Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Raghu Vatsavayi | 3992 | 93.64% | 16 | 55.17% |
Intiyaz Basha | 146 | 3.42% | 4 | 13.79% |
Prasad Kanneganti | 53 | 1.24% | 1 | 3.45% |
Satanand Burla | 43 | 1.01% | 1 | 3.45% |
Kees Cook | 8 | 0.19% | 2 | 6.90% |
Rick Farrington | 8 | 0.19% | 2 | 6.90% |
VSR Burru | 8 | 0.19% | 1 | 3.45% |
zhong jiang | 4 | 0.09% | 1 | 3.45% |
Jesse Brandeburg | 1 | 0.02% | 1 | 3.45% |
Total | 4263 | 29 |
/********************************************************************** * Author: Cavium, Inc. * * Contact: support@cavium.com * Please include "LiquidIO" in the subject. * * Copyright (c) 2003-2016 Cavium, Inc. * * This file is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, Version 2, as * published by the Free Software Foundation. * * This file is distributed in the hope that it will be useful, but * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or * NONINFRINGEMENT. See the GNU General Public License for more details. ***********************************************************************/ #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/vmalloc.h> #include "liquidio_common.h" #include "octeon_droq.h" #include "octeon_iq.h" #include "response_manager.h" #include "octeon_device.h" #include "octeon_main.h" #include "octeon_network.h" #include "cn66xx_regs.h" #include "cn66xx_device.h" #include "cn23xx_pf_device.h" #include "cn23xx_vf_device.h" struct niclist { struct list_head list; void *ptr; }; struct __dispatch { struct list_head list; struct octeon_recv_info *rinfo; octeon_dispatch_fn_t disp_fn; }; /** Get the argument that the user set when registering dispatch * function for a given opcode/subcode. * @param octeon_dev - the octeon device pointer. * @param opcode - the opcode for which the dispatch argument * is to be checked. * @param subcode - the subcode for which the dispatch argument * is to be checked. * @return Success: void * (argument to the dispatch function) * @return Failure: NULL * */ void *octeon_get_dispatch_arg(struct octeon_device *octeon_dev, u16 opcode, u16 subcode) { int idx; struct list_head *dispatch; void *fn_arg = NULL; u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode); idx = combined_opcode & OCTEON_OPCODE_MASK; spin_lock_bh(&octeon_dev->dispatch.lock); if (octeon_dev->dispatch.count == 0) { spin_unlock_bh(&octeon_dev->dispatch.lock); return NULL; } if (octeon_dev->dispatch.dlist[idx].opcode == combined_opcode) { fn_arg = octeon_dev->dispatch.dlist[idx].arg; } else { list_for_each(dispatch, &octeon_dev->dispatch.dlist[idx].list) { if (((struct octeon_dispatch *)dispatch)->opcode == combined_opcode) { fn_arg = ((struct octeon_dispatch *) dispatch)->arg; break; } } } spin_unlock_bh(&octeon_dev->dispatch.lock); return fn_arg; } /** Check for packets on Droq. This function should be called with lock held. * @param droq - Droq on which count is checked. * @return Returns packet count. */ u32 octeon_droq_check_hw_for_pkts(struct octeon_droq *droq) { u32 pkt_count = 0; u32 last_count; pkt_count = readl(droq->pkts_sent_reg); last_count = pkt_count - droq->pkt_count; droq->pkt_count = pkt_count; /* we shall write to cnts at napi irq enable or end of droq tasklet */ if (last_count) atomic_add(last_count, &droq->pkts_pending); return last_count; } static void octeon_droq_compute_max_packet_bufs(struct octeon_droq *droq) { u32 