Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Miquel Raynal | 5639 | 99.98% | 1 | 50.00% |
Amit Kumar Mahapatra | 1 | 0.02% | 1 | 50.00% |
Total | 5640 | 2 |
// SPDX-License-Identifier: GPL-2.0 /* * ARM PL35X NAND flash controller driver * * Copyright (C) 2017 Xilinx, Inc * Author: * Miquel Raynal <miquel.raynal@bootlin.com> * Original work (rewritten): * Punnaiah Choudary Kalluri <punnaia@xilinx.com> * Naga Sureshkumar Relli <nagasure@xilinx.com> */ #include <linux/amba/bus.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/iopoll.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/mtd/mtd.h> #include <linux/mtd/rawnand.h> #include <linux/mtd/partitions.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/clk.h> #define PL35X_NANDC_DRIVER_NAME "pl35x-nand-controller" /* SMC controller status register (RO) */ #define PL35X_SMC_MEMC_STATUS 0x0 #define PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1 BIT(6) /* SMC clear config register (WO) */ #define PL35X_SMC_MEMC_CFG_CLR 0xC #define PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1 BIT(1) #define PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 BIT(4) #define PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 BIT(6) /* SMC direct command register (WO) */ #define PL35X_SMC_DIRECT_CMD 0x10 #define PL35X_SMC_DIRECT_CMD_NAND_CS (0x4 << 23) #define PL35X_SMC_DIRECT_CMD_UPD_REGS (0x2 << 21) /* SMC set cycles register (WO) */ #define PL35X_SMC_CYCLES 0x14 #define PL35X_SMC_NAND_TRC_CYCLES(x) ((x) << 0) #define PL35X_SMC_NAND_TWC_CYCLES(x) ((x) << 4) #define PL35X_SMC_NAND_TREA_CYCLES(x) ((x) << 8) #define PL35X_SMC_NAND_TWP_CYCLES(x) ((x) << 11) #define PL35X_SMC_NAND_TCLR_CYCLES(x) ((x) << 14) #define PL35X_SMC_NAND_TAR_CYCLES(x) ((x) << 17) #define PL35X_SMC_NAND_TRR_CYCLES(x) ((x) << 20) /* SMC set opmode register (WO) */ #define PL35X_SMC_OPMODE 0x18 #define PL35X_SMC_OPMODE_BW_8 0 #define PL35X_SMC_OPMODE_BW_16 1 /* SMC ECC status register (RO) */ #define PL35X_SMC_ECC_STATUS 0x400 #define PL35X_SMC_ECC_STATUS_ECC_BUSY BIT(6) /* SMC ECC configuration register */ #define PL35X_SMC_ECC_CFG 0x404 #define PL35X_SMC_ECC_CFG_MODE_MASK 0xC #define PL35X_SMC_ECC_CFG_MODE_BYPASS 0 #define PL35X_SMC_ECC_CFG_MODE_APB BIT(2) #define PL35X_SMC_ECC_CFG_MODE_MEM BIT(3) #define PL35X_SMC_ECC_CFG_PGSIZE_MASK 0x3 /* SMC ECC command 1 register */ #define PL35X_SMC_ECC_CMD1 0x408 #define PL35X_SMC_ECC_CMD1_WRITE(x) ((x) << 0) #define PL35X_SMC_ECC_CMD1_READ(x) ((x) << 8) #define PL35X_SMC_ECC_CMD1_READ_END(x) ((x) << 16) #define PL35X_SMC_ECC_CMD1_READ_END_VALID(x) ((x) << 24) /* SMC ECC command 2 register */ #define PL35X_SMC_ECC_CMD2 0x40C #define PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(x) ((x) << 0) #define PL35X_SMC_ECC_CMD2_READ_COL_CHG(x) ((x) << 8) #define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(x) ((x) << 16) #define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(x) ((x) << 24) /* SMC ECC value registers (RO) */ #define PL35X_SMC_ECC_VALUE(x) (0x418 + (4 * (x))) #define PL35X_SMC_ECC_VALUE_IS_CORRECTABLE(x) ((x) & BIT(27)) #define PL35X_SMC_ECC_VALUE_HAS_FAILED(x) ((x) & BIT(28)) #define PL35X_SMC_ECC_VALUE_IS_VALID(x) ((x) & BIT(30)) /* NAND AXI interface */ #define PL35X_SMC_CMD_PHASE 0 #define PL35X_SMC_CMD_PHASE_CMD0(x) ((x) << 3) #define PL35X_SMC_CMD_PHASE_CMD1(x) ((x) << 11) #define PL35X_SMC_CMD_PHASE_CMD1_VALID BIT(20) #define PL35X_SMC_CMD_PHASE_ADDR(pos, x) ((x) << (8 * (pos))) #define PL35X_SMC_CMD_PHASE_NADDRS(x) ((x) << 21) #define PL35X_SMC_DATA_PHASE BIT(19) #define PL35X_SMC_DATA_PHASE_ECC_LAST BIT(10) #define PL35X_SMC_DATA_PHASE_CLEAR_CS BIT(21) #define PL35X_NAND_MAX_CS 1 #define PL35X_NAND_LAST_XFER_SZ 4 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP((ps) / 1000, period_ns)) #define PL35X_NAND_ECC_BITS_MASK 0xFFF #define