Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sachin Sanap | 5924 | 81.91% | 1 | 1.33% |
Sebastian Hesselbarth | 438 | 6.06% | 3 | 4.00% |
Antoine Tenart | 433 | 5.99% | 6 | 8.00% |
Alexander Monakov | 51 | 0.71% | 1 | 1.33% |
Philippe Reynes | 47 | 0.65% | 2 | 2.67% |
Dan Carpenter | 47 | 0.65% | 2 | 2.67% |
Christoph Hellwig | 35 | 0.48% | 1 | 1.33% |
John W. Linville | 24 | 0.33% | 1 | 1.33% |
Jakub Kiciński | 24 | 0.33% | 5 | 6.67% |
Lad Prabhakar | 18 | 0.25% | 1 | 1.33% |
Florian Fainelli | 17 | 0.24% | 5 | 6.67% |
Kees Cook | 14 | 0.19% | 1 | 1.33% |
Jarod Wilson | 13 | 0.18% | 1 | 1.33% |
Sergei Shtylyov | 11 | 0.15% | 1 | 1.33% |
JiSheng Zhang | 11 | 0.15% | 3 | 4.00% |
Richard Cochran | 11 | 0.15% | 3 | 4.00% |
Andrew Lunn | 10 | 0.14% | 2 | 2.67% |
SF Markus Elfring | 9 | 0.12% | 2 | 2.67% |
Alexey Khoroshilov | 9 | 0.12% | 1 | 1.33% |
Joe Perches | 7 | 0.10% | 3 | 4.00% |
Tiezhu Yang | 6 | 0.08% | 1 | 1.33% |
Michael Walle | 6 | 0.08% | 1 | 1.33% |
Peter Chen | 5 | 0.07% | 1 | 1.33% |
Lino Sanfilippo | 5 | 0.07% | 1 | 1.33% |
Ioana Ciornei | 4 | 0.06% | 1 | 1.33% |
Michael S. Tsirkin | 4 | 0.06% | 1 | 1.33% |
Wolfram Sang | 4 | 0.06% | 1 | 1.33% |
Jingoo Han | 4 | 0.06% | 1 | 1.33% |
Eric Dumazet | 3 | 0.04% | 1 | 1.33% |
Wilfried Klaebe | 3 | 0.04% | 1 | 1.33% |
Luis R. Rodriguez | 3 | 0.04% | 1 | 1.33% |
Allen Pais | 3 | 0.04% | 1 | 1.33% |
Yue haibing | 3 | 0.04% | 2 | 2.67% |
Florian Westphal | 3 | 0.04% | 1 | 1.33% |
Pradeep A. Dalvi | 3 | 0.04% | 1 | 1.33% |
Isaku Yamahata | 3 | 0.04% | 1 | 1.33% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.33% |
Axel Lin | 2 | 0.03% | 1 | 1.33% |
Danny Kukawka | 2 | 0.03% | 2 | 2.67% |
Tejun Heo | 2 | 0.03% | 1 | 1.33% |
Tanmay Upadhyay | 2 | 0.03% | 1 | 1.33% |
Heiner Kallweit | 1 | 0.01% | 1 | 1.33% |
Michael Opdenacker | 1 | 0.01% | 1 | 1.33% |
Mike Rapoport | 1 | 0.01% | 1 | 1.33% |
Arnd Bergmann | 1 | 0.01% | 1 | 1.33% |
Lucas De Marchi | 1 | 0.01% | 1 | 1.33% |
Ben Hutchings | 1 | 0.01% | 1 | 1.33% |
Sean Anderson | 1 | 0.01% | 1 | 1.33% |
Total | 7232 | 75 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * PXA168 ethernet driver. * Most of the code is derived from mv643xx ethernet driver. * * Copyright (C) 2010 Marvell International Ltd. * Sachin Sanap <ssanap@marvell.com> * Zhangfei Gao <zgao6@marvell.com> * Philip Rakity <prakity@marvell.com> * Mark Brown <markb@marvell.com> */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/in.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/ip.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_net.h> #include <linux/phy.h> #include <linux/platform_device.h> #include <linux/pxa168_eth.h> #include <linux/tcp.h> #include <linux/types.h> #include <linux/udp.h> #include <linux/workqueue.h> #include <linux/pgtable.h> #include <asm/cacheflush.h> #define DRIVER_NAME "pxa168-eth" #define DRIVER_VERSION "0.3" /* * Registers */ #define PHY_ADDRESS 0x0000 #define SMI 0x0010 #define PORT_CONFIG 0x0400 #define PORT_CONFIG_EXT 0x0408 #define PORT_COMMAND 0x0410 #define PORT_STATUS 0x0418 #define HTPR 0x0428 #define MAC_ADDR_LOW 0x0430 #define MAC_ADDR_HIGH 0x0438 #define SDMA_CONFIG 0x0440 #define SDMA_CMD 0x0448 #define INT_CAUSE 0x0450 #define INT_W_CLEAR 0x0454 #define INT_MASK 0x0458 #define ETH_F_RX_DESC_0 0x0480 #define ETH_C_RX_DESC_0 0x04A0 #define ETH_C_TX_DESC_1 0x04E4 /* smi register */ #define SMI_BUSY (1 << 28) /* 0 - Write, 1 - Read */ #define SMI_R_VALID (1 << 27) /* 0 - Write, 1 - Read */ #define SMI_OP_W (0 << 26) /* Write operation */ #define SMI_OP_R (1 << 26) /* Read operation */ #define PHY_WAIT_ITERATIONS 10 #define PXA168_ETH_PHY_ADDR_DEFAULT 0 /* RX & TX descriptor command */ #define BUF_OWNED_BY_DMA (1 << 31) /* RX descriptor status */ #define RX_EN_INT (1 << 23) #define RX_FIRST_DESC (1 << 17) #define RX_LAST_DESC (1 << 16) #define RX_ERROR (1 << 15) /* TX descriptor command */ #define TX_EN_INT (1 << 23) #define TX_GEN_CRC (1 << 22) #define TX_ZERO_PADDING (1 << 18) #define TX_FIRST_DESC (1 << 17) #define TX_LAST_DESC (1 << 16) #define TX_ERROR (1 << 15) /* SDMA_CMD */ #define SDMA_CMD_AT (1 << 31) #define SDMA_CMD_TXDL (1 << 24) #define SDMA_CMD_TXDH (1 << 23) #define SDMA_CMD_AR (1 << 15) #define SDMA_CMD_ERD (1 << 7) /* Bit definitions of the Port Config Reg */ #define PCR_DUPLEX_FULL (1 << 15) #define PCR_HS (1 << 12) #define PCR_EN (1 << 7) #define PCR_PM (1 << 0) /* Bit definitions of the Port Config Extend Reg */ #define PCXR_2BSM (1 << 28) #define PCXR_DSCP_EN (1 << 21) #define PCXR_RMII_EN (1 << 20) #define PCXR_AN_SPEED_DIS (1 << 19) #define PCXR_SPEED_100 (1 << 18) #define PCXR_MFL_1518 (0 << 14) #define PCXR_MFL_1536 (1 << 14) #define PCXR_MFL_2048 (2 << 14) #define PCXR_MFL_64K (3 << 14) #define PCXR_FLOWCTL_DIS (1 << 12) #define PCXR_FLP (1 << 11) #define PCXR_AN_FLOWCTL_DIS (1 << 10) #define PCXR_AN_DUPLEX_DIS (1 << 9) #define PCXR_PRIO_TX_OFF 3 #define PCXR_TX_HIGH_PRI (7 << PCXR_PRIO_TX_OFF) /* Bit definitions of the SDMA Config Reg */ #define SDCR_BSZ_OFF 12 #define SDCR_BSZ8 (3 << SDCR_BSZ_OFF) #define SDCR_BSZ4 (2 << SDCR_BSZ_OFF) #define SDCR_BSZ2 (1 << SDCR_BSZ_OFF) #define SDCR_BSZ1 (0 << SDCR_BSZ_OFF) #define SDCR_BLMR (1 << 6) #define SDCR_BLMT (1 << 7) #define SDCR_RIFB (1 << 9) #define SDCR_RC_OFF 2 #define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF) /* * Bit definitions of the Interrupt Cause Reg * and Interrupt MASK Reg is the same */ #define ICR_RXBUF (1 << 0) #define ICR_TXBUF_H (1 << 2) #define ICR_TXBUF_L (1 << 3) #define ICR_TXEND_H (1 << 6) #define ICR_TXEND_L (1 << 7) #define ICR_RXERR (1 << 8) #define ICR_TXERR_H (1 << 10) #define ICR_TXERR_L (1 << 11) #define ICR_TX_UDR (1 << 13) #define ICR_MII_CH (1 << 28) #define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\ ICR_TXERR_H | ICR_TXERR_L |\ ICR_TXEND_H | ICR_TXEND_L |\ ICR_RXBUF | ICR_RXERR | ICR_MII_CH) #define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */ #define NUM_RX_DESCS 64 #define NUM_TX_DESCS 64 #define HASH_ADD 0 #define HASH_DELETE 1 #define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */ #define HOP_NUMBER 12 /* Bit definitions for Port status */ #define PORT_SPEED_100 (1 << 0) #define FULL_DUPLEX (1 << 1) #define FLOW_CONTROL_DISABLED (1 << 2) #define LINK_UP (1 << 3) /* Bit definitions for work to be done */ #define WORK_TX_DONE (1 << 1) /* * Misc definitions. */ #define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES) struct rx_desc { u32 cmd_sts; /* Descriptor command status */ u16 byte_cnt; /* Descriptor buffer byte count */ u16 buf_size; /* Buffer size */ u32 buf_ptr; /* Descriptor buffer pointer */ u32 next_desc_ptr; /* Next descriptor pointer */ }; struct tx_desc { u32 cmd_sts; /* Command/status field */ u16 reserved; u16 byte_cnt; /* buffer byte count */ u32 buf_ptr; /* pointer to buffer for this descriptor */ u32 next_desc_ptr; /* Pointer to next descriptor */ }; struct pxa168_eth_private { struct platform_device *pdev; int port_num; /* User Ethernet port number */ int phy_addr; int phy_speed; int phy_duplex; phy_interface_t phy_intf; int rx_resource_err; /* Rx ring resource error flag */ /* Next available and first returning Rx resource */ int rx_curr_desc_q, rx_used_desc_q; /* Next available and first returning Tx resource */ int tx_curr_desc_q, tx_used_desc_q; struct rx_desc *p_rx_desc_area; dma_addr_t rx_desc_dma; int rx_desc_area_size; struct sk_buff **rx_skb; struct tx_desc *p_tx_desc_area; dma_addr_t tx_desc_dma; int tx_desc_area_size; struct sk_buff **tx_skb; struct work_struct tx_timeout_task; struct net_device *dev; struct napi_struct napi; u8 work_todo; int skb_size; /* Size of Tx Ring per queue */ int tx_ring_size; /* Number of tx descriptors in use */ int tx_desc_count; /* Size of Rx Ring per queue */ int rx_ring_size; /* Number of rx descriptors in use */ int rx_desc_count; /* * Used in case RX Ring is empty, which can occur when * system does not have resources (skb's) */ struct timer_list timeout; struct mii_bus *smi_bus; /* clock */ struct clk *clk; struct pxa168_eth_platform_data *pd; /* * Ethernet controller base address. */ void __iomem *base; /* Pointer to the hardware address filter table */ void *htpr; dma_addr_t htpr_dma; }; struct addr_table_entry { __le32 lo; __le32 hi; }; /* Bit fields of a Hash Table Entry */ enum hash_table_entry { HASH_ENTRY_VALID = 1, SKIP = 2, HASH_ENTRY_RECEIVE_DISCARD = 4, HASH_ENTRY_RECEIVE_DISCARD_BIT = 2 }; static int pxa168_init_hw(struct pxa168_eth_private *pep); static int pxa168_init_phy(struct net_device *dev); static void eth_port_reset(struct net_device *dev); static void eth_port_start(struct net_device *dev); static int pxa168_eth_open(struct net_device *dev); static int pxa168_eth_stop(struct net_device *dev); static inline u32 rdl(struct pxa168_eth_private *pep, int offset) { return readl_relaxed(pep->base + offset); } static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data) { writel_relaxed(data, pep->base + offset); } static void abort_dma(struct pxa168_eth_private *pep) { int delay; int max_retries = 40; do { wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT); udelay(100); delay = 10; while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT)) && delay-- > 0) { udelay(10); } } while (max_retries-- > 0 && delay <= 0); if (max_retries <= 0) netdev_err(pep->dev, "%s : DMA Stuck\n", __func__); } static void rxq_refill(struct net_device *dev) { struct pxa168_eth_private *pep = netdev_priv(dev); struct sk_buff *skb; struct rx_desc *p_used_rx_desc; int used_rx_desc; while (pep->rx_desc_count < pep->rx_ring_size) { int size; skb = netdev_alloc_skb(dev, pep->skb_size); if (!skb) break; if (SKB_DMA_REALIGN) skb_reserve(skb, SKB_DMA_REALIGN); pep->rx_desc_count++; /* Get 'used' Rx descriptor */ used_rx_desc = pep->rx_used_desc_q; p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc]; size = skb_end_pointer(skb) - skb->data; p_used_rx_desc->buf_ptr = dma_map_single(&pep->pdev->dev, skb->data, size, DMA_FROM_DEVICE); p_used_rx_desc->buf_size = size; pep->rx_skb[used_rx_desc] = skb; /* Return the descriptor to DMA ownership */ dma_wmb(); p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT; dma_wmb(); /* Move the used descriptor pointer to the