count = 0; /* max_empty_descs is the max. no. of descs that can have no buffers. * If the empty desc count goes beyond this value, we cannot safely * read in a 64K packet sent by Octeon * (64K is max pkt size from Octeon) */ droq->max_empty_descs = 0; do { droq->max_empty_descs++; count += droq->buffer_size; } while (count < (64 * 1024)); droq->max_empty_descs = droq->max_count - droq->max_empty_descs; } static void octeon_droq_reset_indices(struct octeon_droq *droq) { droq->read_idx = 0; droq->write_idx = 0; droq->refill_idx = 0; droq->refill_count = 0; atomic_set(&droq->pkts_pending, 0); } static void octeon_droq_destroy_ring_buffers(struct octeon_device *oct, struct octeon_droq *droq) { u32 i; struct octeon_skb_page_info *pg_info; for (i = 0; i < droq->max_count; i++) { pg_info = &droq->recv_buf_list[i].pg_info; if (!pg_info) continue; if (pg_info->dma) lio_unmap_ring(oct->pci_dev, (u64)pg_info->dma); pg_info->dma = 0; if (pg_info->page) recv_buffer_destroy(droq->recv_buf_list[i].buffer, pg_info); droq->recv_buf_list[i].buffer = NULL; } octeon_droq_reset_indices(droq); } static int octeon_droq_setup_ring_buffers(struct octeon_device *oct, struct octeon_droq *droq) { u32 i; void *buf; struct octeon_droq_desc *desc_ring = droq->desc_ring; for (i = 0; i < droq->max_count; i++) { buf = recv_buffer_alloc(oct, &droq->recv_buf_list[i].pg_info); if (!buf) { dev_err(&oct->pci_dev->dev, "%s buffer alloc failed\n", __func__); droq->stats.rx_alloc_failure++; return -ENOMEM; } droq->recv_buf_list[i].buffer = buf; droq->recv_buf_list[i].data = get_rbd(buf); desc_ring[i].info_ptr = 0; desc_ring[i].buffer_ptr = lio_map_ring(droq->recv_buf_list[i].buffer); } octeon_droq_reset_indices(droq); octeon_droq_compute_max_packet_bufs(droq); return 0; } int octeon_delete_droq(struct octeon_device *oct, u32 q_no) { struct octeon_droq *droq = oct->droq[q_no]; dev_dbg(&oct->pci_dev->dev, "%s[%d]\n", __func__, q_no); octeon_droq_destroy_ring_buffers(oct, droq); vfree(droq->recv_buf_list); if (droq->desc_ring) lio_dma_free(oct, (droq->max_count * OCT_DROQ_DESC_SIZE), droq->desc_ring, droq->desc_ring_dma); memset(droq, 0, OCT_DROQ_SIZE); oct->io_qmask.oq &= ~(1ULL << q_no); vfree(oct->droq[q_no]); oct->droq[q_no] = NULL; oct->num_oqs--; return 0; } int octeon_init_droq(struct octeon_device *oct, u32 q_no, u32 num_descs, u32 desc_size, void *app_ctx) { struct octeon_droq *droq; u32 desc_ring_size = 0, c_num_descs = 0, c_buf_size = 0; u32 c_pkts_per_intr = 0, c_refill_threshold = 0; int numa_node = dev_to_node(&oct->pci_dev->dev); dev_dbg(&oct->pci_dev->dev, "%s[%d]\n", __func__, q_no); droq = oct->droq[q_no]; memset(droq, 0, OCT_DROQ_SIZE); droq->oct_dev = oct; droq->q_no = q_no; if (app_ctx) droq->app_ctx = app_ctx; else droq->app_ctx = (void *)(size_t)q_no; c_num_descs = num_descs; c_buf_size = desc_size; if (OCTEON_CN6XXX(oct)) { struct octeon_config *conf6x = CHIP_CONF(oct, cn6xxx); c_pkts_per_intr = (u32)CFG_GET_OQ_PKTS_PER_INTR(conf6x); c_refill_threshold = (u32)CFG_GET_OQ_REFILL_THRESHOLD(conf6x); } else if (OCTEON_CN23XX_PF(oct)) { struct octeon_config *conf23 = CHIP_CONF(oct, cn23xx_pf); c_pkts_per_intr = (u32)CFG_GET_OQ_PKTS_PER_INTR(conf23); c_refill_threshold = (u32)CFG_GET_OQ_REFILL_THRESHOLD(conf23); } else if (OCTEON_CN23XX_VF(oct)) { struct octeon_config *conf23 = CHIP_CONF(oct, cn23xx_vf); c_pkts_per_intr = (u32)CFG_GET_OQ_PKTS_PER_INTR(conf23); c_refill_threshold = (u32)CFG_GET_OQ_REFILL_THRESHOLD(conf23); } else { return 1; } droq->max_count = c_num_descs; droq->buffer_size = c_buf_size; desc_ring_size = droq->max_count * OCT_DROQ_DESC_SIZE; droq->desc_ring = lio_dma_alloc(oct, desc_ring_size, (dma_addr_t *)&droq->desc_ring_dma); if (!droq->desc_ring) { dev_err(&oct->pci_dev->dev, "Output queue %d ring alloc failed\n", q_no); return 1; } dev_dbg(&oct->pci_dev->dev, "droq[%d]: desc_ring: virt: 0x%p, dma: %lx\n", q_no, droq->desc_ring, droq->desc_ring_dma); dev_dbg(&oct->pci_dev->dev, "droq[%d]: num_desc: %d\n", q_no, droq->max_count); droq->recv_buf_list = vzalloc_node(array_size(droq->max_count, OCT_DROQ_RECVBUF_SIZE), numa_node); if (!droq->recv_buf_list) droq->recv_buf_list = vzalloc(array_size(droq->max_count, OCT_DROQ_RECVBUF_SIZE)); if (!droq->recv_buf_list) { dev_err(&oct->pci_dev->dev, "Output queue recv buf list alloc failed\n"); goto init_droq_fail; } if (octeon_droq_setup_ring_buffers(oct, droq)) goto init_droq_fail; droq->pkts_per_intr = c_pkts_per_intr; droq->refill_threshold = c_refill_threshold; dev_dbg(&oct->pci_dev->dev, "DROQ INIT: max_empty_descs: %d\n", droq->max_empty_descs); INIT_LIST_HEAD(&droq->dispatch_list); /* For 56xx Pass1, this function won't be called, so no checks. */ oct->fn_list.setup_oq_regs(oct, q_no); oct->io_qmask.oq |= BIT_ULL(q_no); return 0; init_droq_fail: octeon_delete_droq(oct, q_no); return 1; } /* octeon_create_recv_info * Parameters: * octeon_dev - pointer to the octeon device structure * droq - droq in which the packet arrived. * buf_cnt - no. of buffers used by the packet. * idx - index in the descriptor for the first buffer in the packet. * Description: * Allocates a recv_info_t and copies the buffer addresses for packet data * into the recv_pkt space which starts at an 8B offset from recv_info_t. * Flags the descriptors for refill later. If available descriptors go * below the threshold to receive a 64K pkt, new buffers are first allocated * before the recv_pkt_t is created. * This routine will be called in interrupt context. * Returns: * Success: Pointer to recv_info_t * Failure: NULL. */ static inline struct octeon_recv_info *octeon_create_recv_info( struct octeon_device *octeon_dev, struct octeon_droq *droq, u32 buf_cnt, u32 idx) { struct octeon_droq_info *info; struct octeon_recv_pkt *recv_pkt; struct octeon_recv_info *recv_info; u32 i, bytes_left; struct octeon_skb_page_info *pg_info; info = (struct octeon_droq_info *)droq->recv_buf_list[idx].data; recv_info = octeon_alloc_recv_info(sizeof(struct __dispatch)); if (!recv_info) return NULL; recv_pkt = recv_info->recv_pkt; recv_pkt->rh = info->rh; recv_pkt->length = (u32)info->length; recv_pkt->buffer_count = (u16)buf_cnt; recv_pkt->octeon_id = (u16)octeon_dev->octeon_id; i = 0; bytes_left = (u32)info->length; while (buf_cnt) { { pg_info = &droq->recv_buf_list[idx].pg_info; lio_unmap_ring(octeon_dev->pci_dev, (u64)pg_info->dma); pg_info->page = NULL; pg_info->dma = 0; } recv_pkt->buffer_size[i] = (bytes_left >= droq->buffer_size) ? droq->buffer_size : bytes_left; recv_pkt->buffer_ptr[i] = droq->recv_buf_list[idx].buffer; droq->recv_buf_list[idx].buffer = NULL; idx = incr_index(idx, 1, droq->max_count); bytes_left -= droq->buffer_size; i++; buf_cnt--; } return recv_info; } /* If we were not able to refill all buffers, try to move