Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ioana Ciornei | 8879 | 58.27% | 60 | 66.67% |
Razvan Stefanescu | 5739 | 37.66% | 7 | 7.78% |
Vladimir Oltean | 387 | 2.54% | 13 | 14.44% |
Petr Machata | 125 | 0.82% | 3 | 3.33% |
Florian Fainelli | 97 | 0.64% | 2 | 2.22% |
Colin Ian King | 5 | 0.03% | 1 | 1.11% |
Tobias Waldekranz | 2 | 0.01% | 1 | 1.11% |
Thomas Gleixner | 2 | 0.01% | 1 | 1.11% |
Ioana Radulescu | 1 | 0.01% | 1 | 1.11% |
Jakub Kiciński | 1 | 0.01% | 1 | 1.11% |
Total | 15238 | 90 |
// SPDX-License-Identifier: GPL-2.0 /* * DPAA2 Ethernet Switch driver * * Copyright 2014-2016 Freescale Semiconductor Inc. * Copyright 2017-2021 NXP * */ #include <linux/module.h> #include <linux/interrupt.h> #include <linux/kthread.h> #include <linux/workqueue.h> #include <linux/iommu.h> #include <net/pkt_cls.h> #include <linux/fsl/mc.h> #include "dpaa2-switch.h" /* Minimal supported DPSW version */ #define DPSW_MIN_VER_MAJOR 8 #define DPSW_MIN_VER_MINOR 9 #define DEFAULT_VLAN_ID 1 static u16 dpaa2_switch_port_get_fdb_id(struct ethsw_port_priv *port_priv) { return port_priv->fdb->fdb_id; } static struct dpaa2_switch_fdb *dpaa2_switch_fdb_get_unused(struct ethsw_core *ethsw) { int i; for (i = 0; i < ethsw->sw_attr.num_ifs; i++) if (!ethsw->fdbs[i].in_use) return ðsw->fdbs[i]; return NULL; } static struct dpaa2_switch_filter_block * dpaa2_switch_filter_block_get_unused(struct ethsw_core *ethsw) { int i; for (i = 0; i < ethsw->sw_attr.num_ifs; i++) if (!ethsw->filter_blocks[i].in_use) return ðsw->filter_blocks[i]; return NULL; } static u16 dpaa2_switch_port_set_fdb(struct ethsw_port_priv *port_priv, struct net_device *bridge_dev) { struct ethsw_port_priv *other_port_priv = NULL; struct dpaa2_switch_fdb *fdb; struct net_device *other_dev; struct list_head *iter; /* If we leave a bridge (bridge_dev is NULL), find an unused * FDB and use that. */ if (!bridge_dev) { fdb = dpaa2_switch_fdb_get_unused(port_priv->ethsw_data); /* If there is no unused FDB, we must be the last port that * leaves the last bridge, all the others are standalone. We * can just keep the FDB that we already have. */ if (!fdb) { port_priv->fdb->bridge_dev = NULL; return 0; } port_priv->fdb = fdb; port_priv->fdb->in_use = true; port_priv->fdb->bridge_dev = NULL; return 0; } /* The below call to netdev_for_each_lower_dev() demands the RTNL lock * being held. Assert on it so that it's easier to catch new code * paths that reach this point without the RTNL lock. */ ASSERT_RTNL(); /* If part of a bridge, use the FDB of the first dpaa2 switch interface * to be present in that bridge */ netdev_for_each_lower_dev(bridge_dev, other_dev, iter) { if (!dpaa2_switch_port_dev_check(other_dev)) continue; if (other_dev == port_priv->netdev) continue; other_port_priv = netdev_priv(other_dev); break; } /* The current port is about to change its FDB to the one used by the * first port that joined the bridge. */ if (other_port_priv) { /* The previous FDB is about to become unused, since the * interface is no longer standalone. */ port_priv->fdb->in_use = false; port_priv->fdb->bridge_dev = NULL; /* Get a reference to the new FDB */ port_priv->fdb = other_port_priv->fdb; } /* Keep track of the new upper bridge device */ port_priv->fdb->bridge_dev = bridge_dev; return 0; } static void dpaa2_switch_fdb_get_flood_cfg(struct ethsw_core *ethsw, u16 fdb_id, enum dpsw_flood_type type, struct dpsw_egress_flood_cfg *cfg) { int i = 0, j; memset(cfg, 0, sizeof(*cfg)); /* Add all the DPAA2 switch ports found in the same bridging domain to * the egress flooding domain */ for (j = 0; j < ethsw->sw_attr.num_ifs; j++) { if (!ethsw->ports[j]) continue; if (ethsw->ports[j]->fdb->fdb_id != fdb_id) continue; if (type == DPSW_BROADCAST && ethsw->ports[j]->bcast_flood) cfg->if_id[i++] = ethsw->ports[j]->idx; else if (type == DPSW_FLOODING && ethsw->ports[j]->ucast_flood) cfg->if_id[i++] = ethsw->ports[j]->idx; } /* Add the CTRL interface to the egress flooding domain */ cfg->if_id[i++] = ethsw->sw_attr.num_ifs; cfg->fdb_id = fdb_id; cfg->flood_type = type; cfg->num_ifs = i; } static int dpaa2_switch_fdb_set_egress_flood(struct ethsw_core *ethsw, u16 fdb_id) { struct dpsw_egress_flood_cfg flood_cfg; int err; /* Setup broadcast flooding domain */ dpaa2_switch_fdb_get_flood_cfg(ethsw, fdb_id, DPSW_BROADCAST, &flood_cfg); err = dpsw_set_egress_flood(ethsw->mc_io, 0, ethsw->dpsw_handle, &flood_cfg); if (err) { dev_err(ethsw->dev, "dpsw_set_egress_flood() = %d\n", err); return err; } /* Setup unknown flooding domain */ dpaa2_switch_fdb_get_flood_cfg(ethsw, fdb_id, DPSW_FLOODING, &flood_cfg); err = dpsw_set_egress_flood(ethsw->mc_io, 0, ethsw->dpsw_handle, &flood_cfg); if (err) { dev_err(ethsw->dev, "dpsw_set_egress_flood() = %d\n", err); return err; } return 0; } static void *dpaa2_iova_to_virt(struct iommu_domain *domain, dma_addr_t iova_addr) { phys_addr_t phys_addr; phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; return phys_to_virt(phys_addr); } static int dpaa2_switch_add_vlan(struct ethsw_port_priv *port_priv, u16 vid) { struct ethsw_core *ethsw = port_priv->ethsw_data; struct dpsw_vlan_cfg vcfg = {0}; int err; vcfg.fdb_id = dpaa2_switch_port_get_fdb_id(port_priv); err = dpsw_vlan_add(ethsw->mc_io, 0, ethsw->dpsw_handle, vid, &vcfg); if (err) { dev_err(ethsw->dev, "dpsw_vlan_add err %d\n", err); return err; } ethsw->vlans[vid] = ETHSW_VLAN_MEMBER; return 0; } static bool dpaa2_switch_port_is_up(struct ethsw_port_priv *port_priv) { struct net_device *netdev = port_priv->netdev; struct dpsw_link_state state; int err; err = dpsw_if_get_link_state(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, port_priv->idx, &state); if (err) { netdev_err(netdev, "dpsw_if_get_link_state() err %d\n", err); return true; } WARN_ONCE(state.up > 1, "Garbage read into link_state"); return state.up ? true : false; } static int dpaa2_switch_port_set_pvid(struct ethsw_port_priv *port_priv, u16 pvid) { struct ethsw_core *ethsw = port_priv->ethsw_data; struct net_device *netdev = port_priv->netdev; struct dpsw_tci_cfg tci_cfg = { 0 }; bool up; int err, ret; err = dpsw_if_get_tci(ethsw->mc_io, 0, ethsw->dpsw_handle, port_priv->idx, &tci_cfg); if (err) { netdev_err(netdev, "dpsw_if_get_tci err %d\n", err); return err; } tci_cfg.vlan_id = pvid; /* Interface needs to be down to change PVID */ up = dpaa2_switch_port_is_up(port_priv); if (up) { err = dpsw_if_disable(ethsw->mc_io, 0, ethsw->dpsw_handle, port_priv->idx); if (err) { netdev_err(netdev, "dpsw_if_disable err %d\n", err); return err; } } err = dpsw_if_set_tci(ethsw->mc_io, 0, ethsw->dpsw_handle, port_priv->idx, &tci_cfg); if (err) { netdev_err(netdev, "dpsw_if_set_tci err %d\n", err); goto set_tci_error; } /* Delete previous PVID info and mark the new one */ port_priv->vlans[port_priv->pvid] &= ~ETHSW_VLAN_PVID; port_priv->vlans[pvid] |= ETHSW_VLAN_PVID; port_priv->pvid = pvid; set_tci_error: if (up) { ret = dpsw_if_enable(ethsw->mc_io, 0, ethsw->dpsw_handle, port_priv->idx); if (ret) { netdev_err(netdev, "dpsw_if_enable err %d\n", ret); return ret; } } return err; } static int dpaa2_switch_port_add_vlan(struct ethsw_port_priv *port_priv, u16 vid, u16 flags) { struct ethsw_core *ethsw = port_priv->ethsw_data; struct net_device *netdev = port_priv->netdev; struct dpsw_vlan_if_cfg vcfg = {0}; int err; if (port_priv->vlans[vid]) { netdev_warn(netdev, "VLAN %d already configured\n", vid); return -EEXIST; } /* If hit, this VLAN rule will lead the packet into the FDB table * specified in the vlan configuration below */ vcfg.num_ifs = 1; vcfg.if_id[0] = port_priv->idx; vcfg.fdb_id = dpaa2_switch_port_get_fdb_id(port_priv); vcfg.options |= DPSW_VLAN_ADD_IF_OPT_FDB_ID; err = dpsw_vlan_add_if(ethsw->mc_io, 0, ethsw->dpsw_handle, vid, &vcfg); if (err) { netdev_err(netdev, "dpsw_vlan_add_if err %d\n", err); return err; } port_priv->vlans[vid] = ETHSW_VLAN_MEMBER; if (flags & BRIDGE_VLAN_INFO_UNTAGGED) { err = dpsw_vlan_add_if_untagged(ethsw->mc_io, 0, ethsw->dpsw_handle, vid, &vcfg); if (err) { netdev_err(netdev, "dpsw_vlan_add_if_untagged err %d\n", err); return err; } port_priv->vlans[vid] |= ETHSW_VLAN_UNTAGGED; } if (flags & BRIDGE_VLAN_INFO_PVID) { err = dpaa2_switch_port_set_pvid(port_priv, vid); if (err) return err; } return 0; } static enum dpsw_stp_state br_stp_state_to_dpsw(u8 state) { switch (state) { case BR_STATE_DISABLED: return DPSW_STP_STATE_DISABLED; case BR_STATE_LISTENING: return DPSW_STP_STATE_LISTENING; case BR_STATE_LEARNING: return DPSW_STP_STATE_LEARNING; case BR_STATE_FORWARDING: return DPSW_STP_STATE_FORWARDING; case BR_STATE_BLOCKING: return DPSW_STP_STATE_BLOCKING; default: return DPSW_STP_STATE_DISABLED; } } static int dpaa2_switch_port_set_stp_state(struct ethsw_port_priv *port_priv, u8 state) { struct dpsw_stp_cfg stp_cfg = {0}; int err; u16 vid; if (!netif_running(port_priv->netdev) || state == port_priv->stp_state) return 0; /* Nothing to do */ stp_cfg.state = br_stp_state_to_dpsw(state); for (vid = 0; vid <= VLAN_VID_MASK; vid++) { if (port_priv->vlans[vid] & ETHSW_VLAN_MEMBER) { stp_cfg.vlan_id = vid; err = dpsw_if_set_stp(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, port_priv->idx, &stp_cfg); if (err) { netdev_err(port_priv->netdev, "dpsw_if_set_stp err %d\n", err); return err; } } } port_priv->stp_state = state; return 0; } static int dpaa2_switch_dellink(struct ethsw_core *ethsw, u16 vid) { struct ethsw_port_priv *ppriv_local = NULL; int i, err; if (!ethsw->vlans[vid]) return -ENOENT; err = dpsw_vlan_remove(ethsw->mc_io, 0, ethsw->dpsw_handle, vid); if (err) { dev_err(ethsw->dev, "dpsw_vlan_remove err %d\n", err); return err; } ethsw->vlans[vid] = 0; for (i = 0; i < ethsw->sw_attr.num_ifs; i++) { ppriv_local = ethsw->ports[i]; if (ppriv_local) ppriv_local->vlans[vid] = 0; } return 0; } static int dpaa2_switch_port_fdb_add_uc(struct ethsw_port_priv *port_priv, const unsigned char *addr) { struct dpsw_fdb_unicast_cfg entry = {0}; u16 fdb_id; int err; entry.if_egress = port_priv->idx; entry.type = DPSW_FDB_ENTRY_STATIC; ether_addr_copy(entry.mac_addr, addr); fdb_id = dpaa2_switch_port_get_fdb_id(port_priv); err = dpsw_fdb_add_unicast(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, fdb_id, &entry); if (err) netdev_err(port_priv->netdev, "dpsw_fdb_add_unicast err %d\n", err); return err; } static int dpaa2_switch_port_fdb_del_uc(struct ethsw_port_priv *port_priv, const unsigned char *addr) { struct dpsw_fdb_unicast_cfg entry = {0}; u16 fdb_id; int err; entry.if_egress = port_priv->idx; entry.type = DPSW_FDB_ENTRY_STATIC; ether_addr_copy(entry.mac_addr, addr); fdb_id = dpaa2_switch_port_get_fdb_id(port_priv); err = dpsw_fdb_remove_unicast(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, fdb_id, &entry); /* Silently discard error for calling multiple times the del command */ if (err && err != -ENXIO) netdev_err(port_priv->netdev, "dpsw_fdb_remove_unicast err %d\n", err); return err; } static int dpaa2_switch_port_fdb_add_mc(struct ethsw_port_priv *port_priv, const unsigned char *addr) { struct dpsw_fdb_multicast_cfg entry = {0}; u16 fdb_id; int err; ether_addr_copy(entry.mac_addr, addr); entry.type = DPSW_FDB_ENTRY_STATIC; entry.num_ifs = 1; entry.if_id[0] = port_priv->idx; fdb_id = dpaa2_switch_port_get_fdb_id(port_priv); err = dpsw_fdb_add_multicast(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, fdb_id, &entry); /* Silently discard error for calling multiple times the add command */ if (err && err != -ENXIO) netdev_err(port_priv->netdev, "dpsw_fdb_add_multicast err %d\n", err); return err; } static int dpaa2_switch_port_fdb_del_mc(struct ethsw_port_priv *port_priv, const unsigned char *addr) { struct dpsw_fdb_multicast_cfg entry = {0}; u16 fdb_id; int err; ether_addr_copy(entry.mac_addr, addr); entry.type = DPSW_FDB_ENTRY_STATIC; entry.num_ifs = 1; entry.if_id[0] = port_priv->idx; fdb_id = dpaa2_switch_port_get_fdb_id(port_priv); err = dpsw_fdb_remove_multicast(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, fdb_id, &entry); /* Silently discard error for calling multiple times the del command */ if (err && err != -ENAVAIL) netdev_err(port_priv->netdev, "dpsw_fdb_remove_multicast err %d\n", err); return err; } static void dpaa2_switch_port_get_stats(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); u64 tmp; int err; err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, port_priv->idx, DPSW_CNT_ING_FRAME, &stats->rx_packets); if (err) goto error; err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, port_priv->idx, DPSW_CNT_EGR_FRAME, &stats->tx_packets); if (err) goto error; err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, port_priv->idx, DPSW_CNT_ING_BYTE, &stats->rx_bytes); if (err) goto error; err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, port_priv->idx, DPSW_CNT_EGR_BYTE, &stats->tx_bytes); if (err) goto error; err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, port_priv->idx, DPSW_CNT_ING_FRAME_DISCARD, &stats->rx_dropped); if (err) goto error; err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, port_priv->idx, DPSW_CNT_ING_FLTR_FRAME, &tmp); if (err) goto error; stats->rx_dropped += tmp; err = dpsw_if_get_counter(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, port_priv->idx, DPSW_CNT_EGR_FRAME_DISCARD, &stats->tx_dropped); if (err) goto error; return; error: netdev_err(netdev, "dpsw_if_get_counter err %d\n", err); } static bool dpaa2_switch_port_has_offload_stats(const struct net_device *netdev, int attr_id) { return (attr_id == IFLA_OFFLOAD_XSTATS_CPU_HIT); } static int dpaa2_switch_port_get_offload_stats(int attr_id, const struct net_device *netdev, void *sp) { switch (attr_id) { case IFLA_OFFLOAD_XSTATS_CPU_HIT: dpaa2_switch_port_get_stats((struct net_device *)netdev, sp); return 0; } return -EINVAL; } static int dpaa2_switch_port_change_mtu(struct net_device *netdev, int mtu) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); int err; err = dpsw_if_set_max_frame_length(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, port_priv->idx, (u16)ETHSW_L2_MAX_FRM(mtu)); if (err) { netdev_err(netdev, "dpsw_if_set_max_frame_length() err %d\n", err); return err; } netdev->mtu = mtu; return 0; } static int dpaa2_switch_port_link_state_update(struct net_device *netdev) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); struct dpsw_link_state state; int err; /* When we manage the MAC/PHY using phylink there is no need * to manually update the netif_carrier. * We can avoid locking because we are called from the "link changed" * IRQ handler, which is the same as the "endpoint changed" IRQ handler * (the writer to port_priv->mac), so we cannot race with it. */ if (dpaa2_mac_is_type_phy(port_priv->mac)) return 0; /* Interrupts are received even though no one issued an 'ifconfig up' * on the switch interface. Ignore these link state update interrupts */ if (!netif_running(netdev)) return 0; err = dpsw_if_get_link_state(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, port_priv->idx, &state); if (err) { netdev_err(netdev, "dpsw_if_get_link_state() err %d\n", err); return err; } WARN_ONCE(state.up > 1, "Garbage read into link_state"); if (state.up != port_priv->link_state) { if (state.up) { netif_carrier_on(netdev); netif_tx_start_all_queues(netdev); } else { netif_carrier_off(netdev); netif_tx_stop_all_queues(netdev); } port_priv->link_state = state.up; } return 0; } /* Manage all NAPI instances for the control interface. * * We only have one RX queue and one Tx Conf queue for all * switch ports. Therefore, we only need to enable the NAPI instance once, the * first time one of the switch ports runs .dev_open(). */ static void dpaa2_switch_enable_ctrl_if_napi(struct ethsw_core *ethsw) { int i; /* Access to the ethsw->napi_users relies on the RTNL lock */ ASSERT_RTNL(); /* a new interface is using the NAPI instance */ ethsw->napi_users++; /* if there is already a user of the instance, return */ if (ethsw->napi_users > 1) return; for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) napi_enable(ðsw->fq[i].napi); } static void dpaa2_switch_disable_ctrl_if_napi(struct ethsw_core *ethsw) { int i; /* Access to the ethsw->napi_users relies on the RTNL lock */ ASSERT_RTNL(); /* If we are not the last interface using the NAPI, return */ ethsw->napi_users--; if (ethsw->napi_users) return; for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) napi_disable(ðsw->fq[i].napi); } static int dpaa2_switch_port_open(struct net_device *netdev) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); struct ethsw_core *ethsw = port_priv->ethsw_data; int err; mutex_lock(&port_priv->mac_lock); if (!dpaa2_switch_port_is_type_phy(port_priv)) { /* Explicitly set carrier off, otherwise * netif_carrier_ok() will return true and cause 'ip link show' * to report the LOWER_UP flag, even though the link * notification wasn't even received. */ netif_carrier_off(netdev); } err = dpsw_if_enable(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, port_priv->idx); if (err) { mutex_unlock(&port_priv->mac_lock); netdev_err(netdev, "dpsw_if_enable err %d\n", err); return err; } dpaa2_switch_enable_ctrl_if_napi(ethsw); if (dpaa2_switch_port_is_type_phy(port_priv)) dpaa2_mac_start(port_priv->mac); mutex_unlock(&port_priv->mac_lock); return 0; } static int dpaa2_switch_port_stop(struct net_device *netdev) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); struct ethsw_core *ethsw = port_priv->ethsw_data; int err; mutex_lock(&port_priv->mac_lock); if (dpaa2_switch_port_is_type_phy(port_priv)) { dpaa2_mac_stop(port_priv->mac); } else { netif_tx_stop_all_queues(netdev); netif_carrier_off(netdev); } mutex_unlock(&port_priv->mac_lock); err = dpsw_if_disable(port_priv->ethsw_data->mc_io, 0, port_priv->ethsw_data->dpsw_handle, port_priv->idx); if (err) { netdev_err(netdev, "dpsw_if_disable err %d\n", err); return err; } dpaa2_switch_disable_ctrl_if_napi(ethsw); return 0; } static int dpaa2_switch_port_parent_id(struct net_device *dev, struct netdev_phys_item_id *ppid) { struct ethsw_port_priv *port_priv = netdev_priv(dev); ppid->id_len = 1; ppid->id[0] = port_priv->ethsw_data->dev_id; return 0; } static int dpaa2_switch_port_get_phys_name(struct net_device *netdev, char *name, size_t len) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); int err; err = snprintf(name, len, "p%d", port_priv->idx); if (err >= len) return -EINVAL; return 0; } struct ethsw_dump_ctx { struct net_device *dev; struct sk_buff *skb; struct netlink_callback *cb; int idx; }; static int dpaa2_switch_fdb_dump_nl(struct fdb_dump_entry *entry, struct ethsw_dump_ctx *dump) { int is_dynamic = entry->type & DPSW_FDB_ENTRY_DINAMIC; u32 portid = NETLINK_CB(dump->cb->skb).portid; u32 seq = dump->cb->nlh->nlmsg_seq; struct nlmsghdr *nlh; struct ndmsg *ndm; if (dump->idx < dump->cb->args[2]) goto skip; nlh = nlmsg_put(dump->skb, portid, seq, RTM_NEWNEIGH, sizeof(*ndm), NLM_F_MULTI); if (!nlh) return -EMSGSIZE; ndm = nlmsg_data(nlh); ndm->ndm_family = AF_BRIDGE; ndm->ndm_pad1 = 0; ndm->ndm_pad2 = 0; ndm->ndm_flags = NTF_SELF; ndm->ndm_type = 0; ndm->ndm_ifindex = dump->dev->ifindex; ndm->ndm_state = is_dynamic ? NUD_REACHABLE : NUD_NOARP; if (nla_put(dump->skb, NDA_LLADDR, ETH_ALEN, entry->mac_addr)) goto nla_put_failure; nlmsg_end(dump->skb, nlh); skip: dump->idx++; return 0; nla_put_failure: nlmsg_cancel(dump->skb, nlh); return -EMSGSIZE; } static int dpaa2_switch_port_fdb_valid_entry(struct fdb_dump_entry *entry, struct ethsw_port_priv *port_priv) { int idx = port_priv->idx; int valid; if (entry->type & DPSW_FDB_ENTRY_TYPE_UNICAST) valid = entry->if_info == port_priv->idx; else valid = entry->if_mask[idx / 8] & BIT(idx % 8); return valid; } static int dpaa2_switch_fdb_iterate(struct ethsw_port_priv *port_priv, dpaa2_switch_fdb_cb_t cb, void *data) { struct net_device *net_dev = port_priv->netdev; struct ethsw_core *ethsw = port_priv->ethsw_data; struct device *dev = net_dev->dev.parent; struct fdb_dump_entry *fdb_entries; struct fdb_dump_entry fdb_entry; dma_addr_t fdb_dump_iova; u16 num_fdb_entries; u32 fdb_dump_size; int err = 0, i; u8 *dma_mem; u16 fdb_id; fdb_dump_size = ethsw->sw_attr.max_fdb_entries * sizeof(fdb_entry); dma_mem = kzalloc(fdb_dump_size, GFP_KERNEL); if (!dma_mem) return -ENOMEM; fdb_dump_iova = dma_map_single(dev, dma_mem, fdb_dump_size, DMA_FROM_DEVICE); if (dma_mapping_error(dev, fdb_dump_iova)) { netdev_err(net_dev, "dma_map_single() failed\n"); err = -ENOMEM; goto err_map; } fdb_id = dpaa2_switch_port_get_fdb_id(port_priv); err = dpsw_fdb_dump(ethsw->mc_io, 0, ethsw->dpsw_handle, fdb_id, fdb_dump_iova, fdb_dump_size, &num_fdb_entries); if (err) { netdev_err(net_dev, "dpsw_fdb_dump() = %d\n", err); goto err_dump; } dma_unmap_single(dev, fdb_dump_iova, fdb_dump_size, DMA_FROM_DEVICE); fdb_entries = (struct fdb_dump_entry *)dma_mem; for (i = 0; i < num_fdb_entries; i++) { fdb_entry = fdb_entries[i]; err = cb(port_priv, &fdb_entry, data); if (err) goto end; } end: kfree(dma_mem); return 0; err_dump: dma_unmap_single(dev, fdb_dump_iova, fdb_dump_size, DMA_TO_DEVICE); err_map: kfree(dma_mem); return err; } static int dpaa2_switch_fdb_entry_dump(struct ethsw_port_priv *port_priv, struct fdb_dump_entry *fdb_entry, void *data) { if (!dpaa2_switch_port_fdb_valid_entry(fdb_entry, port_priv)) return 0; return dpaa2_switch_fdb_dump_nl(fdb_entry, data); } static int dpaa2_switch_port_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb, struct net_device *net_dev, struct net_device *filter_dev, int *idx) { struct ethsw_port_priv *port_priv = netdev_priv(net_dev); struct ethsw_dump_ctx dump = { .dev = net_dev, .skb = skb, .cb = cb, .idx = *idx, }; int err; err = dpaa2_switch_fdb_iterate(port_priv, dpaa2_switch_fdb_entry_dump, &dump); *idx = dump.idx; return err; } static int dpaa2_switch_fdb_entry_fast_age(struct ethsw_port_priv *port_priv, struct fdb_dump_entry *fdb_entry, void *data __always_unused) { if (!dpaa2_switch_port_fdb_valid_entry(fdb_entry, port_priv)) return 0; if (!