ctx->olaps[i].start < max_end) { ctx->olaps[i].mstart = max_end; ctx->olaps[i].mend = ctx->olaps[i].end; ctx->olaps[i].offset = max_end - ctx->olaps[i].start; if (ctx->olaps[i].end > max_end) { max_end = ctx->olaps[i].end; } else { ctx->olaps[i].mend = 0; ctx->olaps[i].mstart = 0; } } else { ctx->olaps[i].mend = ctx->olaps[i].end; ctx->olaps[i].mstart = ctx->olaps[i].start; ctx->olaps[i].offset = 0; max_end = ctx->olaps[i].end; } } } static struct fastrpc_invoke_ctx *fastrpc_context_alloc( struct fastrpc_user *user, u32 kernel, u32 sc, struct fastrpc_invoke_args *args) { struct fastrpc_channel_ctx *cctx = user->cctx; struct fastrpc_invoke_ctx *ctx = NULL; unsigned long flags; int ret; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&ctx->node); ctx->fl = user; ctx->nscalars = REMOTE_SCALARS_LENGTH(sc); ctx->nbufs = REMOTE_SCALARS_INBUFS(sc) + REMOTE_SCALARS_OUTBUFS(sc); if (ctx->nscalars) { ctx->maps = kcalloc(ctx->nscalars, sizeof(*ctx->maps), GFP_KERNEL); if (!ctx->maps) { kfree(ctx); return ERR_PTR(-ENOMEM); } ctx->olaps = kcalloc(ctx->nscalars, sizeof(*ctx->olaps), GFP_KERNEL); if (!ctx->olaps) { kfree(ctx->maps); kfree(ctx); return ERR_PTR(-ENOMEM); } ctx->args = args; fastrpc_get_buff_overlaps(ctx); } /* Released in fastrpc_context_put() */ fastrpc_channel_ctx_get(cctx); ctx->sc = sc; ctx->retval = -1; ctx->pid = current->pid; ctx->tgid = user->tgid; ctx->cctx = cctx; init_completion(&ctx->work); INIT_WORK(&ctx->put_work, fastrpc_context_put_wq); spin_lock(&user->lock); list_add_tail(&ctx->node, &user->pending); spin_unlock(&user->lock); spin_lock_irqsave(&cctx->lock, flags); ret = idr_alloc_cyclic(&cctx->ctx_idr, ctx, 1, FASTRPC_CTX_MAX, GFP_ATOMIC); if (ret < 0) { spin_unlock_irqrestore(&cctx->lock, flags); goto err_idr; } ctx->ctxid = ret << 4; spin_unlock_irqrestore(&cctx->lock, flags); kref_init(&ctx->refcount); return ctx; err_idr: spin_lock(&user->lock); list_del(&ctx->node); spin_unlock(&user->lock); fastrpc_channel_ctx_put(cctx); kfree(ctx->maps); kfree(ctx->olaps); kfree(ctx); return ERR_PTR(ret); } static struct sg_table * fastrpc_map_dma_buf(struct dma_buf_attachment *attachment, enum dma_data_direction dir) { struct fastrpc_dma_buf_attachment *a = attachment->priv; struct sg_table *table; int ret; table = &a->sgt; ret = dma_map_sgtable(attachment->dev, table, dir, 0); if (ret) table = ERR_PTR(ret); return table; } static void fastrpc_unmap_dma_buf(struct dma_buf_attachment *attach, struct sg_table *table, enum dma_data_direction dir) { dma_unmap_sgtable(attach->dev, table, dir, 0); } static void fastrpc_release(struct dma_buf *dmabuf) { struct fastrpc_buf *buffer = dmabuf->priv; fastrpc_buf_free(buffer); } static int fastrpc_dma_buf_attach(struct dma_buf *dmabuf, struct dma_buf_attachment *attachment) { struct fastrpc_dma_buf_attachment *a; struct fastrpc_buf *buffer = dmabuf->priv; int ret; a = kzalloc(sizeof(*a), GFP_KERNEL); if (!a) return -ENOMEM; ret = dma_get_sgtable(buffer->dev, &a->sgt, buffer->virt, FASTRPC_PHYS(buffer->phys), buffer->size); if (ret < 0) { dev_err(buffer->dev, "failed to get scatterlist from DMA API\n"); kfree(a); return -EINVAL; } a->dev = attachment->dev; INIT_LIST_HEAD(&a->node); attachment->priv = a; mutex_lock(&buffer->lock); list_add(&a->node, &buffer->attachments); mutex_unlock(&buffer->lock); return 0; } static void fastrpc_dma_buf_detatch(struct dma_buf *dmabuf, struct dma_buf_attachment *attachment) { struct fastrpc_dma_buf_attachment *a = attachment->priv; struct fastrpc_buf *buffer = dmabuf->priv; mutex_lock(&buffer->lock); list_del(&a->node); mutex_unlock(&buffer->lock); sg_free_table(&a->sgt); kfree(a); } static int fastrpc_vmap(struct dma_buf *dmabuf, struct iosys_map *map) { struct fastrpc_buf *buf = dmabuf->priv; iosys_map_set_vaddr(map, buf->virt); return 0; } static int fastrpc_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma) { struct fastrpc_buf *buf = dmabuf->priv; size_t size = vma->vm_end - vma->vm_start; dma_resv_assert_held(dmabuf->resv); return dma_mmap_coherent(buf->dev, vma, buf->virt, FASTRPC_PHYS(buf->phys), size); } static const struct dma_buf_ops fastrpc_dma_buf_ops = { .attach = fastrpc_dma_buf_attach, .detach = fastrpc_dma_buf_detatch, .map_dma_buf = fastrpc_map_dma_buf, .unmap_dma_buf = fastrpc_unmap_dma_buf, .mmap = fastrpc_mmap, .vmap = fastrpc_vmap, .release = fastrpc_release, }; static int fastrpc_map_create(struct fastrpc_user *fl, int fd, u64 len, u32 attr, struct fastrpc_map **ppmap) { struct fastrpc_session_ctx *sess = fl->sctx; struct fastrpc_map *map = NULL; int err = 0; if (!fastrpc_map_lookup(fl, fd, ppmap, true)) return 0; map = kzalloc(sizeof(*map), GFP_KERNEL); if (!map) return -ENOMEM; INIT_LIST_HEAD(&map->node); kref_init(&map->refcount); map->fl = fl; map->fd = fd; map->buf = dma_buf_get(fd); if (IS_ERR(map->buf)) { err = PTR_ERR(map->buf); goto get_err; } map->attach = dma_buf_attach(map->buf, sess->dev); if (IS_ERR(map->attach)) { dev_err(sess->dev, "Failed to attach dmabuf\n"); err = PTR_ERR(map->attach); goto attach_err; } map->table = dma_buf_map_attachment_unlocked(map->attach, DMA_BIDIRECTIONAL); if (IS_ERR(map->table)) { err = PTR_ERR(map->table); goto map_err; } map->phys = sg_dma_address(map->table->sgl); map->phys += ((u64)fl->sctx->sid << 32); map->size = len; map->va = sg_virt(map->table->sgl); map->len = len; if (attr & FASTRPC_ATTR_SECUREMAP) { /* * If subsystem VMIDs are defined in DTSI, then do * hyp_assign from HLOS to those