Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Santiago Leon | 4822 | 51.22% | 33 | 21.85% |
Thomas Falcon | 1009 | 10.72% | 11 | 7.28% |
Nick Child | 839 | 8.91% | 4 | 2.65% |
Brian King | 775 | 8.23% | 9 | 5.96% |
Sivakumar Krishnasamy | 338 | 3.59% | 1 | 0.66% |
Robert Jennings | 282 | 3.00% | 3 | 1.99% |
Christoph Hellwig | 226 | 2.40% | 1 | 0.66% |
Cris Forno | 162 | 1.72% | 2 | 1.32% |
Anton Blanchard | 121 | 1.29% | 8 | 5.30% |
Michael Ellerman | 97 | 1.03% | 2 | 1.32% |
David J. Wilder | 86 | 0.91% | 3 | 1.99% |
Michał Mirosław | 68 | 0.72% | 3 | 1.99% |
Stephen Hemminger | 65 | 0.69% | 2 | 1.32% |
Alexander Beregalov | 59 | 0.63% | 1 | 0.66% |
Stephen Rothwell | 49 | 0.52% | 6 | 3.97% |
Wang Chen | 45 | 0.48% | 1 | 0.66% |
Benjamin Herrenschmidt | 40 | 0.42% | 2 | 1.32% |
Denis Kirjanov | 39 | 0.41% | 2 | 1.32% |
Greg Kroah-Hartman | 39 | 0.41% | 4 | 2.65% |
Andrew Morton | 30 | 0.32% | 5 | 3.31% |
Alistair Popple | 23 | 0.24% | 1 | 0.66% |
Thomas Huth | 22 | 0.23% | 1 | 0.66% |
David Gibson | 18 | 0.19% | 2 | 1.32% |
Dave Hansen | 17 | 0.18% | 1 | 0.66% |
Philippe Reynes | 16 | 0.17% | 1 | 0.66% |
FUJITA Tomonori | 16 | 0.17% | 1 | 0.66% |
Segher Boessenkool | 14 | 0.15% | 1 | 0.66% |
Jiri Pirko | 14 | 0.15% | 4 | 2.65% |
Jarod Wilson | 11 | 0.12% | 1 | 0.66% |
Tyrel Datwyler | 7 | 0.07% | 1 | 0.66% |
Jeff Garzik | 7 | 0.07% | 3 | 1.99% |
Jakub Kiciński | 6 | 0.06% | 4 | 2.65% |
Nicholas Mc Guire | 5 | 0.05% | 1 | 0.66% |
Julia Lawall | 5 | 0.05% | 1 | 0.66% |
Kees Cook | 5 | 0.05% | 1 | 0.66% |
Eric Dumazet | 4 | 0.04% | 2 | 1.32% |
Ben Hutchings | 4 | 0.04% | 2 | 1.32% |
Yongbae Park | 4 | 0.04% | 1 | 0.66% |
Alexey Dobriyan | 3 | 0.03% | 1 | 0.66% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.66% |
Linus Torvalds (pre-git) | 2 | 0.02% | 1 | 0.66% |
Tom Herbert | 2 | 0.02% | 1 | 0.66% |
Yue haibing | 2 | 0.02% | 2 | 1.32% |
Arvind Yadav | 2 | 0.02% | 2 | 1.32% |
Wolfram Sang | 2 | 0.02% | 1 | 0.66% |
caihuoqing | 1 | 0.01% | 1 | 0.66% |
Emese Revfy | 1 | 0.01% | 1 | 0.66% |
Eric W. Biedermann | 1 | 0.01% | 1 | 0.66% |
Arnd Bergmann | 1 | 0.01% | 1 | 0.66% |
Linus Torvalds | 1 | 0.01% | 1 | 0.66% |
Stefan Richter | 1 | 0.01% | 1 | 0.66% |
Joe Perches | 1 | 0.01% | 1 | 0.66% |
Arun Sharma | 1 | 0.01% | 1 | 0.66% |
Hollis Blanchard | 1 | 0.01% | 1 | 0.66% |
Uwe Kleine-König | 1 | 0.01% | 1 | 0.66% |
Total | 9414 | 151 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * IBM Power Virtual Ethernet Device Driver * * Copyright (C) IBM Corporation, 2003, 2010 * * Authors: Dave Larson <larson1@us.ibm.com> * Santiago Leon <santil@linux.vnet.ibm.com> * Brian King <brking@linux.vnet.ibm.com> * Robert Jennings <rcj@linux.vnet.ibm.com> * Anton Blanchard <anton@au.ibm.com> */ #include <linux/module.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/dma-mapping.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/mm.h> #include <linux/pm.h> #include <linux/ethtool.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/slab.h> #include <asm/hvcall.h> #include <linux/atomic.h> #include <asm/vio.h> #include <asm/iommu.h> #include <asm/firmware.h> #include <net/tcp.h> #include <net/ip6_checksum.h> #include "ibmveth.h" static irqreturn_t ibmveth_interrupt(int irq, void *dev_instance); static void ibmveth_rxq_harvest_buffer(struct ibmveth_adapter *adapter); static unsigned long ibmveth_get_desired_dma(struct vio_dev *vdev); static struct kobj_type ktype_veth_pool; static const char ibmveth_driver_name[] = "ibmveth"; static const char ibmveth_driver_string[] = "IBM Power Virtual Ethernet Driver"; #define ibmveth_driver_version "1.06" MODULE_AUTHOR("Santiago Leon <santil@linux.vnet.ibm.com>"); MODULE_DESCRIPTION("IBM Power Virtual Ethernet Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(ibmveth_driver_version); static unsigned int tx_copybreak __read_mostly = 128; module_param(tx_copybreak, uint, 0644); MODULE_PARM_DESC(tx_copybreak, "Maximum size of packet that is copied to a new buffer on transmit"); static unsigned int rx_copybreak __read_mostly = 128; module_param(rx_copybreak, uint, 0644); MODULE_PARM_DESC(rx_copybreak, "Maximum size of packet that is copied to a new buffer on receive"); static unsigned int rx_flush __read_mostly = 0; module_param(rx_flush, uint, 0644); MODULE_PARM_DESC(rx_flush, "Flush receive buffers before use"); static bool old_large_send __read_mostly; module_param(old_large_send, bool, 0444); MODULE_PARM_DESC(old_large_send, "Use old large send method on firmware that supports the new method"); struct ibmveth_stat { char name[ETH_GSTRING_LEN]; int offset; }; #define IBMVETH_STAT_OFF(stat) offsetof(struct ibmveth_adapter, stat) #define IBMVETH_GET_STAT(a, off) *((u64 *)(((unsigned long)(a)) + off)) static struct ibmveth_stat ibmveth_stats[] = { { "replenish_task_cycles", IBMVETH_STAT_OFF(replenish_task_cycles) }, { "replenish_no_mem", IBMVETH_STAT_OFF(replenish_no_mem) }, { "replenish_add_buff_failure", IBMVETH_STAT_OFF(replenish_add_buff_failure) }, { "replenish_add_buff_success", IBMVETH_STAT_OFF(replenish_add_buff_success) }, { "rx_invalid_buffer", IBMVETH_STAT_OFF(rx_invalid_buffer) }, { "rx_no_buffer", IBMVETH_STAT_OFF(rx_no_buffer) }, { "tx_map_failed", IBMVETH_STAT_OFF(tx_map_failed) }, { "tx_send_failed", IBMVETH_STAT_OFF(tx_send_failed) }, { "fw_enabled_ipv4_csum", IBMVETH_STAT_OFF(fw_ipv4_csum_support) }, { "fw_enabled_ipv6_csum", IBMVETH_STAT_OFF(fw_ipv6_csum_support) }, { "tx_large_packets", IBMVETH_STAT_OFF(tx_large_packets) }, { "rx_large_packets", IBMVETH_STAT_OFF(rx_large_packets) }, { "fw_enabled_large_send", IBMVETH_STAT_OFF(fw_large_send_support) } }; /* simple methods of getting data from the current rxq entry */ static inline u32 ibmveth_rxq_flags(struct ibmveth_adapter *adapter) { return be32_to_cpu(adapter->rx_queue.queue_addr[adapter->rx_queue.index].flags_off); } static inline int ibmveth_rxq_toggle(struct ibmveth_adapter *adapter) { return (ibmveth_rxq_flags(adapter) & IBMVETH_RXQ_TOGGLE) >> IBMVETH_RXQ_TOGGLE_SHIFT; } static inline int ibmveth_rxq_pending_buffer(struct ibmveth_adapter *adapter) { return ibmveth_rxq_toggle(adapter) == adapter->rx_queue.toggle; } static inline int ibmveth_rxq_buffer_valid(struct ibmveth_adapter *adapter) { return ibmveth_rxq_flags(adapter) & IBMVETH_RXQ_VALID; } static inline int ibmveth_rxq_frame_offset(struct ibmveth_adapter *adapter) { return ibmveth_rxq_flags(adapter) & IBMVETH_RXQ_OFF_MASK; } static inline int ibmveth_rxq_large_packet(struct ibmveth_adapter *adapter) { return ibmveth_rxq_flags(adapter) & IBMVETH_RXQ_LRG_PKT; } static