Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Russell King | 1616 | 99.14% | 2 | 40.00% |
Maxime Chevallier | 7 | 0.43% | 1 | 20.00% |
Marcin Wojtas | 6 | 0.37% | 1 | 20.00% |
Antoine Tenart | 1 | 0.06% | 1 | 20.00% |
Total | 1630 | 5 |
// SPDX-License-Identifier: GPL-2.0 /* * Marvell PP2.2 TAI support * * Note: * Do NOT use the event capture support. * Do Not even set the MPP muxes to allow PTP_EVENT_REQ to be used. * It will disrupt the operation of this driver, and there is nothing * that this driver can do to prevent that. Even using PTP_EVENT_REQ * as an output will be seen as a trigger input, which can't be masked. * When ever a trigger input is seen, the action in the TCFCR0_TCF * field will be performed - whether it is a set, increment, decrement * read, or frequency update. * * Other notes (useful, not specified in the documentation): * - PTP_PULSE_OUT (PTP_EVENT_REQ MPP) * It looks like the hardware can't generate a pulse at nsec=0. (The * output doesn't trigger if the nsec field is zero.) * Note: when configured as an output via the register at 0xfX441120, * the input is still very much alive, and will trigger the current TCF * function. * - PTP_CLK_OUT (PTP_TRIG_GEN MPP) * This generates a "PPS" signal determined by the CCC registers. It * seems this is not aligned to the TOD counter in any way (it may be * initially, but if you specify a non-round second interval, it won't, * and you can't easily get it back.) * - PTP_PCLK_OUT * This generates a 50% duty cycle clock based on the TOD counter, and * seems it can be set to any period of 1ns resolution. It is probably * limited by the TOD step size. Its period is defined by the PCLK_CCC * registers. Again, its alignment to the second is questionable. * * Consequently, we support none of these. */ #include <linux/io.h> #include <linux/ptp_clock_kernel.h> #include <linux/slab.h> #include "mvpp2.h" #define CR0_SW_NRESET BIT(0) #define TCFCR0_PHASE_UPDATE_ENABLE BIT(8) #define TCFCR0_TCF_MASK (7 << 2) #define TCFCR0_TCF_UPDATE (0 << 2) #define TCFCR0_TCF_FREQUPDATE (1 << 2) #define TCFCR0_TCF_INCREMENT (2 << 2) #define TCFCR0_TCF_DECREMENT (3 << 2) #define TCFCR0_TCF_CAPTURE (4 << 2) #define TCFCR0_TCF_NOP (7 << 2) #define TCFCR0_TCF_TRIGGER BIT(0) #define TCSR_CAPTURE_1_VALID BIT(1) #define TCSR_CAPTURE_0_VALID BIT(0) struct mvpp2_tai { struct ptp_clock_info caps; struct ptp_clock *ptp_clock; void __iomem *base; spinlock_t lock; u64 period; // nanosecond period in 32.32 fixed point /* This timestamp is updated every two seconds */ struct timespec64 stamp; }; static void mvpp2_tai_modify(void __iomem *reg, u32 mask, u32 set) { u32 val; val = readl_relaxed(reg) & ~mask; val |= set & mask; writel(val, reg); } static void mvpp2_tai_write(u32 val, void __iomem *reg) { writel_relaxed(val & 0xffff, reg); } static u32 mvpp2_tai_read(void __iomem *reg) { return readl_relaxed(reg) & 0xffff; } static struct mvpp2_tai *ptp_to_tai(struct ptp_clock_info *ptp) { return container_of(ptp, struct mvpp2_tai, caps); } static void mvpp22_tai_read_ts(struct timespec64 *ts, void __iomem *base) { ts->tv_sec = (u64)mvpp2_tai_read(base + 0) << 32 | mvpp2_tai_read(base + 4) << 16 | mvpp2_tai_read(base + 