Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jorge Ramirez-Ortiz | 1982 | 68.49% | 1 | 4.76% |
RogerCC Lin | 390 | 13.48% | 3 | 14.29% |
Xiaolei Li | 383 | 13.23% | 6 | 28.57% |
Xiangsheng Hou | 43 | 1.49% | 1 | 4.76% |
Chuanhong Guo | 41 | 1.42% | 3 | 14.29% |
Arnd Bergmann | 30 | 1.04% | 1 | 4.76% |
Wen Yang | 13 | 0.45% | 1 | 4.76% |
Ryder Lee | 4 | 0.14% | 1 | 4.76% |
caihuoqing | 3 | 0.10% | 1 | 4.76% |
Dan Carpenter | 3 | 0.10% | 1 | 4.76% |
Gustavo A. R. Silva | 1 | 0.03% | 1 | 4.76% |
Thomas Gleixner | 1 | 0.03% | 1 | 4.76% |
Total | 2894 | 21 |
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * MTK ECC controller driver. * Copyright (C) 2016 MediaTek Inc. * Authors: Xiaolei Li <xiaolei.li@mediatek.com> * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org> */ #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/clk.h> #include <linux/module.h> #include <linux/iopoll.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/mutex.h> #include <linux/mtd/nand-ecc-mtk.h> #define ECC_IDLE_MASK BIT(0) #define ECC_IRQ_EN BIT(0) #define ECC_PG_IRQ_SEL BIT(1) #define ECC_OP_ENABLE (1) #define ECC_OP_DISABLE (0) #define ECC_ENCCON (0x00) #define ECC_ENCCNFG (0x04) #define ECC_MS_SHIFT (16) #define ECC_ENCDIADDR (0x08) #define ECC_ENCIDLE (0x0C) #define ECC_DECCON (0x100) #define ECC_DECCNFG (0x104) #define DEC_EMPTY_EN BIT(31) #define DEC_CNFG_CORRECT (0x3 << 12) #define ECC_DECIDLE (0x10C) #define ECC_DECENUM0 (0x114) #define ECC_TIMEOUT (500000) #define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE) #define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON) #define ECC_ERRMASK_MT7622 GENMASK(4, 0) #define ECC_ERRMASK_MT2701 GENMASK(5, 0) #define ECC_ERRMASK_MT2712 GENMASK(6, 0) struct mtk_ecc_caps { u32 err_mask; u32 err_shift; const u8 *ecc_strength; const u32 *ecc_regs; u8 num_ecc_strength; u8 ecc_mode_shift; u32 parity_bits; int pg_irq_sel; }; struct mtk_ecc { struct device *dev; const struct mtk_ecc_caps *caps; void __iomem *regs; struct clk *clk; struct completion done; struct mutex lock; u32 sectors; u8 *eccdata; }; /* ecc strength that each IP supports */ static const u8 ecc_strength_mt2701[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60 }; static const u8 ecc_strength_mt2712[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 68, 72, 80 }; static const u8 ecc_strength_mt7622[] = { 4, 6, 8, 10, 12 }; static const u8 ecc_strength_mt7986[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 }; enum mtk_ecc_regs { ECC_ENCPAR00, ECC_ENCIRQ_EN, ECC_ENCIRQ_STA, ECC_DECDONE, ECC_DECIRQ_EN, ECC_DECIRQ_STA, }; static int mt2701_ecc_regs[] = { [ECC_ENCPAR00] = 0x10, [ECC_ENCIRQ_EN] = 0x80, [ECC_ENCIRQ_STA] = 0x84, [ECC_DECDONE] = 0x124, [ECC_DECIRQ_EN] = 0x200, [ECC_DECIRQ_STA] = 0x204, }; static int mt2712_ecc_regs[] = { [ECC_ENCPAR00] = 0x300, [ECC_ENCIRQ_EN] = 0x80, [ECC_ENCIRQ_STA] = 0x84, [ECC_DECDONE] = 0x124, [ECC_DECIRQ_EN] = 0x200, [ECC_DECIRQ_STA] = 0x204, }; static int mt7622_ecc_regs[] = { [ECC_ENCPAR00] = 0x10, [ECC_ENCIRQ_EN] = 0x30, [ECC_ENCIRQ_STA] = 0x34, [ECC_DECDONE] = 0x11c, [ECC_DECIRQ_EN] = 0x140, [ECC_DECIRQ_STA] = 0x144, }; static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc, enum mtk_ecc_operation op) { struct device *dev = ecc->dev; u32 val; int ret; ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val, val & ECC_IDLE_MASK, 10, ECC_TIMEOUT); if (ret) dev_warn(dev, "%s NOT idle\n", op == ECC_ENCODE ? "encoder" : "decoder"); } static irqreturn_t mtk_ecc_irq(int