Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Horatiu Vultur | 5027 | 99.96% | 22 | 95.65% |
Magnus Karlsson | 2 | 0.04% | 1 | 4.35% |
Total | 5029 | 23 |
// SPDX-License-Identifier: GPL-2.0+ #include <linux/bpf.h> #include <linux/filter.h> #include "lan966x_main.h" static int lan966x_fdma_channel_active(struct lan966x *lan966x) { return lan_rd(lan966x, FDMA_CH_ACTIVE); } static struct page *lan966x_fdma_rx_alloc_page(struct lan966x_rx *rx, struct lan966x_db *db) { struct page *page; page = page_pool_dev_alloc_pages(rx->page_pool); if (unlikely(!page)) return NULL; db->dataptr = page_pool_get_dma_addr(page) + XDP_PACKET_HEADROOM; return page; } static void lan966x_fdma_rx_free_pages(struct lan966x_rx *rx) { int i, j; for (i = 0; i < FDMA_DCB_MAX; ++i) { for (j = 0; j < FDMA_RX_DCB_MAX_DBS; ++j) page_pool_put_full_page(rx->page_pool, rx->page[i][j], false); } } static void lan966x_fdma_rx_free_page(struct lan966x_rx *rx) { struct page *page; page = rx->page[rx->dcb_index][rx->db_index]; if (unlikely(!page)) return; page_pool_recycle_direct(rx->page_pool, page); } static void lan966x_fdma_rx_add_dcb(struct lan966x_rx *rx, struct lan966x_rx_dcb *dcb, u64 nextptr) { struct lan966x_db *db; int i; for (i = 0; i < FDMA_RX_DCB_MAX_DBS; ++i) { db = &dcb->db[i]; db->status = FDMA_DCB_STATUS_INTR; } dcb->nextptr = FDMA_DCB_INVALID_DATA; dcb->info = FDMA_DCB_INFO_DATAL(PAGE_SIZE << rx->page_order); rx->last_entry->nextptr = nextptr; rx->last_entry = dcb; } static int lan966x_fdma_rx_alloc_page_pool(struct lan966x_rx *rx) { struct lan966x *lan966x = rx->lan966x; struct page_pool_params pp_params = { .order = rx->page_order, .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, .pool_size = FDMA_DCB_MAX, .nid = NUMA_NO_NODE, .dev = lan966x->dev, .dma_dir = DMA_FROM_DEVICE, .offset = XDP_PACKET_HEADROOM, .max_len = rx->max_mtu - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), }; if (lan966x_xdp_present(lan966x)) pp_params.dma_dir = DMA_BIDIRECTIONAL; rx->page_pool = page_pool_create(&pp_params); for (int i = 0; i < lan966x->num_phys_ports; ++i) { struct lan966x_port *port; if (!lan966x->ports[i]) continue; port = lan966x->ports[i]; xdp_rxq_info_unreg_mem_model(&port->xdp_rxq); xdp_rxq_info_reg_mem_model(&port->xdp_rxq, MEM_TYPE_PAGE_POOL, rx->page_pool); } return PTR_ERR_OR_ZERO(rx->page_pool); } static int lan966x_fdma_rx_alloc(struct lan966x_rx *rx) { struct lan966x *lan966x = rx->lan966x; struct lan966x_rx_dcb *dcb; struct lan966x_db *db; struct page *page; int i, j; int size; if (lan966x_fdma_rx_alloc_page_pool(rx)) return PTR_ERR(rx->page_pool); /* calculate how many pages are needed to allocate the dcbs */ size = sizeof(struct lan966x_rx_dcb) * FDMA_DCB_MAX; size = ALIGN(size, PAGE_SIZE); rx->dcbs = dma_alloc_coherent(lan966x->dev, size, &rx->dma, GFP_KERNEL); if (!rx->dcbs) return -ENOMEM; rx->last_entry = rx->dcbs; rx->db_index = 0; rx->dcb_index = 0; /* Now for each dcb allocate the dbs */ for (i = 0; i < FDMA_DCB_MAX; ++i) { dcb = &rx->dcbs[i]; dcb->info = 0; /* For each db allocate a page and map it to the DB dataptr. */ for (j = 0; j < FDMA_RX_DCB_MAX_DBS; ++j) { db = &dcb->db[j]; page = lan966x_fdma_rx_alloc_page(rx, db); if (!page) return -ENOMEM; db->status = 