Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Pratyush Yadav | 669 | 27.59% | 4 | 10.00% |
Boris Brezillon | 585 | 24.12% | 2 | 5.00% |
Takahiro Kuwano | 374 | 15.42% | 5 | 12.50% |
Tudor-Dan Ambarus | 369 | 15.22% | 17 | 42.50% |
Michael Walle | 258 | 10.64% | 5 | 12.50% |
Sergei Shtylyov | 102 | 4.21% | 2 | 5.00% |
Yicong Yang | 30 | 1.24% | 1 | 2.50% |
Sascha Hauer | 18 | 0.74% | 1 | 2.50% |
Huang Shijie | 11 | 0.45% | 1 | 2.50% |
Hou Zhiqiang | 6 | 0.25% | 1 | 2.50% |
Cédric Le Goater | 3 | 0.12% | 1 | 2.50% |
Total | 2425 | 40 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2005, Intec Automation Inc. * Copyright (C) 2014, Freescale Semiconductor, Inc. */ #include <linux/mtd/spi-nor.h> #include "core.h" /* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */ #define USE_CLSR BIT(0) #define SPINOR_OP_CLSR 0x30 /* Clear status register 1 */ #define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */ #define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */ #define SPINOR_REG_CYPRESS_CFR1V 0x00800002 #define SPINOR_REG_CYPRESS_CFR1_QUAD_EN BIT(1) /* Quad Enable */ #define SPINOR_REG_CYPRESS_CFR2V 0x00800003 #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24 0xb #define SPINOR_REG_CYPRESS_CFR3V 0x00800004 #define SPINOR_REG_CYPRESS_CFR3_PGSZ BIT(4) /* Page size. */ #define SPINOR_REG_CYPRESS_CFR5V 0x00800006 #define SPINOR_REG_CYPRESS_CFR5_BIT6 BIT(6) #define SPINOR_REG_CYPRESS_CFR5_DDR BIT(1) #define SPINOR_REG_CYPRESS_CFR5_OPI BIT(0) #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN \ (SPINOR_REG_CYPRESS_CFR5_BIT6 | SPINOR_REG_CYPRESS_CFR5_DDR | \ SPINOR_REG_CYPRESS_CFR5_OPI) #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS SPINOR_REG_CYPRESS_CFR5_BIT6 #define SPINOR_OP_CYPRESS_RD_FAST 0xee /* Cypress SPI NOR flash operations. */ #define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0), \ SPI_MEM_OP_ADDR(naddr, addr, 0), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_OUT(ndata, buf, 0)) #define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, buf) \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0), \ SPI_MEM_OP_ADDR(naddr, addr, 0), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_IN(1, buf, 0)) #define SPANSION_CLSR_OP \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_DATA) static int cypress_nor_octal_dtr_en(struct spi_nor *nor) { struct spi_mem_op op; u8 *buf = nor->bouncebuf; int ret; u8 addr_mode_nbytes = nor->params->addr_mode_nbytes; /* Use 24 dummy cycles for memory array reads. */ *buf = SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24; op = (struct spi_mem_op) CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, SPINOR_REG_CYPRESS_CFR2V, 1, buf); ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); if (ret) return ret; nor->read_dummy = 24; /* Set the octal and DTR enable bits. */ buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN; op = (struct spi_mem_op) CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, SPINOR_REG_CYPRESS_CFR5V, 1, buf); ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); if (ret) return ret; /* Read flash ID to make sure the switch was successful. */ ret = spi_nor_read_id(nor, nor->addr_nbytes, 3, buf, SNOR_PROTO_8_8_8_DTR); if (ret) { dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret); return ret; } if (memcmp(buf, nor->info->id, nor->info->id_len)) return -EINVAL; return 0; } static int cypress_nor_octal_dtr_dis(struct spi_nor *nor) { struct spi_mem_op op; u8 *buf = nor->bouncebuf; int ret; /* * The register is 1-byte wide, but 1-byte transactions are not allowed * in 8D-8D-8D mode. Since there is no register at the next location, * just initialize the value to 0 and let the transaction go on. */ buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS; buf[1] = 0; op = (struct spi_mem_op) CYPRESS_NOR_WR_ANY_REG_OP(nor->addr_nbytes, SPINOR_REG_CYPRESS_CFR5V, 2, buf); ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR); if (ret) return ret; /* Read flash ID to make sure the switch was successful. */ ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1); if (ret) { dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret); return ret; } if (memcmp(buf, nor->info->id, nor->info->id_len)) return -EINVAL; return 0; } /** * cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile * register. * @nor: pointer to a 'struct spi_nor' * * It is recommended to update volatile registers in the field application due * to a risk of the non-volatile registers corruption by power interrupt. This * function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable * bit in the CFR1 non-volatile in advance (typically by a Flash programmer * before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is * also set during Flash power-up. * * Return: 0 on success, -errno otherwise. */ static int cypress_nor_quad_enable_volatile(struct spi_nor *nor) { struct spi_mem_op op; u8 addr_mode_nbytes = nor->params->addr_mode_nbytes; u8 cfr1v_written; int ret; op = (struct