next descriptor */ pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size; /* Any Rx return cancels the Rx resource error status */ pep->rx_resource_err = 0; skb_reserve(skb, ETH_HW_IP_ALIGN); } /* * If RX ring is empty of SKB, set a timer to try allocating * again at a later time. */ if (pep->rx_desc_count == 0) { pep->timeout.expires = jiffies + (HZ / 10); add_timer(&pep->timeout); } } static inline void rxq_refill_timer_wrapper(struct timer_list *t) { struct pxa168_eth_private *pep = from_timer(pep, t, timeout); napi_schedule(&pep->napi); } static inline u8 flip_8_bits(u8 x) { return (((x) & 0x01) << 3) | (((x) & 0x02) << 1) | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3) | (((x) & 0x10) << 3) | (((x) & 0x20) << 1) | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3); } static void nibble_swap_every_byte(unsigned char *mac_addr) { int i; for (i = 0; i < ETH_ALEN; i++) { mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) | ((mac_addr[i] & 0xf0) >> 4); } } static void inverse_every_nibble(unsigned char *mac_addr) { int i; for (i = 0; i < ETH_ALEN; i++) mac_addr[i] = flip_8_bits(mac_addr[i]); } /* * ---------------------------------------------------------------------------- * This function will calculate the hash function of the address. * Inputs * mac_addr_orig - MAC address. * Outputs * return the calculated entry. */ static u32 hash_function(const unsigned char *mac_addr_orig) { u32 hash_result; u32 addr0; u32 addr1; u32 addr2; u32 addr3; unsigned char mac_addr[ETH_ALEN]; /* Make a copy of MAC address since we are going to performe bit * operations on it */ memcpy(mac_addr, mac_addr_orig, ETH_ALEN); nibble_swap_every_byte(mac_addr); inverse_every_nibble(mac_addr); addr0 = (mac_addr[5] >> 2) & 0x3f; addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2); addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1; addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8); hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3); hash_result = hash_result & 0x07ff; return hash_result; } /* * ---------------------------------------------------------------------------- * This function will add/del an entry to the address table. * Inputs * pep - ETHERNET . * mac_addr - MAC address. * skip - if 1, skip this address.Used in case of deleting an entry which is a * part of chain in the hash table.We can't just delete the entry since * that will break the chain.We need to defragment the tables time to * time. * rd - 0 Discard packet upon match. * - 1 Receive packet upon match. * Outputs * address table entry is added/deleted. * 0 if success. * -ENOSPC if table full */ static int add_del_hash_entry(struct pxa168_eth_private *pep, const unsigned char *mac_addr, u32 rd, u32 skip, int del) { struct addr_table_entry *entry, *start; u32 new_high; u32 new_low; u32 i; new_low = (((mac_addr[1] >> 4) & 0xf) << 15) | (((mac_addr[1] >> 0) & 0xf) << 11) | (((mac_addr[0] >> 4) & 0xf) << 7) | (((mac_addr[0] >> 0) & 0xf) << 3) | (((mac_addr[3] >> 4) & 0x1) << 31) | (((mac_addr[3] >> 0) & 0xf) << 27) | (((mac_addr[2] >> 4) & 0xf) << 23) | (((mac_addr[2] >> 0) & 0xf) << 19) | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT) | HASH_ENTRY_VALID; new_high = (((mac_addr[5] >> 4) & 0xf) << 15) | (((mac_addr[5] >> 0) & 0xf) << 11) | (((mac_addr[4] >> 4) & 0xf) << 7) | (((mac_addr[4] >> 0) & 0xf) << 3) | (((mac_addr[3] >> 5) & 0x7) << 0); /* * Pick the appropriate table, start scanning for free/reusable * entries at the index obtained by hashing the specified MAC address */ start = pep->htpr; entry = start + hash_function(mac_addr); for (i = 0; i < HOP_NUMBER; i++) { if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) { break; } else { /* if same address put in same position */ if (((le32_to_cpu(entry->lo) & 0xfffffff8) == (new_low & 0xfffffff8)) && (le32_to_cpu(entry->hi) == new_high)) { break; } } if (entry == start + 0x7ff) entry = start; else entry++; } if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) && (le32_to_cpu(entry->hi) != new_high) && del) return 0; if (i == HOP_NUMBER) { if (!del) { netdev_info(pep->dev, "%s: table section is full, need to " "move to 16kB implementation?\n", __FILE__); return -ENOSPC; } else return 0; } /* * Update the selected entry */ if (del) { entry->hi = 0; entry->lo = 0; } else { entry->hi = cpu_to_le32(new_high); entry->lo = cpu_to_le32(new_low); } return 0; } /* * ---------------------------------------------------------------------------- * Create an addressTable entry from MAC address info * found in the specifed net_device struct * * Input : pointer to ethernet interface network device structure * Output : N/A */ static void update_hash_table_mac_address(struct pxa168_eth_private *pep, unsigned char *oaddr, const unsigned char *addr) { /* Delete old entry */ if (oaddr) add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE); /* Add new entry */ add_del_hash_entry(pep, addr, 1, 0, HASH_ADD); } static int init_hash_table(struct pxa168_eth_private *pep) { /* * Hardware expects CPU to build a hash table based on a predefined * hash function and populate