inline int ibmveth_rxq_frame_length(struct ibmveth_adapter *adapter) { return be32_to_cpu(adapter->rx_queue.queue_addr[adapter->rx_queue.index].length); } static inline int ibmveth_rxq_csum_good(struct ibmveth_adapter *adapter) { return ibmveth_rxq_flags(adapter) & IBMVETH_RXQ_CSUM_GOOD; } static unsigned int ibmveth_real_max_tx_queues(void) { unsigned int n_cpu = num_online_cpus(); return min(n_cpu, IBMVETH_MAX_QUEUES); } /* setup the initial settings for a buffer pool */ static void ibmveth_init_buffer_pool(struct ibmveth_buff_pool *pool, u32 pool_index, u32 pool_size, u32 buff_size, u32 pool_active) { pool->size = pool_size; pool->index = pool_index; pool->buff_size = buff_size; pool->threshold = pool_size * 7 / 8; pool->active = pool_active; } /* allocate and setup an buffer pool - called during open */ static int ibmveth_alloc_buffer_pool(struct ibmveth_buff_pool *pool) { int i; pool->free_map = kmalloc_array(pool->size, sizeof(u16), GFP_KERNEL); if (!pool->free_map) return -1; pool->dma_addr = kcalloc(pool->size, sizeof(dma_addr_t), GFP_KERNEL); if (!pool->dma_addr) { kfree(pool->free_map); pool->free_map = NULL; return -1; } pool->skbuff = kcalloc(pool->size, sizeof(void *), GFP_KERNEL); if (!pool->skbuff) { kfree(pool->dma_addr); pool->dma_addr = NULL; kfree(pool->free_map); pool->free_map = NULL; return -1; } for (i = 0; i < pool->size; ++i) pool->free_map[i] = i; atomic_set(&pool->available, 0); pool->producer_index = 0; pool->consumer_index = 0; return 0; } static inline void ibmveth_flush_buffer(void *addr, unsigned long length) { unsigned long offset; for (offset = 0; offset < length; offset += SMP_CACHE_BYTES) asm("dcbfl %0,%1" :: "b" (addr), "r" (offset)); } /* replenish the buffers for a pool. note that we don't need to * skb_reserve these since they are used for incoming... */ static void ibmveth_replenish_buffer_pool(struct ibmveth_adapter *adapter, struct ibmveth_buff_pool *pool) { u32 i; u32 count = pool->size - atomic_read(&pool->available); u32 buffers_added = 0; struct sk_buff *skb; unsigned int free_index, index; u64 correlator; unsigned long lpar_rc; dma_addr_t dma_addr; mb(); for (i = 0; i < count; ++i) { union ibmveth_buf_desc desc; skb = netdev_alloc_skb(adapter->netdev, pool->buff_size); if (!skb) { netdev_dbg(adapter->netdev, "replenish: unable to allocate skb\n"); adapter->replenish_no_mem++; break; } free_index = pool->consumer_index; pool->consumer_index++; if (pool->consumer_index >= pool->size) pool->consumer_index = 0; index = pool->free_map[free_index]; BUG_ON(index == IBM_VETH_INVALID_MAP); BUG_ON(pool->skbuff[index] != NULL); dma_addr = dma_map_single(&adapter->vdev->dev, skb->data, pool->buff_size, DMA_FROM_DEVICE); if (dma_mapping_error(&adapter->vdev->dev, dma_addr)) goto failure; pool->free_map[free_index] = IBM_VETH_INVALID_MAP; pool->dma_addr[index] = dma_addr; pool->skbuff[index] = skb; correlator = ((u64)pool->index << 32) | index; *(u64 *)skb->data = correlator; desc.fields.flags_len = IBMVETH_BUF_VALID | pool->buff_size; desc.fields.address = dma_addr; if (rx_flush) { unsigned int len = min(pool->buff_size, adapter->netdev->mtu + IBMVETH_BUFF_OH); ibmveth_flush_buffer(skb->data, len); } lpar_rc = h_add_logical_lan_buffer(adapter->vdev->unit_address, desc.desc); if (lpar_rc != H_SUCCESS) { goto failure; } else { buffers_added++; adapter->replenish_add_buff_success++; } } mb(); atomic_add(buffers_added, &(pool->available)); return; failure: pool->free_map[free_index] = index; pool->skbuff[index] = NULL; if (pool->consumer_index == 0) pool->consumer_index = pool->size - 1; else pool->consumer_index--; if (!dma_mapping_error(&adapter->vdev->dev, dma_addr)) dma_unmap_single(&adapter->vdev->dev, pool->dma_addr[index], pool->buff_size, DMA_FROM_DEVICE); dev_kfree_skb_any(skb); adapter->replenish_add_buff_failure++; mb(); atomic_add(buffers_added, &(pool->available)); } /* * The final 8 bytes of the buffer list is a counter of frames dropped * because there was not a buffer in the buffer list capable of holding * the frame. */ static void ibmveth_update_rx_no_buffer(struct ibmveth_adapter *adapter) { __be64 *p = adapter->buffer_list_addr + 4096 - 8; adapter->rx_no_buffer = be64_to_cpup(p); } /* replenish routine */ static void ibmveth_replenish_task(struct ibmveth_adapter *adapter) { int i; adapter->replenish_task_cycles++; for (i = (IBMVETH_NUM_BUFF_POOLS - 1); i >= 0; i--) { struct ibmveth_buff_pool *pool = &adapter->rx_buff_pool[i]; if (pool->active && (atomic_read(&pool->available) < pool->threshold)) ibmveth_replenish_buffer_pool(adapter, pool); } ibmveth_update_rx_no_buffer(adapter); } /* empty and free ana buffer pool - also used to do cleanup in error paths */ static void ibmveth_free_buffer_pool(struct ibmveth_adapter *adapter, struct ibmveth_buff_pool *pool) { int i; kfree(pool->free_map); pool->free_map = NULL; if (pool->skbuff && pool->dma_addr) { for (i = 0; i < pool->size; ++i) { struct sk_buff *skb = pool->skbuff[i]; if (skb) { dma_unmap_single(&adapter->vdev->dev, pool->dma_addr[i], pool->buff_size, DMA_FROM_DEVICE); dev_kfree_skb_any(skb); pool->skbuff[i] = NULL; } } } if (pool->dma_addr) { kfree(pool->dma_addr); pool->dma_addr = NULL; } if (pool->skbuff) { kfree(pool->skbuff); pool->skbuff = NULL; } } /* remove a buffer from a pool */ static void ibmveth_remove_buffer_from_pool(struct ibmveth_adapter *adapter, u64 correlator) { unsigned int pool = correlator >> 32; unsigned int index = correlator & 0xffffffffUL; unsigned int free_index; struct sk_buff *skb; BUG_ON(pool >= IBMVETH_NUM_BUFF_POOLS); BUG_ON(index >= adapter->rx_buff_pool[pool].size); skb = adapter->rx_buff_pool[pool].skbuff[index]; BUG_ON(skb == NULL); adapter->rx_buff_pool[pool].skbuff[index] = NULL; dma_unmap_single(&adapter->vdev->dev, adapter->rx_buff_pool[pool].dma_addr[index], adapter->rx_buff_pool[pool].buff_size, DMA_FROM_DEVICE); free_index = adapter->rx_buff_pool[pool].producer_index; adapter->rx_buff_pool[pool].producer_index++; if (adapter->rx_buff_pool[pool].producer_index >= adapter->rx_buff_pool[pool].size) adapter->rx_buff_pool[pool].producer_index = 0; adapter->rx_buff_pool[pool].free_map[free_index] = index; mb(); atomic_dec(&(adapter->rx_buff_pool[pool].available)); } /* get the current buffer on the rx queue */ static inline struct sk_buff *ibmveth_rxq_get_buffer(struct ibmveth_adapter *adapter) { u64 correlator = adapter->rx_queue.queue_addr[adapter->rx_queue.index].correlator; unsigned int pool = correlator >> 32; unsigned int index = correlator & 