spi_mem_op) CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, SPINOR_REG_CYPRESS_CFR1V, nor->bouncebuf); ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1_QUAD_EN) return 0; /* Update the Quad Enable bit. */ nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1_QUAD_EN; op = (struct spi_mem_op) CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, SPINOR_REG_CYPRESS_CFR1V, 1, nor->bouncebuf); ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); if (ret) return ret; cfr1v_written = nor->bouncebuf[0]; /* Read back and check it. */ op = (struct spi_mem_op) CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, SPINOR_REG_CYPRESS_CFR1V, nor->bouncebuf); ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; if (nor->bouncebuf[0] != cfr1v_written) { dev_err(nor->dev, "CFR1: Read back test failed\n"); return -EIO; } return 0; } /** * cypress_nor_set_page_size() - Set page size which corresponds to the flash * configuration. * @nor: pointer to a 'struct spi_nor' * * The BFPT table advertises a 512B or 256B page size depending on part but the * page size is actually configurable (with the default being 256B). Read from * CFR3V[4] and set the correct size. * * Return: 0 on success, -errno otherwise. */ static int cypress_nor_set_page_size(struct spi_nor *nor) { struct spi_mem_op op = CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes, SPINOR_REG_CYPRESS_CFR3V, nor->bouncebuf); int ret; ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ) nor->params->page_size = 512; else nor->params->page_size = 256; return 0; } static int s25hx_t_post_bfpt_fixup(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt) { /* Replace Quad Enable with volatile version */ nor->params->quad_enable = cypress_nor_quad_enable_volatile; return cypress_nor_set_page_size(nor); } static void s25hx_t_post_sfdp_fixup(struct spi_nor *nor) { struct spi_nor_erase_type *erase_type = nor->params->erase_map.erase_type; unsigned int i; /* * In some parts, 3byte erase opcodes are advertised by 4BAIT. * Convert them to 4byte erase opcodes. */ for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { switch (erase_type[i].opcode) { case SPINOR_OP_SE: erase_type[i].opcode = SPINOR_OP_SE_4B; break; case SPINOR_OP_BE_4K: erase_type[i].opcode = SPINOR_OP_BE_4K_4B; break; default: break; } } } static void s25hx_t_late_init(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; /* Fast Read 4B requires mode cycles */ params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8; /* The writesize should be ECC data unit size */ params->writesize = 16; } static struct spi_nor_fixups s25hx_t_fixups = { .post_bfpt = s25hx_t_post_bfpt_fixup, .post_sfdp = s25hx_t_post_sfdp_fixup, .late_init = s25hx_t_late_init, }; /** * cypress_nor_octal_dtr_enable() - Enable octal DTR on Cypress flashes. * @nor: pointer to a 'struct spi_nor' * @enable: whether to enable or disable Octal DTR * * This also sets the memory access latency cycles to 24 to allow the flash to * run at up to 200MHz. * * Return: 0 on success, -errno otherwise. */ static int cypress_nor_octal_dtr_enable(struct spi_nor *nor, bool enable) { return enable ? cypress_nor_octal_dtr_en(nor) : cypress_nor_octal_dtr_dis(nor); } static void s28hx_t_post_sfdp_fixup(struct spi_nor *nor) { /* * On older versions of the flash the xSPI Profile 1.0 table has the * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE. */ if (nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0) nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode = SPINOR_OP_CYPRESS_RD_FAST; /* This flash is also missing the 4-byte Page Program opcode bit. */ spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP], SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); /* * Since xSPI Page Program opcode is backward compatible with * Legacy SPI, use Legacy SPI opcode there as well. */ spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP_8_8_8_DTR], SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); /* * The xSPI Profile 1.0 table advertises the number of additional * address bytes needed for Read Status Register command as 0 but the * actual value for that is 4. */ nor->params->rdsr_addr_nbytes = 4; } static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt) { return cypress_nor_set_page_size(nor); } static void s28hx_t_late_init(struct spi_nor *nor) { nor->params->octal_dtr_enable = cypress_nor_octal_dtr_enable; nor->params->writesize = 16; } static const struct spi_nor_fixups s28hx_t_fixups = { .post_sfdp = s28hx_t_post_sfdp_fixup, .post_bfpt = s28hx_t_post_bfpt_fixup, .late_init = s28hx_t_late_init, }; static int s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt) { /* * The S25FS-S chip family reports 512-byte pages in BFPT but * in reality the write buffer still wraps at the safe default * of 256 bytes. Overwrite the page size advertised by BFPT * to get the writes working. */ nor->params->page_size = 256; return 0; } static const struct spi_nor_fixups s25fs_s_nor_fixups = { .post_bfpt = s25fs_s_nor_post_bfpt_fixups, }; static const struct flash_info spansion_nor_parts[] = { /* Spansion/Cypress -- single (large) sector size only, at least * for the chips listed here (without boot sectors). */ { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) MFR_FLAGS(USE_CLSR) }, { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) MFR_FLAGS(USE_CLSR) }, { "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128) NO_SFDP_FLAGS(SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) MFR_FLAGS(USE_CLSR) }, { "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) MFR_FLAGS(USE_CLSR) }, { "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256) FLAGS(SPI_NOR_HAS_LOCK) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) MFR_FLAGS(USE_CLSR) }, { "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) MFR_FLAGS(USE_CLSR) .fixups = &s25fs_s_nor_fixups, }, { "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) MFR_FLAGS(USE_CLSR) }, { "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) MFR_FLAGS(USE_CLSR) }, { "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) MFR_FLAGS(USE_CLSR) .fixups = &s25fs_s_nor_fixups, }, { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64) }, { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256) }, { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) MFR_FLAGS(USE_CLSR) }, { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256) NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) MFR_FLAGS(USE_CLSR) }, { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8) }, { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16) }, { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32) }, { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64) }, { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128) }, { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64) NO_SFDP_FLAGS(SECT_4K) }, { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128) NO_SFDP_FLAGS(SECT_4K) }, { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512) NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, { "s25hl512t", INFO6(0x342a1a, 0x0f0390, 256 * 1024, 256) PARSE_SFDP MFR_FLAGS(USE_CLSR) .fixups = &s25hx_t_fixups }, { "s25hl01gt", INFO6(0x342a1b, 0x0f0390, 256 * 1024, 512) PARSE_SFDP MFR_FLAGS(USE_CLSR) .fixups = &s25hx_t_fixups }, { "s25hs512t", INFO6(0x342b1a, 0x0f0390, 256 * 1024, 256) PARSE_SFDP MFR_FLAGS(USE_CLSR) .fixups = &s25hx_t_fixups }, { "s25hs01gt", INFO6(0x342b1b, 0x0f0390, 256 * 1024, 512) PARSE_SFDP MFR_FLAGS(USE_CLSR) .fixups = &s25hx_t_fixups }, { "cy15x104q", INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1) FLAGS(SPI_NOR_NO_ERASE) }, { "s28hl512t", INFO(0x345a1a, 0, 256 * 1024, 256) PARSE_SFDP .fixups = &s28hx_t_fixups, }, { "s28hl01gt", INFO(0x345a1b, 0, 256 * 1024, 512) PARSE_SFDP .fixups = &s28hx_t_fixups, }, { "s28hs512t", INFO(0x345b1a, 0, 256 * 1024, 256) PARSE_SFDP .fixups = &s28hx_t_fixups, }, { "s28hs01gt", INFO(0x345b1b, 0, 256 * 1024, 512) PARSE_SFDP .fixups = &s28hx_t_fixups, }, }; /** * spansion_nor_clear_sr() - Clear the Status Register. * @nor: pointer to 'struct spi_nor'. */ static void spansion_nor_clear_sr(struct spi_nor *nor) { int ret; if (nor->spimem) { struct spi_mem_op op = SPANSION_CLSR_OP; spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR, NULL, 0); } if (ret) dev_dbg(nor->dev, "error %d clearing SR\n", ret); } /** * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the * flash is ready for new commands and clear it if there are any errors. * @nor: pointer to 'struct spi_nor'. * * Return: 1 if ready, 0 if not ready, -errno on errors. */ static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor) { int ret; ret = spi_nor_read_sr(nor, nor->bouncebuf); if (ret) return ret; if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) { if (nor->bouncebuf[0] & SR_E_ERR) dev_err(nor->dev, "Erase Error occurred\n"); else dev_err(nor->dev, "Programming Error occurred\n"); spansion_nor_clear_sr(nor); /* * WEL bit remains set to one when an erase or page program * error occurs. Issue a Write Disable command to protect * against inadvertent writes that can possibly corrupt the * contents of the memory. */ ret = spi_nor_write_disable(nor); if (ret) return ret; return -EIO; } return !(nor->bouncebuf[0] & SR_WIP); } static void spansion_nor_late_init(struct spi_nor *nor) { if (nor->params->size > SZ_16M) { nor->flags |= SNOR_F_4B_OPCODES; /* No small sector erase for 4-byte command set */ nor->erase_opcode = SPINOR_OP_SE; nor->mtd.erasesize = nor->info->sector_size; } if (nor->info->mfr_flags & USE_CLSR) nor->params->ready = spansion_nor_sr_ready_and_clear; } static const struct spi_nor_fixups spansion_nor_fixups = { .late_init = spansion_nor_late_init, }; const struct spi_nor_manufacturer spi_nor_spansion = { .name = "spansion", .parts = spansion_nor_parts, .nparts = ARRAY_SIZE(spansion_nor_parts), .fixups = &spansion_nor_fixups, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1