0; rx->page[i][j] = page; } lan966x_fdma_rx_add_dcb(rx, dcb, rx->dma + sizeof(*dcb) * i); } return 0; } static void lan966x_fdma_rx_advance_dcb(struct lan966x_rx *rx) { rx->dcb_index++; rx->dcb_index &= FDMA_DCB_MAX - 1; } static void lan966x_fdma_rx_free(struct lan966x_rx *rx) { struct lan966x *lan966x = rx->lan966x; u32 size; /* Now it is possible to do the cleanup of dcb */ size = sizeof(struct lan966x_tx_dcb) * FDMA_DCB_MAX; size = ALIGN(size, PAGE_SIZE); dma_free_coherent(lan966x->dev, size, rx->dcbs, rx->dma); } static void lan966x_fdma_rx_start(struct lan966x_rx *rx) { struct lan966x *lan966x = rx->lan966x; u32 mask; /* When activating a channel, first is required to write the first DCB * address and then to activate it */ lan_wr(lower_32_bits((u64)rx->dma), lan966x, FDMA_DCB_LLP(rx->channel_id)); lan_wr(upper_32_bits((u64)rx->dma), lan966x, FDMA_DCB_LLP1(rx->channel_id)); lan_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(FDMA_RX_DCB_MAX_DBS) | FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) | FDMA_CH_CFG_CH_INJ_PORT_SET(0) | FDMA_CH_CFG_CH_MEM_SET(1), lan966x, FDMA_CH_CFG(rx->channel_id)); /* Start fdma */ lan_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(0), FDMA_PORT_CTRL_XTR_STOP, lan966x, FDMA_PORT_CTRL(0)); /* Enable interrupts */ mask = lan_rd(lan966x, FDMA_INTR_DB_ENA); mask = FDMA_INTR_DB_ENA_INTR_DB_ENA_GET(mask); mask |= BIT(rx->channel_id); lan_rmw(FDMA_INTR_DB_ENA_INTR_DB_ENA_SET(mask), FDMA_INTR_DB_ENA_INTR_DB_ENA, lan966x, FDMA_INTR_DB_ENA); /* Activate the channel */ lan_rmw(FDMA_CH_ACTIVATE_CH_ACTIVATE_SET(BIT(rx->channel_id)), FDMA_CH_ACTIVATE_CH_ACTIVATE, lan966x, FDMA_CH_ACTIVATE); } static void lan966x_fdma_rx_disable(struct lan966x_rx *rx) { struct lan966x *lan966x = rx->lan966x; u32 val; /* Disable the channel */ lan_rmw(FDMA_CH_DISABLE_CH_DISABLE_SET(BIT(rx->channel_id)), FDMA_CH_DISABLE_CH_DISABLE, lan966x, FDMA_CH_DISABLE); readx_poll_timeout_atomic(lan966x_fdma_channel_active, lan966x, val, !(val & BIT(rx->channel_id)), READL_SLEEP_US, READL_TIMEOUT_US); lan_rmw(FDMA_CH_DB_DISCARD_DB_DISCARD_SET(BIT(rx->channel_id)), FDMA_CH_DB_DISCARD_DB_DISCARD, lan966x, FDMA_CH_DB_DISCARD); } static void lan966x_fdma_rx_reload(struct lan966x_rx *rx) { struct lan966x *lan966x = rx->lan966x; lan_rmw(FDMA_CH_RELOAD_CH_RELOAD_SET(BIT(rx->channel_id)), FDMA_CH_RELOAD_CH_RELOAD, lan966x, FDMA_CH_RELOAD); } static void lan966x_fdma_tx_add_dcb(struct lan966x_tx *tx, struct lan966x_tx_dcb *dcb) { dcb->nextptr = FDMA_DCB_INVALID_DATA; dcb->info = 0; } static int lan966x_fdma_tx_alloc(struct lan966x_tx *tx) { struct lan966x *lan966x = tx->lan966x; struct lan966x_tx_dcb *dcb; struct lan966x_db *db; int size; int i, j; tx->dcbs_buf = kcalloc(FDMA_DCB_MAX, sizeof(struct lan966x_tx_dcb_buf), GFP_KERNEL); if (!tx->dcbs_buf) return -ENOMEM; /* calculate how many pages are needed to allocate the dcbs */ size = sizeof(struct lan966x_tx_dcb) * FDMA_DCB_MAX; size = ALIGN(size, PAGE_SIZE); tx->dcbs = dma_alloc_coherent(lan966x->dev, size, &tx->dma, GFP_KERNEL); if (!tx->dcbs) goto out; /* Now for each dcb allocate the db */ for (i = 0; i < FDMA_DCB_MAX; ++i) { dcb = &tx->dcbs[i]; for (j = 0; j < FDMA_TX_DCB_MAX_DBS; ++j) { db = &dcb->db[j]; db->dataptr = 