Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jorge Ramirez-Ortiz | 6935 | 80.28% | 1 | 2.08% |
Xiaolei Li | 841 | 9.74% | 10 | 20.83% |
Boris Brezillon | 426 | 4.93% | 15 | 31.25% |
Miquel Raynal | 265 | 3.07% | 9 | 18.75% |
RogerCC Lin | 139 | 1.61% | 3 | 6.25% |
Ryder Lee | 9 | 0.10% | 1 | 2.08% |
Thomas Petazzoni | 6 | 0.07% | 1 | 2.08% |
Hauke Mehrtens | 5 | 0.06% | 1 | 2.08% |
Marc Gonzalez | 4 | 0.05% | 1 | 2.08% |
caihuoqing | 3 | 0.03% | 1 | 2.08% |
Thomas Gleixner | 1 | 0.01% | 1 | 2.08% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 2.08% |
Masahiro Yamada | 1 | 0.01% | 1 | 2.08% |
Chuanhong Guo | 1 | 0.01% | 1 | 2.08% |
Rafał Miłecki | 1 | 0.01% | 1 | 2.08% |
Total | 8638 | 48 |
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * MTK NAND Flash controller driver. * Copyright (C) 2016 MediaTek Inc. * Authors: Xiaolei Li <xiaolei.li@mediatek.com> * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org> */ #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/clk.h> #include <linux/mtd/rawnand.h> #include <linux/mtd/mtd.h> #include <linux/module.h> #include <linux/iopoll.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/mtd/nand-ecc-mtk.h> /* NAND controller register definition */ #define NFI_CNFG (0x00) #define CNFG_AHB BIT(0) #define CNFG_READ_EN BIT(1) #define CNFG_DMA_BURST_EN BIT(2) #define CNFG_BYTE_RW BIT(6) #define CNFG_HW_ECC_EN BIT(8) #define CNFG_AUTO_FMT_EN BIT(9) #define CNFG_OP_CUST (6 << 12) #define NFI_PAGEFMT (0x04) #define PAGEFMT_FDM_ECC_SHIFT (12) #define PAGEFMT_FDM_SHIFT (8) #define PAGEFMT_SEC_SEL_512 BIT(2) #define PAGEFMT_512_2K (0) #define PAGEFMT_2K_4K (1) #define PAGEFMT_4K_8K (2) #define PAGEFMT_8K_16K (3) /* NFI control */ #define NFI_CON (0x08) #define CON_FIFO_FLUSH BIT(0) #define CON_NFI_RST BIT(1) #define CON_BRD BIT(8) /* burst read */ #define CON_BWR BIT(9) /* burst write */ #define CON_SEC_SHIFT (12) /* Timming control register */ #define NFI_ACCCON (0x0C) #define NFI_INTR_EN (0x10) #define INTR_AHB_DONE_EN BIT(6) #define NFI_INTR_STA (0x14) #define NFI_CMD (0x20) #define NFI_ADDRNOB (0x30) #define NFI_COLADDR (0x34) #define NFI_ROWADDR (0x38) #define NFI_STRDATA (0x40) #define STAR_EN (1) #define STAR_DE (0) #define NFI_CNRNB (0x44) #define NFI_DATAW (0x50) #define NFI_DATAR (0x54) #define NFI_PIO_DIRDY (0x58) #define PIO_DI_RDY (0x01) #define NFI_STA (0x60) #define STA_CMD BIT(0) #define STA_ADDR BIT(1) #define STA_BUSY BIT(8) #define STA_EMP_PAGE BIT(12) #define NFI_FSM_CUSTDATA (0xe << 16) #define NFI_FSM_MASK (0xf << 16) #define NFI_ADDRCNTR (0x70) #define CNTR_MASK GENMASK(16, 12) #define ADDRCNTR_SEC_SHIFT (12) #define ADDRCNTR_SEC(val) \ (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT) #define NFI_STRADDR (0x80) #define NFI_BYTELEN (0x84) #define NFI_CSEL (0x90) #define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2) #define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2) #define NFI_FDM_MAX_SIZE (8) #define NFI_FDM_MIN_SIZE (1) #define NFI_DEBUG_CON1 (0x220) #define STROBE_MASK GENMASK(4, 3) #define STROBE_SHIFT (3) #define MAX_STROBE_DLY (3) #define NFI_MASTER_STA (0x224) #define MASTER_STA_MASK (0x0FFF) #define NFI_EMPTY_THRESH (0x23C) #define MTK_NAME "mtk-nand" #define KB(x) ((x) * 1024UL) #define MB(x) (KB(x) * 1024UL) #define MTK_TIMEOUT (500000) #define MTK_RESET_TIMEOUT (1000000) #define MTK_NAND_MAX_NSELS (2) #define MTK_NFC_MIN_SPARE (16) #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \ ((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \ (tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt)) struct mtk_nfc_caps { const u8 *spare_size; u8 num_spare_size; u8 pageformat_spare_shift; u8 nfi_clk_div; u8 max_sector; u32 max_sector_size; }; struct mtk_nfc_bad_mark_ctl { void (*bm_swap)(struct mtd_info *, u8 *buf, int raw); u32 sec; u32 pos; }; /* * FDM: region used to store free OOB data */ struct mtk_nfc_fdm { u32 reg_size; u32 ecc_size; }; struct mtk_nfc_nand_chip { struct list_head node; struct nand_chip nand; struct mtk_nfc_bad_mark_ctl bad_mark; struct mtk_nfc_fdm fdm; u32 spare_per_sector; int nsels; u8 sels[]; /* nothing after this field */ }; struct mtk_nfc_clk { struct clk *nfi_clk; struct clk *pad_clk; }; struct mtk_nfc { struct nand_controller controller; struct mtk_ecc_config ecc_cfg; struct mtk_nfc_clk clk; struct mtk_ecc *ecc; struct device *dev; const struct mtk_nfc_caps *caps; void __iomem *regs; struct completion done; struct list_head chips; u8 *buffer; unsigned long assigned_cs; }; /* * supported spare size of each IP. * order should be the same with the spare size bitfiled defination of * register NFI_PAGEFMT. */ static const u8 spare_size_mt2701[] = { 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 63, 64 }; static const u8 spare_size_mt2712[] = { 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67, 74 }; static const u8 spare_size_mt7622[] = { 16, 26, 27, 28 }; static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand) { return