(fdb_entry->type & DPSW_FDB_ENTRY_TYPE_DYNAMIC)) return 0; if (fdb_entry->type & DPSW_FDB_ENTRY_TYPE_UNICAST) dpaa2_switch_port_fdb_del_uc(port_priv, fdb_entry->mac_addr); else dpaa2_switch_port_fdb_del_mc(port_priv, fdb_entry->mac_addr); return 0; } static void dpaa2_switch_port_fast_age(struct ethsw_port_priv *port_priv) { dpaa2_switch_fdb_iterate(port_priv, dpaa2_switch_fdb_entry_fast_age, NULL); } static int dpaa2_switch_port_vlan_add(struct net_device *netdev, __be16 proto, u16 vid) { struct switchdev_obj_port_vlan vlan = { .obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN, .vid = vid, .obj.orig_dev = netdev, /* This API only allows programming tagged, non-PVID VIDs */ .flags = 0, }; return dpaa2_switch_port_vlans_add(netdev, &vlan); } static int dpaa2_switch_port_vlan_kill(struct net_device *netdev, __be16 proto, u16 vid) { struct switchdev_obj_port_vlan vlan = { .obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN, .vid = vid, .obj.orig_dev = netdev, /* This API only allows programming tagged, non-PVID VIDs */ .flags = 0, }; return dpaa2_switch_port_vlans_del(netdev, &vlan); } static int dpaa2_switch_port_set_mac_addr(struct ethsw_port_priv *port_priv) { struct ethsw_core *ethsw = port_priv->ethsw_data; struct net_device *net_dev = port_priv->netdev; struct device *dev = net_dev->dev.parent; u8 mac_addr[ETH_ALEN]; int err; if (!(ethsw->features & ETHSW_FEATURE_MAC_ADDR)) return 0; /* Get firmware address, if any */ err = dpsw_if_get_port_mac_addr(ethsw->mc_io, 0, ethsw->dpsw_handle, port_priv->idx, mac_addr); if (err) { dev_err(dev, "dpsw_if_get_port_mac_addr() failed\n"); return err; } /* First check if firmware has any address configured by bootloader */ if (!is_zero_ether_addr(mac_addr)) { eth_hw_addr_set(net_dev, mac_addr); } else { /* No MAC address configured, fill in net_dev->dev_addr * with a random one */ eth_hw_addr_random(net_dev); dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all * practical purposes, this will be our "permanent" mac address, * at least until the next reboot. This move will also permit * register_netdevice() to properly fill up net_dev->perm_addr. */ net_dev->addr_assign_type = NET_ADDR_PERM; } return 0; } static void dpaa2_switch_free_fd(const struct ethsw_core *ethsw, const struct dpaa2_fd *fd) { struct device *dev = ethsw->dev; unsigned char *buffer_start; struct sk_buff **skbh, *skb; dma_addr_t fd_addr; fd_addr = dpaa2_fd_get_addr(fd); skbh = dpaa2_iova_to_virt(ethsw->iommu_domain, fd_addr); skb = *skbh; buffer_start = (unsigned char *)skbh; dma_unmap_single(dev, fd_addr, skb_tail_pointer(skb) - buffer_start, DMA_TO_DEVICE); /* Move on with skb release */ dev_kfree_skb(skb); } static int dpaa2_switch_build_single_fd(struct ethsw_core *ethsw, struct sk_buff *skb, struct dpaa2_fd *fd) { struct device *dev = ethsw->dev; struct sk_buff **skbh; dma_addr_t addr; u8 *buff_start; void *hwa; buff_start = PTR_ALIGN(skb->data - DPAA2_SWITCH_TX_DATA_OFFSET - DPAA2_SWITCH_TX_BUF_ALIGN, DPAA2_SWITCH_TX_BUF_ALIGN); /* Clear FAS to have consistent values for TX confirmation. It is * located in the first 8 bytes of the buffer's hardware annotation * area */ hwa = buff_start + DPAA2_SWITCH_SWA_SIZE; memset(hwa, 0, 8); /* Store a backpointer to the skb at the beginning of the buffer * (in the private data area) such that we can release it * on Tx confirm */ skbh = (struct sk_buff **)buff_start; *skbh = skb; addr = dma_map_single(dev, buff_start, skb_tail_pointer(skb) - buff_start, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, addr))) return -ENOMEM; /* Setup the FD fields */ memset(fd, 0, sizeof(*fd)); dpaa2_fd_set_addr(fd, addr); dpaa2_fd_set_offset(fd, (u16)(skb->data - buff_start)); dpaa2_fd_set_len(fd, skb->len); dpaa2_fd_set_format(fd, dpaa2_fd_single); return 0; } static netdev_tx_t dpaa2_switch_port_tx(struct sk_buff *skb, struct net_device *net_dev) { struct ethsw_port_priv *port_priv = netdev_priv(net_dev); struct ethsw_core *ethsw = port_priv->ethsw_data; int retries = DPAA2_SWITCH_SWP_BUSY_RETRIES; struct dpaa2_fd fd; int err; if (unlikely(skb_headroom(skb) < DPAA2_SWITCH_NEEDED_HEADROOM)) { struct sk_buff *ns; ns = skb_realloc_headroom(skb, DPAA2_SWITCH_NEEDED_HEADROOM); if (unlikely(!ns)) { net_err_ratelimited("%s: Error reallocating skb headroom\n", net_dev->name); goto err_free_skb; } dev_consume_skb_any(skb); skb = ns; } /* We'll be holding a back-reference to the skb until Tx confirmation */ skb = skb_unshare(skb, GFP_ATOMIC); if (unlikely(!skb)) { /* skb_unshare() has already freed the skb */ net_err_ratelimited("%s: Error copying the socket buffer\n", net_dev->name); goto err_exit; } /* At this stage, we do not support non-linear skbs so just try to * linearize the skb and if that's not working, just drop the packet. */ err = skb_linearize(skb); if (err) { net_err_ratelimited("%s: skb_linearize error (%d)!\n", net_dev->name, err); goto err_free_skb; } err = dpaa2_switch_build_single_fd(ethsw, skb, &fd); if (unlikely(err)) { net_err_ratelimited("%s: ethsw_build_*_fd() %d\n", net_dev->name, err); goto err_free_skb; } do { err = dpaa2_io_service_enqueue_qd(NULL, port_priv->tx_qdid, 8, 0, &fd); retries--; } while (err == -EBUSY && retries); if (unlikely(err < 0)) { dpaa2_switch_free_fd(ethsw, &fd); goto err_exit; } return NETDEV_TX_OK; err_free_skb: dev_kfree_skb(skb); err_exit: return NETDEV_TX_OK; } static int dpaa2_switch_setup_tc_cls_flower(struct dpaa2_switch_filter_block *filter_block, struct flow_cls_offload *f) { switch (f->command) { case FLOW_CLS_REPLACE: return dpaa2_switch_cls_flower_replace(filter_block, f); case FLOW_CLS_DESTROY: return dpaa2_switch_cls_flower_destroy(filter_block, f); default: return -EOPNOTSUPP; } } static int dpaa2_switch_setup_tc_cls_matchall(struct dpaa2_switch_filter_block *block, struct tc_cls_matchall_offload *f) { switch (f->command) { case TC_CLSMATCHALL_REPLACE: return dpaa2_switch_cls_matchall_replace(block, f); case TC_CLSMATCHALL_DESTROY: return dpaa2_switch_cls_matchall_destroy(block, f); default: return -EOPNOTSUPP; } } static int dpaa2_switch_port_setup_tc_block_cb_ig(enum tc_setup_type type, void *type_data, void *cb_priv) { switch (type) { case TC_SETUP_CLSFLOWER: return dpaa2_switch_setup_tc_cls_flower(cb_priv, type_data); case TC_SETUP_CLSMATCHALL: return dpaa2_switch_setup_tc_cls_matchall(cb_priv, type_data); default: return -EOPNOTSUPP; } } static LIST_HEAD(dpaa2_switch_block_cb_list); static int dpaa2_switch_port_acl_tbl_bind(struct ethsw_port_priv *port_priv, struct dpaa2_switch_filter_block *block) { struct ethsw_core *ethsw = port_priv->ethsw_data; struct net_device *netdev = port_priv->netdev; struct dpsw_acl_if_cfg acl_if_cfg; int err; if (port_priv->filter_block) return -EINVAL; acl_if_cfg.if_id[0] = port_priv->idx; acl_if_cfg.num_ifs = 1; err = dpsw_acl_add_if(ethsw->mc_io, 0, ethsw->dpsw_handle, block->acl_id, &acl_if_cfg); if (err) { netdev_err(netdev, "dpsw_acl_add_if err %d\n", err); return err; } block->ports |= BIT(port_priv->idx); port_priv->filter_block = block; return 0; } static int dpaa2_switch_port_acl_tbl_unbind(struct ethsw_port_priv *port_priv, struct dpaa2_switch_filter_block *block) { struct ethsw_core *ethsw = port_priv->ethsw_data; struct net_device *netdev = port_priv->netdev; struct dpsw_acl_if_cfg acl_if_cfg; int err; if (port_priv->filter_block != block) return -EINVAL; acl_if_cfg.if_id[0] = port_priv->idx; acl_if_cfg.num_ifs = 1; err = dpsw_acl_remove_if(ethsw->mc_io, 0, ethsw->dpsw_handle, block->acl_id, &acl_if_cfg); if (err) { netdev_err(netdev, "dpsw_acl_add_if err %d\n", err); return err; } block->ports &= ~BIT(port_priv->idx); port_priv->filter_block = NULL; return 0; } static int dpaa2_switch_port_block_bind(struct ethsw_port_priv *port_priv, struct dpaa2_switch_filter_block *block) { struct dpaa2_switch_filter_block *old_block = port_priv->filter_block; int err; /* Offload all the mirror entries found in the block on this new port * joining it. */ err = dpaa2_switch_block_offload_mirror(block, port_priv); if (err) return err; /* If the port is already bound to this ACL table then do nothing. This * can happen when this port is the first one to join a tc block */ if (port_priv->filter_block == block) return 0; err = dpaa2_switch_port_acl_tbl_unbind(port_priv, old_block); if (err) return err; /* Mark the previous ACL table as being unused if this was the last * port that was using it. */ if (old_block->ports == 0) old_block->in_use = false; return dpaa2_switch_port_acl_tbl_bind(port_priv, block); } static int dpaa2_switch_port_block_unbind(struct ethsw_port_priv *port_priv, struct dpaa2_switch_filter_block *block) { struct ethsw_core *ethsw = port_priv->ethsw_data; struct dpaa2_switch_filter_block *new_block; int err; /* Unoffload all the mirror entries found in the block from the * port leaving it. */ err = dpaa2_switch_block_unoffload_mirror(block, port_priv); if (err) return err; /* We are the last port that leaves a block (an ACL table). * We'll continue to use this table. */ if (block->ports == BIT(port_priv->idx)) return 0; err = dpaa2_switch_port_acl_tbl_unbind(port_priv, block); if (err) return err; if (block->ports == 0) block->in_use = false; new_block = dpaa2_switch_filter_block_get_unused(ethsw); new_block->in_use = true; return dpaa2_switch_port_acl_tbl_bind(port_priv, new_block); } static int dpaa2_switch_setup_tc_block_bind(struct net_device *netdev, struct flow_block_offload *f) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); struct ethsw_core *ethsw = port_priv->ethsw_data; struct dpaa2_switch_filter_block *filter_block; struct flow_block_cb *block_cb; bool register_block = false; int err; block_cb = flow_block_cb_lookup(f->block, dpaa2_switch_port_setup_tc_block_cb_ig, ethsw); if (!block_cb) { /* If the filter block is not already known, then this port * must be the first to join it. In this case, we can just * continue to use our private table */ filter_block = port_priv->filter_block; block_cb = flow_block_cb_alloc(dpaa2_switch_port_setup_tc_block_cb_ig, ethsw, filter_block, NULL); if (IS_ERR(block_cb)) return PTR_ERR(block_cb); register_block = true; } else { filter_block = flow_block_cb_priv(block_cb); } flow_block_cb_incref(block_cb); err = dpaa2_switch_port_block_bind(port_priv, filter_block); if (err) goto err_block_bind; if (register_block) { flow_block_cb_add(block_cb, f); list_add_tail(&block_cb->driver_list, &dpaa2_switch_block_cb_list); } return 0; err_block_bind: if (!flow_block_cb_decref(block_cb)) flow_block_cb_free(block_cb); return err; } static void dpaa2_switch_setup_tc_block_unbind(struct net_device *netdev, struct flow_block_offload *f) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); struct ethsw_core *ethsw = port_priv->ethsw_data; struct dpaa2_switch_filter_block *filter_block; struct flow_block_cb *block_cb; int err; block_cb = flow_block_cb_lookup(f->block, dpaa2_switch_port_setup_tc_block_cb_ig, ethsw); if (!block_cb) return; filter_block = flow_block_cb_priv(block_cb); err = dpaa2_switch_port_block_unbind(port_priv, filter_block); if (!err && !flow_block_cb_decref(block_cb)) { flow_block_cb_remove(block_cb, f); list_del(&block_cb->driver_list); } } static int dpaa2_switch_setup_tc_block(struct net_device *netdev, struct flow_block_offload *f) { if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) return -EOPNOTSUPP; f->driver_block_list = &dpaa2_switch_block_cb_list; switch (f->command) { case FLOW_BLOCK_BIND: return dpaa2_switch_setup_tc_block_bind(netdev, f); case FLOW_BLOCK_UNBIND: dpaa2_switch_setup_tc_block_unbind(netdev, f); return 0; default: return -EOPNOTSUPP; } } static int dpaa2_switch_port_setup_tc(struct net_device *netdev, enum tc_setup_type type, void *type_data) { switch (type) { case TC_SETUP_BLOCK: { return dpaa2_switch_setup_tc_block(netdev, type_data); } default: return -EOPNOTSUPP; } return 0; } static const struct net_device_ops dpaa2_switch_port_ops = { .ndo_open = dpaa2_switch_port_open, .ndo_stop = dpaa2_switch_port_stop, .ndo_set_mac_address = eth_mac_addr, .ndo_get_stats64 = dpaa2_switch_port_get_stats, .ndo_change_mtu = dpaa2_switch_port_change_mtu, .ndo_has_offload_stats = dpaa2_switch_port_has_offload_stats, .ndo_get_offload_stats = dpaa2_switch_port_get_offload_stats, .ndo_fdb_dump = dpaa2_switch_port_fdb_dump, .ndo_vlan_rx_add_vid = dpaa2_switch_port_vlan_add, .ndo_vlan_rx_kill_vid = dpaa2_switch_port_vlan_kill, .ndo_start_xmit = dpaa2_switch_port_tx, .ndo_get_port_parent_id = dpaa2_switch_port_parent_id, .ndo_get_phys_port_name = dpaa2_switch_port_get_phys_name, .ndo_setup_tc = dpaa2_switch_port_setup_tc, }; bool dpaa2_switch_port_dev_check(const struct net_device *netdev) { return netdev->netdev_ops == &dpaa2_switch_port_ops; } static int dpaa2_switch_port_connect_mac(struct ethsw_port_priv *port_priv) { struct fsl_mc_device *dpsw_port_dev, *dpmac_dev; struct dpaa2_mac *mac; int err; dpsw_port_dev = to_fsl_mc_device(port_priv->netdev->dev.parent); dpmac_dev = fsl_mc_get_endpoint(dpsw_port_dev, port_priv->idx); if (PTR_ERR(dpmac_dev) == -EPROBE_DEFER) return PTR_ERR(dpmac_dev); if (IS_ERR(dpmac_dev) || dpmac_dev->dev.type != &fsl_mc_bus_dpmac_type) return 0; mac = kzalloc(sizeof(*mac), GFP_KERNEL); if (!mac) return -ENOMEM; mac->mc_dev = dpmac_dev; mac->mc_io = port_priv->ethsw_data->mc_io; mac->net_dev = port_priv->netdev; err = dpaa2_mac_open(mac); if (err) goto err_free_mac; if (dpaa2_mac_is_type_phy(mac)) { err = dpaa2_mac_connect(mac); if (err) { netdev_err(port_priv->netdev, "Error connecting to the MAC endpoint %pe\n", ERR_PTR(err)); goto err_close_mac; } } mutex_lock(&port_priv->mac_lock); port_priv->mac = mac; mutex_unlock(&port_priv->mac_lock); return 0; err_close_mac: dpaa2_mac_close(mac); err_free_mac: kfree(mac); return err; } static void dpaa2_switch_port_disconnect_mac(struct ethsw_port_priv *port_priv) { struct dpaa2_mac *mac; mutex_lock(&port_priv->mac_lock); mac = port_priv->mac; port_priv->mac = NULL; mutex_unlock(&port_priv->mac_lock); if (!mac) return; if (dpaa2_mac_is_type_phy(mac)) dpaa2_mac_disconnect(mac); dpaa2_mac_close(mac); kfree(mac); } static irqreturn_t dpaa2_switch_irq0_handler_thread(int irq_num, void *arg) { struct device *dev = (struct device *)arg; struct ethsw_core *ethsw = dev_get_drvdata(dev); struct ethsw_port_priv *port_priv; u32 status = ~0; int err, if_id; bool had_mac; err = dpsw_get_irq_status(ethsw->mc_io, 0, ethsw->dpsw_handle, DPSW_IRQ_INDEX_IF, &status); if (err) { dev_err(dev, "Can't get irq status (err %d)\n", err); goto out; } if_id = (status & 0xFFFF0000) >> 16; port_priv = ethsw->ports[if_id]; if (status & DPSW_IRQ_EVENT_LINK_CHANGED) { dpaa2_switch_port_link_state_update(port_priv->netdev); dpaa2_switch_port_set_mac_addr(port_priv); } if (status & DPSW_IRQ_EVENT_ENDPOINT_CHANGED) { /* We can avoid locking because the "endpoint changed" IRQ * handler is the only one who changes priv->mac at runtime, * so we are not racing with anyone. */ had_mac = !!port_priv->mac; if (had_mac) dpaa2_switch_port_disconnect_mac(port_priv); else dpaa2_switch_port_connect_mac(port_priv); } out: err = dpsw_clear_irq_status(ethsw->mc_io, 0, ethsw->dpsw_handle, DPSW_IRQ_INDEX_IF, status); if (err) dev_err(dev, "Can't clear irq status (err %d)\n", err); return IRQ_HANDLED; } static int dpaa2_switch_setup_irqs(struct fsl_mc_device *sw_dev) { struct device *dev = &sw_dev->dev; struct ethsw_core *ethsw = dev_get_drvdata(dev); u32 mask = DPSW_IRQ_EVENT_LINK_CHANGED; struct fsl_mc_device_irq *irq; int err; err = fsl_mc_allocate_irqs(sw_dev); if (err) { dev_err(dev, "MC irqs allocation failed\n"); return err; } if (WARN_ON(sw_dev->obj_desc.irq_count != DPSW_IRQ_NUM)) { err = -EINVAL; goto free_irq; } err = dpsw_set_irq_enable(ethsw->mc_io, 0, ethsw->dpsw_handle, DPSW_IRQ_INDEX_IF, 0); if (err) { dev_err(dev, "dpsw_set_irq_enable err %d\n", err); goto free_irq; } irq = sw_dev->irqs[DPSW_IRQ_INDEX_IF]; err = devm_request_threaded_irq(dev, irq->virq, NULL, dpaa2_switch_irq0_handler_thread, IRQF_NO_SUSPEND | IRQF_ONESHOT, dev_name(dev), dev); if (err) { dev_err(dev, "devm_request_threaded_irq(): %d\n", err); goto free_irq; } err = dpsw_set_irq_mask(ethsw->mc_io, 0, ethsw->dpsw_handle, DPSW_IRQ_INDEX_IF, mask); if (err) { dev_err(dev, "dpsw_set_irq_mask(): %d\n", err); goto free_devm_irq; } err = dpsw_set_irq_enable(ethsw->mc_io, 0, ethsw->dpsw_handle, DPSW_IRQ_INDEX_IF, 1); if (err) { dev_err(dev, "dpsw_set_irq_enable(): %d\n", err); goto free_devm_irq; } return 0; free_devm_irq: devm_free_irq(dev, irq->virq, dev); free_irq: fsl_mc_free_irqs(sw_dev); return err; } static void dpaa2_switch_teardown_irqs(struct fsl_mc_device *sw_dev) { struct device *dev = &sw_dev->dev; struct ethsw_core *ethsw = dev_get_drvdata(dev); int err; err = dpsw_set_irq_enable(ethsw->mc_io, 0, ethsw->dpsw_handle, DPSW_IRQ_INDEX_IF, 0); if (err) dev_err(dev, "dpsw_set_irq_enable err %d\n", err); fsl_mc_free_irqs(sw_dev); } static int dpaa2_switch_port_set_learning(struct ethsw_port_priv *port_priv, bool enable) { struct ethsw_core *ethsw = port_priv->ethsw_data; enum dpsw_learning_mode learn_mode; int err; if (enable) learn_mode = DPSW_LEARNING_MODE_HW; else learn_mode = DPSW_LEARNING_MODE_DIS; err = dpsw_if_set_learning_mode(ethsw->mc_io, 0, ethsw->dpsw_handle, port_priv->idx, learn_mode); if (err) netdev_err(port_priv->netdev, "dpsw_if_set_learning_mode err %d\n", err); if (!enable) dpaa2_switch_port_fast_age(port_priv); return err; } static int dpaa2_switch_port_attr_stp_state_set(struct net_device *netdev, u8 state) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); int err; err = dpaa2_switch_port_set_stp_state(port_priv, state); if (err) return err; switch (state) { case BR_STATE_DISABLED: case BR_STATE_BLOCKING: case BR_STATE_LISTENING: err = dpaa2_switch_port_set_learning(port_priv, false); break; case BR_STATE_LEARNING: case BR_STATE_FORWARDING: err = dpaa2_switch_port_set_learning(port_priv, port_priv->learn_ena); break; } return err; } static int dpaa2_switch_port_flood(struct ethsw_port_priv *port_priv, struct switchdev_brport_flags flags) { struct ethsw_core *ethsw = port_priv->ethsw_data; if (flags.mask & BR_BCAST_FLOOD) port_priv->bcast_flood = !!(flags.val & BR_BCAST_FLOOD); if (flags.mask & BR_FLOOD) port_priv->ucast_flood = !!(flags.val & BR_FLOOD); return dpaa2_switch_fdb_set_egress_flood(ethsw, port_priv->fdb->fdb_id); } static int dpaa2_switch_port_pre_bridge_flags(struct net_device *netdev, struct switchdev_brport_flags flags, struct netlink_ext_ack *extack) { if (flags.mask & ~(BR_LEARNING | BR_BCAST_FLOOD | BR_FLOOD | BR_MCAST_FLOOD)) return -EINVAL; if (flags.mask & (BR_FLOOD | BR_MCAST_FLOOD)) { bool multicast = !!(flags.val & BR_MCAST_FLOOD); bool unicast = !!(flags.val & BR_FLOOD); if (unicast != multicast) { NL_SET_ERR_MSG_MOD(extack, "Cannot configure multicast flooding independently of unicast"); return -EINVAL; } } return 0; } static int dpaa2_switch_port_bridge_flags(struct net_device *netdev, struct switchdev_brport_flags flags, struct netlink_ext_ack *extack) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); int err; if (flags.mask & BR_LEARNING) { bool learn_ena = !!