PL35X_NAND_ECC_BYTE_OFF_MASK 0x1FF #define PL35X_NAND_ECC_BIT_OFF_MASK 0x7 struct pl35x_nand_timings { unsigned int t_rc:4; unsigned int t_wc:4; unsigned int t_rea:3; unsigned int t_wp:3; unsigned int t_clr:3; unsigned int t_ar:3; unsigned int t_rr:4; unsigned int rsvd:8; }; struct pl35x_nand { struct list_head node; struct nand_chip chip; unsigned int cs; unsigned int addr_cycles; u32 ecc_cfg; u32 timings; }; /** * struct pl35x_nandc - NAND flash controller driver structure * @dev: Kernel device * @conf_regs: SMC configuration registers for command phase * @io_regs: NAND data registers for data phase * @controller: Core NAND controller structure * @chip: NAND chip information structure * @selected_chip: NAND chip currently selected by the controller * @assigned_cs: List of assigned CS * @ecc_buf: Temporary buffer to extract ECC bytes */ struct pl35x_nandc { struct device *dev; void __iomem *conf_regs; void __iomem *io_regs; struct nand_controller controller; struct list_head chips; struct nand_chip *selected_chip; unsigned long assigned_cs; u8 *ecc_buf; }; static inline struct pl35x_nandc *to_pl35x_nandc(struct nand_controller *ctrl) { return container_of(ctrl, struct pl35x_nandc, controller); } static inline struct pl35x_nand *to_pl35x_nand(struct nand_chip *chip) { return container_of(chip, struct pl35x_nand, chip); } static int pl35x_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); if (section >= chip->ecc.steps) return -ERANGE; oobregion->offset = (section * chip->ecc.bytes); oobregion->length = chip->ecc.bytes; return 0; } static int pl35x_ecc_ooblayout16_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); if (section >= chip->ecc.steps) return -ERANGE; oobregion->offset = (section * chip->ecc.bytes) + 8; oobregion->length = 8; return 0; } static const struct mtd_ooblayout_ops pl35x_ecc_ooblayout16_ops = { .ecc = pl35x_ecc_ooblayout16_ecc, .free = pl35x_ecc_ooblayout16_free, }; /* Generic flash bbt decriptors */ static u8 bbt_pattern[] = { 'B', 'b', 't', '0' }; static u8 mirror_pattern[] = { '1', 't', 'b', 'B' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 4, .len = 4, .veroffs = 20, .maxblocks = 4, .pattern = bbt_pattern }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 4, .len = 4, .veroffs = 20, .maxblocks = 4, .pattern = mirror_pattern }; static void pl35x_smc_update_regs(struct pl35x_nandc *nfc) { writel(PL35X_SMC_DIRECT_CMD_NAND_CS | PL35X_SMC_DIRECT_CMD_UPD_REGS, nfc->conf_regs + PL35X_SMC_DIRECT_CMD); } static int pl35x_smc_set_buswidth(struct pl35x_nandc *nfc, unsigned int bw) { if (bw != PL35X_SMC_OPMODE_BW_8 && bw != PL35X_SMC_OPMODE_BW_16) return -EINVAL; writel(bw, nfc->conf_regs + PL35X_SMC_OPMODE); pl35x_smc_update_regs(nfc); return 0; } static void pl35x_smc_clear_irq(struct pl35x_nandc *nfc) { writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1, nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR); } static int pl35x_smc_wait_for_irq(struct pl35x_nandc *nfc) { u32 reg; int ret; ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_MEMC_STATUS, reg, reg & PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1, 10, 1000000); if (ret) dev_err(nfc->dev, "Timeout polling on NAND controller interrupt (0x%x)\n", reg); pl35x_smc_clear_irq(nfc); return ret; } static int pl35x_smc_wait_for_ecc_done(struct pl35x_nandc *nfc) { u32 reg; int ret; ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_ECC_STATUS, reg, !(reg & PL35X_SMC_ECC_STATUS_ECC_BUSY), 10, 1000000); if (ret) dev_err(nfc->dev, "Timeout polling on ECC controller interrupt\n"); return ret; } static int pl35x_smc_set_ecc_mode(struct pl35x_nandc *nfc, struct nand_chip *chip, unsigned int mode) { struct pl35x_nand *plnand; u32 ecc_cfg; ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG); ecc_cfg &= ~PL35X_SMC_ECC_CFG_MODE_MASK; ecc_cfg |= mode; writel(ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG); if (chip) { plnand = to_pl35x_nand(chip); plnand->ecc_cfg = ecc_cfg; } if (mode != PL35X_SMC_ECC_CFG_MODE_BYPASS) return pl35x_smc_wait_for_ecc_done(nfc); return 0; } static void pl35x_smc_force_byte_access(struct nand_chip *chip, bool force_8bit) { struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); int ret; if (!