VM(s) */ map->attr = attr; err = qcom_scm_assign_mem(map->phys, (u64)map->size, &fl->cctx->perms, fl->cctx->vmperms, fl->cctx->vmcount); if (err) { dev_err(sess->dev, "Failed to assign memory with phys 0x%llx size 0x%llx err %d", map->phys, map->size, err); goto map_err; } } spin_lock(&fl->lock); list_add_tail(&map->node, &fl->maps); spin_unlock(&fl->lock); *ppmap = map; return 0; map_err: dma_buf_detach(map->buf, map->attach); attach_err: dma_buf_put(map->buf); get_err: fastrpc_map_put(map); return err; } /* * Fastrpc payload buffer with metadata looks like: * * >>>>>> START of METADATA <<<<<<<<< * +---------------------------------+ * | Arguments | * | type:(union fastrpc_remote_arg)| * | (0 - N) | * +---------------------------------+ * | Invoke Buffer list | * | type:(struct fastrpc_invoke_buf)| * | (0 - N) | * +---------------------------------+ * | Page info list | * | type:(struct fastrpc_phy_page) | * | (0 - N) | * +---------------------------------+ * | Optional info | * |(can be specific to SoC/Firmware)| * +---------------------------------+ * >>>>>>>> END of METADATA <<<<<<<<< * +---------------------------------+ * | Inline ARGS | * | (0-N) | * +---------------------------------+ */ static int fastrpc_get_meta_size(struct fastrpc_invoke_ctx *ctx) { int size = 0; size = (sizeof(struct fastrpc_remote_buf) + sizeof(struct fastrpc_invoke_buf) + sizeof(struct fastrpc_phy_page)) * ctx->nscalars + sizeof(u64) * FASTRPC_MAX_FDLIST + sizeof(u32) * FASTRPC_MAX_CRCLIST; return size; } static u64 fastrpc_get_payload_size(struct fastrpc_invoke_ctx *ctx, int metalen) { u64 size = 0; int oix; size = ALIGN(metalen, FASTRPC_ALIGN); for (oix = 0; oix < ctx->nbufs; oix++) { int i = ctx->olaps[oix].raix; if (ctx->args[i].fd == 0 || ctx->args[i].fd == -1) { if (ctx->olaps[oix].offset == 0) size = ALIGN(size, FASTRPC_ALIGN); size += (ctx->olaps[oix].mend - ctx->olaps[oix].mstart); } } return size; } static int fastrpc_create_maps(struct fastrpc_invoke_ctx *ctx) { struct device *dev = ctx->fl->sctx->dev; int i, err; for (i = 0; i < ctx->nscalars; ++i) { if (ctx->args[i].fd == 0 || ctx->args[i].fd == -1 || ctx->args[i].length == 0) continue; err = fastrpc_map_create(ctx->fl, ctx->args[i].fd, ctx->args[i].length, ctx->args[i].attr, &ctx->maps[i]); if (err) { dev_err(dev, "Error Creating map %d\n", err); return -EINVAL; } } return 0; } static struct fastrpc_invoke_buf *fastrpc_invoke_buf_start(union fastrpc_remote_arg *pra, int len) { return (struct fastrpc_invoke_buf *)(&pra[len]); } static struct fastrpc_phy_page *fastrpc_phy_page_start(struct fastrpc_invoke_buf *buf, int len) { return (struct fastrpc_phy_page *)(&buf[len]); } static int fastrpc_get_args(u32 kernel, struct fastrpc_invoke_ctx *ctx) { struct device *dev = ctx->fl->sctx->dev; union fastrpc_remote_arg *rpra; struct fastrpc_invoke_buf *list; struct fastrpc_phy_page *pages; int inbufs, i, oix, err = 0; u64 len, rlen, pkt_size; u64 pg_start, pg_end; uintptr_t args; int metalen; inbufs = REMOTE_SCALARS_INBUFS(ctx->sc); metalen = fastrpc_get_meta_size(ctx); pkt_size = fastrpc_get_payload_size(ctx, metalen); err = fastrpc_create_maps(ctx); if (err) return err; ctx->msg_sz = pkt_size; err = fastrpc_buf_alloc(ctx->fl, dev, pkt_size, &ctx->buf); if (err) return err; rpra = ctx->buf->virt; list = fastrpc_invoke_buf_start(rpra, ctx->nscalars); pages = fastrpc_phy_page_start(list, ctx->nscalars); args = (uintptr_t)ctx->buf->virt + metalen; rlen = pkt_size - metalen; ctx->rpra = rpra; for (oix = 0; oix < ctx->nbufs; ++oix) { int mlen; i = ctx->olaps[oix].raix; len = ctx->args[i].length; rpra[i].buf.pv = 0; rpra[i].buf.len = len; list[i].num = len ? 1 : 0; list[i].pgidx = i; if (!len) continue; if (ctx->maps[i]) { struct vm_area_struct *vma = NULL; rpra[i].buf.pv = (u64) ctx->args[i].ptr; pages[i].addr = ctx->maps[i]->phys; mmap_read_lock(current->mm); vma = find_vma(current->mm, ctx->args[i].ptr); if (vma) pages[i].addr += ctx->args[i].ptr - vma->vm_start; mmap_read_unlock(current->mm); pg_start = (ctx->args[i].ptr & PAGE_MASK) >> PAGE_SHIFT; pg_end = ((ctx->args[i].ptr + len - 1) & PAGE_MASK) >> PAGE_SHIFT; pages[i].size = (pg_end - pg_start + 1) * PAGE_SIZE; } else { if (ctx->olaps[oix].offset == 0) { rlen -= ALIGN(args, FASTRPC_ALIGN) - args; args = ALIGN(args, FASTRPC_ALIGN); } mlen = ctx->olaps[oix].mend - ctx->olaps[oix].mstart; if (rlen < mlen) goto bail; rpra[i].buf.pv = args - ctx->olaps[oix].offset; pages[i].addr = ctx->buf->phys - ctx->olaps[oix].offset + (pkt_size - rlen); pages[i].addr = pages[i].addr & PAGE_MASK; pg_start = (args & PAGE_MASK) >> PAGE_SHIFT; pg_end = ((args + len - 1) & PAGE_MASK) >> PAGE_SHIFT; pages[i].size = (pg_end - pg_start + 1) * PAGE_SIZE; args = args + mlen; rlen -= mlen; } if (i < inbufs && !ctx->maps[i]) { void *dst = (void *)(uintptr_t)rpra[i].buf.pv; void *src = (void *)(uintptr_t)ctx->args[i].ptr; if (!kernel) { if (copy_from_user(dst, (void __user *)src, len)) { err = -EFAULT; goto bail; } } else { memcpy(dst, src, len); } } } for (i = ctx->nbufs; i < ctx->nscalars; ++i) { list[i].num = ctx->args[i].length ? 