(flags.val & BR_LEARNING); err = dpaa2_switch_port_set_learning(port_priv, learn_ena); if (err) return err; port_priv->learn_ena = learn_ena; } if (flags.mask & (BR_BCAST_FLOOD | BR_FLOOD | BR_MCAST_FLOOD)) { err = dpaa2_switch_port_flood(port_priv, flags); if (err) return err; } return 0; } static int dpaa2_switch_port_attr_set(struct net_device *netdev, const void *ctx, const struct switchdev_attr *attr, struct netlink_ext_ack *extack) { int err = 0; switch (attr->id) { case SWITCHDEV_ATTR_ID_PORT_STP_STATE: err = dpaa2_switch_port_attr_stp_state_set(netdev, attr->u.stp_state); break; case SWITCHDEV_ATTR_ID_BRIDGE_VLAN_FILTERING: if (!attr->u.vlan_filtering) { NL_SET_ERR_MSG_MOD(extack, "The DPAA2 switch does not support VLAN-unaware operation"); return -EOPNOTSUPP; } break; case SWITCHDEV_ATTR_ID_PORT_PRE_BRIDGE_FLAGS: err = dpaa2_switch_port_pre_bridge_flags(netdev, attr->u.brport_flags, extack); break; case SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS: err = dpaa2_switch_port_bridge_flags(netdev, attr->u.brport_flags, extack); break; default: err = -EOPNOTSUPP; break; } return err; } int dpaa2_switch_port_vlans_add(struct net_device *netdev, const struct switchdev_obj_port_vlan *vlan) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); struct ethsw_core *ethsw = port_priv->ethsw_data; struct dpsw_attr *attr = ðsw->sw_attr; int err = 0; /* Make sure that the VLAN is not already configured * on the switch port */ if (port_priv->vlans[vlan->vid] & ETHSW_VLAN_MEMBER) return -EEXIST; /* Check if there is space for a new VLAN */ err = dpsw_get_attributes(ethsw->mc_io, 0, ethsw->dpsw_handle, ðsw->sw_attr); if (err) { netdev_err(netdev, "dpsw_get_attributes err %d\n", err); return err; } if (attr->max_vlans - attr->num_vlans < 1) return -ENOSPC; /* Check if there is space for a new VLAN */ err = dpsw_get_attributes(ethsw->mc_io, 0, ethsw->dpsw_handle, ðsw->sw_attr); if (err) { netdev_err(netdev, "dpsw_get_attributes err %d\n", err); return err; } if (attr->max_vlans - attr->num_vlans < 1) return -ENOSPC; if (!port_priv->ethsw_data->vlans[vlan->vid]) { /* this is a new VLAN */ err = dpaa2_switch_add_vlan(port_priv, vlan->vid); if (err) return err; port_priv->ethsw_data->vlans[vlan->vid] |= ETHSW_VLAN_GLOBAL; } return dpaa2_switch_port_add_vlan(port_priv, vlan->vid, vlan->flags); } static int dpaa2_switch_port_lookup_address(struct net_device *netdev, int is_uc, const unsigned char *addr) { struct netdev_hw_addr_list *list = (is_uc) ? &netdev->uc : &netdev->mc; struct netdev_hw_addr *ha; netif_addr_lock_bh(netdev); list_for_each_entry(ha, &list->list, list) { if (ether_addr_equal(ha->addr, addr)) { netif_addr_unlock_bh(netdev); return 1; } } netif_addr_unlock_bh(netdev); return 0; } static int dpaa2_switch_port_mdb_add(struct net_device *netdev, const struct switchdev_obj_port_mdb *mdb) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); int err; /* Check if address is already set on this port */ if (dpaa2_switch_port_lookup_address(netdev, 0, mdb->addr)) return -EEXIST; err = dpaa2_switch_port_fdb_add_mc(port_priv, mdb->addr); if (err) return err; err = dev_mc_add(netdev, mdb->addr); if (err) { netdev_err(netdev, "dev_mc_add err %d\n", err); dpaa2_switch_port_fdb_del_mc(port_priv, mdb->addr); } return err; } static int dpaa2_switch_port_obj_add(struct net_device *netdev, const struct switchdev_obj *obj) { int err; switch (obj->id) { case SWITCHDEV_OBJ_ID_PORT_VLAN: err = dpaa2_switch_port_vlans_add(netdev, SWITCHDEV_OBJ_PORT_VLAN(obj)); break; case SWITCHDEV_OBJ_ID_PORT_MDB: err = dpaa2_switch_port_mdb_add(netdev, SWITCHDEV_OBJ_PORT_MDB(obj)); break; default: err = -EOPNOTSUPP; break; } return err; } static int dpaa2_switch_port_del_vlan(struct ethsw_port_priv *port_priv, u16 vid) { struct ethsw_core *ethsw = port_priv->ethsw_data; struct net_device *netdev = port_priv->netdev; struct dpsw_vlan_if_cfg vcfg; int i, err; if (!port_priv->vlans[vid]) return -ENOENT; if (port_priv->vlans[vid] & ETHSW_VLAN_PVID) { /* If we are deleting the PVID of a port, use VLAN 4095 instead * as we are sure that neither the bridge nor the 8021q module * will use it */ err = dpaa2_switch_port_set_pvid(port_priv, 4095); if (err) return err; } vcfg.num_ifs = 1; vcfg.if_id[0] = port_priv->idx; if (port_priv->vlans[vid] & ETHSW_VLAN_UNTAGGED) { err = dpsw_vlan_remove_if_untagged(ethsw->mc_io, 0, ethsw->dpsw_handle, vid, &vcfg); if (err) { netdev_err(netdev, "dpsw_vlan_remove_if_untagged err %d\n", err); } port_priv->vlans[vid] &= ~ETHSW_VLAN_UNTAGGED; } if (port_priv->vlans[vid] & ETHSW_VLAN_MEMBER) { err = dpsw_vlan_remove_if(ethsw->mc_io, 0, ethsw->dpsw_handle, vid, &vcfg); if (err) { netdev_err(netdev, "dpsw_vlan_remove_if err %d\n", err); return err; } port_priv->vlans[vid] &= ~ETHSW_VLAN_MEMBER; /* Delete VLAN from switch if it is no longer configured on * any port */ for (i = 0; i < ethsw->sw_attr.num_ifs; i++) { if (ethsw->ports[i] && ethsw->ports[i]->vlans[vid] & ETHSW_VLAN_MEMBER) return 0; /* Found a port member in VID */ } ethsw->vlans[vid] &= ~ETHSW_VLAN_GLOBAL; err = dpaa2_switch_dellink(ethsw, vid); if (err) return err; } return 0; } int dpaa2_switch_port_vlans_del(struct net_device *netdev, const struct switchdev_obj_port_vlan *vlan) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); if (netif_is_bridge_master(vlan->obj.orig_dev)) return -EOPNOTSUPP; return dpaa2_switch_port_del_vlan(port_priv, vlan->vid); } static int dpaa2_switch_port_mdb_del(struct net_device *netdev, const struct switchdev_obj_port_mdb *mdb) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); int err; if (!dpaa2_switch_port_lookup_address(netdev, 0, mdb->addr)) return -ENOENT; err = dpaa2_switch_port_fdb_del_mc(port_priv, mdb->addr); if (err) return err; err = dev_mc_del(netdev, mdb->addr); if (err) { netdev_err(netdev, "dev_mc_del err %d\n", err); return err; } return err; } static int dpaa2_switch_port_obj_del(struct net_device *netdev, const struct switchdev_obj *obj) { int err; switch (obj->id) { case SWITCHDEV_OBJ_ID_PORT_VLAN: err = dpaa2_switch_port_vlans_del(netdev, SWITCHDEV_OBJ_PORT_VLAN(obj)); break; case SWITCHDEV_OBJ_ID_PORT_MDB: err = dpaa2_switch_port_mdb_del(netdev, SWITCHDEV_OBJ_PORT_MDB(obj)); break; default: err = -EOPNOTSUPP; break; } return err; } static int dpaa2_switch_port_attr_set_event(struct net_device *netdev, struct switchdev_notifier_port_attr_info *ptr) { int err; err = switchdev_handle_port_attr_set(netdev, ptr, dpaa2_switch_port_dev_check, dpaa2_switch_port_attr_set); return notifier_from_errno(err); } static struct notifier_block dpaa2_switch_port_switchdev_nb; static struct notifier_block dpaa2_switch_port_switchdev_blocking_nb; static int dpaa2_switch_port_bridge_join(struct net_device *netdev, struct net_device *upper_dev, struct netlink_ext_ack *extack) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); struct ethsw_core *ethsw = port_priv->ethsw_data; struct ethsw_port_priv *other_port_priv; struct net_device *other_dev; struct list_head *iter; bool learn_ena; int err; netdev_for_each_lower_dev(upper_dev, other_dev, iter) { if (!dpaa2_switch_port_dev_check(other_dev)) continue; other_port_priv = netdev_priv(other_dev); if (other_port_priv->ethsw_data != port_priv->ethsw_data) { NL_SET_ERR_MSG_MOD(extack, "Interface from a different DPSW is in the bridge already"); return -EINVAL; } } /* Delete the previously manually installed VLAN 1 */ err = dpaa2_switch_port_del_vlan(port_priv, 1); if (err) return err; dpaa2_switch_port_set_fdb(port_priv, upper_dev); /* Inherit the initial bridge port learning state */ learn_ena = br_port_flag_is_set(netdev, BR_LEARNING); err = dpaa2_switch_port_set_learning(port_priv, learn_ena); port_priv->learn_ena = learn_ena; /* Setup the egress flood policy (broadcast, unknown unicast) */ err = dpaa2_switch_fdb_set_egress_flood(ethsw, port_priv->fdb->fdb_id); if (err) goto err_egress_flood; err = switchdev_bridge_port_offload(netdev, netdev, NULL, &dpaa2_switch_port_switchdev_nb, &dpaa2_switch_port_switchdev_blocking_nb, false, extack); if (err) goto err_switchdev_offload; return 0; err_switchdev_offload: err_egress_flood: dpaa2_switch_port_set_fdb(port_priv, NULL); return err; } static int dpaa2_switch_port_clear_rxvlan(struct net_device *vdev, int vid, void *arg) { __be16 vlan_proto = htons(ETH_P_8021Q); if (vdev) vlan_proto = vlan_dev_vlan_proto(vdev); return dpaa2_switch_port_vlan_kill(arg, vlan_proto, vid); } static int dpaa2_switch_port_restore_rxvlan(struct net_device *vdev, int vid, void *arg) { __be16 vlan_proto = htons(ETH_P_8021Q); if (vdev) vlan_proto = vlan_dev_vlan_proto(vdev); return dpaa2_switch_port_vlan_add(arg, vlan_proto, vid); } static void dpaa2_switch_port_pre_bridge_leave(struct net_device *netdev) { switchdev_bridge_port_unoffload(netdev, NULL, &dpaa2_switch_port_switchdev_nb, &dpaa2_switch_port_switchdev_blocking_nb); } static int dpaa2_switch_port_bridge_leave(struct net_device *netdev) { struct ethsw_port_priv *port_priv = netdev_priv(netdev); struct dpaa2_switch_fdb *old_fdb = port_priv->fdb; struct ethsw_core *ethsw = port_priv->ethsw_data; int err; /* First of all, fast age any learn FDB addresses on this switch port */ dpaa2_switch_port_fast_age(port_priv); /* Clear all RX VLANs installed through vlan_vid_add() either as VLAN * upper devices or otherwise from the FDB table that we are about to * leave */ err = vlan_for_each(netdev, dpaa2_switch_port_clear_rxvlan, netdev); if (err) netdev_err(netdev, "Unable to clear RX VLANs from old FDB table, err (%d)\n", err); dpaa2_switch_port_set_fdb(port_priv, NULL); /* Restore all RX VLANs into the new FDB table that we just joined */ err = vlan_for_each(netdev, dpaa2_switch_port_restore_rxvlan, netdev); if (err) netdev_err(netdev, "Unable to restore RX VLANs to the new FDB, err (%d)\n", err); /* Reset the flooding state to denote that this port can send any * packet in standalone mode. With this, we are also ensuring that any * later bridge join will have the flooding flag on. */ port_priv->bcast_flood = true; port_priv->ucast_flood = true; /* Setup the egress flood policy (broadcast, unknown unicast). * When the port is not under a bridge, only the CTRL interface is part * of the flooding domain besides the actual port */ err = dpaa2_switch_fdb_set_egress_flood(ethsw, port_priv->fdb->fdb_id); if (err) return err; /* Recreate the egress flood domain of the FDB that we just left */ err = dpaa2_switch_fdb_set_egress_flood(ethsw, old_fdb->fdb_id); if (err) return err; /* No HW learning when not under a bridge */ err = dpaa2_switch_port_set_learning(port_priv, false); if (err) return err; port_priv->learn_ena = false; /* Add the VLAN 1 as PVID when not under a bridge. We need this since * the dpaa2 switch interfaces are not capable to be VLAN unaware */ return dpaa2_switch_port_add_vlan(port_priv, DEFAULT_VLAN_ID, BRIDGE_VLAN_INFO_UNTAGGED | BRIDGE_VLAN_INFO_PVID); } static int dpaa2_switch_prevent_bridging_with_8021q_upper(struct net_device *netdev) { struct net_device *upper_dev; struct list_head *iter; /* RCU read lock not necessary because we have write-side protection * (rtnl_mutex), however a non-rcu iterator does not exist. */ netdev_for_each_upper_dev_rcu(netdev, upper_dev, iter) if (is_vlan_dev(upper_dev)) return -EOPNOTSUPP; return 0; } static int dpaa2_switch_prechangeupper_sanity_checks(struct net_device *netdev, struct net_device *upper_dev, struct netlink_ext_ack *extack) { int err; if (!br_vlan_enabled(upper_dev)) { NL_SET_ERR_MSG_MOD(extack, "Cannot join a VLAN-unaware bridge"); return -EOPNOTSUPP; } err = dpaa2_switch_prevent_bridging_with_8021q_upper(netdev); if (err) { NL_SET_ERR_MSG_MOD(extack, "Cannot join a bridge while VLAN uppers are present"); return 0; } return 0; } static int dpaa2_switch_port_netdevice_event(struct notifier_block *nb, unsigned long event, void *ptr) { struct net_device *netdev = netdev_notifier_info_to_dev(ptr); struct netdev_notifier_changeupper_info *info = ptr; struct netlink_ext_ack *extack; struct net_device *upper_dev; int err = 0; if (!dpaa2_switch_port_dev_check(netdev)) return NOTIFY_DONE; extack = netdev_notifier_info_to_extack(&info->info); switch (event) { case NETDEV_PRECHANGEUPPER: upper_dev = info->upper_dev; if (!netif_is_bridge_master(upper_dev)) break; err = dpaa2_switch_prechangeupper_sanity_checks(netdev, upper_dev, extack); if (err) goto out; if (!info->linking) dpaa2_switch_port_pre_bridge_leave(netdev); break; case NETDEV_CHANGEUPPER: upper_dev = info->upper_dev; if (netif_is_bridge_master(upper_dev)) { if (info->linking) err = dpaa2_switch_port_bridge_join(netdev, upper_dev, extack); else err = dpaa2_switch_port_bridge_leave(netdev); } break; } out: return notifier_from_errno(err); } struct ethsw_switchdev_event_work { struct work_struct work; struct switchdev_notifier_fdb_info fdb_info; struct net_device *dev; unsigned long event; }; static void dpaa2_switch_event_work(struct work_struct *work) { struct ethsw_switchdev_event_work *switchdev_work = container_of(work, struct ethsw_switchdev_event_work, work); struct net_device *dev = switchdev_work->dev; struct switchdev_notifier_fdb_info *fdb_info; int err; rtnl_lock(); fdb_info = &switchdev_work->fdb_info; switch (switchdev_work->event) { case SWITCHDEV_FDB_ADD_TO_DEVICE: if (!fdb_info->added_by_user || fdb_info->is_local) break; if (is_unicast_ether_addr(fdb_info->addr)) err = dpaa2_switch_port_fdb_add_uc(netdev_priv(dev), fdb_info->addr); else err = dpaa2_switch_port_fdb_add_mc(netdev_priv(dev), fdb_info->addr); if (err) break; fdb_info->offloaded = true; call_switchdev_notifiers(SWITCHDEV_FDB_OFFLOADED, dev, &fdb_info->info, NULL); break; case SWITCHDEV_FDB_DEL_TO_DEVICE: if (!fdb_info->added_by_user || fdb_info->is_local) break; if (is_unicast_ether_addr(fdb_info->addr)) dpaa2_switch_port_fdb_del_uc(netdev_priv(dev), fdb_info->addr); else dpaa2_switch_port_fdb_del_mc(netdev_priv(dev), fdb_info->addr); break; } rtnl_unlock(); kfree(switchdev_work->fdb_info.addr); kfree(switchdev_work); dev_put(dev); } /* Called under rcu_read_lock() */ static int dpaa2_switch_port_event(struct notifier_block *nb, unsigned long event, void *ptr) { struct net_device *dev = switchdev_notifier_info_to_dev(ptr); struct ethsw_port_priv *port_priv = netdev_priv(dev); struct ethsw_switchdev_event_work *switchdev_work; struct switchdev_notifier_fdb_info *fdb_info = ptr; struct ethsw_core *ethsw = port_priv->ethsw_data; if (event == SWITCHDEV_PORT_ATTR_SET) return dpaa2_switch_port_attr_set_event(dev, ptr); if (!dpaa2_switch_port_dev_check(dev)) return NOTIFY_DONE; switchdev_work = kzalloc(sizeof(*switchdev_work), GFP_ATOMIC); if (!switchdev_work) return NOTIFY_BAD; INIT_WORK(&switchdev_work->work, dpaa2_switch_event_work); switchdev_work->dev = dev; switchdev_work->event = event; switch (event) { case SWITCHDEV_FDB_ADD_TO_DEVICE: case SWITCHDEV_FDB_DEL_TO_DEVICE: memcpy(&switchdev_work->fdb_info, ptr, sizeof(switchdev_work->fdb_info)); switchdev_work->fdb_info.addr = kzalloc(ETH_ALEN, GFP_ATOMIC); if (!switchdev_work->fdb_info.addr) goto err_addr_alloc; ether_addr_copy((u8 *)switchdev_work->fdb_info.addr, fdb_info->addr); /* Take a reference on the device to avoid being freed. */ dev_hold(dev); break; default: kfree(switchdev_work); return NOTIFY_DONE; } queue_work(ethsw->workqueue, &switchdev_work->work); return NOTIFY_DONE; err_addr_alloc: kfree(switchdev_work); return NOTIFY_BAD; } static int dpaa2_switch_port_obj_event(unsigned long event, struct net_device *netdev, struct switchdev_notifier_port_obj_info *port_obj_info) { int err = -EOPNOTSUPP; if (!dpaa2_switch_port_dev_check(netdev)) return NOTIFY_DONE; switch (event) { case SWITCHDEV_PORT_OBJ_ADD: err = dpaa2_switch_port_obj_add(netdev, port_obj_info->obj); break; case SWITCHDEV_PORT_OBJ_DEL: err = dpaa2_switch_port_obj_del(netdev, port_obj_info->obj); break; } port_obj_info->handled = true; return notifier_from_errno(err); } static int dpaa2_switch_port_blocking_event(struct notifier_block *nb, unsigned long event, void *ptr) { struct net_device *dev = switchdev_notifier_info_to_dev(ptr); switch (event) { case SWITCHDEV_PORT_OBJ_ADD: case SWITCHDEV_PORT_OBJ_DEL: return dpaa2_switch_port_obj_event(event, dev, ptr); case SWITCHDEV_PORT_ATTR_SET: return dpaa2_switch_port_attr_set_event(dev, ptr); } return NOTIFY_DONE; } /* Build a linear skb based on a single-buffer frame descriptor */ static struct sk_buff *dpaa2_switch_build_linear_skb(struct ethsw_core *ethsw, const struct dpaa2_fd *fd) { u16 fd_offset = dpaa2_fd_get_offset(fd); dma_addr_t addr = dpaa2_fd_get_addr(fd); u32 fd_length = dpaa2_fd_get_len(fd); struct device *dev = ethsw->dev; struct sk_buff *skb = NULL; void *fd_vaddr; fd_vaddr = dpaa2_iova_to_virt(ethsw->iommu_domain, addr); dma_unmap_page(dev, addr, DPAA2_SWITCH_RX_BUF_SIZE, DMA_FROM_DEVICE); skb = build_skb(fd_vaddr, DPAA2_SWITCH_RX_BUF_SIZE + SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); if (unlikely(!skb)) { dev_err(dev, "build_skb() failed\n"); return NULL; } skb_reserve(skb, fd_offset); skb_put(skb, fd_length); ethsw->buf_count--; return skb; } static void dpaa2_switch_tx_conf(struct dpaa2_switch_fq *fq, const struct dpaa2_fd *fd) { dpaa2_switch_free_fd(fq->ethsw, fd); } static void dpaa2_switch_rx(struct dpaa2_switch_fq *fq, const struct dpaa2_fd *fd) { struct ethsw_core *ethsw = fq->ethsw; struct ethsw_port_priv *port_priv; struct net_device *netdev; struct vlan_ethhdr *hdr; struct sk_buff *skb; u16 vlan_tci, vid; int if_id, err; /* get switch ingress interface ID */ if_id = upper_32_bits(dpaa2_fd_get_flc(fd)) & 0x0000FFFF; if (if_id >= ethsw->sw_attr.num_ifs) { dev_err(ethsw->dev, "Frame received from unknown interface!\n"); goto err_free_fd; } port_priv = ethsw->ports[if_id]; netdev = port_priv->netdev; /* build the SKB based on the FD received */ if (dpaa2_fd_get_format(fd) != dpaa2_fd_single) { if (net_ratelimit()) { netdev_err(netdev, "Received invalid frame format\n"); goto err_free_fd; } } skb = dpaa2_switch_build_linear_skb(ethsw, fd); if (unlikely(!skb)) goto err_free_fd; skb_reset_mac_header(skb); /* Remove the VLAN header if the packet that we just received has a vid * equal to the port PVIDs. Since the dpaa2-switch can operate only in * VLAN-aware mode and no alterations are made on the packet when it's * redirected/mirrored to the control interface, we are sure that there * will always be a VLAN header present. */ hdr = vlan_eth_hdr(skb); vid = ntohs(hdr->h_vlan_TCI) & VLAN_VID_MASK; if (vid == port_priv->pvid) { err = __skb_vlan_pop(skb, &vlan_tci); if (err) { dev_info(ethsw->dev, "__skb_vlan_pop() returned %d", err); goto err_free_fd; } } skb->dev = netdev; skb->protocol = eth_type_trans(skb, skb->dev); /* Setup the offload_fwd_mark only if the port is under a bridge */ skb->offload_fwd_mark = !!(port_priv->fdb->bridge_dev); netif_receive_skb(skb); return; err_free_fd: dpaa2_switch_free_fd(ethsw, fd); } static void dpaa2_switch_detect_features(struct ethsw_core *ethsw) { ethsw->features = 0; if (ethsw->major > 8 || (ethsw->major == 8 && ethsw->minor >= 6)) ethsw->features |= ETHSW_FEATURE_MAC_ADDR; } static int dpaa2_switch_setup_fqs(struct ethsw_core *ethsw) { struct dpsw_ctrl_if_attr ctrl_if_attr; struct device *dev = ethsw->dev; int i = 0; int err; err = dpsw_ctrl_if_get_attributes(ethsw->mc_io, 0, ethsw->dpsw_handle, &ctrl_if_attr); if (err) { dev_err(dev, "dpsw_ctrl_if_get_attributes() = %d\n", err); return err; } ethsw->fq[i].fqid = ctrl_if_attr.rx_fqid; ethsw->fq[i].ethsw = ethsw; ethsw->fq[i++].type = DPSW_QUEUE_RX; ethsw->fq[i].fqid = ctrl_if_attr.tx_err_conf_fqid; ethsw->fq[i].ethsw = ethsw; ethsw->fq[i++].type = DPSW_QUEUE_TX_ERR_CONF; return 0; } /* Free buffers acquired from the buffer pool or which were meant to * be released in the pool */ static void dpaa2_switch_free_bufs(struct ethsw_core *ethsw, u64 *buf_array, int count) { struct device *dev = ethsw->dev; void *vaddr; int i; for (i = 0; i < count; i++) { vaddr = dpaa2_iova_to_virt(ethsw->iommu_domain, buf_array[i]); dma_unmap_page(dev, buf_array[i], DPAA2_SWITCH_RX_BUF_SIZE, DMA_FROM_DEVICE); free_pages((unsigned long)vaddr, 0); } } /* Perform a single release command to add buffers * to the specified buffer pool */ static int dpaa2_switch_add_bufs(struct ethsw_core *ethsw, u16 bpid) { struct device *dev = ethsw->dev; u64 buf_array[BUFS_PER_CMD]; struct page *page; int retries = 0; dma_addr_t addr; int err; int i; for (i = 0; i < BUFS_PER_CMD; i++) { /* Allocate one page for each Rx buffer. WRIOP sees * the entire page except for a tailroom reserved for * skb shared info */ page = dev_alloc_pages(0); if (!page) { dev_err(dev, "buffer allocation failed\n"); goto err_alloc; } addr = dma_map_page(dev, page, 0, DPAA2_SWITCH_RX_BUF_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(dev, addr)) { dev_err(dev, "dma_map_single() failed\n"); goto err_map; } buf_array[i] = addr; } release_bufs: /* In case the portal is busy, retry until successful or * max retries hit. */ while ((err = dpaa2_io_service_release(NULL, bpid, buf_array, i)) == -EBUSY) { if (retries++ >= DPAA2_SWITCH_SWP_BUSY_RETRIES) break; cpu_relax(); } /* If release command failed, clean up and bail out. */ if (err) { dpaa2_switch_free_bufs(ethsw, buf_array, i); return 0; } return i; err_map: __free_pages(page, 0); err_alloc: /* If we managed to allocate at least some buffers, * release them to hardware */ if (i) goto release_bufs; return 0; } static int dpaa2_switch_refill_bp(struct ethsw_core *ethsw) { int *count = ðsw->buf_count; int new_count; int err = 0; if (unlikely(*count < DPAA2_ETHSW_REFILL_THRESH)) { do { new_count = dpaa2_switch_add_bufs(ethsw, ethsw->bpid); if (unlikely(!new_count)) { /* Out of memory; abort for now, we'll * try later on */ break; } *count += new_count; } while (*count < DPAA2_ETHSW_NUM_BUFS); if (unlikely(*count < DPAA2_ETHSW_NUM_BUFS)) err = -ENOMEM; } return err; } static int dpaa2_switch_seed_bp(struct ethsw_core *ethsw) { int *count, i; for (i = 0; i < DPAA2_ETHSW_NUM_BUFS; i += BUFS_PER_CMD) { count = ðsw->buf_count; *count += dpaa2_switch_add_bufs(ethsw, ethsw->bpid); if (unlikely(*count < BUFS_PER_CMD)) return -ENOMEM; } return 0; } static void dpaa2_switch_drain_bp(struct ethsw_core *ethsw) { u64 buf_array[BUFS_PER_CMD]; int ret; do { ret = dpaa2_io_service_acquire(NULL, ethsw->bpid, buf_array, BUFS_PER_CMD); if (ret < 0) { dev_err(ethsw->dev, "dpaa2_io_service_acquire() = %d\n", ret); return; } dpaa2_switch_free_bufs(ethsw, buf_array, ret); } while (ret); } static int dpaa2_switch_setup_dpbp(struct ethsw_core *ethsw) { struct dpsw_ctrl_if_pools_cfg dpsw_ctrl_if_pools_cfg = { 0 }; struct device *dev = ethsw->dev; struct fsl_mc_device *dpbp_dev; struct dpbp_attr dpbp_attrs; int