around * the buffers that were not dispatched. */ static inline u32 octeon_droq_refill_pullup_descs(struct octeon_droq *droq, struct octeon_droq_desc *desc_ring) { u32 desc_refilled = 0; u32 refill_index = droq->refill_idx; while (refill_index != droq->read_idx) { if (droq->recv_buf_list[refill_index].buffer) { droq->recv_buf_list[droq->refill_idx].buffer = droq->recv_buf_list[refill_index].buffer; droq->recv_buf_list[droq->refill_idx].data = droq->recv_buf_list[refill_index].data; desc_ring[droq->refill_idx].buffer_ptr = desc_ring[refill_index].buffer_ptr; droq->recv_buf_list[refill_index].buffer = NULL; desc_ring[refill_index].buffer_ptr = 0; do { droq->refill_idx = incr_index(droq->refill_idx, 1, droq->max_count); desc_refilled++; droq->refill_count--; } while (droq->recv_buf_list[droq->refill_idx].buffer); } refill_index = incr_index(refill_index, 1, droq->max_count); } /* while */ return desc_refilled; } /* octeon_droq_refill * Parameters: * droq - droq in which descriptors require new buffers. * Description: * Called during normal DROQ processing in interrupt mode or by the poll * thread to refill the descriptors from which buffers were dispatched * to upper layers. Attempts to allocate new buffers. If that fails, moves * up buffers (that were not dispatched) to form a contiguous ring. * Returns: * No of descriptors refilled. */ static u32 octeon_droq_refill(struct octeon_device *octeon_dev, struct octeon_droq *droq) { struct octeon_droq_desc *desc_ring; void *buf = NULL; u8 *data; u32 desc_refilled = 0; struct octeon_skb_page_info *pg_info; desc_ring = droq->desc_ring; while (droq->refill_count && (desc_refilled < droq->max_count)) { /* If a valid buffer exists (happens if there is no dispatch), * reuse the buffer, else allocate. */ if (!droq->recv_buf_list[droq->refill_idx].buffer) { pg_info = &droq->recv_buf_list[droq->refill_idx].pg_info; /* Either recycle the existing pages or go for * new page alloc */ if (pg_info->page) buf = recv_buffer_reuse(octeon_dev, pg_info); else buf = recv_buffer_alloc(octeon_dev, pg_info); /* If a buffer could not be allocated, no point in * continuing */ if (!buf) { droq->stats.rx_alloc_failure++; break; } droq->recv_buf_list[droq->refill_idx].buffer = buf; data = get_rbd(buf); } else { data = get_rbd(droq->recv_buf_list [droq->refill_idx].buffer); } droq->recv_buf_list[droq->refill_idx].data = data; desc_ring[droq->refill_idx].buffer_ptr = lio_map_ring(droq->recv_buf_list[ droq->refill_idx].buffer); droq->refill_idx = incr_index(droq->refill_idx, 1, droq->max_count); desc_refilled++; droq->refill_count--; } if (droq->refill_count) desc_refilled += octeon_droq_refill_pullup_descs(droq, desc_ring); /* if droq->refill_count * The refill count would not change in pass two. We only moved buffers * to close the gap in the ring, but we would still have the same no. of * buffers to refill. */ return desc_refilled; } /** check if we can allocate packets to get out of oom. * @param droq - Droq being checked. * @return 1 if fails to refill minimum */ int octeon_retry_droq_refill(struct octeon_droq *droq) { struct octeon_device *oct = droq->oct_dev; int desc_refilled, reschedule = 1; u32 pkts_credit; pkts_credit = readl(droq->pkts_credit_reg); desc_refilled = octeon_droq_refill(oct, droq); if (desc_refilled) { /* Flush the droq descriptor data to memory to be sure * that when we