1 : 0; list[i].pgidx = i; if (ctx->maps[i]) { pages[i].addr = ctx->maps[i]->phys; pages[i].size = ctx->maps[i]->size; } rpra[i].dma.fd = ctx->args[i].fd; rpra[i].dma.len = ctx->args[i].length; rpra[i].dma.offset = (u64) ctx->args[i].ptr; } bail: if (err) dev_err(dev, "Error: get invoke args failed:%d\n", err); return err; } static int fastrpc_put_args(struct fastrpc_invoke_ctx *ctx, u32 kernel) { union fastrpc_remote_arg *rpra = ctx->rpra; struct fastrpc_user *fl = ctx->fl; struct fastrpc_map *mmap = NULL; struct fastrpc_invoke_buf *list; struct fastrpc_phy_page *pages; u64 *fdlist; int i, inbufs, outbufs, handles; inbufs = REMOTE_SCALARS_INBUFS(ctx->sc); outbufs = REMOTE_SCALARS_OUTBUFS(ctx->sc); handles = REMOTE_SCALARS_INHANDLES(ctx->sc) + REMOTE_SCALARS_OUTHANDLES(ctx->sc); list = fastrpc_invoke_buf_start(rpra, ctx->nscalars); pages = fastrpc_phy_page_start(list, ctx->nscalars); fdlist = (uint64_t *)(pages + inbufs + outbufs + handles); for (i = inbufs; i < ctx->nbufs; ++i) { if (!ctx->maps[i]) { void *src = (void *)(uintptr_t)rpra[i].buf.pv; void *dst = (void *)(uintptr_t)ctx->args[i].ptr; u64 len = rpra[i].buf.len; if (!kernel) { if (copy_to_user((void __user *)dst, src, len)) return -EFAULT; } else { memcpy(dst, src, len); } } } for (i = 0; i < FASTRPC_MAX_FDLIST; i++) { if (!fdlist[i]) break; if (!fastrpc_map_lookup(fl, (int)fdlist[i], &mmap, false)) fastrpc_map_put(mmap); } return 0; } static int fastrpc_invoke_send(struct fastrpc_session_ctx *sctx, struct fastrpc_invoke_ctx *ctx, u32 kernel, uint32_t handle) { struct fastrpc_channel_ctx *cctx; struct fastrpc_user *fl = ctx->fl; struct fastrpc_msg *msg = &ctx->msg; int ret; cctx = fl->cctx; msg->pid = fl->tgid; msg->tid = current->pid; if (kernel) msg->pid = 0; msg->ctx = ctx->ctxid | fl->pd; msg->handle = handle; msg->sc = ctx->sc; msg->addr = ctx->buf ? ctx->buf->phys : 0; msg->size = roundup(ctx->msg_sz, PAGE_SIZE); fastrpc_context_get(ctx); ret = rpmsg_send(cctx->rpdev->ept, (void *)msg, sizeof(*msg)); if (ret) fastrpc_context_put(ctx); return ret; } static int fastrpc_internal_invoke(struct fastrpc_user *fl, u32 kernel, u32 handle, u32 sc, struct fastrpc_invoke_args *args) { struct fastrpc_invoke_ctx *ctx = NULL; struct fastrpc_buf *buf, *b; int err = 0; if (!fl->sctx) return -EINVAL; if (!fl->cctx->rpdev) return -EPIPE; if (handle == FASTRPC_INIT_HANDLE && !kernel) { dev_warn_ratelimited(fl->sctx->dev, "user app trying to send a kernel RPC message (%d)\n", handle); return -EPERM; } ctx = fastrpc_context_alloc(fl, kernel, sc, args); if (IS_ERR(ctx)) return PTR_ERR(ctx); if (ctx->nscalars) { err = fastrpc_get_args(kernel, ctx); if (err) goto bail; } /* make sure that all CPU memory writes are seen by DSP */ dma_wmb(); /* Send invoke buffer to remote dsp */ err = fastrpc_invoke_send(fl->sctx, ctx, kernel, handle); if (err) goto bail; if (kernel) { if (!wait_for_completion_timeout(&ctx->work, 10 * HZ)) err = -ETIMEDOUT; } else { err = wait_for_completion_interruptible(&ctx->work); } if (err) goto bail; /* Check the response from remote dsp */ err = ctx->retval; if (err) goto bail; if (ctx->nscalars) { /* make sure that all memory writes by DSP are seen by CPU */ dma_rmb(); /* populate all the output buffers with results */ err = fastrpc_put_args(ctx, kernel); if (err) goto bail; } bail: if (err != -ERESTARTSYS && err != -ETIMEDOUT) { /* We are done with this compute context */ spin_lock(&fl->lock); list_del(&ctx->node); spin_unlock(&fl->lock); fastrpc_context_put(ctx); } if (err == -ERESTARTSYS) { list_for_each_entry_safe(buf, b, &fl->mmaps, node) { list_del(&buf->node); list_add_tail(&buf->node, &fl->cctx->invoke_interrupted_mmaps); } } if (err) dev_dbg(fl->sctx->dev, "Error: Invoke Failed %d\n", err); return err; } static bool is_session_rejected(struct fastrpc_user *fl, bool unsigned_pd_request) { /* Check if the device node is non-secure and channel is secure*/ if (!fl->is_secure_dev && fl->cctx->secure) { /* * Allow untrusted applications to offload only to Unsigned PD when * channel is configured as secure and block untrusted apps on channel * that does not support unsigned PD offload */ if (!fl->cctx->unsigned_support || !unsigned_pd_request) { dev_err(&fl->cctx->rpdev->dev, "Error: Untrusted application trying to offload to signed PD"); return true; } } return false; } static int fastrpc_init_create_static_process(struct fastrpc_user *fl, char __user *argp) { struct fastrpc_init_create_static init; struct fastrpc_invoke_args *args; struct fastrpc_phy_page pages[1]; char *name; int err; struct { int pgid; u32 namelen; u32 pageslen; } inbuf; u32 sc; args = kcalloc(FASTRPC_CREATE_STATIC_PROCESS_NARGS, sizeof(*args), GFP_KERNEL); if (!args) return -ENOMEM; if (copy_from_user(&init, argp, sizeof(init))) { err = -EFAULT; goto err; } if (init.namelen > INIT_FILE_NAMELEN_MAX) { err = -EINVAL; goto err; } name = kzalloc(init.namelen, GFP_KERNEL); if (!name) { err = -ENOMEM; goto err; } if (copy_from_user(name, (void __user *)(uintptr_t)init.name, init.namelen)) { err = -EFAULT; goto err_name; } if (!fl->cctx->remote_heap) { err = fastrpc_remote_heap_alloc(fl, fl->sctx->dev, init.memlen, &fl->cctx->remote_heap); if (err) goto err_name; /* Map if we have any heap VMIDs associated with this ADSP Static Process. */ if (fl->cctx->vmcount) { err = qcom_scm_assign_mem(fl->cctx->remote_heap->phys, (u64)fl->cctx->remote_heap->size, &fl->cctx->perms, fl->cctx->vmperms, fl->cctx->vmcount); if (err) { dev_err(fl->sctx->dev, "Failed to assign memory with phys 0x%llx size 0x%llx err %d", fl->cctx->remote_heap->phys, fl->cctx->remote_heap->size, err); goto err_map; } } } inbuf.pgid = fl->tgid; inbuf.namelen = init.namelen; inbuf.pageslen = 0; fl->pd = USER_PD; args[0].ptr = (u64)(uintptr_t)&inbuf; args[0].length = sizeof(inbuf); args[0].fd = -1; args[1].ptr = (u64)(uintptr_t)name; args[1].length = inbuf.namelen; args[1].fd = -1; pages[0].addr = fl->cctx->remote_heap->phys; pages[0].size = fl->cctx->remote_heap->size; args[2].ptr = (u64)(uintptr_t) pages; args[2].length = sizeof(*pages); args[2].fd = -1; sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_CREATE_STATIC, 3, 0); err = fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE, sc, args); if (err) goto err_invoke; kfree(args); return 0; err_invoke: if (fl->cctx->vmcount) { struct qcom_scm_vmperm perm; perm.vmid = QCOM_SCM_VMID_HLOS; perm.perm = QCOM_SCM_PERM_RWX; err = qcom_scm_assign_mem(fl->cctx->remote_heap->phys, (u64)fl->cctx->remote_heap->size, &fl->cctx->perms, &perm, 1); if (err) dev_err(fl->sctx->dev, "Failed to assign memory phys 0x%llx size 0x%llx err %d", fl->cctx->remote_heap->phys, fl->cctx->remote_heap->size, err); } err_map: fastrpc_buf_free(fl->cctx->remote_heap); err_name: kfree(name); err: kfree(args); return err; } static int fastrpc_init_create_process(struct fastrpc_user *fl, char __user *argp) { struct fastrpc_init_create init; struct fastrpc_invoke_args *args; struct fastrpc_phy_page pages[1]; struct fastrpc_map *map = NULL; struct fastrpc_buf *imem = NULL; int memlen; int err; struct { int pgid; u32 namelen; u32 filelen; u32 pageslen; u32 attrs; u32 siglen; } inbuf; u32 sc; bool unsigned_module = false; args = kcalloc(FASTRPC_CREATE_PROCESS_NARGS, sizeof(*args), GFP_KERNEL); if (!args) return -ENOMEM; if (copy_from_user(&init, argp, sizeof(init))) { err = -EFAULT; goto err; } if (init.attrs & FASTRPC_MODE_UNSIGNED_MODULE) unsigned_module = true; if (is_session_rejected(fl, unsigned_module)) { err = -ECONNREFUSED; goto err; } if (init.filelen > INIT_FILELEN_MAX) { err = -EINVAL; goto err; } inbuf.pgid = fl->tgid; inbuf.namelen = strlen(current->comm) + 1; inbuf.filelen = init.filelen; inbuf.pageslen = 1; inbuf.attrs = init.attrs; inbuf.siglen = init.siglen; fl->pd = USER_PD; if (init.filelen && init.filefd) { err = fastrpc_map_create(fl, init.filefd, init.filelen, 0, &map); if (err) goto err; } memlen = ALIGN(max(INIT_FILELEN_MAX, (int)init.filelen * 4), 1024 * 1024); err = fastrpc_buf_alloc(fl, fl->sctx->dev, memlen, &imem); if (err) goto err_alloc; fl->init_mem = imem; args[0].ptr = (u64)(uintptr_t)&inbuf; args[0].length = sizeof(inbuf); args[0].fd = -1; args[1].ptr = (u64)(uintptr_t)current->comm; args[1].length = inbuf.namelen; args[1].fd = -1; args[2].ptr = (u64) init.file; args[2].length = inbuf.filelen; args[2].fd = init.filefd; pages[0].addr = imem->phys; pages[0].size = imem->size; args[3].ptr = (u64)(uintptr_t) pages; args[3].length = 1 * sizeof(*pages); args[3].fd = -1; args[4].ptr = (u64)(uintptr_t)&inbuf.attrs; args[4].length = sizeof(inbuf.attrs); args[4].fd = -1; args[5].ptr = (u64)(uintptr_t) &inbuf.siglen; args[5].length = sizeof(inbuf.siglen); args[5].fd = -1; sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_CREATE, 4, 0); if (init.attrs) sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_CREATE_ATTR, 6, 0); err = fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE, sc, args); if (err) goto err_invoke; kfree(args); return 0; err_invoke: fl->init_mem = NULL; fastrpc_buf_free(imem); err_alloc: fastrpc_map_put(map); err: kfree(args); return err; } static struct fastrpc_session_ctx *fastrpc_session_alloc( struct fastrpc_channel_ctx *cctx) { struct fastrpc_session_ctx *session = NULL; unsigned long flags; int i; spin_lock_irqsave(&cctx->lock, flags); for (i = 0; i < cctx->sesscount; i++) { if (!cctx->session[i].used && cctx->session[i].valid) { cctx->session[i].used = true; session = &cctx->session[i]; break; } } spin_unlock_irqrestore(&cctx->lock, flags); return session; } static void fastrpc_session_free(struct fastrpc_channel_ctx *cctx, struct fastrpc_session_ctx *session) { unsigned long flags; spin_lock_irqsave(&cctx->lock, flags); session->used = false; spin_unlock_irqrestore(&cctx->lock, flags); } static int fastrpc_release_current_dsp_process(struct fastrpc_user *fl) { struct fastrpc_invoke_args args[1]; int tgid = 0; u32 sc; tgid = fl->tgid; args[0].ptr = (u64)(uintptr_t) &tgid; args[0].length = sizeof(tgid); args[0].fd = -1; sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_RELEASE, 1, 0); return fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE, sc, &args[0]); } static int fastrpc_device_release(struct inode *inode, struct file *file) { struct fastrpc_user *fl = (struct fastrpc_user *)file->private_data; struct fastrpc_channel_ctx *cctx = fl->cctx; struct fastrpc_invoke_ctx *ctx, *n; struct fastrpc_map *map, *m; struct fastrpc_buf *buf, *b; unsigned long flags; fastrpc_release_current_dsp_process(fl); spin_lock_irqsave(&cctx->lock, flags); list_del(&fl->user); spin_unlock_irqrestore(&cctx->lock, flags); if (fl->init_mem) fastrpc_buf_free(fl->init_mem); list_for_each_entry_safe(ctx, n, &fl->pending, node) { list_del(&ctx->node); fastrpc_context_put(ctx); } list_for_each_entry_safe(map, m, &fl->maps, node) fastrpc_map_put(map); list_for_each_entry_safe(buf, b, &fl->mmaps, node) { list_del(&buf->node); fastrpc_buf_free(buf); } fastrpc_session_free(cctx, fl->sctx); fastrpc_channel_ctx_put(cctx); mutex_destroy(&fl->mutex); kfree(fl); file->private_data = NULL; return 0; } static int fastrpc_device_open(struct inode *inode, struct file *filp) { struct fastrpc_channel_ctx *cctx; struct fastrpc_device *fdevice; struct fastrpc_user *fl = NULL; unsigned long flags; fdevice = miscdev_to_fdevice(filp->private_data); cctx = fdevice->cctx; fl = kzalloc(sizeof(*fl), GFP_KERNEL); if (!fl) return -ENOMEM; /* Released in fastrpc_device_release() */ fastrpc_channel_ctx_get(cctx); filp->private_data = fl; spin_lock_init(&fl->lock); mutex_init(&fl->mutex); INIT_LIST_HEAD(&fl->pending); INIT_LIST_HEAD(&fl->maps); INIT_LIST_HEAD(&fl->mmaps); INIT_LIST_HEAD(&fl->user); fl->tgid = current->tgid; fl->cctx = cctx; fl->is_secure_dev = fdevice->secure; fl->sctx = fastrpc_session_alloc(cctx); if (!fl->sctx) { dev_err(&cctx->rpdev->dev, "No session available\n"); mutex_destroy(&fl->mutex); kfree(fl); return -EBUSY; } spin_lock_irqsave(&cctx->lock, flags); list_add_tail(&fl->user, &cctx->users); spin_unlock_irqrestore(&cctx->lock, flags); return 0; } static int fastrpc_dmabuf_alloc(struct fastrpc_user *fl, char __user *argp) { struct fastrpc_alloc_dma_buf bp; DEFINE_DMA_BUF_EXPORT_INFO(exp_info); struct fastrpc_buf *buf = NULL; int err; if (copy_from_user(&bp, argp, sizeof(bp))) return -EFAULT; err = fastrpc_buf_alloc(fl, fl->sctx->dev, bp.size, &buf); if (err) return err; exp_info.ops = &fastrpc_dma_buf_ops; exp_info.size = bp.size; exp_info.flags = O_RDWR; exp_info.priv = buf; buf->dmabuf = dma_buf_export(&exp_info); if (IS_ERR(buf->dmabuf)) { err = PTR_ERR(buf->dmabuf); fastrpc_buf_free(buf); return err; } bp.fd = dma_buf_fd(buf->dmabuf, O_ACCMODE); if (bp.fd < 0) { dma_buf_put(buf->dmabuf); return -EINVAL; } if (copy_to_user(argp, &bp, sizeof(bp))) { /* * The usercopy failed, but we can't do much about it, as * dma_buf_fd() already called fd_install() and made the * file descriptor accessible for the current process. It * might already be closed and dmabuf no longer valid when * we reach this point. Therefore "leak" the fd and rely on * the process exit path to do any required cleanup. */ return -EFAULT; } return 0; } static int fastrpc_init_attach(struct fastrpc_user *fl, int pd) { struct fastrpc_invoke_args args[1]; int tgid = fl->tgid; u32 sc; args[0].ptr = (u64)(uintptr_t) &tgid; args[0].length = sizeof(tgid); args[0].fd = -1; sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_ATTACH, 1, 0); fl->pd = pd; return fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE, sc, &args[0]); } static int fastrpc_invoke(struct fastrpc_user *fl, char __user *argp) { struct fastrpc_invoke_args *args = NULL; struct fastrpc_invoke inv; u32 nscalars; int err; if (copy_from_user(&inv, argp, sizeof(inv))) return -EFAULT; /* nscalars is truncated here to max supported value */ nscalars = REMOTE_SCALARS_LENGTH(inv.sc); if (nscalars) { args = kcalloc(nscalars, sizeof(*args), GFP_KERNEL); if (!args) return -ENOMEM; if (copy_from_user(args, (void __user *)(uintptr_t)inv.args, nscalars * sizeof(*args))) { kfree(args); return -EFAULT; } } err = fastrpc_internal_invoke(fl, false, inv.handle, inv.sc, args); kfree(args); return err; } static int fastrpc_get_info_from_dsp(struct fastrpc_user *fl, uint32_t *dsp_attr_buf, uint32_t dsp_attr_buf_len) { struct fastrpc_invoke_args args[2] = { 0 }; /* Capability filled in userspace */ dsp_attr_buf[0] = 0; args[0].ptr = (u64)(uintptr_t)&dsp_attr_buf_len; args[0].length = sizeof(dsp_attr_buf_len); args[0].fd = -1; args[1].ptr = (u64)(uintptr_t)&dsp_attr_buf[1]; args[1].length = dsp_attr_buf_len; args[1].fd = -1; fl->pd = USER_PD; return fastrpc_internal_invoke(fl, true, FASTRPC_DSP_UTILITIES_HANDLE, FASTRPC_SCALARS(0, 1, 1), args); } static int fastrpc_get_info_from_kernel(struct fastrpc_ioctl_capability *cap, struct fastrpc_user *fl) { struct fastrpc_channel_ctx *cctx = fl->cctx; uint32_t attribute_id = cap->attribute_id; uint32_t *dsp_attributes; unsigned long flags; uint32_t domain = cap->domain; int err; spin_lock_irqsave(&cctx->lock, flags); /* check if we already have queried dsp for attributes */ if (cctx->valid_attributes) { spin_unlock_irqrestore(&cctx->lock, flags); goto done; } spin_unlock_irqrestore(&cctx->lock, flags); dsp_attributes = kzalloc(FASTRPC_MAX_DSP_ATTRIBUTES_LEN, GFP_KERNEL); if (!dsp_attributes) return -ENOMEM; err = fastrpc_get_info_from_dsp(fl, dsp_attributes, FASTRPC_MAX_DSP_ATTRIBUTES_LEN); if (err == DSP_UNSUPPORTED_API) { dev_info(&cctx->rpdev->dev, "Warning: DSP capabilities not supported on domain: %d\n", domain); kfree(dsp_attributes); return -EOPNOTSUPP; } else if (err) { dev_err(&cctx->rpdev->dev, "Error: dsp information is incorrect err: %d\n", err); kfree(dsp_attributes); return err; } spin_lock_irqsave(&cctx->lock, flags); memcpy(cctx->dsp_attributes, dsp_attributes, FASTRPC_MAX_DSP_ATTRIBUTES_LEN); cctx->valid_attributes = true; spin_unlock_irqrestore(&cctx->lock, flags); kfree(dsp_attributes); done: cap->capability = cctx->dsp_attributes[attribute_id]; return 0; } static int fastrpc_get_dsp_info(struct fastrpc_user *fl, char __user *argp) { struct fastrpc_ioctl_capability cap = {0}; int err = 0; if (copy_from_user(&cap, argp, sizeof(cap))) return -EFAULT; cap.capability = 0; if (cap.domain >= FASTRPC_DEV_MAX) { dev_err(&fl->cctx->rpdev->dev, "Error: Invalid domain id:%d, err:%d\n", cap.domain, err); return -ECHRNG; } /* Fastrpc Capablities does not support modem domain */ if (cap.domain == MDSP_DOMAIN_ID) { dev_err(&fl->cctx->rpdev->dev, "Error: modem not supported %d\n", err); return -ECHRNG; } if (cap.attribute_id >= FASTRPC_MAX_DSP_ATTRIBUTES) { dev_err(&fl->cctx->rpdev->dev, "Error: invalid attribute: %d, err: %d\n", cap.attribute_id, err); return -EOVERFLOW; } err = fastrpc_get_info_from_kernel(&cap, fl); if (err) return err; if (copy_to_user(argp, &cap.capability, sizeof(cap.capability))) return -EFAULT; return 0; } static int fastrpc_req_munmap_impl(struct fastrpc_user *fl, struct fastrpc_buf *buf) { struct fastrpc_invoke_args args[1] = { [0] = { 0 } }; struct fastrpc_munmap_req_msg req_msg; struct device *dev = fl->sctx->dev; int err; u32 sc; req_msg.pgid = fl->tgid; req_msg.size = buf->size; req_msg.vaddr = buf->raddr; args[0].ptr = (u64) (uintptr_t) &req_msg; args[0].length = sizeof(req_msg); sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_MUNMAP, 1, 0); err = fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE, sc, &args[0]); if (!err) { dev_dbg(dev, "unmmap\tpt 0x%09lx OK\n", buf->raddr); spin_lock(&fl->lock); list_del(&buf->node); spin_unlock(&fl->lock); fastrpc_buf_free(buf); } else { dev_err(dev, "unmmap\tpt 0x%09lx ERROR\n", buf->raddr); } return err; } static int fastrpc_req_munmap(struct fastrpc_user *fl, char __user *argp) { struct fastrpc_buf *buf = NULL, *iter, *b; struct fastrpc_req_munmap req; struct device *dev = fl->sctx->dev; if (copy_from_user(&req, argp, sizeof(req))) return -EFAULT; spin_lock(&fl->lock); list_for_each_entry_safe(iter, b, &fl->mmaps, node) { if ((iter->raddr == req.vaddrout) && (iter->size == req.size)) { buf = iter; break; } } spin_unlock(&fl->lock); if (!buf) { dev_err(dev, "mmap\t\tpt 0x%09llx [len 0x%08llx] not in list\n", req.vaddrout, req.size); return -EINVAL; } return fastrpc_req_munmap_impl(fl, buf); } static int fastrpc_req_mmap(struct fastrpc_user *fl, char __user *argp) { struct fastrpc_invoke_args args[3] = { [0 ... 2] = { 0 } }; struct fastrpc_buf *buf = NULL; struct fastrpc_mmap_req_msg req_msg; struct fastrpc_mmap_rsp_msg rsp_msg; struct fastrpc_phy_page pages; struct fastrpc_req_mmap req; struct device *dev = fl->sctx->dev; int err; u32 sc; if (copy_from_user(&req, argp, sizeof(req))) return -EFAULT; if (req.flags != ADSP_MMAP_ADD_PAGES && req.flags != ADSP_MMAP_REMOTE_HEAP_ADDR) { dev_err(dev, "flag not supported 0x%x\n", req.flags); return -EINVAL; } if (req.vaddrin) { dev_err(dev, "adding user allocated pages is not supported\n"); return -EINVAL; } err = fastrpc_buf_alloc(fl, fl->sctx->dev, req.size, &buf); if (err) { dev_err(dev, "failed to allocate buffer\n"); return err; } req_msg.pgid = fl->tgid; req_msg.flags = req.flags; req_msg.vaddr = req.vaddrin; req_msg.num = sizeof(pages); args[0].ptr = (u64) (uintptr_t) &req_msg; args[0].length = sizeof(req_msg); pages.addr = buf->phys; pages.size = buf->size; args[1].ptr = (u64) (uintptr_t) &pages; args[1].length = sizeof(pages); args[2].ptr = (u64) (uintptr_t) &rsp_msg; args[2].length = sizeof(rsp_msg); sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_MMAP, 2, 1); err = fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE, sc, &args[0]); if (err) { dev_err(dev, "mmap error (len 0x%08llx)\n", buf->size); goto err_invoke; } /* update the buffer to be able to deallocate the memory on the DSP */ buf->raddr = (uintptr_t) rsp_msg.vaddr; /* let the client know the address to use */ req.vaddrout = rsp_msg.vaddr; /* Add memory to static PD pool, protection thru hypervisor */ if (req.flags != ADSP_MMAP_REMOTE_HEAP_ADDR && fl->cctx->vmcount) { struct qcom_scm_vmperm perm; perm.vmid = QCOM_SCM_VMID_HLOS; perm.perm = QCOM_SCM_PERM_RWX; err = qcom_scm_assign_mem(buf->phys, buf->size, &fl->cctx->perms, &perm, 1); if (err) { dev_err(fl->sctx->dev, "Failed to assign memory phys 0x%llx size 0x%llx err %d", buf->phys, buf->size, err); goto err_assign; } } spin_lock(&fl->lock); list_add_tail(&buf->node, &fl->mmaps); spin_unlock(&fl->lock); if (copy_to_user((void __user *)argp, &req, sizeof(req))) { err = -EFAULT; goto err_assign; } dev_dbg(dev, "mmap\t\tpt 0x%09lx OK [len 0x%08llx]\n", buf->raddr, buf->size); return 0; err_assign: fastrpc_req_munmap_impl(fl, buf); err_invoke: fastrpc_buf_free(buf); return err; } static int fastrpc_req_mem_unmap_impl(struct fastrpc_user *fl, struct fastrpc_mem_unmap *req) { struct fastrpc_invoke_args args[1] = { [0] = { 0 } }; struct fastrpc_map *map = NULL, *iter, *m; struct fastrpc_mem_unmap_req_msg req_msg = { 0 }; int err = 0; u32 sc; struct device *dev = fl->sctx->dev; spin_lock(&fl->lock); list_for_each_entry_safe(iter, m, &fl->maps, node) { if ((req->fd < 0 || iter->fd == req->fd) && (iter->raddr == req->vaddr)) { map = iter; break; } } spin_unlock(&fl->lock); if (!map) { dev_err(dev, "map not in list\n"); return -EINVAL; } req_msg.pgid = fl->tgid; req_msg.len = map->len; req_msg.vaddrin = map->raddr; req_msg.fd = map->fd; args[0].ptr = (u64) (uintptr_t) &req_msg; args[0].length = sizeof(req_msg); sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_MEM_UNMAP, 1, 0); err = fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE, sc, &args[0]); fastrpc_map_put(map); if (err) dev_err(dev, "unmmap\tpt fd = %d, 0x%09llx error\n", map->fd, map->raddr); return err; } static int fastrpc_req_mem_unmap(struct fastrpc_user *fl, char __user *argp) { struct fastrpc_mem_unmap req; if (copy_from_user(&req, argp, sizeof(req))) return -EFAULT; return fastrpc_req_mem_unmap_impl(fl, &req); } static int fastrpc_req_mem_map(struct fastrpc_user *fl, char __user *argp) { struct fastrpc_invoke_args args[4] = { [0 ... 