0xffffffffUL; BUG_ON(pool >= IBMVETH_NUM_BUFF_POOLS); BUG_ON(index >= adapter->rx_buff_pool[pool].size); return adapter->rx_buff_pool[pool].skbuff[index]; } /* recycle the current buffer on the rx queue */ static int ibmveth_rxq_recycle_buffer(struct ibmveth_adapter *adapter) { u32 q_index = adapter->rx_queue.index; u64 correlator = adapter->rx_queue.queue_addr[q_index].correlator; unsigned int pool = correlator >> 32; unsigned int index = correlator & 0xffffffffUL; union ibmveth_buf_desc desc; unsigned long lpar_rc; int ret = 1; BUG_ON(pool >= IBMVETH_NUM_BUFF_POOLS); BUG_ON(index >= adapter->rx_buff_pool[pool].size); if (!adapter->rx_buff_pool[pool].active) { ibmveth_rxq_harvest_buffer(adapter); ibmveth_free_buffer_pool(adapter, &adapter->rx_buff_pool[pool]); goto out; } desc.fields.flags_len = IBMVETH_BUF_VALID | adapter->rx_buff_pool[pool].buff_size; desc.fields.address = adapter->rx_buff_pool[pool].dma_addr[index]; lpar_rc = h_add_logical_lan_buffer(adapter->vdev->unit_address, desc.desc); if (lpar_rc != H_SUCCESS) { netdev_dbg(adapter->netdev, "h_add_logical_lan_buffer failed " "during recycle rc=%ld", lpar_rc); ibmveth_remove_buffer_from_pool(adapter, adapter->rx_queue.queue_addr[adapter->rx_queue.index].correlator); ret = 0; } if (++adapter->rx_queue.index == adapter->rx_queue.num_slots) { adapter->rx_queue.index = 0; adapter->rx_queue.toggle = !adapter->rx_queue.toggle; } out: return ret; } static void ibmveth_rxq_harvest_buffer(struct ibmveth_adapter *adapter) { ibmveth_remove_buffer_from_pool(adapter, adapter->rx_queue.queue_addr[adapter->rx_queue.index].correlator); if (++adapter->rx_queue.index == adapter->rx_queue.num_slots) { adapter->rx_queue.index = 0; adapter->rx_queue.toggle = !adapter->rx_queue.toggle; } } static void ibmveth_free_tx_ltb(struct ibmveth_adapter *adapter, int idx) { dma_unmap_single(&adapter->vdev->dev, adapter->tx_ltb_dma[idx], adapter->tx_ltb_size, DMA_TO_DEVICE); kfree(adapter->tx_ltb_ptr[idx]); adapter->tx_ltb_ptr[idx] = NULL; } static int ibmveth_allocate_tx_ltb(struct ibmveth_adapter *adapter, int idx) { adapter->tx_ltb_ptr[idx] = kzalloc(adapter->tx_ltb_size, GFP_KERNEL); if (!adapter->tx_ltb_ptr[idx]) { netdev_err(adapter->netdev, "unable to allocate tx long term buffer\n"); return -ENOMEM; } adapter->tx_ltb_dma[idx] = dma_map_single(&adapter->vdev->dev, adapter->tx_ltb_ptr[idx], adapter->tx_ltb_size, DMA_TO_DEVICE); if (dma_mapping_error(&adapter->vdev->dev, adapter->tx_ltb_dma[idx])) { netdev_err(adapter->netdev, "unable to DMA map tx long term buffer\n"); kfree(adapter->tx_ltb_ptr[idx]); adapter->tx_ltb_ptr[idx] = NULL; return -ENOMEM; } return 0; } static int ibmveth_register_logical_lan(struct ibmveth_adapter *adapter, union ibmveth_buf_desc rxq_desc, u64 mac_address) { int rc, try_again = 1; /* * After a kexec the adapter will still be open, so our attempt to * open it will fail. So if we get a failure we free the adapter and * try again, but only once. */ retry: rc = h_register_logical_lan(adapter->vdev->unit_address, adapter->buffer_list_dma, rxq_desc.desc, adapter->filter_list_dma, mac_address); if (rc != H_SUCCESS && try_again) { do { rc = h_free_logical_lan(adapter->vdev->unit_address); } while (H_IS_LONG_BUSY(rc) || (rc == H_BUSY)); try_again = 0; goto retry; } return rc; } static int ibmveth_open(struct net_device *netdev) { struct ibmveth_adapter *adapter = netdev_priv(netdev); u64 mac_address; int rxq_entries = 1; unsigned long lpar_rc; int rc; union ibmveth_buf_desc rxq_desc; int i; struct device *dev; netdev_dbg(netdev, "open starting\n"); napi_enable(&adapter->napi); for(i = 0; i < IBMVETH_NUM_BUFF_POOLS; i++) rxq_entries += adapter->rx_buff_pool[i].size; rc = -ENOMEM; adapter->buffer_list_addr = (void*) get_zeroed_page(GFP_KERNEL); if (!adapter->buffer_list_addr) { netdev_err(netdev, "unable to allocate list pages\n"); goto out; } adapter->filter_list_addr = (void*) get_zeroed_page(GFP_KERNEL); if (!adapter->filter_list_addr) { netdev_err(netdev, "unable to allocate filter pages\n"); goto out_free_buffer_list; } dev = &adapter->vdev->dev; adapter->rx_queue.queue_len = sizeof(struct ibmveth_rx_q_entry) * rxq_entries; adapter->rx_queue.queue_addr = dma_alloc_coherent(dev, adapter->rx_queue.queue_len, &adapter->rx_queue.queue_dma, GFP_KERNEL); if (!adapter->rx_queue.queue_addr) goto out_free_filter_list; adapter->buffer_list_dma = dma_map_single(dev, adapter->buffer_list_addr, 4096, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, adapter->buffer_list_dma)) { netdev_err(netdev, "unable to map buffer list pages\n"); goto out_free_queue_mem; } adapter->filter_list_dma = dma_map_single(dev, adapter->filter_list_addr, 4096, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, adapter->filter_list_dma)) { netdev_err(netdev, "unable to map filter list pages\n"); goto out_unmap_buffer_list; } for (i = 0; i < netdev->real_num_tx_queues; i++) { if (ibmveth_allocate_tx_ltb(adapter, i)) goto out_free_tx_ltb; } adapter->rx_queue.index = 0; adapter->rx_queue.num_slots = rxq_entries; adapter->rx_queue.toggle = 1; mac_address = ether_addr_to_u64(netdev->dev_addr); rxq_desc.fields.flags_len = IBMVETH_BUF_VALID | adapter->rx_queue.queue_len; rxq_desc.fields.address = adapter->rx_queue.queue_dma; netdev_dbg(netdev, "buffer list @ 0x%p\n", adapter->buffer_list_addr); netdev_dbg(netdev, "filter list @ 0x%p\n", adapter->filter_list_addr); netdev_dbg(netdev, "receive q @ 0x%p\n", adapter->rx_queue.queue_addr); h_vio_signal(adapter->vdev->unit_address, VIO_IRQ_DISABLE); lpar_rc = ibmveth_register_logical_lan(adapter, rxq_desc, mac_address); if (lpar_rc != H_SUCCESS) { netdev_err(netdev, "h_register_logical_lan failed with %ld\n", lpar_rc); netdev_err(netdev, "buffer TCE:0x%llx filter TCE:0x%llx rxq " "desc:0x%llx MAC:0x%llx\n", adapter->buffer_list_dma, adapter->filter_list_dma, rxq_desc.desc, mac_address); rc = -ENONET; goto out_unmap_filter_list; } for (i = 0; i < IBMVETH_NUM_BUFF_POOLS; i++) { if (!adapter->rx_buff_pool[i].active) continue; if (ibmveth_alloc_buffer_pool(&adapter->rx_buff_pool[i])) { netdev_err(netdev, "unable to alloc pool\n"); adapter->rx_buff_pool[i].active = 0; rc = -ENOMEM; goto out_free_buffer_pools; } } netdev_dbg(netdev, "registering irq 0x%x\n", netdev->irq); rc = request_irq(netdev->irq, ibmveth_interrupt, 0, netdev->name, netdev); if (rc != 0) { netdev_err(netdev, "unable to request irq 0x%x, rc %d\n", netdev->irq, rc); do { lpar_rc = h_free_logical_lan(adapter->vdev->unit_address); } while (H_IS_LONG_BUSY(lpar_rc) || (lpar_rc == H_BUSY)); goto out_free_buffer_pools; } rc = -ENOMEM; netdev_dbg(netdev, "initial replenish cycle\n"); ibmveth_interrupt(netdev->irq, netdev); netif_tx_start_all_queues(netdev); netdev_dbg(netdev, "open complete\n"); return 0; out_free_buffer_pools: while (--i >= 0) { if (adapter->rx_buff_pool[i].active) ibmveth_free_buffer_pool(adapter, &adapter->rx_buff_pool[i]); } out_unmap_filter_list: dma_unmap_single(dev, adapter->filter_list_dma, 4096, DMA_BIDIRECTIONAL); out_free_tx_ltb: while (--i >= 0) { ibmveth_free_tx_ltb(adapter, i); } out_unmap_buffer_list: dma_unmap_single(dev, adapter->buffer_list_dma, 4096, DMA_BIDIRECTIONAL); out_free_queue_mem: dma_free_coherent(dev, adapter->rx_queue.queue_len, adapter->rx_queue.queue_addr, adapter->rx_queue.queue_dma); out_free_filter_list: free_page((unsigned long)adapter->filter_list_addr); out_free_buffer_list: free_page((unsigned long)adapter->buffer_list_addr); out: napi_disable(&adapter->napi); return rc; } static int ibmveth_close(struct net_device *netdev) { struct ibmveth_adapter *adapter = netdev_priv(netdev); struct device *dev = &adapter->vdev->dev; long lpar_rc; int i; netdev_dbg(netdev, "close starting\n"); napi_disable(&adapter->napi); netif_tx_stop_all_queues(netdev); h_vio_signal(adapter->vdev->unit_address, VIO_IRQ_DISABLE); do { lpar_rc = h_free_logical_lan(adapter->vdev->unit_address); } while (H_IS_LONG_BUSY(lpar_rc) || (lpar_rc == H_BUSY)); if (lpar_rc != H_SUCCESS) { netdev_err(netdev, "h_free_logical_lan failed with %lx, " "continuing with close\n", lpar_rc); } free_irq(netdev->irq, netdev); ibmveth_update_rx_no_buffer(adapter); dma_unmap_single(dev, adapter->buffer_list_dma, 4096, DMA_BIDIRECTIONAL); free_page((unsigned long)adapter->buffer_list_addr); dma_unmap_single(dev, adapter->filter_list_dma, 4096, DMA_BIDIRECTIONAL); free_page((unsigned long)adapter->filter_list_addr); dma_free_coherent(dev, adapter->rx_queue.queue_len, adapter->rx_queue.queue_addr, adapter->rx_queue.queue_dma); for (i = 0; i < IBMVETH_NUM_BUFF_POOLS; i++) if (adapter->rx_buff_pool[i].active) ibmveth_free_buffer_pool(adapter, &adapter->rx_buff_pool[i]); for (i = 0; i < netdev->real_num_tx_queues; i++) ibmveth_free_tx_ltb(adapter, i); netdev_dbg(netdev, "close complete\n"); return 0; } static int ibmveth_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct ibmveth_adapter *adapter = netdev_priv(dev); return ethtool_virtdev_set_link_ksettings(dev, cmd, &adapter->speed, &adapter->duplex); } static int ibmveth_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct ibmveth_adapter *adapter = netdev_priv(dev); cmd->base.speed = adapter->speed; cmd->base.duplex = adapter->duplex; cmd->base.port = PORT_OTHER; return 0; } static void ibmveth_init_link_settings(struct net_device *dev) { struct ibmveth_adapter *adapter = netdev_priv(dev); adapter->speed = SPEED_1000; adapter->duplex = DUPLEX_FULL; } static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strscpy(info->driver, ibmveth_driver_name, sizeof(info->driver)); strscpy(info->version, ibmveth_driver_version, sizeof(info->version)); } static netdev_features_t ibmveth_fix_features(struct net_device *dev, netdev_features_t features) { /* * Since the ibmveth firmware interface does not have the * concept of separate tx/rx checksum offload enable, if rx * checksum is disabled we also have to disable tx checksum * offload. Once we disable rx checksum offload, we are no * longer allowed to send tx buffers that are not properly * checksummed. */ if (!(features & NETIF_F_RXCSUM)) features &= ~NETIF_F_CSUM_MASK; return features; } static int ibmveth_set_csum_offload(struct net_device *dev, u32 data) { struct ibmveth_adapter *adapter = netdev_priv(dev); unsigned long set_attr, clr_attr, ret_attr; unsigned long set_attr6, clr_attr6; long ret, ret4, ret6; int rc1 = 0, rc2 = 0; int restart = 0; if (netif_running(dev)) { restart = 1; ibmveth_close(dev); } set_attr = 0; clr_attr = 0; set_attr6 = 0; clr_attr6 = 0; if (data) { set_attr = IBMVETH_ILLAN_IPV4_TCP_CSUM; set_attr6 = IBMVETH_ILLAN_IPV6_TCP_CSUM; } else { clr_attr = IBMVETH_ILLAN_IPV4_TCP_CSUM; clr_attr6 = IBMVETH_ILLAN_IPV6_TCP_CSUM; } ret = h_illan_attributes(adapter->vdev->unit_address, 0, 0, &ret_attr); if (ret == H_SUCCESS && (ret_attr & IBMVETH_ILLAN_PADDED_PKT_CSUM)) { ret4 = h_illan_attributes(adapter->vdev->unit_address, clr_attr, set_attr, &ret_attr); if (ret4 != H_SUCCESS) { netdev_err(dev, "unable to change IPv4 checksum " "offload settings. %d rc=%ld\n", data, ret4); h_illan_attributes(adapter->vdev->unit_address, set_attr, clr_attr, &ret_attr); if (data == 1) dev->features &= ~NETIF_F_IP_CSUM; } else { adapter->fw_ipv4_csum_support = data; } ret6 = h_illan_attributes(adapter->vdev->unit_address, clr_attr6, set_attr6, &ret_attr); if (ret6 != H_SUCCESS) { netdev_err(dev, "unable to change IPv6 checksum " "offload settings. %d rc=%ld\n", data, ret6); h_illan_attributes(adapter->vdev->unit_address, set_attr6, clr_attr6, &ret_attr); if (data == 1) dev->features &= ~NETIF_F_IPV6_CSUM; } else adapter->fw_ipv6_csum_support = data; if (ret4 == H_SUCCESS || ret6 == H_SUCCESS) adapter->rx_csum = data; else rc1 = -EIO; } else { rc1 = -EIO; netdev_err(dev, "unable to change checksum offload settings." " %d rc=%ld ret_attr=%lx\n", data, ret, ret_attr); } if (restart) rc2 = ibmveth_open(dev); return rc1 ? rc1 : rc2; } static int ibmveth_set_tso(struct net_device *dev, u32 data) { struct ibmveth_adapter *adapter = netdev_priv(dev); unsigned long set_attr, clr_attr, ret_attr; long ret1, ret2; int rc1 = 0, rc2 = 0; int restart = 0; if (netif_running(dev)) { restart = 1; ibmveth_close(dev); } set_attr = 0; clr_attr = 0; if (data) set_attr = IBMVETH_ILLAN_LRG_SR_ENABLED; else clr_attr = IBMVETH_ILLAN_LRG_SR_ENABLED; ret1 = h_illan_attributes(adapter->vdev->unit_address, 0, 0, &ret_attr); if (ret1 == H_SUCCESS && (ret_attr & IBMVETH_ILLAN_LRG_SND_SUPPORT) && !old_large_send) { ret2 = h_illan_attributes(adapter->vdev->unit_address, clr_attr, set_attr, &ret_attr); if (ret2 != H_SUCCESS) { netdev_err(dev, "unable to change tso settings. %d rc=%ld\n", data, ret2); h_illan_attributes(adapter->vdev->unit_address, set_attr, clr_attr, &ret_attr); if (data == 1) dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); rc1 = -EIO; } else { adapter->fw_large_send_support = data; adapter->large_send = data; } } else { /* Older firmware version of large send offload does not * support tcp6/ipv6 */ if (data == 1) { dev->features &= ~NETIF_F_TSO6; netdev_info(dev, "TSO feature requires all partitions to have updated driver"); } adapter->large_send = data; } if (restart) rc2 = ibmveth_open(dev); return rc1 ? rc1 : rc2; } static int ibmveth_set_features(struct net_device *dev, netdev_features_t features) { struct ibmveth_adapter *adapter = netdev_priv(dev); int rx_csum = !!