container_of(nand, struct mtk_nfc_nand_chip, nand); } static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i) { return (u8 *)p + i * chip->ecc.size; } static inline u8 *oob_ptr(struct nand_chip *chip, int i) { struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); u8 *poi; /* map the sector's FDM data to free oob: * the beginning of the oob area stores the FDM data of bad mark sectors */ if (i < mtk_nand->bad_mark.sec) poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size; else if (i == mtk_nand->bad_mark.sec) poi = chip->oob_poi; else poi = chip->oob_poi + i * mtk_nand->fdm.reg_size; return poi; } static inline int mtk_data_len(struct nand_chip *chip) { struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); return chip->ecc.size + mtk_nand->spare_per_sector; } static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i) { struct mtk_nfc *nfc = nand_get_controller_data(chip); return nfc->buffer + i * mtk_data_len(chip); } static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i) { struct mtk_nfc *nfc = nand_get_controller_data(chip); return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size; } static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg) { writel(val, nfc->regs + reg); } static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg) { writew(val, nfc->regs + reg); } static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg) { writeb(val, nfc->regs + reg); } static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg) { return readl_relaxed(nfc->regs + reg); } static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg) { return readw_relaxed(nfc->regs + reg); } static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg) { return readb_relaxed(nfc->regs + reg); } static void mtk_nfc_hw_reset(struct mtk_nfc *nfc) { struct device *dev = nfc->dev; u32 val; int ret; /* reset all registers and force the NFI master to terminate */ nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON); /* wait for the master to finish the last transaction */ ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val, !(val & MASTER_STA_MASK), 50, MTK_RESET_TIMEOUT); if (ret) dev_warn(dev, "master active in reset [0x%x] = 0x%x\n", NFI_MASTER_STA, val); /* ensure any status register affected by the NFI master is reset */ nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON); nfi_writew(nfc, STAR_DE, NFI_STRDATA); } static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command) { struct device *dev = nfc->dev; u32 val; int ret; nfi_writel(nfc, command, NFI_CMD); ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val, !(val & STA_CMD), 10, MTK_TIMEOUT); if (ret) { dev_warn(dev, "nfi core timed out entering command mode\n"); return -EIO; } return 0; } static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr) { struct device *dev = nfc->dev; u32 val; int ret; nfi_writel(nfc, addr, NFI_COLADDR); nfi_writel(nfc, 0, NFI_ROWADDR); nfi_writew(nfc, 1, NFI_ADDRNOB); ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val, !(val & STA_ADDR), 10, MTK_TIMEOUT); if (ret) { dev_warn(dev, "nfi core timed out entering address mode\n"); return -EIO; } return 0; } static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); struct mtk_nfc *nfc = nand_get_controller_data(chip); u32 fmt, spare, i; if (!mtd->writesize) return 0; spare = mtk_nand->spare_per_sector; switch (mtd->writesize) { case 512: fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512; break; case KB(2): if (chip->ecc.size == 512) fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512; else fmt = PAGEFMT_512_2K; break; case KB(4): if (chip->ecc.size == 512) fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512; else fmt = PAGEFMT_2K_4K; break; case KB(8): if (chip->ecc.size == 512) fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512; else fmt = PAGEFMT_4K_8K; break; case KB(16): fmt = PAGEFMT_8K_16K; break; default: dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize); return -EINVAL; } /* * the hardware will double the value for this eccsize, so we need to * halve it */ if (chip->ecc.size == 1024) spare >>= 1; for (i = 0; i < nfc->caps->num_spare_size; i++) { if (nfc->caps->spare_size[i] == spare) break; } if (i == nfc->caps->num_spare_size) { dev_err(nfc->dev, "invalid spare size %d\n", spare); return -EINVAL; } fmt |= i << nfc->caps->pageformat_spare_shift; fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT; fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT; nfi_writel(nfc, fmt, NFI_PAGEFMT); nfc->ecc_cfg.strength = chip->ecc.strength; nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size; return 0; } static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc) { int rc; u8 val; rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val, val & PIO_DI_RDY, 10, MTK_TIMEOUT); if (rc < 0) dev_err(nfc->dev, "data not ready\n"); } static inline u8 mtk_nfc_read_byte(struct nand_chip *chip) { struct mtk_nfc *nfc = nand_get_controller_data(chip); u32 reg; /* after