(chip->options & NAND_BUSWIDTH_16)) return; if (force_8bit) ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8); else ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_16); if (ret) dev_err(nfc->dev, "Error in Buswidth\n"); } static void pl35x_nand_select_target(struct nand_chip *chip, unsigned int die_nr) { struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); struct pl35x_nand *plnand = to_pl35x_nand(chip); if (chip == nfc->selected_chip) return; /* Setup the timings */ writel(plnand->timings, nfc->conf_regs + PL35X_SMC_CYCLES); pl35x_smc_update_regs(nfc); /* Configure the ECC engine */ writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG); nfc->selected_chip = chip; } static void pl35x_nand_read_data_op(struct nand_chip *chip, u8 *in, unsigned int len, bool force_8bit, unsigned int flags, unsigned int last_flags) { struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); unsigned int buf_end = len / 4; unsigned int in_start = round_down(len, 4); unsigned int data_phase_addr; u32 *buf32 = (u32 *)in; u8 *buf8 = (u8 *)in; int i; if (force_8bit) pl35x_smc_force_byte_access(chip, true); for (i = 0; i < buf_end; i++) { data_phase_addr = PL35X_SMC_DATA_PHASE + flags; if (i + 1 == buf_end) data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags; buf32[i] = readl(nfc->io_regs + data_phase_addr); } /* No working extra flags on unaligned data accesses */ for (i = in_start; i < len; i++) buf8[i] = readb(nfc->io_regs + PL35X_SMC_DATA_PHASE); if (force_8bit) pl35x_smc_force_byte_access(chip, false); } static void pl35x_nand_write_data_op(struct nand_chip *chip, const u8 *out, int len, bool force_8bit, unsigned int flags, unsigned int last_flags) { struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); unsigned int buf_end = len / 4; unsigned int in_start = round_down(len, 4); const u32 *buf32 = (const u32 *)out; const u8 *buf8 = (const u8 *)out; unsigned int data_phase_addr; int i; if (force_8bit) pl35x_smc_force_byte_access(chip, true); for (i = 0; i < buf_end; i++) { data_phase_addr = PL35X_SMC_DATA_PHASE + flags; if (i + 1 == buf_end) data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags; writel(buf32[i], nfc->io_regs + data_phase_addr); } /* No working extra flags on unaligned data accesses */ for (i = in_start; i < len; i++) writeb(buf8[i], nfc->io_regs + PL35X_SMC_DATA_PHASE); if (force_8bit) pl35x_smc_force_byte_access(chip, false); } static int pl35x_nand_correct_data(struct pl35x_nandc *nfc, unsigned char *buf, unsigned char *read_ecc, unsigned char *calc_ecc) { unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper; unsigned short calc_ecc_lower, calc_ecc_upper; unsigned short byte_addr, bit_addr; read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & PL35X_NAND_ECC_BITS_MASK; read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & PL35X_NAND_ECC_BITS_MASK; calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & PL35X_NAND_ECC_BITS_MASK; calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & PL35X_NAND_ECC_BITS_MASK; ecc_odd = read_ecc_lower ^ calc_ecc_lower; ecc_even = read_ecc_upper ^ calc_ecc_upper; /* No error */ if (likely(!ecc_odd && !ecc_even)) return 0; /* One error in the main data; to be corrected */ if (ecc_odd == (~ecc_even & PL35X_NAND_ECC_BITS_MASK)) { /* Bits [11:3] of error code give the byte offset */ byte_addr = (ecc_odd >> 3) & PL35X_NAND_ECC_BYTE_OFF_MASK; /* Bits [2:0] of error code give the bit offset */ bit_addr = ecc_odd & PL35X_NAND_ECC_BIT_OFF_MASK; /* Toggle the faulty bit */ buf[byte_addr] ^= (BIT(bit_addr)); return 1; } /* One error in the ECC data; no action needed */ if (hweight32(ecc_odd | ecc_even) == 1) return 1; return -EBADMSG; } static void pl35x_nand_ecc_reg_to_array(struct nand_chip *chip, u32 ecc_reg, u8 *ecc_array) { u32 ecc_value = ~ecc_reg; unsigned int ecc_byte; for (ecc_byte = 0; ecc_byte < chip->ecc.bytes; ecc_byte++) ecc_array[ecc_byte] = ecc_value >> (8 * ecc_byte); } static int pl35x_nand_read_eccbytes(struct pl35x_nandc *nfc, struct nand_chip *chip, u8 *read_ecc) { u32 ecc_value; int chunk; for (chunk = 0; chunk < chip->ecc.steps; chunk++, read_ecc += chip->ecc.bytes) { ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk)); if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value)) return -EINVAL; pl35x_nand_ecc_reg_to_array(chip, ecc_value, read_ecc); } return 0; } static int pl35x_nand_recover_data_hwecc(struct pl35x_nandc *nfc, struct nand_chip *chip, u8 *data, u8 *read_ecc) { struct mtd_info *mtd = nand_to_mtd(chip); unsigned int max_bitflips = 0, chunk; u8 calc_ecc[3]; u32 ecc_value; int stats; for (chunk = 0; chunk < chip->ecc.steps; chunk++, data += chip->ecc.size, read_ecc += chip->ecc.bytes) { /* Read ECC value for each chunk */ ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk)); if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value)) return -EINVAL; if (PL35X_SMC_ECC_VALUE_HAS_FAILED(ecc_value)) { mtd->ecc_stats.failed++; continue; } pl35x_nand_ecc_reg_to_array(chip, ecc_value, calc_ecc); stats = pl35x_nand_correct_data(nfc, data, read_ecc, calc_ecc); if (stats < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += stats; max_bitflips = max_t(unsigned int, max_bitflips, stats); } } return max_bitflips; } static int pl35x_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); struct pl35x_nand *plnand = to_pl35x_nand(chip); struct mtd_info *mtd = nand_to_mtd(chip); unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2; unsigned int nrows = plnand->addr_cycles; u32 addr1 = 0, addr2 = 0, row; u32 cmd_addr; int i, ret; ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB); if (ret) return ret; cmd_addr = PL35X_SMC_CMD_PHASE | PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) | PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_SEQIN); for (i = 0, row = first_row; row < nrows; i++, row++) { u8 addr = page >> ((i * 8) & 0xFF); if (row < 4) addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr); else addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr); } /* Send the command and address cycles */ writel(addr1, nfc->io_regs + cmd_addr); if (plnand->addr_cycles > 4) writel(addr2, nfc->io_regs + cmd_addr); /* Write the data with the engine enabled */ pl35x_nand_write_data_op(chip, buf, mtd->writesize, false, 0, PL35X_SMC_DATA_PHASE_ECC_LAST); ret = pl35x_smc_wait_for_ecc_done(nfc); if (ret) goto disable_ecc_engine; /* Copy the HW calculated ECC bytes in the OOB buffer */ ret = pl35x_nand_read_eccbytes(nfc, chip, nfc->ecc_buf); if (ret) goto disable_ecc_engine; if (!oob_required) memset(chip->oob_poi, 0xFF, mtd->oobsize); ret = mtd_ooblayout_set_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, 0, chip->ecc.total); if (ret) goto disable_ecc_engine; /* Write the spare area with ECC bytes */ pl35x_nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false, 0, PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_PAGEPROG) | PL35X_SMC_CMD_PHASE_CMD1_VALID | PL35X_SMC_DATA_PHASE_CLEAR_CS); ret = pl35x_smc_wait_for_irq(nfc); if (ret) goto disable_ecc_engine; disable_ecc_engine: pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS); return ret; } /* * This functions reads data and checks the data integrity by comparing hardware * generated ECC values and read ECC values from spare area. * * There is a limitation with SMC controller: ECC_LAST must be set on the * last data access to tell the ECC engine not to expect any further data. * In practice, this implies to shrink the last data transfert by eg. 4 bytes, * and doing a last 4-byte transfer with the additional bit set. The last block * should be aligned with the end of an ECC block. Because of this limitation, * it is not possible to use the core routines. */ static int pl35x_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_required, int page) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(nand_get_interface_config(chip)); struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); struct pl35x_nand *plnand = to_pl35x_nand(chip); struct mtd_info *mtd = nand_to_mtd(chip); unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2; unsigned int nrows = plnand->addr_cycles; unsigned int addr1 = 0, addr2 = 0, row; u32 cmd_addr; int i, ret; ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB); if (ret) return ret; cmd_addr = PL35X_SMC_CMD_PHASE | PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) | PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_READ0) | PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_READSTART) | PL35X_SMC_CMD_PHASE_CMD1_VALID; for (i = 0, row = first_row; row < nrows; i++, row++) { u8 addr = page >> ((i * 8) & 0xFF); if (row < 4) addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr); else addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr); } /* Send the command and address cycles */ writel(addr1, nfc->io_regs + cmd_addr); if (plnand->addr_cycles > 4) writel(addr2, nfc->io_regs + cmd_addr); /* Wait the data to be available in the NAND cache */ ndelay(PSEC_TO_NSEC(sdr->tRR_min)); ret = pl35x_smc_wait_for_irq(nfc); if (ret) goto disable_ecc_engine; /* Retrieve the raw data with the engine enabled */ pl35x_nand_read_data_op(chip, buf, mtd->writesize, false, 0, PL35X_SMC_DATA_PHASE_ECC_LAST); ret = pl35x_smc_wait_for_ecc_done(nfc); if (ret) goto disable_ecc_engine; /* Retrieve the stored ECC bytes */ pl35x_nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, 0, PL35X_SMC_DATA_PHASE_CLEAR_CS); ret = mtd_ooblayout_get_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, 0, chip->ecc.total); if (ret) goto disable_ecc_engine; pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS); /* Correct the data and report failures */ return pl35x_nand_recover_data_hwecc(nfc, chip, buf, nfc->ecc_buf); disable_ecc_engine: pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS); return ret; } static int pl35x_nand_exec_op(struct nand_chip *chip, const struct nand_subop *subop) { struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); const struct nand_op_instr *instr, *data_instr = NULL; unsigned int rdy_tim_ms = 0, naddrs = 0, cmds = 0, last_flags = 0; u32 addr1 = 0, addr2 = 0, cmd0 = 0, cmd1 = 0, cmd_addr = 0; unsigned int op_id, len, offset, rdy_del_ns; int last_instr_type = -1; bool cmd1_valid = false; const u8 *addrs; int i, ret; for (op_id = 0; op_id < subop->ninstrs; op_id++) { instr = &subop->instrs[op_id]; switch (instr->type) { case NAND_OP_CMD_INSTR: if (!cmds) { cmd0 = PL35X_SMC_CMD_PHASE_CMD0(instr->ctx.cmd.opcode); } else { cmd1 = PL35X_SMC_CMD_PHASE_CMD1(instr->ctx.cmd.opcode); if (last_instr_type != NAND_OP_DATA_OUT_INSTR) cmd1_valid = true; } cmds++; break; case NAND_OP_ADDR_INSTR: offset = nand_subop_get_addr_start_off(subop, op_id); naddrs = nand_subop_get_num_addr_cyc(subop, op_id); addrs = &instr->ctx.addr.addrs[offset]; cmd_addr |= PL35X_SMC_CMD_PHASE_NADDRS(naddrs); for (i = offset; i < naddrs; i++) { if (i < 4) addr1 |= PL35X_SMC_CMD_PHASE_ADDR(i, addrs[i]); else addr2 |= PL35X_SMC_CMD_PHASE_ADDR(i - 4, addrs[i]); } break; case NAND_OP_DATA_IN_INSTR: case NAND_OP_DATA_OUT_INSTR: data_instr = instr; len = nand_subop_get_data_len(subop, op_id); break; case NAND_OP_WAITRDY_INSTR: rdy_tim_ms = instr->ctx.waitrdy.timeout_ms; rdy_del_ns = instr->delay_ns; break; } last_instr_type = instr->type; } /* Command phase */ cmd_addr |= PL35X_SMC_CMD_PHASE | cmd0 | cmd1 | (cmd1_valid ? PL35X_SMC_CMD_PHASE_CMD1_VALID : 0); writel(addr1, nfc->io_regs + cmd_addr); if (naddrs > 4) writel(addr2, nfc->io_regs + cmd_addr); /* Data phase */ if (data_instr && data_instr->type == NAND_OP_DATA_OUT_INSTR) { last_flags = PL35X_SMC_DATA_PHASE_CLEAR_CS; if (cmds == 2) last_flags |= cmd1 | PL35X_SMC_CMD_PHASE_CMD1_VALID; pl35x_nand_write_data_op(chip, data_instr->ctx.data.buf.out, len, data_instr->ctx.data.force_8bit, 0, last_flags); } if (rdy_tim_ms) { ndelay(rdy_del_ns); ret = pl35x_smc_wait_for_irq(nfc); if (ret) return ret; } if (data_instr && data_instr->type == NAND_OP_DATA_IN_INSTR) pl35x_nand_read_data_op(chip, data_instr->ctx.data.buf.in, len, data_instr->ctx.data.force_8bit, 0, PL35X_SMC_DATA_PHASE_CLEAR_CS); return 0; } static const struct nand_op_parser pl35x_nandc_op_parser = NAND_OP_PARSER( NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op, NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2112)), NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112), NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112), NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), ); static int pl35x_nfc_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { if (!check_only) pl35x_nand_select_target(chip, op->cs); return nand_op_parser_exec_op(chip, &pl35x_nandc_op_parser, op, check_only); } static int pl35x_nfc_setup_interface(struct nand_chip *chip, int cs, const struct nand_interface_config *conf) { struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); struct pl35x_nand *plnand = to_pl35x_nand(chip); struct pl35x_nand_timings tmgs = {}; const struct nand_sdr_timings *sdr; unsigned int period_ns, val; struct clk *mclk; sdr = nand_get_sdr_timings(conf); if (IS_ERR(sdr)) return PTR_ERR(sdr); mclk = of_clk_get_by_name(nfc->dev->parent->of_node, "memclk"); if (IS_ERR(mclk)) { dev_err(nfc->dev, "Failed to retrieve SMC memclk\n"); return PTR_ERR(mclk); } /* * SDR timings are given in pico-seconds while NFC timings must be * expressed in NAND controller clock cycles. We use the TO_CYCLE() * macro to convert from one to the other. */ period_ns = NSEC_PER_SEC / clk_get_rate(mclk); /* * PL35X SMC needs one extra read cycle in SDR Mode 5. This is not * written anywhere in the datasheet but is an empirical observation. */ val = TO_CYCLES(sdr->tRC_min, period_ns); if (sdr->tRC_min <= 20000) val++; tmgs.t_rc = val; if (tmgs.t_rc != val || tmgs.t_rc < 2) return -EINVAL; val = TO_CYCLES(sdr->tWC_min, period_ns); tmgs.t_wc = val; if (tmgs.t_wc != val || tmgs.t_wc < 2) return -EINVAL; /* * For all SDR modes, PL35X SMC needs tREA_max being 1, * this is also an empirical result. */ tmgs.t_rea = 1; val = TO_CYCLES(sdr->tWP_min, period_ns); tmgs.t_wp = val; if (tmgs.t_wp != val || tmgs.t_wp < 1) return -EINVAL; val = TO_CYCLES(sdr->tCLR_min, period_ns); tmgs.t_clr = val; if (tmgs.t_clr != val) return -EINVAL; val = TO_CYCLES(sdr->tAR_min, period_ns); tmgs.t_ar = val; if (tmgs.t_ar != val) return -EINVAL; val = TO_CYCLES(sdr->tRR_min, period_ns); tmgs.t_rr = val; if (tmgs.t_rr != val) return -EINVAL; if (cs == NAND_DATA_IFACE_CHECK_ONLY) return 0; plnand->timings = PL35X_SMC_NAND_TRC_CYCLES(tmgs.t_rc) | PL35X_SMC_NAND_TWC_CYCLES(tmgs.t_wc) | PL35X_SMC_NAND_TREA_CYCLES(tmgs.t_rea) | PL35X_SMC_NAND_TWP_CYCLES(tmgs.t_wp) | PL35X_SMC_NAND_TCLR_CYCLES(tmgs.t_clr) | PL35X_SMC_NAND_TAR_CYCLES(tmgs.t_ar) | PL35X_SMC_NAND_TRR_CYCLES(tmgs.t_rr); return 0; } static void pl35x_smc_set_ecc_pg_size(struct pl35x_nandc *nfc, struct nand_chip *chip, unsigned int pg_sz) { struct pl35x_nand *plnand = to_pl35x_nand(chip); u32 sz; switch (pg_sz) { case SZ_512: sz = 1; break; case SZ_1K: sz = 2; break; case SZ_2K: sz = 3; break; default: sz = 0; break; } plnand->ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG); plnand->ecc_cfg &= ~PL35X_SMC_ECC_CFG_PGSIZE_MASK; plnand->ecc_cfg |= sz; writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG); } static int pl35x_nand_init_hw_ecc_controller(struct pl35x_nandc *nfc, struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); int ret = 0; if (mtd->writesize < SZ_512 || mtd->writesize > SZ_2K) { dev_err(nfc->dev, "The hardware ECC engine is limited to pages up to 2kiB\n"); return -EOPNOTSUPP; } chip->ecc.strength = 1; chip->ecc.bytes = 3; chip->ecc.size = SZ_512; chip->ecc.steps = mtd->writesize / chip->ecc.size; chip->ecc.read_page = pl35x_nand_read_page_hwecc; chip->ecc.write_page = pl35x_nand_write_page_hwecc; chip->ecc.write_page_raw = nand_monolithic_write_page_raw; pl35x_smc_set_ecc_pg_size(nfc, chip, mtd->writesize); nfc->ecc_buf = devm_kmalloc(nfc->dev, chip->ecc.bytes * chip->ecc.steps, GFP_KERNEL); if (!nfc->ecc_buf) return -ENOMEM; switch (mtd->oobsize) { case 16: /* Legacy Xilinx layout */ mtd_set_ooblayout(mtd, &pl35x_ecc_ooblayout16_ops); chip->bbt_options |= NAND_BBT_NO_OOB_BBM; break; case 64: mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); break; default: dev_err(nfc->dev, "Unsupported OOB size\n"); return -EOPNOTSUPP; } return ret; } static int pl35x_nand_attach_chip(struct nand_chip *chip) { const struct nand_ecc_props *requirements = nanddev_get_ecc_requirements(&chip->base); struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); struct pl35x_nand *plnand = to_pl35x_nand(chip); struct mtd_info *mtd = nand_to_mtd(chip); int ret; if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE && (!chip->ecc.size || !chip->ecc.strength)) { if (requirements->step_size && requirements->strength) { chip->ecc.size = requirements->step_size; chip->ecc.strength = requirements->strength; } else { dev_info(nfc->dev, "No minimum ECC strength, using 1b/512B\n"); chip->ecc.size = 512; chip->ecc.strength = 1; } } if (mtd->writesize <= SZ_512) plnand->addr_cycles = 1; else plnand->addr_cycles = 2; if (chip->options & NAND_ROW_ADDR_3) plnand->addr_cycles += 3; else plnand->addr_cycles += 2; switch (chip->ecc.engine_type) { case NAND_ECC_ENGINE_TYPE_ON_DIE: /* Keep these legacy BBT descriptors for ON_DIE situations */ chip->bbt_td = &bbt_main_descr; chip->bbt_md = &bbt_mirror_descr; fallthrough; case NAND_ECC_ENGINE_TYPE_NONE: case NAND_ECC_ENGINE_TYPE_SOFT: break; case NAND_ECC_ENGINE_TYPE_ON_HOST: ret = pl35x_nand_init_hw_ecc_controller(nfc, chip); if (ret) return ret; break; default: dev_err(nfc->dev, "Unsupported ECC mode: %d\n", chip->ecc.engine_type); return -EINVAL; } return 0; } static const struct nand_controller_ops pl35x_nandc_ops = { .attach_chip = pl35x_nand_attach_chip, .exec_op = pl35x_nfc_exec_op, .setup_interface = pl35x_nfc_setup_interface, }; static int pl35x_nand_reset_state(struct pl35x_nandc *nfc) { int ret; /* Disable interrupts and clear their status */ writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 | PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 | PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1, nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR); /* Set default bus width to 8-bit */ ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8); if (ret) return ret; /* Ensure the ECC controller is bypassed by default */ ret = pl35x_smc_set_ecc_mode(nfc, NULL, PL35X_SMC_ECC_CFG_MODE_BYPASS); if (ret) return ret; /* * Configure the commands that the ECC block uses to detect the * operations it should start/end. */ writel(PL35X_SMC_ECC_CMD1_WRITE(NAND_CMD_SEQIN) | PL35X_SMC_ECC_CMD1_READ(NAND_CMD_READ0) | PL35X_SMC_ECC_CMD1_READ_END(NAND_CMD_READSTART) | PL35X_SMC_ECC_CMD1_READ_END_VALID(NAND_CMD_READ1), nfc->conf_regs + PL35X_SMC_ECC_CMD1); writel(PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(NAND_CMD_RNDIN) | PL35X_SMC_ECC_CMD2_READ_COL_CHG(NAND_CMD_RNDOUT) | PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(NAND_CMD_RNDOUTSTART) | PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(NAND_CMD_READ1), nfc->conf_regs + PL35X_SMC_ECC_CMD2); return 0; } static int pl35x_nand_chip_init(struct pl35x_nandc *nfc, struct device_node *np) { struct pl35x_nand *plnand; struct nand_chip *chip; struct mtd_info *mtd; int cs, ret; plnand = devm_kzalloc(nfc->dev, sizeof(*plnand), GFP_KERNEL); if (!plnand) return -ENOMEM; ret = of_property_read_u32(np, "reg", &cs); if (ret) return ret; if (cs >= PL35X_NAND_MAX_CS) { dev_err(nfc->dev, "Wrong CS %d\n", cs); return -EINVAL; } if (test_and_set_bit(cs, &nfc->assigned_cs)) { dev_err(nfc->dev, "Already assigned CS %d\n", cs); return -EINVAL; } plnand->cs = cs; chip = &plnand->chip; chip->options = NAND_BUSWIDTH_AUTO | NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; chip->bbt_options = NAND_BBT_USE_FLASH; chip->controller = &nfc->controller; mtd = nand_to_mtd(chip); mtd->dev.parent = nfc->dev; nand_set_flash_node(chip, np); if (!mtd->name) { mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, "%s", PL35X_NANDC_DRIVER_NAME); if (!mtd->name) { dev_err(nfc->dev, "Failed to allocate mtd->name\n"); return -ENOMEM; } } ret = nand_scan(chip, 1); if (ret) return ret; ret = mtd_device_register(mtd, NULL, 0); if (ret) { nand_cleanup(chip); return ret; } list_add_tail(&plnand->node, &nfc->chips); return ret; } static void pl35x_nand_chips_cleanup(struct pl35x_nandc *nfc) { struct pl35x_nand *plnand, *tmp; struct nand_chip *chip; int ret; list_for_each_entry_safe(plnand, tmp, &nfc->chips, node) { chip = &plnand->chip; ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); list_del(&plnand->node); } } static int pl35x_nand_chips_init(struct pl35x_nandc *nfc) { struct device_node *np = nfc->dev->of_node, *nand_np; int nchips = of_get_child_count(np); int ret; if (!nchips || nchips > PL35X_NAND_MAX_CS) { dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", nchips); return -EINVAL; } for_each_child_of_node(np, nand_np) { ret = pl35x_nand_chip_init(nfc, nand_np); if (ret) { of_node_put(nand_np); pl35x_nand_chips_cleanup(nfc); break; } } return ret; } static int pl35x_nand_probe(struct platform_device *pdev) { struct device *smc_dev = pdev->dev.parent; struct amba_device *smc_amba = to_amba_device(smc_dev); struct pl35x_nandc *nfc; u32 ret; nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); if (!nfc) return -ENOMEM; nfc->dev = &pdev->dev; nand_controller_init(&nfc->controller); nfc->controller.ops = &pl35x_nandc_ops; INIT_LIST_HEAD(&nfc->chips); nfc->conf_regs = devm_ioremap_resource(&smc_amba->dev, &smc_amba->res); if (IS_ERR(nfc->conf_regs)) return PTR_ERR(nfc->conf_regs); nfc->io_regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(nfc->io_regs)) return PTR_ERR(nfc->io_regs); ret = pl35x_nand_reset_state(nfc); if (ret) return ret; ret = pl35x_nand_chips_init(nfc); if (ret) return ret; platform_set_drvdata(pdev, nfc); return 0; } static int pl35x_nand_remove(struct platform_device *pdev) { struct pl35x_nandc *nfc = platform_get_drvdata(pdev); pl35x_nand_chips_cleanup(nfc); return 0; } static const struct of_device_id pl35x_nand_of_match[] = { { .compatible = "arm,pl353-nand-r2p1" }, {}, }; MODULE_DEVICE_TABLE(of, pl35x_nand_of_match); static struct platform_driver pl35x_nandc_driver = { .probe = pl35x_nand_probe, .remove = pl35x_nand_remove, .driver = { .name = PL35X_NANDC_DRIVER_NAME, .of_match_table = pl35x_nand_of_match, }, }; module_platform_driver(pl35x_nandc_driver); MODULE_AUTHOR("Xilinx, Inc."); MODULE_ALIAS("platform:" PL35X_NANDC_DRIVER_NAME); MODULE_DESCRIPTION("ARM PL35X NAND controller driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1