it based on hardware address. The * location of the hash table is identified by 32-bit pointer stored * in HTPR internal register. Two possible sizes exists for the hash * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB * (16kB of DRAM required (4 x 4 kB banks)).We currently only support * 1/2kB. */ /* TODO: Add support for 8kB hash table and alternative hash * function.Driver can dynamically switch to them if the 1/2kB hash * table is full. */ if (!pep->htpr) { pep->htpr = dma_alloc_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE, &pep->htpr_dma, GFP_KERNEL); if (!pep->htpr) return -ENOMEM; } else { memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE); } wrl(pep, HTPR, pep->htpr_dma); return 0; } static void pxa168_eth_set_rx_mode(struct net_device *dev) { struct pxa168_eth_private *pep = netdev_priv(dev); struct netdev_hw_addr *ha; u32 val; val = rdl(pep, PORT_CONFIG); if (dev->flags & IFF_PROMISC) val |= PCR_PM; else val &= ~PCR_PM; wrl(pep, PORT_CONFIG, val); /* * Remove the old list of MAC address and add dev->addr * and multicast address. */ memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE); update_hash_table_mac_address(pep, NULL, dev->dev_addr); netdev_for_each_mc_addr(ha, dev) update_hash_table_mac_address(pep, NULL, ha->addr); } static void pxa168_eth_get_mac_address(struct net_device *dev, unsigned char *addr) { struct pxa168_eth_private *pep = netdev_priv(dev); unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH); unsigned int mac_l = rdl(pep, MAC_ADDR_LOW); addr[0] = (mac_h >> 24) & 0xff; addr[1] = (mac_h >> 16) & 0xff; addr[2] = (mac_h >> 8) & 0xff; addr[3] = mac_h & 0xff; addr[4] = (mac_l >> 8) & 0xff; addr[5] = mac_l & 0xff; } static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr) { struct sockaddr *sa = addr; struct pxa168_eth_private *pep = netdev_priv(dev); unsigned char oldMac[ETH_ALEN]; u32 mac_h, mac_l; if (!is_valid_ether_addr(sa->sa_data)) return -EADDRNOTAVAIL; memcpy(oldMac, dev->dev_addr, ETH_ALEN); eth_hw_addr_set(dev, sa->sa_data); mac_h = dev->dev_addr[0] << 24; mac_h |= dev->dev_addr[1] << 16; mac_h |= dev->dev_addr[2] << 8; mac_h |= dev->dev_addr[3]; mac_l = dev->dev_addr[4] << 8; mac_l |= dev->dev_addr[5]; wrl(pep, MAC_ADDR_HIGH, mac_h); wrl(pep, MAC_ADDR_LOW, mac_l); netif_addr_lock_bh(dev); update_hash_table_mac_address(pep, oldMac, dev->dev_addr); netif_addr_unlock_bh(dev); return 0; } static void eth_port_start(struct net_device *dev) { unsigned int val = 0; struct pxa168_eth_private *pep = netdev_priv(dev); int tx_curr_desc, rx_curr_desc; phy_start(dev->phydev); /* Assignment of Tx CTRP of given queue */ tx_curr_desc = pep->tx_curr_desc_q; wrl(pep, ETH_C_TX_DESC_1, (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc))); /* Assignment of Rx CRDP of given queue */ rx_curr_desc = pep->rx_curr_desc_q; wrl(pep, ETH_C_RX_DESC_0, (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc))); wrl(pep, ETH_F_RX_DESC_0, (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc))); /* Clear all interrupts */ wrl(pep, INT_CAUSE, 0); /* Enable all interrupts for receive, transmit and error. */ wrl(pep, INT_MASK, ALL_INTS); val = rdl(pep, PORT_CONFIG); val |= PCR_EN; wrl(pep, PORT_CONFIG, val); /* Start RX DMA engine */ val = rdl(pep, SDMA_CMD); val |= SDMA_CMD_ERD; wrl(pep, SDMA_CMD, val); } static void eth_port_reset(struct net_device *dev) { struct pxa168_eth_private *pep = netdev_priv(dev); unsigned int val = 0; /* Stop all interrupts for receive, transmit and error. */ wrl(pep, INT_MASK, 0); /* Clear all interrupts */ wrl(pep, INT_CAUSE, 0); /* Stop RX DMA */ val = rdl(pep, SDMA_CMD); val &= ~SDMA_CMD_ERD; /* abort dma command */ /* Abort any transmit and receive operations and put DMA * in idle state. */ abort_dma(pep); /* Disable port */ val = rdl(pep, PORT_CONFIG); val &= ~PCR_EN; wrl(pep, PORT_CONFIG, val); phy_stop(dev->phydev); } /* * txq_reclaim - Free the tx desc data for completed descriptors * If force is non-zero, frees uncompleted descriptors as well */ static int txq_reclaim(struct net_device *dev, int force) { struct pxa168_eth_private *pep = netdev_priv(dev); struct tx_desc *desc; u32 cmd_sts; struct sk_buff *skb; int tx_index; dma_addr_t addr; int count; int released = 0; netif_tx_lock(dev); pep->work_todo &= ~WORK_TX_DONE; while (pep->tx_desc_count > 0) { tx_index = pep->tx_used_desc_q; desc = &pep->p_tx_desc_area[tx_index]; cmd_sts = desc->cmd_sts; if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) { if (released > 0) { goto txq_reclaim_end; } else { released = -1; goto txq_reclaim_end; } } pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size; pep->tx_desc_count--; addr = desc->buf_ptr; count = desc->byte_cnt; skb = pep->tx_skb[tx_index]; if (skb) pep->tx_skb[tx_index] = NULL; if (cmd_sts & TX_ERROR) { if (net_ratelimit()) netdev_err(dev, "Error in TX\n"); dev->stats.tx_errors++; } dma_unmap_single(&pep->pdev->dev, addr, count, DMA_TO_DEVICE); if (skb) dev_kfree_skb_irq(skb); released++; } txq_reclaim_end: netif_tx_unlock(dev); return released; } static void pxa168_eth_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct pxa168_eth_private *pep = netdev_priv(dev); netdev_info(dev, "TX timeout desc_count %d\n", pep->tx_desc_count); schedule_work(&pep->tx_timeout_task); } static void pxa168_eth_tx_timeout_task(struct work_struct *work) { struct pxa168_eth_private *pep = container_of(work, struct pxa168_eth_private, tx_timeout_task); struct net_device *dev = pep->dev; pxa168_eth_stop(dev); pxa168_eth_open(dev); } static int rxq_process(struct net_device *dev, int budget) { struct pxa168_eth_private *pep = netdev_priv(dev); struct net_device_stats *stats = &dev->stats; unsigned int received_packets = 0; struct sk_buff *skb; while (budget-- > 0) { int rx_next_curr_desc, rx_curr_desc, rx_used_desc; struct rx_desc *rx_desc; unsigned int cmd_sts; /* Do not process Rx ring in case of Rx ring resource error */ if (pep->rx_resource_err) break; rx_curr_desc = pep->rx_curr_desc_q; rx_used_desc = pep->rx_used_desc_q; rx_desc = &pep->p_rx_desc_area[rx_curr_desc]; cmd_sts = rx_desc->cmd_sts; dma_rmb(); if (cmd_sts & (BUF_OWNED_BY_DMA)) break; skb = pep->rx_skb[rx_curr_desc]; pep->rx_skb[rx_curr_desc] = NULL; rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size; pep->rx_curr_desc_q = rx_next_curr_desc; /* Rx descriptors exhausted. */ /* Set the Rx ring resource error flag */ if (rx_next_curr_desc == rx_used_desc) pep->rx_resource_err = 1; pep->rx_desc_count--; dma_unmap_single(&pep->pdev->dev, rx_desc->buf_ptr, rx_desc->buf_size, DMA_FROM_DEVICE); received_packets++; /* * Update statistics. * Note byte count includes 4 byte CRC count */ stats->rx_packets++; stats->rx_bytes += rx_desc->byte_cnt; /* * In case received a packet without first / last bits on OR * the error summary bit is on, the packets needs to be droped. */ if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != (RX_FIRST_DESC | RX_LAST_DESC)) || (cmd_sts & RX_ERROR)) { stats->rx_dropped++; if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != (RX_FIRST_DESC | RX_LAST_DESC)) { if (net_ratelimit()) netdev_err(dev, "Rx pkt on multiple desc\n"); } if (cmd_sts & RX_ERROR) stats->rx_errors++; dev_kfree_skb_irq(skb); } else { /* * The -4 is for the CRC in the trailer of the * received packet */ skb_put(skb, rx_desc->byte_cnt - 4); skb->protocol = eth_type_trans(skb, dev); netif_receive_skb(skb); } } /* Fill RX ring with skb's */ rxq_refill(dev); return received_packets; } static int pxa168_eth_collect_events(struct pxa168_eth_private *pep, struct net_device *dev) { u32 icr; int ret = 0; icr = rdl(pep, INT_CAUSE); if (icr == 0) return IRQ_NONE; wrl(pep, INT_CAUSE, ~icr); if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) { pep->work_todo |= WORK_TX_DONE; ret = 1; } if (icr & ICR_RXBUF) ret = 1; return ret; } static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct pxa168_eth_private *pep = netdev_priv(dev); if (unlikely(!pxa168_eth_collect_events(pep, dev))) return IRQ_NONE; /* Disable interrupts */ wrl(pep, INT_MASK, 0); napi_schedule(&pep->napi); return IRQ_HANDLED; } static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep) { int skb_size; /* * Reserve 2+14 bytes for an ethernet header (the hardware * automatically prepends 2 bytes of dummy data to each * received packet), 16 bytes for up to four VLAN tags, and * 4 bytes for the trailing FCS -- 36 bytes total. */ skb_size = pep->dev->mtu + 36; /* * Make sure that the skb size is a multiple of 8 bytes, as * the lower three bits of the receive descriptor's buffer * size field are ignored by the hardware. */ pep->skb_size = (skb_size + 7) & ~7; /* * If NET_SKB_PAD is smaller than a cache line, * netdev_alloc_skb() will cause skb->data to be misaligned * to a cache line boundary. If this is the case, include * some extra space to allow re-aligning the data area. */ pep->skb_size += SKB_DMA_REALIGN; } static int set_port_config_ext(struct pxa168_eth_private *pep) { int skb_size; pxa168_eth_recalc_skb_size(pep); if (pep->skb_size <= 1518) skb_size = PCXR_MFL_1518; else if (pep->skb_size <= 1536) skb_size = PCXR_MFL_1536; else if (pep->skb_size <= 2048) skb_size = PCXR_MFL_2048; else skb_size = PCXR_MFL_64K; /* Extended Port Configuration */ wrl(pep, PORT_CONFIG_EXT, PCXR_AN_SPEED_DIS | /* Disable HW AN */ PCXR_AN_DUPLEX_DIS | PCXR_AN_FLOWCTL_DIS | PCXR_2BSM | /* Two byte prefix aligns IP hdr */ PCXR_DSCP_EN | /* Enable DSCP in IP */ skb_size | PCXR_FLP | /* do not force link pass */ PCXR_TX_HIGH_PRI); /* Transmit - high priority queue */ return 0; } static void pxa168_eth_adjust_link(struct net_device *dev) { struct pxa168_eth_private *pep = netdev_priv(dev); struct phy_device *phy = dev->phydev; u32 cfg, cfg_o = rdl(pep, PORT_CONFIG); u32 cfgext, cfgext_o = rdl(pep, PORT_CONFIG_EXT); cfg = cfg_o & ~PCR_DUPLEX_FULL; cfgext = cfgext_o & ~(PCXR_SPEED_100 | PCXR_FLOWCTL_DIS | PCXR_RMII_EN); if (phy->interface == PHY_INTERFACE_MODE_RMII) cfgext |= PCXR_RMII_EN; if (phy->speed == SPEED_100) cfgext |= PCXR_SPEED_100; if (phy->duplex) cfg |= PCR_DUPLEX_FULL; if (!phy->pause) cfgext |= PCXR_FLOWCTL_DIS; /* Bail out if there has nothing changed */ if (cfg == cfg_o && cfgext == cfgext_o) return; wrl(pep, PORT_CONFIG, cfg); wrl(pep, PORT_CONFIG_EXT, cfgext); phy_print_status(phy); } static int pxa168_init_phy(struct net_device *dev) { struct pxa168_eth_private *pep = netdev_priv(dev); struct ethtool_link_ksettings cmd; struct phy_device *phy = NULL; int err; if (dev->phydev) return 0; phy = mdiobus_scan_c22(pep->smi_bus, pep->phy_addr); if (IS_ERR(phy)) return PTR_ERR(phy); err = phy_connect_direct(dev, phy, pxa168_eth_adjust_link, pep->phy_intf); if (err) return err; cmd.base.phy_address = pep->phy_addr; cmd.base.speed = pep->phy_speed; cmd.base.duplex = pep->phy_duplex; linkmode_copy(cmd.link_modes.advertising, PHY_BASIC_FEATURES); cmd.base.autoneg = AUTONEG_ENABLE; if (cmd.base.speed != 0) cmd.base.autoneg = AUTONEG_DISABLE; return phy_ethtool_set_link_ksettings(dev, &cmd); } static int pxa168_init_hw(struct pxa168_eth_private *pep) { int err = 0; /* Disable interrupts */ wrl(pep, INT_MASK, 0); wrl(pep, INT_CAUSE, 0); /* Write to ICR to clear interrupts. */ wrl(pep, INT_W_CLEAR, 0); /* Abort any transmit and receive operations and put DMA * in idle state. */ abort_dma(pep); /* Initialize address hash table */ err = init_hash_table(pep); if (err) return err; /* SDMA configuration */ wrl(pep, SDMA_CONFIG, SDCR_BSZ8 | /* Burst size = 32 bytes */ SDCR_RIFB | /* Rx interrupt on frame */ SDCR_BLMT | /* Little endian transmit */ SDCR_BLMR | /* Little endian receive */ SDCR_RC_MAX_RETRANS); /* Max retransmit count */ /* Port Configuration */ wrl(pep, PORT_CONFIG, PCR_HS); /* Hash size is 1/2kb */ set_port_config_ext(pep); return err; } static int rxq_init(struct net_device *dev) { struct pxa168_eth_private *pep = netdev_priv(dev); struct rx_desc *p_rx_desc; int size = 0, i = 0; int rx_desc_num = pep->rx_ring_size; /* Allocate RX skb rings */ pep->rx_skb = kcalloc(rx_desc_num, sizeof(*pep->rx_skb), GFP_KERNEL); if (!pep->rx_skb) return -ENOMEM; /* Allocate RX ring */ pep->rx_desc_count = 0; size = pep->rx_ring_size * sizeof(struct rx_desc); pep->rx_desc_area_size = size; pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size, &pep->rx_desc_dma, GFP_KERNEL); if (!pep->p_rx_desc_area) goto out; /* initialize the next_desc_ptr links in the Rx descriptors ring */ p_rx_desc = pep->p_rx_desc_area; for (i = 0; i < rx_desc_num; i++) { p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma + ((i + 1) % rx_desc_num) * sizeof(struct rx_desc); } /* Save Rx desc pointer to driver struct. */ pep->rx_curr_desc_q = 0; pep->rx_used_desc_q = 0; pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc); return 0; out: kfree(pep->rx_skb); return -ENOMEM; } static void rxq_deinit(struct net_device *dev) { struct pxa168_eth_private *pep = netdev_priv(dev); int curr; /* Free preallocated skb's on RX rings */ for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) { if (pep->rx_skb[curr]) { dev_kfree_skb(pep->rx_skb[curr]); pep->rx_desc_count--; } } if (pep->rx_desc_count) netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n", pep->rx_desc_count); /* Free RX ring */ if (pep->p_rx_desc_area) dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size, pep->p_rx_desc_area, pep->rx_desc_dma); kfree(pep->rx_skb); } static int txq_init(struct net_device *dev) { struct pxa168_eth_private *pep = netdev_priv(dev); struct tx_desc *p_tx_desc; int size = 0, i = 0; int tx_desc_num = pep->tx_ring_size; pep->tx_skb = kcalloc(tx_desc_num, sizeof(*pep->tx_skb), GFP_KERNEL); if (!pep->tx_skb) return -ENOMEM; /* Allocate TX ring */ pep->tx_desc_count = 0; size = pep->tx_ring_size * sizeof(struct tx_desc); pep->tx_desc_area_size = size; pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size, &pep->tx_desc_dma, GFP_KERNEL); if (!pep->p_tx_desc_area) goto out; /* Initialize the next_desc_ptr links in the Tx descriptors ring */ p_tx_desc = pep->p_tx_desc_area; for (i = 0; i < tx_desc_num; i++) { p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma + ((i + 1) % tx_desc_num) * sizeof(struct tx_desc); } pep->tx_curr_desc_q = 0; pep->tx_used_desc_q = 0; pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc); return 0; out: kfree(pep->tx_skb); return -ENOMEM; } static void txq_deinit(struct net_device *dev) { struct pxa168_eth_private *pep = netdev_priv(dev); /* Free outstanding skb's on TX ring */ txq_reclaim(dev, 1); BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q); /* Free TX ring */ if (pep->p_tx_desc_area) dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size, pep->p_tx_desc_area, pep->tx_desc_dma); kfree(pep->tx_skb); } static int pxa168_eth_open(struct net_device *dev) { struct pxa168_eth_private *pep = netdev_priv(dev); int err; err = pxa168_init_phy(dev); if (err) return err; err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev); if (err) { dev_err(&dev->dev, "can't assign irq\n"); return -EAGAIN; } pep->rx_resource_err = 0; err = rxq_init(dev); if (err != 0) goto out_free_irq; err = txq_init(dev); if (err != 0) goto out_free_rx_skb; pep->rx_used_desc_q = 0; pep->rx_curr_desc_q = 0; /* Fill RX ring with skb's */ rxq_refill(dev); pep->rx_used_desc_q = 0; pep->rx_curr_desc_q = 