each byte read, the NFI_STA reg is reset by the hardware */ reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK; if (reg != NFI_FSM_CUSTDATA) { reg = nfi_readw(nfc, NFI_CNFG); reg |= CNFG_BYTE_RW | CNFG_READ_EN; nfi_writew(nfc, reg, NFI_CNFG); /* * set to max sector to allow the HW to continue reading over * unaligned accesses */ reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD; nfi_writel(nfc, reg, NFI_CON); /* trigger to fetch data */ nfi_writew(nfc, STAR_EN, NFI_STRDATA); } mtk_nfc_wait_ioready(nfc); return nfi_readb(nfc, NFI_DATAR); } static void mtk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len) { int i; for (i = 0; i < len; i++) buf[i] = mtk_nfc_read_byte(chip); } static void mtk_nfc_write_byte(struct nand_chip *chip, u8 byte) { struct mtk_nfc *nfc = nand_get_controller_data(chip); u32 reg; reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK; if (reg != NFI_FSM_CUSTDATA) { reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW; nfi_writew(nfc, reg, NFI_CNFG); reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR; nfi_writel(nfc, reg, NFI_CON); nfi_writew(nfc, STAR_EN, NFI_STRDATA); } mtk_nfc_wait_ioready(nfc); nfi_writeb(nfc, byte, NFI_DATAW); } static void mtk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len) { int i; for (i = 0; i < len; i++) mtk_nfc_write_byte(chip, buf[i]); } static int mtk_nfc_exec_instr(struct nand_chip *chip, const struct nand_op_instr *instr) { struct mtk_nfc *nfc = nand_get_controller_data(chip); unsigned int i; u32 status; switch (instr->type) { case NAND_OP_CMD_INSTR: mtk_nfc_send_command(nfc, instr->ctx.cmd.opcode); return 0; case NAND_OP_ADDR_INSTR: for (i = 0; i < instr->ctx.addr.naddrs; i++) mtk_nfc_send_address(nfc, instr->ctx.addr.addrs[i]); return 0; case NAND_OP_DATA_IN_INSTR: mtk_nfc_read_buf(chip, instr->ctx.data.buf.in, instr->ctx.data.len); return 0; case NAND_OP_DATA_OUT_INSTR: mtk_nfc_write_buf(chip, instr->ctx.data.buf.out, instr->ctx.data.len); return 0; case NAND_OP_WAITRDY_INSTR: return readl_poll_timeout(nfc->regs + NFI_STA, status, !(status & STA_BUSY), 20, instr->ctx.waitrdy.timeout_ms * 1000); default: break; } return -EINVAL; } static void mtk_nfc_select_target(struct nand_chip *nand, unsigned int cs) { struct mtk_nfc *nfc = nand_get_controller_data(nand); struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand); mtk_nfc_hw_runtime_config(nand_to_mtd(nand)); nfi_writel(nfc, mtk_nand->sels[cs], NFI_CSEL); } static int mtk_nfc_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { struct mtk_nfc *nfc = nand_get_controller_data(chip); unsigned int i; int ret = 0; if (check_only) return 0; mtk_nfc_hw_reset(nfc); nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG); mtk_nfc_select_target(chip, op->cs); for (i = 0; i < op->ninstrs; i++) { ret = mtk_nfc_exec_instr(chip, &op->instrs[i]); if (ret) break; } return ret; } static int mtk_nfc_setup_interface(struct nand_chip *chip, int csline, const struct nand_interface_config *conf) { struct mtk_nfc *nfc = nand_get_controller_data(chip); const struct nand_sdr_timings *timings; u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst = 0, trlt = 0; u32 temp, tsel = 0; timings = nand_get_sdr_timings(conf); if (IS_ERR(timings)) return -ENOTSUPP; if (csline == NAND_DATA_IFACE_CHECK_ONLY) return 0; rate = clk_get_rate(nfc->clk.nfi_clk); /* There is a frequency divider in some IPs */ rate /= nfc->caps->nfi_clk_div; /* turn clock rate into KHZ */ rate /= 1000; tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000; tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000); tpoecs &= 0xf; tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000; tprecs = DIV_ROUND_UP(tprecs * rate, 1000000); tprecs &= 0x3f; /* sdr interface has no tCR which means CE# low to RE# low */ tc2r = 0; tw2r = timings->tWHR_min / 1000; tw2r = DIV_ROUND_UP(tw2r * rate, 1000000); tw2r = DIV_ROUND_UP(tw2r - 1, 2); tw2r &= 0xf; twh = max(timings->tREH_min, timings->tWH_min) / 1000; twh = DIV_ROUND_UP(twh * rate, 1000000) - 1; twh &= 0xf; /* Calculate real WE#/RE# hold time in nanosecond */ temp = (twh + 1) * 1000000 / rate; /* nanosecond to picosecond */ temp *= 1000; /* * WE# low level time should be expaned to meet WE# pulse time * and WE# cycle time at the same time. */ if (temp < timings->tWC_min) twst = timings->tWC_min - temp; twst = max(timings->tWP_min, twst) / 1000; twst = DIV_ROUND_UP(twst * rate, 1000000) - 1; twst &= 0xf; /* * RE# low level time should be expaned to meet RE# pulse time * and RE# cycle time at the same time. */ if (temp < timings->tRC_min) trlt = timings->tRC_min - temp; trlt = max(trlt, timings->tRP_min) / 1000; trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1; trlt &= 0xf; /* Calculate RE# pulse time in nanosecond. */ temp = (trlt + 1) * 1000000 / rate; /* nanosecond to picosecond */ temp *= 1000; /* * If RE# access time is bigger than RE# pulse time, * delay sampling data timing. */ if (temp < timings->tREA_max) { tsel = timings->tREA_max / 1000; tsel = DIV_ROUND_UP(tsel * rate, 1000000); tsel -= (trlt + 1); if (tsel > MAX_STROBE_DLY) { trlt += tsel - MAX_STROBE_DLY; tsel = MAX_STROBE_DLY; } } temp = nfi_readl(nfc, NFI_DEBUG_CON1); temp &= ~STROBE_MASK; temp |= tsel << STROBE_SHIFT; nfi_writel(nfc, temp, NFI_DEBUG_CON1); /* * ACCON: access timing control register * ------------------------------------- * 31:28: tpoecs, minimum required time for CS post pulling down after * accessing the device * 27:22: tprecs, minimum required time for CS pre pulling down before * accessing the device * 21:16: tc2r, minimum required time from NCEB low to NREB low * 15:12: tw2r, minimum required time from NWEB high to NREB low. * 11:08: twh, write enable hold time * 07:04: twst, write wait states * 03:00: trlt, read wait states */ trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt); nfi_writel(nfc, trlt, NFI_ACCCON); return 0; } static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data) { struct mtk_nfc *nfc = nand_get_controller_data(chip); struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); int size = chip->ecc.size + mtk_nand->fdm.reg_size; nfc->ecc_cfg.mode = ECC_DMA_MODE; nfc->ecc_cfg.op = ECC_ENCODE; return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size); } static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c) { /* nop */ } static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw) { struct nand_chip *chip = mtd_to_nand(mtd); struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip); u32 bad_pos = nand->bad_mark.pos; if (raw) bad_pos += nand->bad_mark.sec * mtk_data_len(chip); else bad_pos += nand->bad_mark.sec * chip->ecc.size; swap(chip->oob_poi[0], buf[bad_pos]); } static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset, u32 len, const u8 *buf) { struct nand_chip *chip = mtd_to_nand(mtd); struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); struct mtk_nfc *nfc = nand_get_controller_data(chip); struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; u32 start, end; int i, ret; start = offset / chip->ecc.size; end = DIV_ROUND_UP(offset + len, chip->ecc.size); memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); for (i = 0; i < chip->ecc.steps; i++) { memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i), chip->ecc.size); if (start > i || i >= end) continue; if (i == mtk_nand->bad_mark.sec) mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size); /* program the CRC back to the OOB */ ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i)); if (ret < 0) return ret; } return 0; } static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf) { struct nand_chip *chip = mtd_to_nand(mtd); struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); struct mtk_nfc *nfc = nand_get_controller_data(chip); struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; u32 i; memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); for (i = 0; i < chip->ecc.steps; i++) { if (buf) memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i), chip->ecc.size); if (i == mtk_nand->bad_mark.sec) mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size); } } static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start, u32 sectors) { struct mtk_nfc *nfc = nand_get_controller_data(chip); struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; u32 vall, valm; u8 *oobptr; int i, j; for (i = 0; i < sectors; i++) { oobptr = oob_ptr(chip, start + i); vall = nfi_readl(nfc, NFI_FDML(i)); valm = nfi_readl(nfc, NFI_FDMM(i)); for (j = 0; j < fdm->reg_size; j++) oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); } } static inline void mtk_nfc_write_fdm(struct nand_chip *chip) { struct mtk_nfc *nfc = nand_get_controller_data(chip); struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; u32 vall, valm; u8 *oobptr; int i, j; for (i = 0; i < chip->ecc.steps; i++) { oobptr = oob_ptr(chip, i); vall = 0; valm = 0; for (j = 0; j < 8; j++) { if (j < 4) vall |= (j < fdm->reg_size ? oobptr[j] : 0xff) << (j * 8); else valm |= (j < fdm->reg_size ? oobptr[j] : 0xff) << ((j - 4) * 8); } nfi_writel(nfc, vall, NFI_FDML(i)); nfi_writel(nfc, valm, NFI_FDMM(i)); } } static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip, const u8 *buf, int page, int len) { struct mtk_nfc *nfc = nand_get_controller_data(chip); struct device *dev = nfc->dev; dma_addr_t addr; u32 reg; int ret; addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE); ret = dma_mapping_error(nfc->dev, addr); if (ret) { dev_err(nfc->dev, "dma mapping error\n"); return -EINVAL; } reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN; nfi_writew(nfc, reg, NFI_CNFG); nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON); nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR); nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN); init_completion(&nfc->done); reg = nfi_readl(nfc, NFI_CON) | CON_BWR; nfi_writel(nfc, reg, NFI_CON); nfi_writew(nfc, STAR_EN, NFI_STRDATA); ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500)); if (!ret) { dev_err(dev, "program ahb done timeout\n"); nfi_writew(nfc, 0, NFI_INTR_EN); ret = -ETIMEDOUT; goto timeout; } ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg, ADDRCNTR_SEC(reg) >= chip->ecc.steps, 10, MTK_TIMEOUT); if (ret) dev_err(dev, "hwecc write timeout\n"); timeout: dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE); nfi_writel(nfc, 0, NFI_CON); return ret; } static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const u8 *buf, int page, int raw) { struct mtk_nfc *nfc = nand_get_controller_data(chip); struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); size_t len; const u8 *bufpoi; u32 reg; int ret; mtk_nfc_select_target(chip, chip->cur_cs); nand_prog_page_begin_op(chip, page, 0, NULL, 0); if (!raw) { /* OOB => FDM: from register, ECC: from HW */ reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN; nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG); nfc->ecc_cfg.op = ECC_ENCODE; nfc->ecc_cfg.mode = ECC_NFI_MODE; ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg); if (ret) { /* clear NFI config */ reg = nfi_readw(nfc, NFI_CNFG); reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); nfi_writew(nfc, reg, NFI_CNFG); return ret; } memcpy(nfc->buffer, buf, mtd->writesize); mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw); bufpoi = nfc->buffer; /* write OOB into the FDM registers (OOB area in MTK NAND) */ mtk_nfc_write_fdm(chip); } else { bufpoi = buf; } len = mtd->writesize + (raw ? mtd->oobsize : 0); ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len); if (!raw) mtk_ecc_disable(nfc->ecc); if (ret) return ret; return nand_prog_page_end_op(chip); } static int mtk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, int oob_on, int page) { return mtk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0); } static int mtk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_on, int pg) { struct mtd_info *mtd = nand_to_mtd(chip); struct mtk_nfc *nfc = nand_get_controller_data(chip); mtk_nfc_format_page(mtd, buf); return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1); } static int mtk_nfc_write_subpage_hwecc(struct nand_chip *chip, u32 offset, u32 data_len, const u8 *buf, int oob_on, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct mtk_nfc *nfc = nand_get_controller_data(chip); int ret; ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf); if (ret < 0) return ret; /* use the data in the private buffer (now with FDM and CRC) */ return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1); } static int mtk_nfc_write_oob_std(struct nand_chip *chip, int page) { return mtk_nfc_write_page_raw(chip, NULL, 1, page); } static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 start, u32 sectors) { struct nand_chip *chip = mtd_to_nand(mtd); struct mtk_nfc *nfc = nand_get_controller_data(chip); struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); struct mtk_ecc_stats stats; u32 reg_size = mtk_nand->fdm.reg_size; int rc, i; rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE; if (rc) { memset(buf, 0xff, sectors * chip->ecc.size); for (i = 0; i < sectors; i++) memset(oob_ptr(chip, start + i), 0xff, reg_size); return 0; } mtk_ecc_get_stats(nfc->ecc, &stats, sectors); mtd->ecc_stats.corrected += stats.corrected; mtd->ecc_stats.failed += stats.failed; return stats.bitflips; } static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, u32 data_offs, u32 readlen, u8 *bufpoi, int page, int raw) { struct mtk_nfc *nfc = nand_get_controller_data(chip); struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); u32 spare = mtk_nand->spare_per_sector; u32 column, sectors, start, end, reg; dma_addr_t addr; int bitflips = 0; size_t len; u8 *buf; int rc; mtk_nfc_select_target(chip, chip->cur_cs); start = data_offs / chip->ecc.size; end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size); sectors = end - start; column = start * (chip->ecc.size + spare); len = sectors * chip->ecc.size + (raw ? sectors * spare : 0); buf = bufpoi + start * chip->ecc.size; nand_read_page_op(chip, page, column, NULL, 0); addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE); rc = dma_mapping_error(nfc->dev, addr); if (rc) { dev_err(nfc->dev, "dma mapping error\n"); return -EINVAL; } reg = nfi_readw(nfc, NFI_CNFG); reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB; if (!raw) { reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN; nfi_writew(nfc, reg, NFI_CNFG); nfc->ecc_cfg.mode = ECC_NFI_MODE; nfc->ecc_cfg.sectors = sectors; nfc->ecc_cfg.op = ECC_DECODE; rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg); if (rc) { dev_err(nfc->dev, "ecc enable\n"); /* clear NFI_CNFG */ reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN | CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); nfi_writew(nfc, reg, NFI_CNFG); dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE); return rc; } } else { nfi_writew(nfc, reg, NFI_CNFG); } nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON); nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN); nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR); init_completion(&nfc->done); reg = nfi_readl(nfc, NFI_CON) | CON_BRD; nfi_writel(nfc, reg, NFI_CON); nfi_writew(nfc, STAR_EN, NFI_STRDATA); rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500)); if (!rc) dev_warn(nfc->dev, "read ahb/dma done timeout\n"); rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg, ADDRCNTR_SEC(reg) >= sectors, 10, MTK_TIMEOUT); if (rc < 0) { dev_err(nfc->dev, "subpage done timeout\n"); bitflips = -EIO; } else if (!raw) { rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE); bitflips = rc < 0 ? -ETIMEDOUT : mtk_nfc_update_ecc_stats(mtd, buf, start, sectors); mtk_nfc_read_fdm(chip, start, sectors); } dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE); if (raw) goto done; mtk_ecc_disable(nfc->ecc); if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec) mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw); done: nfi_writel(nfc, 0, NFI_CON); return bitflips; } static int mtk_nfc_read_subpage_hwecc(struct nand_chip *chip, u32 off, u32 len, u8 *p, int pg) { return mtk_nfc_read_subpage(nand_to_mtd(chip), chip, off, len, p, pg, 0); } static int mtk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on, int pg) { struct mtd_info *mtd = nand_to_mtd(chip); return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0); } static int mtk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); struct mtk_nfc *nfc = nand_get_controller_data(chip); struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; int i, ret; memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer, page, 1); if (ret < 0) return ret; for (i = 0; i < chip->ecc.steps; i++) { memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size); if (i == mtk_nand->bad_mark.sec) mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); if (buf) memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i), chip->ecc.size); } return ret; } static int mtk_nfc_read_oob_std(struct nand_chip *chip, int page) { return mtk_nfc_read_page_raw(chip, NULL, 1, page); } static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc) { /* * CNRNB: nand ready/busy register * ------------------------------- * 7:4: timeout register for polling the NAND busy/ready signal * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles. */ nfi_writew(nfc, 0xf1, NFI_CNRNB); nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT); mtk_nfc_hw_reset(nfc); nfi_readl(nfc, NFI_INTR_STA); nfi_writel(nfc, 0, NFI_INTR_EN); } static irqreturn_t mtk_nfc_irq(int irq, void *id) { struct mtk_nfc *nfc = id; u16 sta, ien; sta = nfi_readw(nfc, NFI_INTR_STA); ien = nfi_readw(nfc, NFI_INTR_EN); if (!(sta & ien)) return IRQ_NONE; nfi_writew(nfc, ~sta & ien, NFI_INTR_EN); complete(&nfc->done); return IRQ_HANDLED; } static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk) { int ret; ret = clk_prepare_enable(clk->nfi_clk); if (ret) { dev_err(dev, "failed to enable nfi clk\n"); return ret; } ret = clk_prepare_enable(clk->pad_clk); if (ret) { dev_err(dev, "failed to enable pad clk\n"); clk_disable_unprepare(clk->nfi_clk); return ret; } return 0; } static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk) { clk_disable_unprepare(clk->nfi_clk); clk_disable_unprepare(clk->pad_clk); } static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oob_region) { struct nand_chip *chip = mtd_to_nand(mtd); struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; u32 eccsteps; eccsteps = mtd->writesize / chip->ecc.size; if (section >= eccsteps) return -ERANGE; oob_region->length = fdm->reg_size - fdm->ecc_size; oob_region->offset = section * fdm->reg_size + fdm->ecc_size; return 0; } static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oob_region) { struct nand_chip *chip = mtd_to_nand(mtd); struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); u32 eccsteps; if (section) return -ERANGE; eccsteps = mtd->writesize / chip->ecc.size; oob_region->offset = mtk_nand->fdm.reg_size * eccsteps; oob_region->length = mtd->oobsize - oob_region->offset; return 0; } static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = { .free = mtk_nfc_ooblayout_free, .ecc = mtk_nfc_ooblayout_ecc, }; static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd) { struct nand_chip *nand = mtd_to_nand(mtd); struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand); struct mtk_nfc *nfc = nand_get_controller_data(nand); u32 ecc_bytes; ecc_bytes = DIV_ROUND_UP(nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc), 8); fdm->reg_size = chip->spare_per_sector - ecc_bytes; if (fdm->reg_size > NFI_FDM_MAX_SIZE) fdm->reg_size = NFI_FDM_MAX_SIZE; /* bad block mark storage */ fdm->ecc_size = 1; } static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl, struct mtd_info *mtd) { struct nand_chip *nand = mtd_to_nand(mtd); if (mtd->writesize == 512) { bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap; } else { bm_ctl->bm_swap = mtk_nfc_bad_mark_swap; bm_ctl->sec = mtd->writesize / mtk_data_len(nand); bm_ctl->pos = mtd->writesize % mtk_data_len(nand); } } static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd) { struct nand_chip *nand = mtd_to_nand(mtd); struct mtk_nfc *nfc = nand_get_controller_data(nand); const u8 *spare = nfc->caps->spare_size; u32 eccsteps, i, closest_spare = 0; eccsteps = mtd->writesize / nand->ecc.size; *sps = mtd->oobsize / eccsteps; if (nand->ecc.size == 1024) *sps >>= 1; if (*sps < MTK_NFC_MIN_SPARE) return -EINVAL; for (i = 0; i < nfc->caps->num_spare_size; i++) { if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) { closest_spare = i; if (*sps == spare[i]) break; } } *sps = spare[closest_spare]; if (nand->ecc.size == 1024) *sps <<= 1; return 0; } static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) { struct nand_chip *nand = mtd_to_nand(mtd); const struct nand_ecc_props *requirements = nanddev_get_ecc_requirements(&nand->base); struct mtk_nfc *nfc = nand_get_controller_data(nand); u32 spare; int free, ret; /* support only ecc hw mode */ if (nand->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) { dev_err(dev, "ecc.engine_type not supported\n"); return -EINVAL; } /* if optional dt settings not present */ if (!nand->ecc.size || !nand->ecc.strength) { /* use datasheet requirements */ nand->ecc.strength = requirements->strength; nand->ecc.size = requirements->step_size; /* * align eccstrength and eccsize * this controller only supports 512 and 1024 sizes */ if (nand->ecc.size < 1024) { if (mtd->writesize > 512 && nfc->caps->max_sector_size > 512) { nand->ecc.size = 1024; nand->ecc.strength <<= 1; } else { nand->ecc.size = 512; } } else { nand->ecc.size = 1024; } ret = mtk_nfc_set_spare_per_sector(&spare, mtd); if (ret) return ret; /* calculate oob bytes except ecc parity data */ free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc) + 7) >> 3; free = spare - free; /* * enhance ecc strength if oob left is bigger than max FDM size * or reduce ecc strength if oob size is not enough for ecc * parity data. */ if (free > NFI_FDM_MAX_SIZE) { spare -= NFI_FDM_MAX_SIZE; nand->ecc.strength = (spare << 3) / mtk_ecc_get_parity_bits(nfc->ecc); } else if (free < 0) { spare -= NFI_FDM_MIN_SIZE; nand->ecc.strength = (spare << 3) / mtk_ecc_get_parity_bits(nfc->ecc); } } mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength); dev_info(dev, "eccsize %d eccstrength %d\n", nand->ecc.size, nand->ecc.strength); return 0; } static int mtk_nfc_attach_chip(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct device *dev = mtd->dev.parent; struct mtk_nfc *nfc = nand_get_controller_data(chip); struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); int len; int ret; if (chip->options & NAND_BUSWIDTH_16) { dev_err(dev, "16bits buswidth not supported"); return -EINVAL; } /* store bbt magic in page, cause OOB is not protected */ if (chip->bbt_options & NAND_BBT_USE_FLASH) chip->bbt_options |= NAND_BBT_NO_OOB; ret = mtk_nfc_ecc_init(dev, mtd); if (ret) return ret; ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd); if (ret) return ret; mtk_nfc_set_fdm(&mtk_nand->fdm, mtd); mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd); len = mtd->writesize + mtd->oobsize; nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL); if (!nfc->buffer) return -ENOMEM; return 0; } static const struct nand_controller_ops mtk_nfc_controller_ops = { .attach_chip = mtk_nfc_attach_chip, .setup_interface = mtk_nfc_setup_interface, .exec_op = mtk_nfc_exec_op, }; static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc, struct device_node *np) { struct mtk_nfc_nand_chip *chip; struct nand_chip *nand; struct mtd_info *mtd; int nsels; u32 tmp; int ret; int i; if (!of_get_property(np, "reg", &nsels)) return -ENODEV; nsels /= sizeof(u32); if (!nsels || nsels > MTK_NAND_MAX_NSELS) { dev_err(dev, "invalid reg property size %d\n", nsels); return -EINVAL; } chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8), GFP_KERNEL); if (!chip) return -ENOMEM; chip->nsels = nsels; for (i = 0; i < nsels; i++) { ret = of_property_read_u32_index(np, "reg", i, &tmp); if (ret) { dev_err(dev, "reg property failure : %d\n", ret); return ret; } if (tmp >= MTK_NAND_MAX_NSELS) { dev_err(dev, "invalid CS: %u\n", tmp); return -EINVAL; } if (test_and_set_bit(tmp, &nfc->assigned_cs)) { dev_err(dev, "CS %u already assigned\n", tmp); return -EINVAL; } chip->sels[i] = tmp; } nand = &chip->nand; nand->controller = &nfc->controller; nand_set_flash_node(nand, np); nand_set_controller_data(nand, nfc); nand->options |= NAND_USES_DMA | NAND_SUBPAGE_READ; /* set default mode in case dt entry is missing */ nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc; nand->ecc.write_page_raw = mtk_nfc_write_page_raw; nand->ecc.write_page = mtk_nfc_write_page_hwecc; nand->ecc.write_oob_raw = mtk_nfc_write_oob_std; nand->ecc.write_oob = mtk_nfc_write_oob_std; nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc; nand->ecc.read_page_raw = mtk_nfc_read_page_raw; nand->ecc.read_page = mtk_nfc_read_page_hwecc; nand->ecc.read_oob_raw = mtk_nfc_read_oob_std; nand->ecc.read_oob = mtk_nfc_read_oob_std; mtd = nand_to_mtd(nand); mtd->owner = THIS_MODULE; mtd->dev.parent = dev; mtd->name = MTK_NAME; mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops); mtk_nfc_hw_init(nfc); ret = nand_scan(nand, nsels); if (ret) return ret; ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(dev, "mtd parse partition error\n"); nand_cleanup(nand); return ret; } list_add_tail(&chip->node, &nfc->chips); return 0; } static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc) { struct device_node *np = dev->of_node; struct device_node *nand_np; int ret; for_each_child_of_node(np, nand_np) { ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np); if (ret) { of_node_put(nand_np); return ret; } } return 0; } static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = { .spare_size = spare_size_mt2701, .num_spare_size = 16, .pageformat_spare_shift = 4, .nfi_clk_div = 1, .max_sector = 16, .max_sector_size = 1024, }; static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = { .spare_size = spare_size_mt2712, .num_spare_size = 19, .pageformat_spare_shift = 16, .nfi_clk_div = 2, .max_sector = 16, .max_sector_size = 1024, }; static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = { .spare_size = spare_size_mt7622, .num_spare_size = 4, .pageformat_spare_shift = 4, .nfi_clk_div = 1, .max_sector = 8, .max_sector_size = 512, }; static const struct of_device_id mtk_nfc_id_table[] = { { .compatible = "mediatek,mt2701-nfc", .data = &mtk_nfc_caps_mt2701, }, { .compatible = "mediatek,mt2712-nfc", .data = &mtk_nfc_caps_mt2712, }, { .compatible = "mediatek,mt7622-nfc", .data = &mtk_nfc_caps_mt7622, }, {} }; MODULE_DEVICE_TABLE(of, mtk_nfc_id_table); static int mtk_nfc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct mtk_nfc *nfc; int ret, irq; nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); if (!nfc) return -ENOMEM; nand_controller_init(&nfc->controller); INIT_LIST_HEAD(&nfc->chips); nfc->controller.ops = &mtk_nfc_controller_ops; /* probe defer if not ready */ nfc->ecc = of_mtk_ecc_get(np); if (IS_ERR(nfc->ecc)) return PTR_ERR(nfc->ecc); else if (!nfc->ecc) return -ENODEV; nfc->caps = of_device_get_match_data(dev); nfc->dev = dev; nfc->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(nfc->regs)) { ret = PTR_ERR(nfc->regs); goto release_ecc; } nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk"); if (IS_ERR(nfc->clk.nfi_clk)) { dev_err(dev, "no clk\n"); ret = PTR_ERR(nfc->clk.nfi_clk); goto release_ecc; } nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk"); if (IS_ERR(nfc->clk.pad_clk)) { dev_err(dev, "no pad clk\n"); ret = PTR_ERR(nfc->clk.pad_clk); goto release_ecc; } ret = mtk_nfc_enable_clk(dev, &nfc->clk); if (ret) goto release_ecc; irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = -EINVAL; goto clk_disable; } ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc); if (ret) { dev_err(dev, "failed to request nfi irq\n"); goto clk_disable; } ret = dma_set_mask(dev, DMA_BIT_MASK(32)); if (ret) { dev_err(dev, "failed to set dma mask\n"); goto clk_disable; } platform_set_drvdata(pdev, nfc); ret = mtk_nfc_nand_chips_init(dev, nfc); if (ret) { dev_err(dev, "failed to init nand chips\n"); goto clk_disable; } return 0; clk_disable: mtk_nfc_disable_clk(&nfc->clk); release_ecc: mtk_ecc_release(nfc->ecc); return ret; } static int mtk_nfc_remove(struct platform_device *pdev) { struct mtk_nfc *nfc = platform_get_drvdata(pdev); struct mtk_nfc_nand_chip *mtk_chip; struct nand_chip *chip; int ret; while (!list_empty(&nfc->chips)) { mtk_chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip, node); chip = &mtk_chip->nand; ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); list_del(&mtk_chip->node); } mtk_ecc_release(nfc->ecc); mtk_nfc_disable_clk(&nfc->clk); return 0; } #ifdef CONFIG_PM_SLEEP static int mtk_nfc_suspend(struct device *dev) { struct mtk_nfc *nfc = dev_get_drvdata(dev); mtk_nfc_disable_clk(&nfc->clk); return 0; } static int mtk_nfc_resume(struct device *dev) { struct mtk_nfc *nfc = dev_get_drvdata(dev); struct mtk_nfc_nand_chip *chip; struct nand_chip *nand; int ret; u32 i; udelay(200); ret = mtk_nfc_enable_clk(dev, &nfc->clk); if (ret) return ret; /* reset NAND chip if VCC was powered off */ list_for_each_entry(chip, &nfc->chips, node) { nand = &chip->nand; for (i = 0; i < chip->nsels; i++) nand_reset(nand, i); } return 0; } static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume); #endif static struct platform_driver mtk_nfc_driver = { .probe = mtk_nfc_probe, .remove = mtk_nfc_remove, .driver = { .name = MTK_NAME, .of_match_table = mtk_nfc_id_table, #ifdef CONFIG_PM_SLEEP .pm = &mtk_nfc_pm_ops, #endif }, }; module_platform_driver(mtk_nfc_driver); MODULE_LICENSE("Dual MIT/GPL"); MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>"); MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1