(features & NETIF_F_RXCSUM); int large_send = !!(features & (NETIF_F_TSO | NETIF_F_TSO6)); int rc1 = 0, rc2 = 0; if (rx_csum != adapter->rx_csum) { rc1 = ibmveth_set_csum_offload(dev, rx_csum); if (rc1 && !adapter->rx_csum) dev->features = features & ~(NETIF_F_CSUM_MASK | NETIF_F_RXCSUM); } if (large_send != adapter->large_send) { rc2 = ibmveth_set_tso(dev, large_send); if (rc2 && !adapter->large_send) dev->features = features & ~(NETIF_F_TSO | NETIF_F_TSO6); } return rc1 ? rc1 : rc2; } static void ibmveth_get_strings(struct net_device *dev, u32 stringset, u8 *data) { int i; if (stringset != ETH_SS_STATS) return; for (i = 0; i < ARRAY_SIZE(ibmveth_stats); i++, data += ETH_GSTRING_LEN) memcpy(data, ibmveth_stats[i].name, ETH_GSTRING_LEN); } static int ibmveth_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(ibmveth_stats); default: return -EOPNOTSUPP; } } static void ibmveth_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { int i; struct ibmveth_adapter *adapter = netdev_priv(dev); for (i = 0; i < ARRAY_SIZE(ibmveth_stats); i++) data[i] = IBMVETH_GET_STAT(adapter, ibmveth_stats[i].offset); } static void ibmveth_get_channels(struct net_device *netdev, struct ethtool_channels *channels) { channels->max_tx = ibmveth_real_max_tx_queues(); channels->tx_count = netdev->real_num_tx_queues; channels->max_rx = netdev->real_num_rx_queues; channels->rx_count = netdev->real_num_rx_queues; } static int ibmveth_set_channels(struct net_device *netdev, struct ethtool_channels *channels) { struct ibmveth_adapter *adapter = netdev_priv(netdev); unsigned int old = netdev->real_num_tx_queues, goal = channels->tx_count; int rc, i; /* If ndo_open has not been called yet then don't allocate, just set * desired netdev_queue's and return */ if (!(netdev->flags & IFF_UP)) return netif_set_real_num_tx_queues(netdev, goal); /* We have IBMVETH_MAX_QUEUES netdev_queue's allocated * but we may need to alloc/free the ltb's. */ netif_tx_stop_all_queues(netdev); /* Allocate any queue that we need */ for (i = old; i < goal; i++) { if (adapter->tx_ltb_ptr[i]) continue; rc = ibmveth_allocate_tx_ltb(adapter, i); if (!rc) continue; /* if something goes wrong, free everything we just allocated */ netdev_err(netdev, "Failed to allocate more tx queues, returning to %d queues\n", old); goal = old; old = i; break; } rc = netif_set_real_num_tx_queues(netdev, goal); if (rc) { netdev_err(netdev, "Failed to set real tx queues, returning to %d queues\n", old); goal = old; old = i; } /* Free any that are no longer needed */ for (i = old; i > goal; i--) { if (adapter->tx_ltb_ptr[i - 1]) ibmveth_free_tx_ltb(adapter, i - 1); } netif_tx_wake_all_queues(netdev); return rc; } static const struct ethtool_ops netdev_ethtool_ops = { .get_drvinfo = netdev_get_drvinfo, .get_link = ethtool_op_get_link, .get_strings = ibmveth_get_strings, .get_sset_count = ibmveth_get_sset_count, .get_ethtool_stats = ibmveth_get_ethtool_stats, .get_link_ksettings = ibmveth_get_link_ksettings, .set_link_ksettings = ibmveth_set_link_ksettings, .get_channels = ibmveth_get_channels, .set_channels = ibmveth_set_channels }; static int ibmveth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { return -EOPNOTSUPP; } static int ibmveth_send(struct ibmveth_adapter *adapter, unsigned long desc, unsigned long mss) { unsigned long correlator; unsigned int retry_count; unsigned long ret; /* * The retry count sets a maximum for the number of broadcast and * multicast destinations within the system. */ retry_count = 1024; correlator = 0; do { ret = h_send_logical_lan(adapter->vdev->unit_address, desc, correlator, &correlator, mss, adapter->fw_large_send_support); } while ((ret == H_BUSY) && (retry_count--)); if (ret != H_SUCCESS && ret != H_DROPPED) { netdev_err(adapter->netdev, "tx: h_send_logical_lan failed " "with rc=%ld\n", ret); return 1; } return 0; } static int ibmveth_is_packet_unsupported(struct sk_buff *skb, struct net_device *netdev) { struct ethhdr *ether_header; int ret = 0; ether_header = eth_hdr(skb); if (ether_addr_equal(ether_header->h_dest, netdev->dev_addr)) { netdev_dbg(netdev, "veth doesn't support loopback packets, dropping packet.\n"); netdev->stats.tx_dropped++; ret = -EOPNOTSUPP; } return ret; } static netdev_tx_t ibmveth_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct ibmveth_adapter *adapter = netdev_priv(netdev); unsigned int desc_flags, total_bytes; union ibmveth_buf_desc desc; int i, queue_num = skb_get_queue_mapping(skb); unsigned long mss = 0; if (ibmveth_is_packet_unsupported(skb, netdev)) goto out; /* veth can't checksum offload UDP */ if (skb->ip_summed == CHECKSUM_PARTIAL && ((skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->protocol != IPPROTO_TCP) || (skb->protocol == htons(ETH_P_IPV6) && ipv6_hdr(skb)->nexthdr != IPPROTO_TCP)) && skb_checksum_help(skb)) { netdev_err(netdev, "tx: failed to checksum packet\n"); netdev->stats.tx_dropped++; goto out; } desc_flags = IBMVETH_BUF_VALID; if (skb->ip_summed == CHECKSUM_PARTIAL) { unsigned char *buf = skb_transport_header(skb) + skb->csum_offset; desc_flags |= (IBMVETH_BUF_NO_CSUM | IBMVETH_BUF_CSUM_GOOD); /* Need to zero out the checksum */ buf[0] = 0; buf[1] = 0; if (skb_is_gso(skb) && adapter->fw_large_send_support) desc_flags |= IBMVETH_BUF_LRG_SND; } if (skb->ip_summed == CHECKSUM_PARTIAL && skb_is_gso(skb)) { if (adapter->fw_large_send_support) { mss = (unsigned long)skb_shinfo(skb)->gso_size; adapter->tx_large_packets++; } else if (!skb_is_gso_v6(skb)) { /* Put -1 in the IP checksum to tell phyp it * is a largesend packet. Put the mss in * the TCP checksum. */ ip_hdr(skb)->check = 0xffff; tcp_hdr(skb)->check = cpu_to_be16(skb_shinfo(skb)->gso_size); adapter->tx_large_packets++; } } /* Copy header into mapped buffer */ if (unlikely(skb->len > adapter->tx_ltb_size)) { netdev_err(adapter->netdev, "tx: packet size (%u) exceeds ltb (%u)\n", skb->len, adapter->tx_ltb_size); netdev->stats.tx_dropped++; goto out; } memcpy(adapter->tx_ltb_ptr[queue_num], skb->data, skb_headlen(skb)); total_bytes = skb_headlen(skb); /* Copy frags into mapped buffers */ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; memcpy(adapter->tx_ltb_ptr[queue_num] + total_bytes, skb_frag_address_safe(frag), skb_frag_size(frag)); total_bytes += skb_frag_size(frag); } if (unlikely(total_bytes != skb->len)) { netdev_err(adapter->netdev, "tx: incorrect packet len copied into ltb (%u != %u)\n", skb->len, total_bytes); netdev->stats.tx_dropped++; goto out; } desc.fields.flags_len = desc_flags | skb->len; desc.fields.address = adapter->tx_ltb_dma[queue_num]; /* finish writing to long_term_buff before VIOS accessing it */ dma_wmb(); if (ibmveth_send(adapter, desc.desc, mss)) { adapter->tx_send_failed++; netdev->stats.tx_dropped++; } else { netdev->stats.tx_packets++; netdev->stats.tx_bytes += skb->len; } out: dev_consume_skb_any(skb); return NETDEV_TX_OK; } static void ibmveth_rx_mss_helper(struct sk_buff *skb, u16 mss, int lrg_pkt) { struct tcphdr *tcph; int offset = 0; int hdr_len; /* only TCP packets will be aggregated */ if (skb->protocol == htons(ETH_P_IP)) { struct iphdr *iph = (struct iphdr *)skb->data; if (iph->protocol == IPPROTO_TCP) { offset = iph->ihl * 4; skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; } else { return; } } else if (skb->protocol == htons(ETH_P_IPV6)) { struct ipv6hdr *iph6 = (struct ipv6hdr *)skb->data; if (iph6->nexthdr == IPPROTO_TCP) { offset = sizeof(struct ipv6hdr); skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; } else { return; } } else { return; } /* if mss is not set through Large Packet bit/mss in rx buffer, * expect that the mss will be written to the tcp header checksum. */ tcph = (struct tcphdr *)(skb->data + offset); if (lrg_pkt) { skb_shinfo(skb)->gso_size = mss; } else if (offset) { skb_shinfo(skb)->gso_size = ntohs(tcph->check); tcph->check = 0; } if (skb_shinfo(skb)->gso_size) { hdr_len = offset + tcph->doff * 4; skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len - hdr_len, skb_shinfo(skb)->gso_size); } } static void ibmveth_rx_csum_helper(struct sk_buff *skb, struct ibmveth_adapter *adapter) { struct iphdr *iph = NULL; struct ipv6hdr *iph6 = NULL; __be16 skb_proto = 0; u16 iphlen = 0; u16 iph_proto = 0; u16 tcphdrlen = 0; skb_proto = be16_to_cpu(skb->protocol); if (skb_proto == ETH_P_IP) { iph = (struct iphdr *)skb->data; /* If the IP checksum is not offloaded and if the packet * is large send, the checksum must be rebuilt. */ if (iph->check == 0xffff) { iph->check = 0; iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); } iphlen = iph->ihl * 4; iph_proto = iph->protocol; } else if (skb_proto == ETH_P_IPV6) { iph6 = (struct ipv6hdr *)skb->data; iphlen = sizeof(struct ipv6hdr); iph_proto = iph6->nexthdr; } /* When CSO is enabled the TCP checksum may have be set to NULL by * the sender given that we zeroed out TCP checksum field in * transmit path (refer ibmveth_start_xmit routine). In this case set * up CHECKSUM_PARTIAL. If the packet is forwarded, the checksum will * then be recalculated by the destination NIC (CSO must be enabled * on the destination NIC). * * In an OVS environment, when a flow is not cached, specifically for a * new TCP connection, the first packet information is passed up to * the user space for finding a flow. During this process, OVS computes * checksum on the first packet when CHECKSUM_PARTIAL flag is set. * * So, re-compute TCP pseudo header checksum when configured for * trunk mode. */ if (iph_proto == IPPROTO_TCP) { struct tcphdr *tcph = (struct tcphdr *)(skb->data + iphlen); if (tcph->check == 0x0000) { /* Recompute TCP pseudo header checksum */ if (adapter->is_active_trunk) { tcphdrlen = skb->len - iphlen; if (skb_proto == ETH_P_IP) tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, tcphdrlen, iph_proto, 0); else if (skb_proto == ETH_P_IPV6) tcph->check = ~csum_ipv6_magic(&iph6->saddr, &iph6->daddr, tcphdrlen, iph_proto, 0); } /* Setup SKB fields for checksum offload */ skb_partial_csum_set(skb, iphlen, offsetof(struct tcphdr, check)); skb_reset_network_header(skb); } } } static int ibmveth_poll(struct napi_struct *napi, int budget) { struct ibmveth_adapter *adapter = container_of(napi, struct ibmveth_adapter, napi); struct net_device *netdev = adapter->netdev; int frames_processed = 0; unsigned long lpar_rc; u16 mss = 0; while (frames_processed < budget) { if (!ibmveth_rxq_pending_buffer(adapter)) break; smp_rmb(); if (!ibmveth_rxq_buffer_valid(adapter)) { wmb(); /* suggested by larson1 */ adapter->rx_invalid_buffer++; netdev_dbg(netdev, "recycling invalid buffer\n"); ibmveth_rxq_recycle_buffer(adapter); } else { struct sk_buff *skb, *new_skb; int length = ibmveth_rxq_frame_length(adapter); int offset = ibmveth_rxq_frame_offset(adapter); int csum_good = ibmveth_rxq_csum_good(adapter); int lrg_pkt = ibmveth_rxq_large_packet(adapter); __sum16 iph_check = 0; skb = ibmveth_rxq_get_buffer(adapter); /* if the large packet bit is set in the rx queue * descriptor, the mss will be written by PHYP eight * bytes from the start of the rx buffer, which is * skb->data at this stage */ if (lrg_pkt) { __be64 *rxmss = (__be64 *)(skb->data + 8); mss = (u16)be64_to_cpu(*rxmss); } new_skb = NULL; if (length < rx_copybreak) new_skb = netdev_alloc_skb(netdev, length); if (new_skb) { skb_copy_to_linear_data(new_skb, skb->data + offset, length); if (rx_flush) ibmveth_flush_buffer(skb->data, length + offset); if (!ibmveth_rxq_recycle_buffer(adapter)) kfree_skb(skb); skb = new_skb; } else { ibmveth_rxq_harvest_buffer(adapter); skb_reserve(skb, offset); } skb_put(skb, length); skb->protocol = eth_type_trans(skb, netdev); /* PHYP without PLSO support places a -1 in the ip * checksum for large send frames. */ if (skb->protocol == cpu_to_be16(ETH_P_IP)) { struct iphdr *iph = (struct iphdr *)skb->data; iph_check = iph->check; } if ((length > netdev->mtu + ETH_HLEN) || lrg_pkt || iph_check == 0xffff) { ibmveth_rx_mss_helper(skb, mss, lrg_pkt); adapter->rx_large_packets++; } if (csum_good) { skb->ip_summed = CHECKSUM_UNNECESSARY; ibmveth_rx_csum_helper(skb, adapter); } napi_gro_receive(napi, skb); /* send it up */ netdev->stats.rx_packets++; netdev->stats.rx_bytes += length; frames_processed++; } } ibmveth_replenish_task(adapter); if (frames_processed < budget) { napi_complete_done(napi, frames_processed); /* We think we are done - reenable interrupts, * then check once more to make sure we are done. */ lpar_rc = h_vio_signal(adapter->vdev->unit_address, VIO_IRQ_ENABLE); BUG_ON(lpar_rc != H_SUCCESS); if (ibmveth_rxq_pending_buffer(adapter) && napi_reschedule(napi)) { lpar_rc = h_vio_signal(adapter->vdev->unit_address, VIO_IRQ_DISABLE); } } return frames_processed; } static irqreturn_t ibmveth_interrupt(int irq, void *dev_instance) { struct net_device *netdev = dev_instance; struct ibmveth_adapter *adapter = netdev_priv(netdev); unsigned long