err; err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, &dpbp_dev); if (err) { if (err == -ENXIO) err = -EPROBE_DEFER; else dev_err(dev, "DPBP device allocation failed\n"); return err; } ethsw->dpbp_dev = dpbp_dev; err = dpbp_open(ethsw->mc_io, 0, dpbp_dev->obj_desc.id, &dpbp_dev->mc_handle); if (err) { dev_err(dev, "dpbp_open() failed\n"); goto err_open; } err = dpbp_reset(ethsw->mc_io, 0, dpbp_dev->mc_handle); if (err) { dev_err(dev, "dpbp_reset() failed\n"); goto err_reset; } err = dpbp_enable(ethsw->mc_io, 0, dpbp_dev->mc_handle); if (err) { dev_err(dev, "dpbp_enable() failed\n"); goto err_enable; } err = dpbp_get_attributes(ethsw->mc_io, 0, dpbp_dev->mc_handle, &dpbp_attrs); if (err) { dev_err(dev, "dpbp_get_attributes() failed\n"); goto err_get_attr; } dpsw_ctrl_if_pools_cfg.num_dpbp = 1; dpsw_ctrl_if_pools_cfg.pools[0].dpbp_id = dpbp_attrs.id; dpsw_ctrl_if_pools_cfg.pools[0].buffer_size = DPAA2_SWITCH_RX_BUF_SIZE; dpsw_ctrl_if_pools_cfg.pools[0].backup_pool = 0; err = dpsw_ctrl_if_set_pools(ethsw->mc_io, 0, ethsw->dpsw_handle, &dpsw_ctrl_if_pools_cfg); if (err) { dev_err(dev, "dpsw_ctrl_if_set_pools() failed\n"); goto err_get_attr; } ethsw->bpid = dpbp_attrs.id; return 0; err_get_attr: dpbp_disable(ethsw->mc_io, 0, dpbp_dev->mc_handle); err_enable: err_reset: dpbp_close(ethsw->mc_io, 0, dpbp_dev->mc_handle); err_open: fsl_mc_object_free(dpbp_dev); return err; } static void dpaa2_switch_free_dpbp(struct ethsw_core *ethsw) { dpbp_disable(ethsw->mc_io, 0, ethsw->dpbp_dev->mc_handle); dpbp_close(ethsw->mc_io, 0, ethsw->dpbp_dev->mc_handle); fsl_mc_object_free(ethsw->dpbp_dev); } static int dpaa2_switch_alloc_rings(struct ethsw_core *ethsw) { int i; for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) { ethsw->fq[i].store = dpaa2_io_store_create(DPAA2_SWITCH_STORE_SIZE, ethsw->dev); if (!ethsw->fq[i].store) { dev_err(ethsw->dev, "dpaa2_io_store_create failed\n"); while (--i >= 0) dpaa2_io_store_destroy(ethsw->fq[i].store); return -ENOMEM; } } return 0; } static void dpaa2_switch_destroy_rings(struct ethsw_core *ethsw) { int i; for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) dpaa2_io_store_destroy(ethsw->fq[i].store); } static int dpaa2_switch_pull_fq(struct dpaa2_switch_fq *fq) { int err, retries = 0; /* Try to pull from the FQ while the portal is busy and we didn't hit * the maximum number fo retries */ do { err = dpaa2_io_service_pull_fq(NULL, fq->fqid, fq->store); cpu_relax(); } while (err == -EBUSY && retries++ < DPAA2_SWITCH_SWP_BUSY_RETRIES); if (unlikely(err)) dev_err(fq->ethsw->dev, "dpaa2_io_service_pull err %d", err); return err; } /* Consume all frames pull-dequeued into the store */ static int dpaa2_switch_store_consume(struct dpaa2_switch_fq *fq) { struct ethsw_core *ethsw = fq->ethsw; int cleaned = 0, is_last; struct dpaa2_dq *dq; int retries = 0; do { /* Get the next available FD from the store */ dq = dpaa2_io_store_next(fq->store, &is_last); if (unlikely(!dq)) { if (retries++ >= DPAA2_SWITCH_SWP_BUSY_RETRIES) { dev_err_once(ethsw->dev, "No valid dequeue response\n"); return -ETIMEDOUT; } continue; } if (fq->type == DPSW_QUEUE_RX) dpaa2_switch_rx(fq, dpaa2_dq_fd(dq)); else dpaa2_switch_tx_conf(fq, dpaa2_dq_fd(dq)); cleaned++; } while (!is_last); return cleaned; } /* NAPI poll routine */ static int dpaa2_switch_poll(struct napi_struct *napi, int budget) { int err, cleaned = 0, store_cleaned, work_done; struct dpaa2_switch_fq *fq; int retries = 0; fq = container_of(napi, struct dpaa2_switch_fq, napi); do { err = dpaa2_switch_pull_fq(fq); if (unlikely(err)) break; /* Refill pool if appropriate */ dpaa2_switch_refill_bp(fq->ethsw); store_cleaned = dpaa2_switch_store_consume(fq); cleaned += store_cleaned; if (cleaned >= budget) { work_done = budget; goto out; } } while (store_cleaned); /* We didn't consume the entire budget, so finish napi and re-enable * data availability notifications */ napi_complete_done(napi, cleaned); do { err = dpaa2_io_service_rearm(NULL, &fq->nctx); cpu_relax(); } while (err == -EBUSY && retries++ < DPAA2_SWITCH_SWP_BUSY_RETRIES); work_done = max(cleaned, 1); out: return work_done; } static void dpaa2_switch_fqdan_cb(struct dpaa2_io_notification_ctx *nctx) { struct dpaa2_switch_fq *fq; fq = container_of(nctx, struct dpaa2_switch_fq, nctx); napi_schedule(&fq->napi); } static int dpaa2_switch_setup_dpio(struct ethsw_core *ethsw) { struct dpsw_ctrl_if_queue_cfg queue_cfg; struct dpaa2_io_notification_ctx *nctx; int err, i, j; for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) { nctx = ðsw->fq[i].nctx; /* Register a new software context for the FQID. * By using NULL as the first parameter, we specify that we do * not care on which cpu are interrupts received for this queue */ nctx->is_cdan = 0; nctx->id = ethsw->fq[i].fqid; nctx->desired_cpu = DPAA2_IO_ANY_CPU; nctx->cb = dpaa2_switch_fqdan_cb; err = dpaa2_io_service_register(NULL, nctx, ethsw->dev); if (err) { err = -EPROBE_DEFER; goto err_register; } queue_cfg.options = DPSW_CTRL_IF_QUEUE_OPT_DEST | DPSW_CTRL_IF_QUEUE_OPT_USER_CTX; queue_cfg.dest_cfg.dest_type = DPSW_CTRL_IF_DEST_DPIO; queue_cfg.dest_cfg.dest_id = nctx->dpio_id; queue_cfg.dest_cfg.priority = 0; queue_cfg.user_ctx = nctx->qman64; err = dpsw_ctrl_if_set_queue(ethsw->mc_io, 0, ethsw->dpsw_handle, ethsw->fq[i].type, &queue_cfg); if (err) goto err_set_queue; } return 0; err_set_queue: dpaa2_io_service_deregister(NULL, nctx, ethsw->dev); err_register: for (j = 0; j < i; j++) dpaa2_io_service_deregister(NULL, ðsw->fq[j].nctx, ethsw->dev); return err; } static void dpaa2_switch_free_dpio(struct ethsw_core *ethsw) { int i; for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) dpaa2_io_service_deregister(NULL, ðsw->fq[i].nctx, ethsw->dev); } static int dpaa2_switch_ctrl_if_setup(struct ethsw_core *ethsw) { int err; /* setup FQs for Rx and Tx Conf */ err = dpaa2_switch_setup_fqs(ethsw); if (err) return err; /* setup the buffer pool needed on the Rx path */ err = dpaa2_switch_setup_dpbp(ethsw); if (err) return err; err = dpaa2_switch_alloc_rings(ethsw); if (err) goto err_free_dpbp; err = dpaa2_switch_setup_dpio(ethsw); if (err) goto err_destroy_rings; err = dpaa2_switch_seed_bp(ethsw); if (err) goto err_deregister_dpio; err = dpsw_ctrl_if_enable(ethsw->mc_io, 0, ethsw->dpsw_handle); if (err) { dev_err(ethsw->dev, "dpsw_ctrl_if_enable err %d\n", err); goto err_drain_dpbp; } return 0; err_drain_dpbp: dpaa2_switch_drain_bp(ethsw); err_deregister_dpio: dpaa2_switch_free_dpio(ethsw); err_destroy_rings: dpaa2_switch_destroy_rings(ethsw); err_free_dpbp: dpaa2_switch_free_dpbp(ethsw); return err; } static void dpaa2_switch_remove_port(struct ethsw_core *ethsw, u16 port_idx) { struct ethsw_port_priv *port_priv = ethsw->ports[port_idx]; dpaa2_switch_port_disconnect_mac(port_priv); free_netdev(port_priv->netdev); ethsw->ports[port_idx] = NULL; } static int dpaa2_switch_init(struct fsl_mc_device *sw_dev) { struct device *dev = &sw_dev->dev; struct ethsw_core *ethsw = dev_get_drvdata(dev); struct dpsw_vlan_if_cfg vcfg = {0}; struct dpsw_tci_cfg tci_cfg = {0}; struct dpsw_stp_cfg stp_cfg; int err; u16 i; ethsw->dev_id = sw_dev->obj_desc.id; err = dpsw_open(ethsw->mc_io, 0, ethsw->dev_id, ðsw->dpsw_handle); if (err) { dev_err(dev, "dpsw_open err %d\n", err); return err; } err = dpsw_get_attributes(ethsw->mc_io, 0, ethsw->dpsw_handle, ðsw->sw_attr); if (err) { dev_err(dev, "dpsw_get_attributes err %d\n", err); goto err_close; } err = dpsw_get_api_version(ethsw->mc_io, 0, ðsw->major, ðsw->minor); if (err) { dev_err(dev, "dpsw_get_api_version err %d\n", err); goto err_close; } /* Minimum supported DPSW version check */ if (ethsw->major < DPSW_MIN_VER_MAJOR || (ethsw->major == DPSW_MIN_VER_MAJOR && ethsw->minor < DPSW_MIN_VER_MINOR)) { dev_err(dev, "DPSW version %d:%d not supported. Use firmware 10.28.0 or greater.\n", ethsw->major, ethsw->minor); err = -EOPNOTSUPP; goto err_close; } if (!dpaa2_switch_supports_cpu_traffic(ethsw)) { err = -EOPNOTSUPP; goto err_close; } dpaa2_switch_detect_features(ethsw); err = dpsw_reset(ethsw->mc_io, 0, ethsw->dpsw_handle); if (err) { dev_err(dev, "dpsw_reset err %d\n", err); goto err_close; } stp_cfg.vlan_id = DEFAULT_VLAN_ID; stp_cfg.state = DPSW_STP_STATE_FORWARDING; for (i = 0; i < ethsw->sw_attr.num_ifs; i++) { err = dpsw_if_disable(ethsw->mc_io, 0, ethsw->dpsw_handle, i); if (err) { dev_err(dev, "dpsw_if_disable err %d\n", err); goto err_close; } err = dpsw_if_set_stp(ethsw->mc_io, 0, ethsw->dpsw_handle, i, &stp_cfg); if (err) { dev_err(dev, "dpsw_if_set_stp err %d for port %d\n", err, i); goto err_close; } /* Switch starts with all ports configured to VLAN 1. Need to * remove this setting to allow configuration at bridge join */ vcfg.num_ifs = 1; vcfg.if_id[0] = i; err = dpsw_vlan_remove_if_untagged(ethsw->mc_io, 0, ethsw->dpsw_handle, DEFAULT_VLAN_ID, &vcfg); if (err) { dev_err(dev, "dpsw_vlan_remove_if_untagged err %d\n", err); goto err_close; } tci_cfg.vlan_id = 4095; err = dpsw_if_set_tci(ethsw->mc_io, 0, ethsw->dpsw_handle, i, &tci_cfg); if (err) { dev_err(dev, "dpsw_if_set_tci err %d\n", err); goto err_close; } err = dpsw_vlan_remove_if(ethsw->mc_io, 0, ethsw->dpsw_handle, DEFAULT_VLAN_ID, &vcfg); if (err) { dev_err(dev, "dpsw_vlan_remove_if err %d\n", err); goto err_close; } } err = dpsw_vlan_remove(ethsw->mc_io, 0, ethsw->dpsw_handle, DEFAULT_VLAN_ID); if (err) { dev_err(dev, "dpsw_vlan_remove err %d\n", err); goto err_close; } ethsw->workqueue = alloc_ordered_workqueue("%s_%d_ordered", WQ_MEM_RECLAIM, "ethsw", ethsw->sw_attr.id); if (!ethsw->workqueue) { err = -ENOMEM; goto err_close; } err = dpsw_fdb_remove(ethsw->mc_io, 0, ethsw->dpsw_handle, 0); if (err) goto err_destroy_ordered_workqueue; err = dpaa2_switch_ctrl_if_setup(ethsw); if (err) goto err_destroy_ordered_workqueue; return 0; err_destroy_ordered_workqueue: destroy_workqueue(ethsw->workqueue); err_close: dpsw_close(ethsw->mc_io, 0, ethsw->dpsw_handle); return err; } /* Add an ACL to redirect frames with specific destination MAC address to * control interface */ static int dpaa2_switch_port_trap_mac_addr(struct ethsw_port_priv *port_priv, const char *mac) { struct dpaa2_switch_acl_entry acl_entry = {0}; /* Match on the destination MAC address */ ether_addr_copy(acl_entry.key.match.l2_dest_mac, mac); eth_broadcast_addr(acl_entry.key.mask.l2_dest_mac); /* Trap to CPU */ acl_entry.cfg.precedence = 0; acl_entry.cfg.result.action = DPSW_ACL_ACTION_REDIRECT_TO_CTRL_IF; return dpaa2_switch_acl_entry_add(port_priv->filter_block, &acl_entry); } static int dpaa2_switch_port_init(struct ethsw_port_priv *port_priv, u16 port) { const char stpa[ETH_ALEN] = {0x01, 0x80, 0xc2, 0x00, 0x00, 0x00}; struct