irq, void *id) { struct mtk_ecc *ecc = id; u32 dec, enc; dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]) & ECC_IRQ_EN; if (dec) { dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]); if (dec & ecc->sectors) { /* * Clear decode IRQ status once again to ensure that * there will be no extra IRQ. */ readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]); ecc->sectors = 0; complete(&ecc->done); } else { return IRQ_HANDLED; } } else { enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA]) & ECC_IRQ_EN; if (enc) complete(&ecc->done); else return IRQ_NONE; } return IRQ_HANDLED; } static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config) { u32 ecc_bit, dec_sz, enc_sz; u32 reg, i; for (i = 0; i < ecc->caps->num_ecc_strength; i++) { if (ecc->caps->ecc_strength[i] == config->strength) break; } if (i == ecc->caps->num_ecc_strength) { dev_err(ecc->dev, "invalid ecc strength %d\n", config->strength); return -EINVAL; } ecc_bit = i; if (config->op == ECC_ENCODE) { /* configure ECC encoder (in bits) */ enc_sz = config->len << 3; reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift); reg |= (enc_sz << ECC_MS_SHIFT); writel(reg, ecc->regs + ECC_ENCCNFG); if (config->mode != ECC_NFI_MODE) writel(lower_32_bits(config->addr), ecc->regs + ECC_ENCDIADDR); } else { /* configure ECC decoder (in bits) */ dec_sz = (config->len << 3) + config->strength * ecc->caps->parity_bits; reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift); reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT; reg |= DEC_EMPTY_EN; writel(reg, ecc->regs + ECC_DECCNFG); if (config->sectors) ecc->sectors = 1 << (config->sectors - 1); } return 0; } void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats, int sectors) { u32 offset, i, err; u32 bitflips = 0; stats->corrected = 0; stats->failed = 0; for (i = 0; i < sectors; i++) { offset = (i >> 2) << 2; err = readl(ecc->regs + ECC_DECENUM0 + offset); err = err >> ((i % 4) * ecc->caps->err_shift); err &= ecc->caps->err_mask; if (err == ecc->caps->err_mask) { /* uncorrectable errors */ stats->failed++; continue; } stats->corrected += err; bitflips = max_t(u32, bitflips, err); } stats->bitflips = bitflips; } EXPORT_SYMBOL(mtk_ecc_get_stats); void mtk_ecc_release(struct mtk_ecc *ecc) { clk_disable_unprepare(ecc->clk); put_device(ecc->dev); } EXPORT_SYMBOL(mtk_ecc_release); static void mtk_ecc_hw_init(struct mtk_ecc *ecc) { mtk_ecc_wait_idle(ecc, ECC_ENCODE); writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON); mtk_ecc_wait_idle(ecc, ECC_DECODE); writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON); } static struct mtk_ecc *mtk_ecc_get(struct device_node *np) { struct platform_device *pdev; struct mtk_ecc *ecc; pdev = of_find_device_by_node(np); if (!pdev) return ERR_PTR(-EPROBE_DEFER); ecc = platform_get_drvdata(pdev); if (!ecc) { put_device(&pdev->dev); return ERR_PTR(-EPROBE_DEFER); } clk_prepare_enable(ecc->clk); mtk_ecc_hw_init(ecc); return ecc; } struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node) { struct mtk_ecc *ecc = NULL; struct device_node *np; np = of_parse_phandle(of_node, "nand-ecc-engine", 0); /* for backward compatibility */ if (!np) np = of_parse_phandle(of_node, "ecc-engine", 0); if (np) { ecc = mtk_ecc_get(np); of_node_put(np); } return ecc; } EXPORT_SYMBOL(of_mtk_ecc_get); int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config) { enum mtk_ecc_operation op = config->op; u16 reg_val; int ret; ret = mutex_lock_interruptible(&ecc->lock); if (ret) { dev_err(ecc->dev, "interrupted when attempting to lock\n"); return ret; } mtk_ecc_wait_idle(ecc, op); ret = mtk_ecc_config(ecc, config); if (ret) { mutex_unlock(&ecc->lock); return ret; } if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) { init_completion(&ecc->done); reg_val = ECC_IRQ_EN; /* * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it * means this chip can only generate one ecc irq during page * read / write. If is 0, generate one ecc irq each ecc step. */ if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE) reg_val |= ECC_PG_IRQ_SEL; if (op == ECC_ENCODE) writew(reg_val, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]); else writew(reg_val, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]); } writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op)); return 0; } EXPORT_SYMBOL(mtk_ecc_enable); void mtk_ecc_disable(struct mtk_ecc *ecc) { enum mtk_ecc_operation op = ECC_ENCODE; /* find out the running operation */ if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE) op = ECC_DECODE; /* disable it */ mtk_ecc_wait_idle(ecc, op); if (op == ECC_DECODE) { /* * Clear decode IRQ status in case there is a timeout to wait * decode IRQ. */ readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]); writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]); } else { writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]); } writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op)); mutex_unlock(&ecc->lock); } EXPORT_SYMBOL(mtk_ecc_disable); int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op) { int ret; ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500)); if (!ret) { dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n", (op == ECC_ENCODE) ? "encoder" : "decoder"); return -ETIMEDOUT; } return 0; } EXPORT_SYMBOL(mtk_ecc_wait_done); int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config, u8 *data, u32 bytes) { dma_addr_t addr; u32 len; int ret; addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE); ret = dma_mapping_error(ecc->dev, addr); if (ret) { dev_err(ecc->dev, "dma mapping error\n"); return -EINVAL; } config->op = ECC_ENCODE; config->addr = addr; ret = mtk_ecc_enable(ecc, config); if (ret) { dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE); return ret; } ret = mtk_ecc_wait_done(ecc, ECC_ENCODE); if (ret) goto timeout; mtk_ecc_wait_idle(ecc, ECC_ENCODE); /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */ len = (config->strength * ecc->caps->parity_bits + 7) >> 3; /* write the parity bytes generated by the ECC back to temp buffer */ __ioread32_copy(ecc->eccdata, ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00], round_up(len, 4)); /* copy into possibly unaligned OOB region with actual length */ memcpy(data + bytes, ecc->eccdata, len); timeout: dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE); mtk_ecc_disable(ecc); return ret; } EXPORT_SYMBOL(mtk_ecc_encode); void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p) { const u8 *ecc_strength = ecc->caps->ecc_strength; int i; for (i = 0; i < ecc->caps->num_ecc_strength; i++) { if (*p <= ecc_strength[i]) { if (!i) *p = ecc_strength[i]; else if (*p != ecc_strength[i]) *p = ecc_strength[i - 1]; return; } } *p = ecc_strength[ecc->caps->num_ecc_strength - 1]; } EXPORT_SYMBOL(mtk_ecc_adjust_strength); unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc) { return ecc->caps->parity_bits; } EXPORT_SYMBOL(mtk_ecc_get_parity_bits); static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = { .err_mask = ECC_ERRMASK_MT2701, .err_shift = 8, .ecc_strength = ecc_strength_mt2701, .ecc_regs = mt2701_ecc_regs, .num_ecc_strength = 20, .ecc_mode_shift = 5, .parity_bits = 14, .pg_irq_sel = 0, }; static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = { .err_mask = ECC_ERRMASK_MT2712, .err_shift = 8, .ecc_strength = ecc_strength_mt2712, .ecc_regs = mt2712_ecc_regs, .num_ecc_strength = 23, .ecc_mode_shift = 5, .parity_bits = 14, .pg_irq_sel = 1, }; static const struct mtk_ecc_caps mtk_ecc_caps_mt7622 = { .err_mask = ECC_ERRMASK_MT7622, .err_shift = 5, .ecc_strength = ecc_strength_mt7622, .ecc_regs = mt7622_ecc_regs, .num_ecc_strength = 5, .ecc_mode_shift = 4, .parity_bits = 13, .pg_irq_sel = 0, }; static const struct mtk_ecc_caps mtk_ecc_caps_mt7986 = { .err_mask = ECC_ERRMASK_MT7622, .err_shift = 8, .ecc_strength = ecc_strength_mt7986, .ecc_regs = mt2712_ecc_regs, .num_ecc_strength = 11, .ecc_mode_shift = 5, .parity_bits = 14, .pg_irq_sel = 1, }; static const struct of_device_id mtk_ecc_dt_match[] = { { .compatible = "mediatek,mt2701-ecc", .data = &mtk_ecc_caps_mt2701, }, { .compatible = "mediatek,mt2712-ecc", .data = &mtk_ecc_caps_mt2712, }, { .compatible = "mediatek,mt7622-ecc", .data = &mtk_ecc_caps_mt7622, }, { .compatible = "mediatek,mt7986-ecc", .data = &mtk_ecc_caps_mt7986, }, {}, }; static int mtk_ecc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mtk_ecc *ecc; u32 max_eccdata_size; int irq, ret; ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); if (!ecc) return -ENOMEM; ecc->caps = of_device_get_match_data(dev); max_eccdata_size = ecc->caps->num_ecc_strength - 1; max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size]; max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3; max_eccdata_size = round_up(max_eccdata_size, 4); ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL); if (!ecc->eccdata) return -ENOMEM; ecc->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ecc->regs)) return PTR_ERR(ecc->regs); ecc->clk = devm_clk_get(dev, NULL); if (IS_ERR(ecc->clk)) { dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk)); return PTR_ERR(ecc->clk); } irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = dma_set_mask(dev, DMA_BIT_MASK(32)); if (ret) { dev_err(dev, "failed to set DMA mask\n"); return ret; } ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc); if (ret) { dev_err(dev, "failed to request irq\n"); return -EINVAL; } ecc->dev = dev; mutex_init(&ecc->lock); platform_set_drvdata(pdev, ecc); dev_info(dev, "probed\n"); return 0; } #ifdef CONFIG_PM_SLEEP static int mtk_ecc_suspend(struct device *dev) { struct mtk_ecc *ecc = dev_get_drvdata(dev); clk_disable_unprepare(ecc->clk); return 0; } static int mtk_ecc_resume(struct device *dev) { struct mtk_ecc *ecc = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(ecc->clk); if (ret) { dev_err(dev, "failed to enable clk\n"); return ret; } return 0; } static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume); #endif MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match); static struct platform_driver mtk_ecc_driver = { .probe = mtk_ecc_probe, .driver = { .name = "mtk-ecc", .of_match_table = mtk_ecc_dt_match, #ifdef CONFIG_PM_SLEEP .pm = &mtk_ecc_pm_ops, #endif }, }; module_platform_driver(mtk_ecc_driver); MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>"); MODULE_DESCRIPTION("MTK Nand ECC Driver"); MODULE_LICENSE("Dual MIT/GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1