0; netif_carrier_off(dev); napi_enable(&pep->napi); eth_port_start(dev); return 0; out_free_rx_skb: rxq_deinit(dev); out_free_irq: free_irq(dev->irq, dev); return err; } static int pxa168_eth_stop(struct net_device *dev) { struct pxa168_eth_private *pep = netdev_priv(dev); eth_port_reset(dev); /* Disable interrupts */ wrl(pep, INT_MASK, 0); wrl(pep, INT_CAUSE, 0); /* Write to ICR to clear interrupts. */ wrl(pep, INT_W_CLEAR, 0); napi_disable(&pep->napi); del_timer_sync(&pep->timeout); netif_carrier_off(dev); free_irq(dev->irq, dev); rxq_deinit(dev); txq_deinit(dev); return 0; } static int pxa168_eth_change_mtu(struct net_device *dev, int mtu) { struct pxa168_eth_private *pep = netdev_priv(dev); dev->mtu = mtu; set_port_config_ext(pep); if (!netif_running(dev)) return 0; /* * Stop and then re-open the interface. This will allocate RX * skbs of the new MTU. * There is a possible danger that the open will not succeed, * due to memory being full. */ pxa168_eth_stop(dev); if (pxa168_eth_open(dev)) { dev_err(&dev->dev, "fatal error on re-opening device after MTU change\n"); } return 0; } static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep) { int tx_desc_curr; tx_desc_curr = pep->tx_curr_desc_q; pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size; BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q); pep->tx_desc_count++; return tx_desc_curr; } static int pxa168_rx_poll(struct napi_struct *napi, int budget) { struct pxa168_eth_private *pep = container_of(napi, struct pxa168_eth_private, napi); struct net_device *dev = pep->dev; int work_done = 0; /* * We call txq_reclaim every time since in NAPI interupts are disabled * and due to this we miss the TX_DONE interrupt,which is not updated in * interrupt status register. */ txq_reclaim(dev, 0); if (netif_queue_stopped(dev) && pep->tx_ring_size - pep->tx_desc_count > 1) { netif_wake_queue(dev); } work_done = rxq_process(dev, budget); if (work_done < budget) { napi_complete_done(napi, work_done); wrl(pep, INT_MASK, ALL_INTS); } return work_done; } static netdev_tx_t pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct pxa168_eth_private *pep = netdev_priv(dev); struct net_device_stats *stats = &dev->stats; struct tx_desc *desc; int tx_index; int length; tx_index = eth_alloc_tx_desc_index(pep); desc = &pep->p_tx_desc_area[tx_index]; length = skb->len; pep->tx_skb[tx_index] = skb; desc->byte_cnt = length; desc->buf_ptr = dma_map_single(&pep->pdev->dev, skb->data, length, DMA_TO_DEVICE); skb_tx_timestamp(skb); dma_wmb(); desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC | TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT; wmb(); wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD); stats->tx_bytes += length; stats->tx_packets++; netif_trans_update(dev); if (pep->tx_ring_size - pep->tx_desc_count <= 1) { /* We handled the current skb, but now we are out of space.*/ netif_stop_queue(dev); } return NETDEV_TX_OK; } static int smi_wait_ready(struct pxa168_eth_private *pep) { int i = 0; /* wait for the SMI register to become available */ for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) { if (i == PHY_WAIT_ITERATIONS) return -ETIMEDOUT; msleep(10); } return 0; } static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum) { struct pxa168_eth_private *pep = bus->priv; int i = 0; int val; if (smi_wait_ready(pep)) { netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n"); return -ETIMEDOUT; } wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R); /* now wait for the data to be valid */ for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) { if (i == PHY_WAIT_ITERATIONS) { netdev_warn(pep->dev, "pxa168_eth: SMI bus read not valid\n"); return -ENODEV; } msleep(10); } return val & 0xffff; } static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum, u16 value) { struct pxa168_eth_private *pep = bus->priv; if (smi_wait_ready(pep)) { netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n"); return -ETIMEDOUT; } wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_W | (value & 0xffff)); if (smi_wait_ready(pep)) { netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n"); return -ETIMEDOUT; } return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER static void pxa168_eth_netpoll(struct net_device *dev) { disable_irq(dev->irq); pxa168_eth_int_handler(dev->irq, dev); enable_irq(dev->irq); } #endif static void pxa168_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strscpy(info->driver, DRIVER_NAME, sizeof(info->driver)); strscpy(info->version, DRIVER_VERSION, sizeof(info->version)); strscpy(info->fw_version, "N/A", sizeof(info->fw_version)); strscpy(info->bus_info, "N/A", sizeof(info->bus_info)); } static const struct ethtool_ops pxa168_ethtool_ops = { .get_drvinfo = pxa168_get_drvinfo, .nway_reset = phy_ethtool_nway_reset, .get_link = ethtool_op_get_link, .get_ts_info = ethtool_op_get_ts_info, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; static const struct net_device_ops pxa168_eth_netdev_ops = { .ndo_open = pxa168_eth_open, .ndo_stop = pxa168_eth_stop, .ndo_start_xmit = pxa168_eth_start_xmit, .ndo_set_rx_mode = pxa168_eth_set_rx_mode, .ndo_set_mac_address = pxa168_eth_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_eth_ioctl = phy_do_ioctl, .ndo_change_mtu = pxa168_eth_change_mtu, .ndo_tx_timeout = pxa168_eth_tx_timeout, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = pxa168_eth_netpoll, #endif }; static int pxa168_eth_probe(struct platform_device *pdev) { struct pxa168_eth_private *pep = NULL; struct net_device *dev = NULL; struct clk *clk; struct device_node *np; int err; printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n"); clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(clk)) { dev_err(&pdev->dev, "Fast Ethernet failed to get clock\n"); return -ENODEV; } clk_prepare_enable(clk); dev = alloc_etherdev(sizeof(struct pxa168_eth_private)); if (!dev) { err = -ENOMEM; goto err_clk; } platform_set_drvdata(pdev, dev); pep = netdev_priv(dev); pep->dev = dev; pep->clk = clk; pep->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pep->base)) { err = PTR_ERR(pep->base); goto err_netdev; } err = platform_get_irq(pdev, 0); if (err == -EPROBE_DEFER) goto err_netdev; BUG_ON(dev->irq < 0); dev->irq = err; dev->netdev_ops = &pxa168_eth_netdev_ops; dev->watchdog_timeo = 2 * HZ; dev->base_addr = 0; dev->ethtool_ops = &pxa168_ethtool_ops; /* MTU range: 68 - 9500 */ dev->min_mtu = ETH_MIN_MTU; dev->max_mtu = 9500; INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task); err = of_get_ethdev_address(pdev->dev.of_node, dev); if (err) { u8 addr[ETH_ALEN]; /* try reading the mac address, if set by the bootloader */ pxa168_eth_get_mac_address(dev, addr); if (is_valid_ether_addr(addr)) { eth_hw_addr_set(dev, addr); } else { dev_info(&pdev->dev, "Using random mac address\n"); eth_hw_addr_random(dev); } } pep->rx_ring_size = NUM_RX_DESCS; pep->tx_ring_size = NUM_TX_DESCS; pep->pd = dev_get_platdata(&pdev->dev); if (pep->pd) { if (pep->pd->rx_queue_size) pep->rx_ring_size = pep->pd->rx_queue_size; if (pep->pd->tx_queue_size) pep->tx_ring_size = pep->pd->tx_queue_size; pep->port_num = pep->pd->port_number; pep->phy_addr = pep->pd->phy_addr; pep->phy_speed = pep->pd->speed; pep->phy_duplex = pep->pd->duplex; pep->phy_intf = pep->pd->intf; if (pep->pd->init) pep->pd->init(); } else if (pdev->dev.of_node) { of_property_read_u32(pdev->dev.of_node, "port-id", &pep->port_num); np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); if (!np) { dev_err(&pdev->dev, "missing phy-handle\n"); err = -EINVAL; goto err_netdev; } of_property_read_u32(np, "reg", &pep->phy_addr); of_node_put(np); err = of_get_phy_mode(pdev->dev.of_node, &pep->phy_intf); if (err && err != -ENODEV) goto err_netdev; } /* Hardware supports only 3 ports */ BUG_ON(pep->port_num > 2); netif_napi_add_weight(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size); memset(&pep->timeout, 0, sizeof(struct timer_list)); timer_setup(&pep->timeout, rxq_refill_timer_wrapper, 0); pep->smi_bus = mdiobus_alloc(); if (!pep->smi_bus) { err = -ENOMEM; goto err_netdev; } pep->smi_bus->priv = pep; pep->smi_bus->name = "pxa168_eth smi"; pep->smi_bus->read = pxa168_smi_read; pep->smi_bus->write = pxa168_smi_write; snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d", pdev->name, pdev->id); pep->smi_bus->parent = &pdev->dev; pep->smi_bus->phy_mask = 0xffffffff; err = mdiobus_register(pep->smi_bus); if (err) goto err_free_mdio; pep->pdev = pdev; SET_NETDEV_DEV(dev, &pdev->dev); pxa168_init_hw(pep); err = register_netdev(dev); if (err) goto err_mdiobus; return 0; err_mdiobus: mdiobus_unregister(pep->smi_bus); err_free_mdio: mdiobus_free(pep->smi_bus); err_netdev: free_netdev(dev); err_clk: clk_disable_unprepare(clk); return err; } static int pxa168_eth_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct pxa168_eth_private *pep = netdev_priv(dev); cancel_work_sync(&pep->tx_timeout_task); if (pep->htpr) { dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE, pep->htpr, pep->htpr_dma); pep->htpr = NULL; } if (dev->phydev) phy_disconnect(dev->phydev); clk_disable_unprepare(pep->clk); mdiobus_unregister(pep->smi_bus); mdiobus_free(pep->smi_bus); unregister_netdev(dev); free_netdev(dev); return 0; } static void pxa168_eth_shutdown(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); eth_port_reset(dev); } #ifdef CONFIG_PM static int pxa168_eth_resume(struct platform_device *pdev) { return -ENOSYS; } static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state) { return -ENOSYS; } #else #define pxa168_eth_resume NULL #define pxa168_eth_suspend NULL #endif static const struct of_device_id pxa168_eth_of_match[] = { { .compatible = "marvell,pxa168-eth" }, { }, }; MODULE_DEVICE_TABLE(of, pxa168_eth_of_match); static struct platform_driver pxa168_eth_driver = { .probe = pxa168_eth_probe, .remove = pxa168_eth_remove, .shutdown = pxa168_eth_shutdown, .resume = pxa168_eth_resume, .suspend = pxa168_eth_suspend, .driver = { .name = DRIVER_NAME, .of_match_table = of_match_ptr(pxa168_eth_of_match), }, }; module_platform_driver(pxa168_eth_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168"); MODULE_ALIAS("platform:pxa168_eth");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1