switchdev_obj_port_vlan vlan = { .obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN, .vid = DEFAULT_VLAN_ID, .flags = BRIDGE_VLAN_INFO_UNTAGGED | BRIDGE_VLAN_INFO_PVID, }; struct net_device *netdev = port_priv->netdev; struct ethsw_core *ethsw = port_priv->ethsw_data; struct dpaa2_switch_filter_block *filter_block; struct dpsw_fdb_cfg fdb_cfg = {0}; struct dpsw_if_attr dpsw_if_attr; struct dpaa2_switch_fdb *fdb; struct dpsw_acl_cfg acl_cfg; u16 fdb_id, acl_tbl_id; int err; /* Get the Tx queue for this specific port */ err = dpsw_if_get_attributes(ethsw->mc_io, 0, ethsw->dpsw_handle, port_priv->idx, &dpsw_if_attr); if (err) { netdev_err(netdev, "dpsw_if_get_attributes err %d\n", err); return err; } port_priv->tx_qdid = dpsw_if_attr.qdid; /* Create a FDB table for this particular switch port */ fdb_cfg.num_fdb_entries = ethsw->sw_attr.max_fdb_entries / ethsw->sw_attr.num_ifs; err = dpsw_fdb_add(ethsw->mc_io, 0, ethsw->dpsw_handle, &fdb_id, &fdb_cfg); if (err) { netdev_err(netdev, "dpsw_fdb_add err %d\n", err); return err; } /* Find an unused dpaa2_switch_fdb structure and use it */ fdb = dpaa2_switch_fdb_get_unused(ethsw); fdb->fdb_id = fdb_id; fdb->in_use = true; fdb->bridge_dev = NULL; port_priv->fdb = fdb; /* We need to add VLAN 1 as the PVID on this port until it is under a * bridge since the DPAA2 switch is not able to handle the traffic in a * VLAN unaware fashion */ err = dpaa2_switch_port_vlans_add(netdev, &vlan); if (err) return err; /* Setup the egress flooding domains (broadcast, unknown unicast */ err = dpaa2_switch_fdb_set_egress_flood(ethsw, port_priv->fdb->fdb_id); if (err) return err; /* Create an ACL table to be used by this switch port */ acl_cfg.max_entries = DPAA2_ETHSW_PORT_MAX_ACL_ENTRIES; err = dpsw_acl_add(ethsw->mc_io, 0, ethsw->dpsw_handle, &acl_tbl_id, &acl_cfg); if (err) { netdev_err(netdev, "dpsw_acl_add err %d\n", err); return err; } filter_block = dpaa2_switch_filter_block_get_unused(ethsw); filter_block->ethsw = ethsw; filter_block->acl_id = acl_tbl_id; filter_block->in_use = true; filter_block->num_acl_rules = 0; INIT_LIST_HEAD(&filter_block->acl_entries); INIT_LIST_HEAD(&filter_block->mirror_entries); err = dpaa2_switch_port_acl_tbl_bind(port_priv, filter_block); if (err) return err; err = dpaa2_switch_port_trap_mac_addr(port_priv, stpa); if (err) return err; return err; } static void dpaa2_switch_ctrl_if_teardown(struct ethsw_core *ethsw) { dpsw_ctrl_if_disable(ethsw->mc_io, 0, ethsw->dpsw_handle); dpaa2_switch_free_dpio(ethsw); dpaa2_switch_destroy_rings(ethsw); dpaa2_switch_drain_bp(ethsw); dpaa2_switch_free_dpbp(ethsw); } static void dpaa2_switch_teardown(struct fsl_mc_device *sw_dev) { struct device *dev = &sw_dev->dev; struct ethsw_core *ethsw = dev_get_drvdata(dev); int err; dpaa2_switch_ctrl_if_teardown(ethsw); destroy_workqueue(ethsw->workqueue); err = dpsw_close(ethsw->mc_io, 0, ethsw->dpsw_handle); if (err) dev_warn(dev, "dpsw_close err %d\n", err); } static int dpaa2_switch_remove(struct fsl_mc_device *sw_dev) { struct ethsw_port_priv *port_priv; struct ethsw_core *ethsw; struct device *dev; int i; dev = &sw_dev->dev; ethsw = dev_get_drvdata(dev); dpaa2_switch_teardown_irqs(sw_dev); dpsw_disable(ethsw->mc_io, 0, ethsw->dpsw_handle); for (i = 0; i < ethsw->sw_attr.num_ifs; i++) { port_priv = ethsw->ports[i]; unregister_netdev(port_priv->netdev); dpaa2_switch_remove_port(ethsw, i); } kfree(ethsw->fdbs); kfree(ethsw->filter_blocks); kfree(ethsw->ports); dpaa2_switch_teardown(sw_dev); fsl_mc_portal_free(ethsw->mc_io); kfree(ethsw); dev_set_drvdata(dev, NULL); return 0; } static int dpaa2_switch_probe_port(struct ethsw_core *ethsw, u16 port_idx) { struct ethsw_port_priv *port_priv; struct device *dev = ethsw->dev; struct net_device *port_netdev; int err; port_netdev = alloc_etherdev(sizeof(struct ethsw_port_priv)); if (!port_netdev) { dev_err(dev, "alloc_etherdev error\n"); return -ENOMEM; } port_priv = netdev_priv(port_netdev); port_priv->netdev = port_netdev; port_priv->ethsw_data = ethsw; mutex_init(&port_priv->mac_lock); port_priv->idx = port_idx; port_priv->stp_state = BR_STATE_FORWARDING; SET_NETDEV_DEV(port_netdev, dev); port_netdev->netdev_ops = &dpaa2_switch_port_ops; port_netdev->ethtool_ops = &dpaa2_switch_port_ethtool_ops; port_netdev->needed_headroom = DPAA2_SWITCH_NEEDED_HEADROOM; port_priv->bcast_flood = true; port_priv->ucast_flood = true; /* Set MTU limits */ port_netdev->min_mtu = ETH_MIN_MTU; port_netdev->max_mtu = ETHSW_MAX_FRAME_LENGTH; /* Populate the private port structure so that later calls to * dpaa2_switch_port_init() can use it. */ ethsw->ports[port_idx] = port_priv; /* The DPAA2 switch's ingress path depends on the VLAN table, * thus we are not able to disable VLAN filtering. */ port_netdev->features = NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER | NETIF_F_HW_TC; err = dpaa2_switch_port_init(port_priv, port_idx); if (err) goto err_port_probe; err = dpaa2_switch_port_set_mac_addr(port_priv); if (err) goto err_port_probe; err = dpaa2_switch_port_set_learning(port_priv, false); if (err) goto err_port_probe; port_priv->learn_ena = false; err = dpaa2_switch_port_connect_mac(port_priv); if (err) goto err_port_probe; return 0; err_port_probe: free_netdev(port_netdev); ethsw->ports[port_idx] = NULL; return err; } static int dpaa2_switch_probe(struct fsl_mc_device *sw_dev) { struct device *dev = &sw_dev->dev; struct ethsw_core *ethsw; int i, err; /* Allocate switch core*/ ethsw = kzalloc(sizeof(*ethsw), GFP_KERNEL); if (!ethsw) return -ENOMEM; ethsw->dev = dev; ethsw->iommu_domain = iommu_get_domain_for_dev(dev); dev_set_drvdata(dev, ethsw); err = fsl_mc_portal_allocate(sw_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, ðsw->mc_io); if (err) { if (err == -ENXIO) err = -EPROBE_DEFER; else dev_err(dev, "fsl_mc_portal_allocate err %d\n", err); goto err_free_drvdata; } err = dpaa2_switch_init(sw_dev); if (err) goto err_free_cmdport; ethsw->ports = kcalloc(ethsw->sw_attr.num_ifs, sizeof(*ethsw->ports), GFP_KERNEL); if (!(ethsw->ports)) { err = -ENOMEM; goto err_teardown; } ethsw->fdbs = kcalloc(ethsw->sw_attr.num_ifs, sizeof(*ethsw->fdbs), GFP_KERNEL); if (!ethsw->fdbs) { err = -ENOMEM; goto err_free_ports; } ethsw->filter_blocks = kcalloc(ethsw->sw_attr.num_ifs, sizeof(*ethsw->filter_blocks), GFP_KERNEL); if (!ethsw->filter_blocks) { err = -ENOMEM; goto err_free_fdbs; } for (i = 0; i < ethsw->sw_attr.num_ifs; i++) { err = dpaa2_switch_probe_port(ethsw, i); if (err) goto err_free_netdev; } /* Add a NAPI instance for each of the Rx queues. The first port's * net_device will be associated with the instances since we do not have * different queues for each switch ports. */ for (i = 0; i < DPAA2_SWITCH_RX_NUM_FQS; i++) netif_napi_add(ethsw->ports[0]->netdev, ðsw->fq[i].napi, dpaa2_switch_poll); /* Setup IRQs */ err = dpaa2_switch_setup_irqs(sw_dev); if (err) goto err_stop; /* By convention, if the mirror port is equal to the number of switch * interfaces, then mirroring of any kind is disabled. */ ethsw->mirror_port = ethsw->sw_attr.num_ifs; /* Register the netdev only when the entire setup is done and the * switch port interfaces are ready to receive traffic */ for (i = 0; i < ethsw->sw_attr.num_ifs; i++) { err = register_netdev(ethsw->ports[i]->netdev); if (err < 0) { dev_err(dev, "register_netdev error %d\n", err); goto err_unregister_ports; } } return 0; err_unregister_ports: for (i--; i >= 0; i--) unregister_netdev(ethsw->ports[i]->netdev); dpaa2_switch_teardown_irqs(sw_dev); err_stop: dpsw_disable(ethsw->mc_io, 0, ethsw->dpsw_handle); err_free_netdev: for (i--; i >= 0; i--) dpaa2_switch_remove_port(ethsw, i); kfree(ethsw->filter_blocks); err_free_fdbs: kfree(ethsw->fdbs); err_free_ports: kfree(ethsw->ports); err_teardown: dpaa2_switch_teardown(sw_dev); err_free_cmdport: fsl_mc_portal_free(ethsw->mc_io); err_free_drvdata: kfree(ethsw); dev_set_drvdata(dev, NULL); return err; } static const struct fsl_mc_device_id dpaa2_switch_match_id_table[] = { { .vendor = FSL_MC_VENDOR_FREESCALE, .obj_type = "dpsw", }, { .vendor = 0x0 } }; MODULE_DEVICE_TABLE(fslmc, dpaa2_switch_match_id_table); static struct fsl_mc_driver dpaa2_switch_drv = { .driver = { .name = KBUILD_MODNAME, .owner = THIS_MODULE, }, .probe = dpaa2_switch_probe, .remove = dpaa2_switch_remove, .match_id_table = dpaa2_switch_match_id_table }; static struct notifier_block dpaa2_switch_port_nb __read_mostly = { .notifier_call = dpaa2_switch_port_netdevice_event, }; static struct notifier_block dpaa2_switch_port_switchdev_nb = { .notifier_call = dpaa2_switch_port_event, }; static struct notifier_block dpaa2_switch_port_switchdev_blocking_nb = { .notifier_call = dpaa2_switch_port_blocking_event, }; static int dpaa2_switch_register_notifiers(void) { int err; err = register_netdevice_notifier(&dpaa2_switch_port_nb); if (err) { pr_err("dpaa2-switch: failed to register net_device notifier (%d)\n", err); return err; } err = register_switchdev_notifier(&dpaa2_switch_port_switchdev_nb); if (err) { pr_err("dpaa2-switch: failed to register switchdev notifier (%d)\n", err); goto err_switchdev_nb; } err = register_switchdev_blocking_notifier(&dpaa2_switch_port_switchdev_blocking_nb); if (err) { pr_err("dpaa2-switch: failed to register switchdev blocking notifier (%d)\n", err); goto err_switchdev_blocking_nb; } return 0; err_switchdev_blocking_nb: unregister_switchdev_notifier(&dpaa2_switch_port_switchdev_nb); err_switchdev_nb: unregister_netdevice_notifier(&dpaa2_switch_port_nb); return err; } static void dpaa2_switch_unregister_notifiers(void) { int err; err = unregister_switchdev_blocking_notifier(&dpaa2_switch_port_switchdev_blocking_nb); if (err) pr_err("dpaa2-switch: failed to unregister switchdev blocking notifier (%d)\n", err); err = unregister_switchdev_notifier(&dpaa2_switch_port_switchdev_nb); if (err) pr_err("dpaa2-switch: failed to unregister switchdev notifier (%d)\n", err); err = unregister_netdevice_notifier(&dpaa2_switch_port_nb); if (err) pr_err("dpaa2-switch: failed to unregister net_device notifier (%d)\n", err); } static int __init dpaa2_switch_driver_init(void) { int err; err = fsl_mc_driver_register(&dpaa2_switch_drv); if (err) return err; err = dpaa2_switch_register_notifiers(); if (err) { fsl_mc_driver_unregister(&dpaa2_switch_drv); return err; } return 0; } static void __exit dpaa2_switch_driver_exit(void) { dpaa2_switch_unregister_notifiers(); fsl_mc_driver_unregister(&dpaa2_switch_drv); } module_init(dpaa2_switch_driver_init); module_exit(dpaa2_switch_driver_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("DPAA2 Ethernet Switch Driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1