8); ts->tv_nsec = mvpp2_tai_read(base + 12) << 16 | mvpp2_tai_read(base + 16); /* Read and discard fractional part */ readl_relaxed(base + 20); readl_relaxed(base + 24); } static void mvpp2_tai_write_tlv(const struct timespec64 *ts, u32 frac, void __iomem *base) { mvpp2_tai_write(ts->tv_sec >> 32, base + MVPP22_TAI_TLV_SEC_HIGH); mvpp2_tai_write(ts->tv_sec >> 16, base + MVPP22_TAI_TLV_SEC_MED); mvpp2_tai_write(ts->tv_sec, base + MVPP22_TAI_TLV_SEC_LOW); mvpp2_tai_write(ts->tv_nsec >> 16, base + MVPP22_TAI_TLV_NANO_HIGH); mvpp2_tai_write(ts->tv_nsec, base + MVPP22_TAI_TLV_NANO_LOW); mvpp2_tai_write(frac >> 16, base + MVPP22_TAI_TLV_FRAC_HIGH); mvpp2_tai_write(frac, base + MVPP22_TAI_TLV_FRAC_LOW); } static void mvpp2_tai_op(u32 op, void __iomem *base) { /* Trigger the operation. Note that an external unmaskable * event on PTP_EVENT_REQ will also trigger this action. */ mvpp2_tai_modify(base + MVPP22_TAI_TCFCR0, TCFCR0_TCF_MASK | TCFCR0_TCF_TRIGGER, op | TCFCR0_TCF_TRIGGER); mvpp2_tai_modify(base + MVPP22_TAI_TCFCR0, TCFCR0_TCF_MASK, TCFCR0_TCF_NOP); } /* The adjustment has a range of +0.5ns to -0.5ns in 2^32 steps, so has units * of 2^-32 ns. * * units(s) = 1 / (2^32 * 10^9) * fractional = abs_scaled_ppm / (2^16 * 10^6) * * What we want to achieve: * freq_adjusted = freq_nominal * (1 + fractional) * freq_delta = freq_adjusted - freq_nominal => positive = faster * freq_delta = freq_nominal * (1 + fractional) - freq_nominal * So: freq_delta = freq_nominal * fractional * * However, we are dealing with periods, so: * period_adjusted = period_nominal / (1 + fractional) * period_delta = period_nominal - period_adjusted => positive = faster * period_delta = period_nominal * fractional / (1 + fractional) * * Hence: * period_delta = period_nominal * abs_scaled_ppm / * (2^16 * 10^6 + abs_scaled_ppm) * * To avoid overflow, we reduce both sides of the divide operation by a factor * of 16. */ static u64 mvpp22_calc_frac_ppm(struct mvpp2_tai *tai, long abs_scaled_ppm) { u64 val = tai->period * abs_scaled_ppm >> 4; return div_u64(val, (1000000 << 12) + (abs_scaled_ppm >> 4)); } static s32 mvpp22_calc_max_adj(struct mvpp2_tai *tai) { return 1000000; } static int mvpp22_tai_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct mvpp2_tai *tai = ptp_to_tai(ptp); unsigned long flags; void __iomem *base; bool neg_adj; s32 frac; u64 val; neg_adj = scaled_ppm < 0; if (neg_adj) scaled_ppm = -scaled_ppm; val = mvpp22_calc_frac_ppm(tai, scaled_ppm); /* Convert to a signed 32-bit adjustment */ if (neg_adj) { /* -S32_MIN warns, -val < S32_MIN fails, so go for the easy * solution. */ if (val > 0x80000000) return -ERANGE; frac = -val; } else { if (val > S32_MAX) return -ERANGE; frac = val; } base = tai->base; spin_lock_irqsave(&tai->lock, flags); mvpp2_tai_write(frac >> 16, base + MVPP22_TAI_TLV_FRAC_HIGH); mvpp2_tai_write(frac, base + MVPP22_TAI_TLV_FRAC_LOW); mvpp2_tai_op(TCFCR0_TCF_FREQUPDATE, base); spin_unlock_irqrestore(&tai->lock, flags); return 0; } static int mvpp22_tai_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct mvpp2_tai *tai = ptp_to_tai(ptp); struct timespec64 ts; unsigned long flags; void __iomem *base; u32 tcf; /* We can't deal with S64_MIN */ if (delta == S64_MIN) return -ERANGE; if (delta < 0) { delta = -delta; tcf = TCFCR0_TCF_DECREMENT; } else { tcf = TCFCR0_TCF_INCREMENT; } ts = ns_to_timespec64(delta); base = tai->base; spin_lock_irqsave(&tai->lock, flags); mvpp2_tai_write_tlv(&ts, 0, base); mvpp2_tai_op(tcf, base); spin_unlock_irqrestore(&tai->lock, flags); return 0; } static int mvpp22_tai_gettimex64(struct ptp_clock_info *ptp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct mvpp2_tai *tai = ptp_to_tai(ptp); unsigned long flags; void __iomem *base; u32 tcsr; int ret; base = tai->base; spin_lock_irqsave(&tai->lock, flags); /* XXX: the only way to read the PTP time is for the CPU to trigger * an event. However, there is no way to distinguish between the CPU * triggered event, and an external event on PTP_EVENT_REQ. So this * is incompatible with external use of PTP_EVENT_REQ. */ ptp_read_system_prets(sts); mvpp2_tai_modify(base + MVPP22_TAI_TCFCR0, TCFCR0_TCF_MASK | TCFCR0_TCF_TRIGGER, TCFCR0_TCF_CAPTURE | TCFCR0_TCF_TRIGGER); ptp_read_system_postts(sts); mvpp2_tai_modify(base + MVPP22_TAI_TCFCR0, TCFCR0_TCF_MASK, TCFCR0_TCF_NOP); tcsr = readl(base + MVPP22_TAI_TCSR); if (tcsr & TCSR_CAPTURE_1_VALID) { mvpp22_tai_read_ts(ts, base + MVPP22_TAI_TCV1_SEC_HIGH); ret = 0; } else if (tcsr & TCSR_CAPTURE_0_VALID) { mvpp22_tai_read_ts(ts, base + MVPP22_TAI_TCV0_SEC_HIGH); ret = 0; } else { /* We don't seem to have a reading... */ ret = -EBUSY; } spin_unlock_irqrestore(&tai->lock, flags); return ret; } static int mvpp22_tai_settime64(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct mvpp2_tai *tai = ptp_to_tai(ptp); unsigned long flags; void __iomem *base; base = tai->base; spin_lock_irqsave(&tai->lock, flags); mvpp2_tai_write_tlv(ts, 0, base); /* Trigger an update to load the value from the TLV registers * into the TOD counter. Note that an external unmaskable event on * PTP_EVENT_REQ will also trigger this action. */ mvpp2_tai_modify(base + MVPP22_TAI_TCFCR0, TCFCR0_PHASE_UPDATE_ENABLE | TCFCR0_TCF_MASK | TCFCR0_TCF_TRIGGER, TCFCR0_TCF_UPDATE | TCFCR0_TCF_TRIGGER); mvpp2_tai_modify(base + MVPP22_TAI_TCFCR0, TCFCR0_TCF_MASK, TCFCR0_TCF_NOP); spin_unlock_irqrestore(&tai->lock, flags); return 0; } static long mvpp22_tai_aux_work(struct ptp_clock_info *ptp) { struct mvpp2_tai *tai = ptp_to_tai(ptp); mvpp22_tai_gettimex64(ptp, &tai->stamp, NULL); return msecs_to_jiffies(2000); } static void mvpp22_tai_set_step(struct mvpp2_tai *tai) { void __iomem *base = tai->base; u32 nano, frac; nano = upper_32_bits(tai->period); frac = lower_32_bits(tai->period); /* As the fractional nanosecond is a signed offset, if the MSB (sign) * bit is set, we have to increment the whole nanoseconds. */ if (frac >= 0x80000000) nano += 1; mvpp2_tai_write(nano, base + MVPP22_TAI_TOD_STEP_NANO_CR); mvpp2_tai_write(frac >> 16, base + MVPP22_TAI_TOD_STEP_FRAC_HIGH); mvpp2_tai_write(frac, base + MVPP22_TAI_TOD_STEP_FRAC_LOW); } static void mvpp22_tai_init(struct mvpp2_tai *tai) { void __iomem *base = tai->base; mvpp22_tai_set_step(tai); /* Release the TAI reset */ mvpp2_tai_modify(base + MVPP22_TAI_CR0, CR0_SW_NRESET, CR0_SW_NRESET); } int mvpp22_tai_ptp_clock_index(struct mvpp2_tai *tai) { return ptp_clock_index(tai->ptp_clock); } void