update the credits the data in memory * is accurate. */ wmb(); writel(desc_refilled, droq->pkts_credit_reg); if (pkts_credit + desc_refilled >= CN23XX_SLI_DEF_BP) reschedule = 0; } return reschedule; } static inline u32 octeon_droq_get_bufcount(u32 buf_size, u32 total_len) { return DIV_ROUND_UP(total_len, buf_size); } static int octeon_droq_dispatch_pkt(struct octeon_device *oct, struct octeon_droq *droq, union octeon_rh *rh, struct octeon_droq_info *info) { u32 cnt; octeon_dispatch_fn_t disp_fn; struct octeon_recv_info *rinfo; cnt = octeon_droq_get_bufcount(droq->buffer_size, (u32)info->length); disp_fn = octeon_get_dispatch(oct, (u16)rh->r.opcode, (u16)rh->r.subcode); if (disp_fn) { rinfo = octeon_create_recv_info(oct, droq, cnt, droq->read_idx); if (rinfo) { struct __dispatch *rdisp = rinfo->rsvd; rdisp->rinfo = rinfo; rdisp->disp_fn = disp_fn; rinfo->recv_pkt->rh = *rh; list_add_tail(&rdisp->list, &droq->dispatch_list); } else { droq->stats.dropped_nomem++; } } else { dev_err(&oct->pci_dev->dev, "DROQ: No dispatch function (opcode %u/%u)\n", (unsigned int)rh->r.opcode, (unsigned int)rh->r.subcode); droq->stats.dropped_nodispatch++; } return cnt; } static inline void octeon_droq_drop_packets(struct octeon_device *oct, struct octeon_droq *droq, u32 cnt) { u32 i = 0, buf_cnt; struct octeon_droq_info *info; for (i = 0; i < cnt; i++) { info = (struct octeon_droq_info *) droq->recv_buf_list[droq->read_idx].data; octeon_swap_8B_data((u64 *)info, 2); if (info->length) { info->length += OCTNET_FRM_LENGTH_SIZE; droq->stats.bytes_received += info->length; buf_cnt = octeon_droq_get_bufcount(droq->buffer_size, (u32)info->length); } else { dev_err(&oct->pci_dev->dev, "DROQ: In drop: pkt with len 0\n"); buf_cnt = 1; } droq->read_idx = incr_index(droq->read_idx, buf_cnt, droq->max_count); droq->refill_count += buf_cnt; } } static u32 octeon_droq_fast_process_packets(struct octeon_device *oct, struct octeon_droq *droq, u32 pkts_to_process) { u32 pkt, total_len = 0, pkt_count, retval; struct octeon_droq_info *info; union octeon_rh *rh; pkt_count = pkts_to_process; for (pkt = 0; pkt < pkt_count; pkt++) { u32 pkt_len = 0; struct sk_buff *nicbuf = NULL; struct octeon_skb_page_info *pg_info; void *buf; info = (struct octeon_droq_info *) droq->recv_buf_list[droq->read_idx].data; octeon_swap_8B_data((u64 *)info, 2); if (!info->length) { dev_err(&oct->pci_dev->dev, "DROQ[%d] idx: %d len:0, pkt_cnt: %d\n", droq->q_no, droq->read_idx, pkt_count); print_hex_dump_bytes("", DUMP_PREFIX_ADDRESS, (u8 *)info, OCT_DROQ_INFO_SIZE); break; } /* Len of resp hdr in included in the received data len. */ rh = &info->rh; info->length += OCTNET_FRM_LENGTH_SIZE; rh->r_dh.len += (ROUNDUP8(OCT_DROQ_INFO_SIZE) / sizeof(u64)); total_len += (u32)info->length; if (opcode_slow_path(rh)) { u32 buf_cnt; buf_cnt = octeon_droq_dispatch_pkt(oct, droq, rh, info); droq->read_idx = incr_index(droq->read_idx, buf_cnt, droq->max_count); droq->refill_count += buf_cnt; } else { if (info->length <= droq->buffer_size) { pkt_len = (u32)info->length; nicbuf = droq->recv_buf_list[ droq->read_idx].buffer; pg_info = &droq->recv_buf_list[ droq->read_idx].pg_info; if (recv_buffer_recycle(oct, pg_info)) pg_info->page = NULL; droq->recv_buf_list[droq->read_idx].buffer = NULL; droq->read_idx = incr_index(droq->read_idx, 1, droq->max_count); droq->refill_count++; } else { nicbuf = octeon_fast_packet_alloc((u32) info->length); pkt_len = 0; /* nicbuf allocation can fail. We'll handle it * inside the loop. */ while (pkt_len < info->length) { int cpy_len, idx = droq->read_idx; cpy_len = ((pkt_len + droq->buffer_size) > info->length) ? ((u32)info->length - pkt_len) : droq->buffer_size; if (nicbuf) { octeon_fast_packet_next(droq, nicbuf, cpy_len, idx); buf = droq->recv_buf_list[ idx].buffer; recv_buffer_fast_free(buf); droq->recv_buf_list[idx].buffer = NULL; } else { droq->stats.rx_alloc_failure++; } pkt_len += cpy_len; droq->read_idx = incr_index(droq->read_idx, 1, droq->max_count); droq->refill_count++; } } if (nicbuf) { if (droq->ops.fptr) { droq->ops.fptr(oct->octeon_id, nicbuf, pkt_len, rh, &droq->napi, droq->ops.farg); } else { recv_buffer_free(nicbuf); } } } if (droq->refill_count >= droq->refill_threshold) { int desc_refilled = octeon_droq_refill(oct, droq); if (desc_refilled) { /* Flush the droq descriptor data to memory to * be sure that when we update the credits the * data in memory is accurate. */ wmb(); writel(desc_refilled, droq->pkts_credit_reg); } } } /* for (each packet)... */ /* Increment refill_count by the number of buffers processed. */ droq->stats.pkts_received += pkt; droq->stats.bytes_received += total_len; retval = pkt; if ((droq->ops.drop_on_max) && (pkts_to_process - pkt)) { octeon_droq_drop_packets(oct, droq, (pkts_to_process - pkt)); droq->stats.dropped_toomany += (pkts_to_process - pkt); retval = pkts_to_process; } atomic_sub(retval, &droq->pkts_pending); if (droq->refill_count >= droq->refill_threshold && readl(droq->pkts_credit_reg) < CN23XX_SLI_DEF_BP) { octeon_droq_check_hw_for_pkts(droq); /* Make sure there are no pkts_pending */ if (!atomic_read(&droq->pkts_pending)) octeon_schedule_rxq_oom_work(oct, droq); } return retval; } int octeon_droq_process_packets(struct octeon_device *oct, struct octeon_droq *droq, u32 budget) { u32 pkt_count = 0; struct list_head *tmp, *tmp2; octeon_droq_check_hw_for_pkts(droq); pkt_count = atomic_read(&droq->pkts_pending); if (!pkt_count) return 0; if (pkt_count > budget) pkt_count = budget; octeon_droq_fast_process_packets(oct, droq, pkt_count); list_for_each_safe(tmp, tmp2, &droq->dispatch_list) { struct __dispatch *rdisp = (struct __dispatch *)tmp; list_del(tmp); rdisp->disp_fn(rdisp->rinfo, octeon_get_dispatch_arg (oct, (u16)rdisp->rinfo->recv_pkt->rh.r.opcode, (u16)rdisp->rinfo->recv_pkt->rh.r.subcode)); } /* If there are packets pending. schedule tasklet again */ if (atomic_read(&droq->pkts_pending)) return 1; return 0; } /* * Utility function to poll for packets. check_hw_for_packets must be * called before calling this routine. */ int octeon_droq_process_poll_pkts(struct octeon_device *oct, struct octeon_droq *droq, u32 budget) { struct list_head *tmp, *tmp2; u32 pkts_available = 0, pkts_processed = 0; u32 total_pkts_processed = 0; if (budget > droq->max_count) budget = droq->max_count; while (total_pkts_processed < budget) { octeon_droq_check_hw_for_pkts(droq); pkts_available = min((budget - total_pkts_processed), (u32)(atomic_read(&droq->pkts_pending))); if (pkts_available == 0) break; pkts_processed = octeon_droq_fast_process_packets(oct, droq, pkts_available); total_pkts_processed += pkts_processed; } list_for_each_safe(tmp, tmp2, &droq->dispatch_list) { struct __dispatch *rdisp = (struct __dispatch *)tmp; list_del(tmp); rdisp->disp_fn(rdisp->rinfo, octeon_get_dispatch_arg (oct, (u16)rdisp->rinfo->recv_pkt->rh.r.opcode, (u16)rdisp->rinfo->recv_pkt->rh.r.subcode)); } return total_pkts_processed; } /* Enable Pkt Interrupt */ int octeon_enable_irq(struct octeon_device *oct, u32 q_no) { switch (oct->chip_id) { case OCTEON_CN66XX: case OCTEON_CN68XX: { struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip; unsigned long flags; u32 value; spin_lock_irqsave (&cn6xxx->lock_for_droq_int_enb_reg, flags); value = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB); value |= (1 << q_no); octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB, value); value = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB); value |= (1 << q_no); octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB, value); /* don't bother flushing the enables */ spin_unlock_irqrestore (&cn6xxx->lock_for_droq_int_enb_reg, flags); } break; case OCTEON_CN23XX_PF_VID: lio_enable_irq(oct->droq[q_no], oct->instr_queue[q_no]); break; case OCTEON_CN23XX_VF_VID: lio_enable_irq(oct->droq[q_no], oct->instr_queue[q_no]); break; default: dev_err(&oct->pci_dev->dev, "%s Unknown Chip\n", __func__); return 1; } return 0; } int octeon_register_droq_ops(struct octeon_device *oct, u32 q_no, struct octeon_droq_ops *ops) { struct octeon_config *oct_cfg = NULL; struct octeon_droq *droq; oct_cfg = octeon_get_conf(oct); if (!oct_cfg) return -EINVAL; if (!(ops)) { dev_err(&oct->pci_dev->dev, "%s: droq_ops pointer is NULL\n", __func__); return -EINVAL; } if (q_no >= CFG_GET_OQ_MAX_Q(oct_cfg)) { dev_err(&oct->pci_dev->dev, "%s: droq id (%d) exceeds MAX (%d)\n", __func__, q_no, (oct->num_oqs - 1)); return -EINVAL; } droq = oct->droq[q_no]; memcpy(&droq->ops, ops, sizeof(struct octeon_droq_ops)); return 0; } int octeon_unregister_droq_ops(struct octeon_device *oct, u32 q_no) { struct octeon_config *oct_cfg = NULL; struct octeon_droq *droq; oct_cfg = octeon_get_conf(oct); if (!oct_cfg) return -EINVAL; if (q_no >= CFG_GET_OQ_MAX_Q(oct_cfg)) { dev_err(&oct->pci_dev->dev, "%s: droq id (%d) exceeds MAX (%d)\n", __func__, q_no, oct->num_oqs - 1); return -EINVAL; } droq = oct->droq[q_no]; if (!droq) { dev_info(&oct->pci_dev->dev, "Droq id (%d) not available.\n", q_no); return 0; } droq->ops.fptr = NULL; droq->ops.farg = NULL; droq->ops.drop_on_max = 0; return 0; } int octeon_create_droq(struct octeon_device *oct, u32 q_no, u32 num_descs, u32 desc_size, void *app_ctx) { struct octeon_droq *droq; int numa_node = dev_to_node(&oct->pci_dev->dev); if (oct->droq[q_no]) { dev_dbg(&oct->pci_dev->dev, "Droq already in use. Cannot create droq %d again\n", q_no); return 1; } /* Allocate the DS for the new droq. */ droq = vmalloc_node(sizeof(*droq), numa_node); if (!droq) droq = vmalloc(sizeof(*droq)); if (!droq) return -1; memset(droq, 0, sizeof(struct octeon_droq)); /*Disable the pkt o/p for this Q */ octeon_set_droq_pkt_op(oct, q_no, 0); oct->droq[q_no] = droq; /* Initialize the Droq */ if (octeon_init_droq(oct, q_no, num_descs, desc_size, app_ctx)) { vfree(oct->droq[q_no]); oct->droq[q_no] = NULL; return -1; } oct->num_oqs++; dev_dbg(&oct->pci_dev->dev, "%s: Total number of OQ: %d\n", __func__, oct->num_oqs); /* Global Droq register settings */ /* As of now not required, as setting are done for all 32 Droqs at * the same time. */ return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1