lpar_rc; if (napi_schedule_prep(&adapter->napi)) { lpar_rc = h_vio_signal(adapter->vdev->unit_address, VIO_IRQ_DISABLE); BUG_ON(lpar_rc != H_SUCCESS); __napi_schedule(&adapter->napi); } return IRQ_HANDLED; } static void ibmveth_set_multicast_list(struct net_device *netdev) { struct ibmveth_adapter *adapter = netdev_priv(netdev); unsigned long lpar_rc; if ((netdev->flags & IFF_PROMISC) || (netdev_mc_count(netdev) > adapter->mcastFilterSize)) { lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address, IbmVethMcastEnableRecv | IbmVethMcastDisableFiltering, 0); if (lpar_rc != H_SUCCESS) { netdev_err(netdev, "h_multicast_ctrl rc=%ld when " "entering promisc mode\n", lpar_rc); } } else { struct netdev_hw_addr *ha; /* clear the filter table & disable filtering */ lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address, IbmVethMcastEnableRecv | IbmVethMcastDisableFiltering | IbmVethMcastClearFilterTable, 0); if (lpar_rc != H_SUCCESS) { netdev_err(netdev, "h_multicast_ctrl rc=%ld when " "attempting to clear filter table\n", lpar_rc); } /* add the addresses to the filter table */ netdev_for_each_mc_addr(ha, netdev) { /* add the multicast address to the filter table */ u64 mcast_addr; mcast_addr = ether_addr_to_u64(ha->addr); lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address, IbmVethMcastAddFilter, mcast_addr); if (lpar_rc != H_SUCCESS) { netdev_err(netdev, "h_multicast_ctrl rc=%ld " "when adding an entry to the filter " "table\n", lpar_rc); } } /* re-enable filtering */ lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address, IbmVethMcastEnableFiltering, 0); if (lpar_rc != H_SUCCESS) { netdev_err(netdev, "h_multicast_ctrl rc=%ld when " "enabling filtering\n", lpar_rc); } } } static int ibmveth_change_mtu(struct net_device *dev, int new_mtu) { struct ibmveth_adapter *adapter = netdev_priv(dev); struct vio_dev *viodev = adapter->vdev; int new_mtu_oh = new_mtu + IBMVETH_BUFF_OH; int i, rc; int need_restart = 0; for (i = 0; i < IBMVETH_NUM_BUFF_POOLS; i++) if (new_mtu_oh <= adapter->rx_buff_pool[i].buff_size) break; if (i == IBMVETH_NUM_BUFF_POOLS) return -EINVAL; /* Deactivate all the buffer pools so that the next loop can activate only the buffer pools necessary to hold the new MTU */ if (netif_running(adapter->netdev)) { need_restart = 1; ibmveth_close(adapter->netdev); } /* Look for an active buffer pool that can hold the new MTU */ for (i = 0; i < IBMVETH_NUM_BUFF_POOLS; i++) { adapter->rx_buff_pool[i].active = 1; if (new_mtu_oh <= adapter->rx_buff_pool[i].buff_size) { dev->mtu = new_mtu; vio_cmo_set_dev_desired(viodev, ibmveth_get_desired_dma (viodev)); if (need_restart) { return ibmveth_open(adapter->netdev); } return 0; } } if (need_restart && (rc = ibmveth_open(adapter->netdev))) return rc; return -EINVAL; } #ifdef CONFIG_NET_POLL_CONTROLLER static void ibmveth_poll_controller(struct net_device *dev) { ibmveth_replenish_task(netdev_priv(dev)); ibmveth_interrupt(dev->irq, dev); } #endif /** * ibmveth_get_desired_dma - Calculate IO memory desired by the driver * * @vdev: struct vio_dev for the device whose desired IO mem is to be returned * * Return value: * Number of bytes of IO data the driver will need to perform well. */ static unsigned long ibmveth_get_desired_dma(struct vio_dev *vdev) { struct net_device *netdev = dev_get_drvdata(&vdev->dev); struct ibmveth_adapter *adapter; struct iommu_table *tbl; unsigned long ret; int i; int rxqentries = 1; tbl = get_iommu_table_base(&vdev->dev); /* netdev inits at probe time along with the structures we need below*/ if (netdev == NULL) return IOMMU_PAGE_ALIGN(IBMVETH_IO_ENTITLEMENT_DEFAULT, tbl); adapter = netdev_priv(netdev); ret = IBMVETH_BUFF_LIST_SIZE + IBMVETH_FILT_LIST_SIZE; ret += IOMMU_PAGE_ALIGN(netdev->mtu, tbl); /* add size of mapped tx buffers */ ret += IOMMU_PAGE_ALIGN(IBMVETH_MAX_TX_BUF_SIZE, tbl); for (i = 0; i < IBMVETH_NUM_BUFF_POOLS; i++) { /* add the size of the active receive buffers */ if (adapter->rx_buff_pool[i].active) ret += adapter->rx_buff_pool[i].size * IOMMU_PAGE_ALIGN(adapter->rx_buff_pool[i]. buff_size, tbl); rxqentries += adapter->rx_buff_pool[i].size; } /* add the size of the receive queue entries */ ret += IOMMU_PAGE_ALIGN( rxqentries * sizeof(struct ibmveth_rx_q_entry), tbl); return ret; } static int ibmveth_set_mac_addr(struct net_device *dev, void *p) { struct ibmveth_adapter *adapter = netdev_priv(dev); struct sockaddr *addr = p; u64 mac_address; int rc; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; mac_address = ether_addr_to_u64(addr->sa_data); rc = h_change_logical_lan_mac(adapter->vdev->unit_address, mac_address); if (rc) { netdev_err(adapter->netdev, "h_change_logical_lan_mac failed with rc=%d\n", rc); return rc; } eth_hw_addr_set(dev, addr->sa_data); return 0; } static const struct net_device_ops ibmveth_netdev_ops = { .ndo_open = ibmveth_open, .ndo_stop = ibmveth_close, .ndo_start_xmit = ibmveth_start_xmit, .ndo_set_rx_mode = ibmveth_set_multicast_list, .ndo_eth_ioctl = ibmveth_ioctl, .ndo_change_mtu = ibmveth_change_mtu, .ndo_fix_features = ibmveth_fix_features, .ndo_set_features = ibmveth_set_features, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = ibmveth_set_mac_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = ibmveth_poll_controller, #endif }; static int ibmveth_probe(struct vio_dev *dev, const struct vio_device_id *id) { int rc, i, mac_len; struct net_device *netdev; struct ibmveth_adapter *adapter; unsigned char *mac_addr_p; __be32 *mcastFilterSize_p; long ret; unsigned long ret_attr; dev_dbg(&dev->dev, "entering ibmveth_probe for UA 0x%x\n", dev->unit_address); mac_addr_p = (unsigned char *)vio_get_attribute(dev, VETH_MAC_ADDR, &mac_len); if (!mac_addr_p) { dev_err(&dev->dev, "Can't find VETH_MAC_ADDR attribute\n"); return -EINVAL; } /* Workaround for old/broken pHyp */ if (mac_len == 8) mac_addr_p += 2; else if (mac_len != 6) { dev_err(&dev->dev, "VETH_MAC_ADDR attribute wrong len %d\n", mac_len); return -EINVAL; } mcastFilterSize_p = (__be32 *)vio_get_attribute(dev, VETH_MCAST_FILTER_SIZE, NULL); if (!mcastFilterSize_p) { dev_err(&dev->dev, "Can't find VETH_MCAST_FILTER_SIZE " "attribute\n"); return -EINVAL; } netdev = alloc_etherdev_mqs(sizeof(struct ibmveth_adapter), IBMVETH_MAX_QUEUES, 1); if (!netdev) return -ENOMEM; adapter = netdev_priv(netdev); dev_set_drvdata(&dev->dev, netdev); adapter->vdev = dev; adapter->netdev = netdev; adapter->mcastFilterSize = be32_to_cpu(*mcastFilterSize_p); ibmveth_init_link_settings(netdev); netif_napi_add_weight(netdev, &adapter->napi, ibmveth_poll, 