3] = { 0 } }; struct fastrpc_mem_map_req_msg req_msg = { 0 }; struct fastrpc_mmap_rsp_msg rsp_msg = { 0 }; struct fastrpc_mem_unmap req_unmap = { 0 }; struct fastrpc_phy_page pages = { 0 }; struct fastrpc_mem_map req; struct device *dev = fl->sctx->dev; struct fastrpc_map *map = NULL; int err; u32 sc; if (copy_from_user(&req, argp, sizeof(req))) return -EFAULT; /* create SMMU mapping */ err = fastrpc_map_create(fl, req.fd, req.length, 0, &map); if (err) { dev_err(dev, "failed to map buffer, fd = %d\n", req.fd); return err; } req_msg.pgid = fl->tgid; req_msg.fd = req.fd; req_msg.offset = req.offset; req_msg.vaddrin = req.vaddrin; map->va = (void *) (uintptr_t) req.vaddrin; req_msg.flags = req.flags; req_msg.num = sizeof(pages); req_msg.data_len = 0; args[0].ptr = (u64) (uintptr_t) &req_msg; args[0].length = sizeof(req_msg); pages.addr = map->phys; pages.size = map->size; args[1].ptr = (u64) (uintptr_t) &pages; args[1].length = sizeof(pages); args[2].ptr = (u64) (uintptr_t) &pages; args[2].length = 0; args[3].ptr = (u64) (uintptr_t) &rsp_msg; args[3].length = sizeof(rsp_msg); sc = FASTRPC_SCALARS(FASTRPC_RMID_INIT_MEM_MAP, 3, 1); err = fastrpc_internal_invoke(fl, true, FASTRPC_INIT_HANDLE, sc, &args[0]); if (err) { dev_err(dev, "mem mmap error, fd %d, vaddr %llx, size %lld\n", req.fd, req.vaddrin, map->size); goto err_invoke; } /* update the buffer to be able to deallocate the memory on the DSP */ map->raddr = rsp_msg.vaddr; /* let the client know the address to use */ req.vaddrout = rsp_msg.vaddr; if (copy_to_user((void __user *)argp, &req, sizeof(req))) { /* unmap the memory and release the buffer */ req_unmap.vaddr = (uintptr_t) rsp_msg.vaddr; req_unmap.length = map->size; fastrpc_req_mem_unmap_impl(fl, &req_unmap); return -EFAULT; } return 0; err_invoke: fastrpc_map_put(map); return err; } static long fastrpc_device_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct fastrpc_user *fl = (struct fastrpc_user *)file->private_data; char __user *argp = (char __user *)arg; int err; switch (cmd) { case FASTRPC_IOCTL_INVOKE: err = fastrpc_invoke(fl, argp); break; case FASTRPC_IOCTL_INIT_ATTACH: err = fastrpc_init_attach(fl, ROOT_PD); break; case FASTRPC_IOCTL_INIT_ATTACH_SNS: err = fastrpc_init_attach(fl, SENSORS_PD); break; case FASTRPC_IOCTL_INIT_CREATE_STATIC: err = fastrpc_init_create_static_process(fl, argp); break; case FASTRPC_IOCTL_INIT_CREATE: err = fastrpc_init_create_process(fl, argp); break; case FASTRPC_IOCTL_ALLOC_DMA_BUFF: err = fastrpc_dmabuf_alloc(fl, argp); break; case FASTRPC_IOCTL_MMAP: err = fastrpc_req_mmap(fl, argp); break; case FASTRPC_IOCTL_MUNMAP: err = fastrpc_req_munmap(fl, argp); break; case FASTRPC_IOCTL_MEM_MAP: err = fastrpc_req_mem_map(fl, argp); break; case FASTRPC_IOCTL_MEM_UNMAP: err = fastrpc_req_mem_unmap(fl, argp); break; case FASTRPC_IOCTL_GET_DSP_INFO: err = fastrpc_get_dsp_info(fl, argp); break; default: err = -ENOTTY; break; } return err; } static const struct file_operations fastrpc_fops = { .open = fastrpc_device_open, .release = fastrpc_device_release, .unlocked_ioctl = fastrpc_device_ioctl, .compat_ioctl = fastrpc_device_ioctl, }; static int fastrpc_cb_probe(struct platform_device *pdev) { struct fastrpc_channel_ctx *cctx; struct fastrpc_session_ctx *sess; struct device *dev = &pdev->dev; int i, sessions = 0; unsigned long flags; int rc; cctx = dev_get_drvdata(dev->parent); if (!cctx) return -EINVAL; of_property_read_u32(dev->of_node, "qcom,nsessions", &sessions); spin_lock_irqsave(&cctx->lock, flags); if (cctx->sesscount >= FASTRPC_MAX_SESSIONS) { dev_err(&pdev->dev, "too many sessions\n"); spin_unlock_irqrestore(&cctx->lock, flags); return -ENOSPC; } sess = &cctx->session[cctx->sesscount++]; sess->used = false; sess->valid = true; sess->dev = dev; dev_set_drvdata(dev, sess); if (of_property_read_u32(dev->of_node, "reg", &sess->sid)) dev_info(dev, "FastRPC Session ID not specified in DT\n"); if (sessions > 0) { struct fastrpc_session_ctx *dup_sess; for (i = 1; i < sessions; i++) { if (cctx->sesscount >= FASTRPC_MAX_SESSIONS) break; dup_sess = &cctx->session[cctx->sesscount++]; memcpy(dup_sess, sess, sizeof(*dup_sess)); } } spin_unlock_irqrestore(&cctx->lock, flags); rc = dma_set_mask(dev, DMA_BIT_MASK(32)); if (rc) { dev_err(dev, "32-bit DMA enable failed\n"); return rc; } return 0; } static int fastrpc_cb_remove(struct platform_device *pdev) { struct fastrpc_channel_ctx *cctx = dev_get_drvdata(pdev->dev.parent); struct fastrpc_session_ctx *sess = dev_get_drvdata(&pdev->dev); unsigned long flags; int i; spin_lock_irqsave(&cctx->lock, flags); for (i = 1; i < FASTRPC_MAX_SESSIONS; i++) { if (cctx->session[i].sid == sess->sid) { cctx->session[i].valid = false; cctx->sesscount--; } } spin_unlock_irqrestore(&cctx->lock, flags); return 0; } static const struct of_device_id fastrpc_match_table[] = { { .compatible = "qcom,fastrpc-compute-cb", }, {} }; static struct platform_driver fastrpc_cb_driver = { .probe = fastrpc_cb_probe, .remove = fastrpc_cb_remove, .driver = { .name = "qcom,fastrpc-cb", .of_match_table = fastrpc_match_table, .suppress_bind_attrs = true, }, }; static int fastrpc_device_register(struct device *dev, struct fastrpc_channel_ctx *cctx, bool is_secured, const char *domain) { struct fastrpc_device *fdev; int err; fdev = devm_kzalloc(dev, sizeof(*fdev), GFP_KERNEL); if (!fdev) return -ENOMEM; fdev->secure = is_secured; fdev->cctx = cctx; fdev->miscdev.minor = MISC_DYNAMIC_MINOR; fdev->miscdev.fops = &fastrpc_fops; fdev->miscdev.name = devm_kasprintf(dev, GFP_KERNEL, "fastrpc-%s%s", domain, is_secured ? "-secure" : ""); err = misc_register(&fdev->miscdev); if (!err) { if (is_secured) cctx->secure_fdevice = fdev; else cctx->fdevice = fdev; } return err; } static int fastrpc_rpmsg_probe(struct rpmsg_device *rpdev) { struct device *rdev = &rpdev->dev; struct fastrpc_channel_ctx *data; int i, err, domain_id = -1, vmcount; const char *domain; bool secure_dsp; unsigned int vmids[FASTRPC_MAX_VMIDS]; err = of_property_read_string(rdev->of_node, "label", &domain); if (err) { dev_info(rdev, "FastRPC Domain not specified in DT\n"); return err; } for (i = 0; i <= CDSP_DOMAIN_ID; i++) { if (!strcmp(domains[i], domain)) { domain_id = i; break; } } if (domain_id < 0) { dev_info(rdev, "FastRPC Invalid Domain ID %d\n", domain_id); return -EINVAL; } if (of_reserved_mem_device_init_by_idx(rdev, rdev->of_node, 0)) dev_info(rdev, "no reserved DMA memory for FASTRPC\n"); vmcount = of_property_read_variable_u32_array(rdev->of_node, "qcom,vmids", &vmids[0], 0, FASTRPC_MAX_VMIDS); if (vmcount < 0) vmcount = 0; else if (!qcom_scm_is_available()) return -EPROBE_DEFER; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; if (vmcount) { data->vmcount = vmcount; data->perms = BIT(QCOM_SCM_VMID_HLOS); for (i = 0; i < data->vmcount; i++) { data->vmperms[i].vmid = vmids[i]; data->vmperms[i].perm = QCOM_SCM_PERM_RWX; } } secure_dsp = !(of_property_read_bool(rdev->of_node, "qcom,non-secure-domain")); data->secure = secure_dsp; switch (domain_id) { case ADSP_DOMAIN_ID: case MDSP_DOMAIN_ID: case SDSP_DOMAIN_ID: /* Unsigned PD offloading is only supported on CDSP*/ data->unsigned_support = false; err = fastrpc_device_register(rdev, data, secure_dsp, domains[domain_id]); if (err) goto fdev_error; break; case CDSP_DOMAIN_ID: data->unsigned_support = true; /* Create both device nodes so that we can allow both Signed and Unsigned PD */ err = fastrpc_device_register(rdev, data, true, domains[domain_id]); if (err) goto fdev_error; err = fastrpc_device_register(rdev, data, false, domains[domain_id]); if (err) goto fdev_error; break; default: err = -EINVAL; goto fdev_error; } kref_init(&data->refcount); dev_set_drvdata(&rpdev->dev, data); rdev->dma_mask = &data->dma_mask; dma_set_mask_and_coherent(rdev, DMA_BIT_MASK(32)); INIT_LIST_HEAD(&data->users); INIT_LIST_HEAD(&data->invoke_interrupted_mmaps); spin_lock_init(&data->lock); idr_init(&data->ctx_idr); data->domain_id = domain_id; data->rpdev = rpdev; err = of_platform_populate(rdev->of_node, NULL, NULL, rdev); if (err) goto populate_error; return 0; populate_error: if (data->fdevice) misc_deregister(&data->fdevice->miscdev); if (data->secure_fdevice) misc_deregister(&data->secure_fdevice->miscdev); fdev_error: kfree(data); return err; } static void fastrpc_notify_users(struct fastrpc_user *user) { struct fastrpc_invoke_ctx *ctx; spin_lock(&user->lock); list_for_each_entry(ctx, &user->pending, node) complete(&ctx->work); spin_unlock(&user->lock); } static void fastrpc_rpmsg_remove(struct rpmsg_device *rpdev) { struct fastrpc_channel_ctx *cctx = dev_get_drvdata(&rpdev->dev); struct fastrpc_buf *buf, *b; struct fastrpc_user *user; unsigned long flags; spin_lock_irqsave(&cctx->lock, flags); list_for_each_entry(user, &cctx->users, user) fastrpc_notify_users(user); spin_unlock_irqrestore(&cctx->lock, flags); if (cctx->fdevice) misc_deregister(&cctx->fdevice->miscdev); if (cctx->secure_fdevice) misc_deregister(&cctx->secure_fdevice->miscdev); list_for_each_entry_safe(buf, b, &cctx->invoke_interrupted_mmaps, node) list_del(&buf->node); if (cctx->remote_heap) fastrpc_buf_free(cctx->remote_heap); of_platform_depopulate(&rpdev->dev); cctx->rpdev = NULL; fastrpc_channel_ctx_put(cctx); } static int fastrpc_rpmsg_callback(struct rpmsg_device *rpdev, void *data, int len, void *priv, u32 addr) { struct fastrpc_channel_ctx *cctx = dev_get_drvdata(&rpdev->dev); struct fastrpc_invoke_rsp *rsp = data; struct fastrpc_invoke_ctx *ctx; unsigned long flags; unsigned long ctxid; if (len < sizeof(*rsp)) return -EINVAL; ctxid = ((rsp->ctx & FASTRPC_CTXID_MASK) >> 4); spin_lock_irqsave(&cctx->lock, flags); ctx = idr_find(&cctx->ctx_idr, ctxid); spin_unlock_irqrestore(&cctx->lock, flags); if (!ctx) { dev_err(&rpdev->dev, "No context ID matches response\n"); return -ENOENT; } ctx->retval = rsp->retval; complete(&ctx->work); /* * The DMA buffer associated with the context cannot be freed in * interrupt context so schedule it through a worker thread to * avoid a kernel BUG. */ schedule_work(&ctx->put_work); return 0; } static const struct of_device_id fastrpc_rpmsg_of_match[] = { { .compatible = "qcom,fastrpc" }, { }, }; MODULE_DEVICE_TABLE(of, fastrpc_rpmsg_of_match); static struct rpmsg_driver fastrpc_driver = { .probe = fastrpc_rpmsg_probe, .remove = fastrpc_rpmsg_remove, .callback = fastrpc_rpmsg_callback, .drv = { .name = "qcom,fastrpc", .of_match_table = fastrpc_rpmsg_of_match, }, }; static int fastrpc_init(void) { int ret; ret = platform_driver_register(&fastrpc_cb_driver); if (ret < 0) { pr_err("fastrpc: failed to register cb driver\n"); return ret; } ret = register_rpmsg_driver(&fastrpc_driver); if (ret < 0) { pr_err("fastrpc: failed to register rpmsg driver\n"); platform_driver_unregister(&fastrpc_cb_driver); return ret; } return 0; } module_init(fastrpc_init); static void fastrpc_exit(void) { platform_driver_unregister(&fastrpc_cb_driver); unregister_rpmsg_driver(&fastrpc_driver); } module_exit(fastrpc_exit); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(DMA_BUF);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1