mvpp22_tai_tstamp(struct mvpp2_tai *tai, u32 tstamp, struct skb_shared_hwtstamps *hwtstamp) { struct timespec64 ts; int delta; /* The tstamp consists of 2 bits of seconds and 30 bits of nanoseconds. * We use our stored timestamp (tai->stamp) to form a full timestamp, * and we must read the seconds exactly once. */ ts.tv_sec = READ_ONCE(tai->stamp.tv_sec); ts.tv_nsec = tstamp & 0x3fffffff; /* Calculate the delta in seconds between our stored timestamp and * the value read from the queue. Allow timestamps one second in the * past, otherwise consider them to be in the future. */ delta = ((tstamp >> 30) - (ts.tv_sec & 3)) & 3; if (delta == 3) delta -= 4; ts.tv_sec += delta; memset(hwtstamp, 0, sizeof(*hwtstamp)); hwtstamp->hwtstamp = timespec64_to_ktime(ts); } void mvpp22_tai_start(struct mvpp2_tai *tai) { long delay; delay = mvpp22_tai_aux_work(&tai->caps); ptp_schedule_worker(tai->ptp_clock, delay); } void mvpp22_tai_stop(struct mvpp2_tai *tai) { ptp_cancel_worker_sync(tai->ptp_clock); } static void mvpp22_tai_remove(void *priv) { struct mvpp2_tai *tai = priv; if (!IS_ERR(tai->ptp_clock)) ptp_clock_unregister(tai->ptp_clock); } int mvpp22_tai_probe(struct device *dev, struct mvpp2 *priv) { struct mvpp2_tai *tai; int ret; tai = devm_kzalloc(dev, sizeof(*tai), GFP_KERNEL); if (!tai) return -ENOMEM; spin_lock_init(&tai->lock); tai->base = priv->iface_base; /* The step size consists of three registers - a 16-bit nanosecond step * size, and a 32-bit fractional nanosecond step size split over two * registers. The fractional nanosecond step size has units of 2^-32ns. * * To calculate this, we calculate: * (10^9 + freq / 2) / (freq * 2^-32) * which gives us the nanosecond step to the nearest integer in 16.32 * fixed point format, and the fractional part of the step size with * the MSB inverted. With rounding of the fractional nanosecond, and * simplification, this becomes: * (10^9 << 32 + freq << 31 + (freq + 1) >> 1) / freq * * So: * div = (10^9 << 32 + freq << 31 + (freq + 1) >> 1) / freq * nano = upper_32_bits(div); * frac = lower_32_bits(div) ^ 0x80000000; * Will give the values for the registers. * * This is all seems perfect, but alas it is not when considering the * whole story. The system is clocked from 25MHz, which is multiplied * by a PLL to 1GHz, and then divided by three, giving 333333333Hz * (recurring). This gives exactly 3ns, but using 333333333Hz with * the above gives an error of 13*2^-32ns. * * Consequently, we use the period rather than calculating from the * frequency. */ tai->period = 3ULL << 32; mvpp22_tai_init(tai); tai->caps.owner = THIS_MODULE; strscpy(tai->caps.name, "Marvell PP2.2", sizeof(tai->caps.name)); tai->caps.max_adj = mvpp22_calc_max_adj(tai); tai->caps.adjfine = mvpp22_tai_adjfine; tai->caps.adjtime = mvpp22_tai_adjtime; tai->caps.gettimex64 = mvpp22_tai_gettimex64; tai->caps.settime64 = mvpp22_tai_settime64; tai->caps.do_aux_work = mvpp22_tai_aux_work; ret = devm_add_action(dev, mvpp22_tai_remove, tai); if (ret) return ret; tai->ptp_clock = ptp_clock_register(&tai->caps, dev); if (IS_ERR(tai->ptp_clock)) return PTR_ERR(tai->ptp_clock); priv->tai = tai; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1