16); netdev->irq = dev->irq; netdev->netdev_ops = &ibmveth_netdev_ops; netdev->ethtool_ops = &netdev_ethtool_ops; SET_NETDEV_DEV(netdev, &dev->dev); netdev->hw_features = NETIF_F_SG; if (vio_get_attribute(dev, "ibm,illan-options", NULL) != NULL) { netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; } netdev->features |= netdev->hw_features; ret = h_illan_attributes(adapter->vdev->unit_address, 0, 0, &ret_attr); /* If running older firmware, TSO should not be enabled by default */ if (ret == H_SUCCESS && (ret_attr & IBMVETH_ILLAN_LRG_SND_SUPPORT) && !old_large_send) { netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; netdev->features |= netdev->hw_features; } else { netdev->hw_features |= NETIF_F_TSO; } adapter->is_active_trunk = false; if (ret == H_SUCCESS && (ret_attr & IBMVETH_ILLAN_ACTIVE_TRUNK)) { adapter->is_active_trunk = true; netdev->hw_features |= NETIF_F_FRAGLIST; netdev->features |= NETIF_F_FRAGLIST; } netdev->min_mtu = IBMVETH_MIN_MTU; netdev->max_mtu = ETH_MAX_MTU - IBMVETH_BUFF_OH; eth_hw_addr_set(netdev, mac_addr_p); if (firmware_has_feature(FW_FEATURE_CMO)) memcpy(pool_count, pool_count_cmo, sizeof(pool_count)); for (i = 0; i < IBMVETH_NUM_BUFF_POOLS; i++) { struct kobject *kobj = &adapter->rx_buff_pool[i].kobj; int error; ibmveth_init_buffer_pool(&adapter->rx_buff_pool[i], i, pool_count[i], pool_size[i], pool_active[i]); error = kobject_init_and_add(kobj, &ktype_veth_pool, &dev->dev.kobj, "pool%d", i); if (!error) kobject_uevent(kobj, KOBJ_ADD); } rc = netif_set_real_num_tx_queues(netdev, min(num_online_cpus(), IBMVETH_DEFAULT_QUEUES)); if (rc) { netdev_dbg(netdev, "failed to set number of tx queues rc=%d\n", rc); free_netdev(netdev); return rc; } adapter->tx_ltb_size = PAGE_ALIGN(IBMVETH_MAX_TX_BUF_SIZE); for (i = 0; i < IBMVETH_MAX_QUEUES; i++) adapter->tx_ltb_ptr[i] = NULL; netdev_dbg(netdev, "adapter @ 0x%p\n", adapter); netdev_dbg(netdev, "registering netdev...\n"); ibmveth_set_features(netdev, netdev->features); rc = register_netdev(netdev); if (rc) { netdev_dbg(netdev, "failed to register netdev rc=%d\n", rc); free_netdev(netdev); return rc; } netdev_dbg(netdev, "registered\n"); return 0; } static void ibmveth_remove(struct vio_dev *dev) { struct net_device *netdev = dev_get_drvdata(&dev->dev); struct ibmveth_adapter *adapter = netdev_priv(netdev); int i; for (i = 0; i < IBMVETH_NUM_BUFF_POOLS; i++) kobject_put(&adapter->rx_buff_pool[i].kobj); unregister_netdev(netdev); free_netdev(netdev); dev_set_drvdata(&dev->dev, NULL); } static struct attribute veth_active_attr; static struct attribute veth_num_attr; static struct attribute veth_size_attr; static ssize_t veth_pool_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct ibmveth_buff_pool *pool = container_of(kobj, struct ibmveth_buff_pool, kobj); if (attr == &veth_active_attr) return sprintf(buf, "%d\n", pool->active); else if (attr == &veth_num_attr) return sprintf(buf, "%d\n", pool->size); else if (attr == &veth_size_attr) return sprintf(buf, "%d\n", pool->buff_size); return 0; } static ssize_t veth_pool_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { struct ibmveth_buff_pool *pool = container_of(kobj, struct ibmveth_buff_pool, kobj); struct net_device *netdev = dev_get_drvdata(kobj_to_dev(kobj->parent)); struct ibmveth_adapter *adapter = netdev_priv(netdev); long value = simple_strtol(buf, NULL, 10); long rc; if (attr == &veth_active_attr) { if (value && !pool->active) { if (netif_running(netdev)) { if (ibmveth_alloc_buffer_pool(pool)) { netdev_err(netdev, "unable to alloc pool\n"); return -ENOMEM; } pool->active = 1; ibmveth_close(netdev); if ((rc = ibmveth_open(netdev))) return rc; } else { pool->active = 1; } } else if (!value && pool->active) { int mtu = netdev->mtu + IBMVETH_BUFF_OH; int i; /* Make sure there is a buffer pool with buffers that can hold a packet of the size of the MTU */ for (i = 0; i < IBMVETH_NUM_BUFF_POOLS; i++) { if (pool == &adapter->rx_buff_pool[i]) continue; if (!adapter->rx_buff_pool[i].active) continue; if (mtu <= adapter->rx_buff_pool[i].buff_size) break; } if (i == IBMVETH_NUM_BUFF_POOLS) { netdev_err(netdev, "no active pool >= MTU\n"); return -EPERM; } if (netif_running(netdev)) { ibmveth_close(netdev); pool->active = 0; if ((rc = ibmveth_open(netdev))) return rc; } pool->active = 0; } } else if (attr == &veth_num_attr) { if (value <= 0 || value > IBMVETH_MAX_POOL_COUNT) { return -EINVAL; } else { if (netif_running(netdev)) { ibmveth_close(netdev); pool->size = value; if ((rc = ibmveth_open(netdev))) return rc; } else { pool->size = value; } } } else if (attr == &veth_size_attr) { if (value <= IBMVETH_BUFF_OH || value > IBMVETH_MAX_BUF_SIZE) { return -EINVAL; } else { if (netif_running(netdev)) { ibmveth_close(netdev); pool->buff_size = value; if ((rc = ibmveth_open(netdev))) return rc; } else { pool->buff_size = value; } } } /* kick the interrupt handler to allocate/deallocate pools */ ibmveth_interrupt(netdev->irq, netdev); return count; } #define ATTR(_name, _mode) \ struct attribute veth_##_name##_attr = { \ .name = __stringify(_name), .mode = _mode, \ }; static ATTR(active, 0644); static ATTR(num, 0644); static ATTR(size, 0644); static struct attribute *veth_pool_attrs[] = { &veth_active_attr, &veth_num_attr, &veth_size_attr, NULL, }; ATTRIBUTE_GROUPS(veth_pool); static const struct sysfs_ops veth_pool_ops = { .show = veth_pool_show, .store = veth_pool_store, }; static struct kobj_type ktype_veth_pool = { .release = NULL, .sysfs_ops = &veth_pool_ops, .default_groups = veth_pool_groups, }; static int ibmveth_resume(struct device *dev) { struct net_device *netdev = dev_get_drvdata(dev); ibmveth_interrupt(netdev->irq, netdev); return 0; } static const struct vio_device_id ibmveth_device_table[] = { { "network", "IBM,l-lan"}, { "", "" } }; MODULE_DEVICE_TABLE(vio, ibmveth_device_table); static const struct dev_pm_ops ibmveth_pm_ops = { .resume = ibmveth_resume }; static struct vio_driver ibmveth_driver = { .id_table = ibmveth_device_table, .probe = ibmveth_probe, .remove = ibmveth_remove, .get_desired_dma = ibmveth_get_desired_dma, .name = ibmveth_driver_name, .pm = &ibmveth_pm_ops, }; static int __init ibmveth_module_init(void) { printk(KERN_DEBUG "%s: %s %s\n", ibmveth_driver_name, ibmveth_driver_string, ibmveth_driver_version); return vio_register_driver(&ibmveth_driver); } static void __exit ibmveth_module_exit(void) { vio_unregister_driver(&ibmveth_driver); } module_init(ibmveth_module_init); module_exit(ibmveth_module_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1