0; db->status = 0; } lan966x_fdma_tx_add_dcb(tx, dcb); } return 0; out: kfree(tx->dcbs_buf); return -ENOMEM; } static void lan966x_fdma_tx_free(struct lan966x_tx *tx) { struct lan966x *lan966x = tx->lan966x; int size; kfree(tx->dcbs_buf); size = sizeof(struct lan966x_tx_dcb) * FDMA_DCB_MAX; size = ALIGN(size, PAGE_SIZE); dma_free_coherent(lan966x->dev, size, tx->dcbs, tx->dma); } static void lan966x_fdma_tx_activate(struct lan966x_tx *tx) { struct lan966x *lan966x = tx->lan966x; u32 mask; /* When activating a channel, first is required to write the first DCB * address and then to activate it */ lan_wr(lower_32_bits((u64)tx->dma), lan966x, FDMA_DCB_LLP(tx->channel_id)); lan_wr(upper_32_bits((u64)tx->dma), lan966x, FDMA_DCB_LLP1(tx->channel_id)); lan_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(FDMA_TX_DCB_MAX_DBS) | FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) | FDMA_CH_CFG_CH_INJ_PORT_SET(0) | FDMA_CH_CFG_CH_MEM_SET(1), lan966x, FDMA_CH_CFG(tx->channel_id)); /* Start fdma */ lan_rmw(FDMA_PORT_CTRL_INJ_STOP_SET(0), FDMA_PORT_CTRL_INJ_STOP, lan966x, FDMA_PORT_CTRL(0)); /* Enable interrupts */ mask = lan_rd(lan966x, FDMA_INTR_DB_ENA); mask = FDMA_INTR_DB_ENA_INTR_DB_ENA_GET(mask); mask |= BIT(tx->channel_id); lan_rmw(FDMA_INTR_DB_ENA_INTR_DB_ENA_SET(mask), FDMA_INTR_DB_ENA_INTR_DB_ENA, lan966x, FDMA_INTR_DB_ENA); /* Activate the channel */ lan_rmw(FDMA_CH_ACTIVATE_CH_ACTIVATE_SET(BIT(tx->channel_id)), FDMA_CH_ACTIVATE_CH_ACTIVATE, lan966x, FDMA_CH_ACTIVATE); } static void lan966x_fdma_tx_disable(struct lan966x_tx *tx) { struct lan966x *lan966x = tx->lan966x; u32 val; /* Disable the channel */ lan_rmw(FDMA_CH_DISABLE_CH_DISABLE_SET(BIT(tx->channel_id)), FDMA_CH_DISABLE_CH_DISABLE, lan966x, FDMA_CH_DISABLE); readx_poll_timeout_atomic(lan966x_fdma_channel_active, lan966x, val, !(val & BIT(tx->channel_id)), READL_SLEEP_US, READL_TIMEOUT_US); lan_rmw(FDMA_CH_DB_DISCARD_DB_DISCARD_SET(BIT(tx->channel_id)), FDMA_CH_DB_DISCARD_DB_DISCARD, lan966x, FDMA_CH_DB_DISCARD); tx->activated = false; tx->last_in_use = -1; } static void lan966x_fdma_tx_reload(struct lan966x_tx *tx) { struct lan966x *lan966x = tx->lan966x; /* Write the registers to reload the channel */ lan_rmw(FDMA_CH_RELOAD_CH_RELOAD_SET(BIT(tx->channel_id)), FDMA_CH_RELOAD_CH_RELOAD, lan966x, FDMA_CH_RELOAD); } static void lan966x_fdma_wakeup_netdev(struct lan966x *lan966x) { struct lan966x_port *port; int i; for (i = 0; i < lan966x->num_phys_ports; ++i) { port = lan966x->ports[i]; if (!port) continue; if (netif_queue_stopped(port->dev)) netif_wake_queue(port->dev); } } static void lan966x_fdma_stop_netdev(struct lan966x *lan966x) { struct lan966x_port *port; int i; for (i = 0; i < lan966x->num_phys_ports; ++i) { port = lan966x->ports[i]; if (!port) continue; netif_stop_queue(port->dev); } } static void lan966x_fdma_tx_clear_buf(struct lan966x *lan966x, int weight) { struct lan966x_tx *tx = &lan966x->tx; struct lan966x_tx_dcb_buf *dcb_buf; struct xdp_frame_bulk bq; struct lan966x_db *db; unsigned long flags; bool clear = false; int i; xdp_frame_bulk_init(&bq); spin_lock_irqsave(&lan966x->tx_lock, flags); for (i = 0; i < FDMA_DCB_MAX; ++i) { dcb_buf = &tx->dcbs_buf[i]; if (!dcb_buf->used) continue; db = &tx->dcbs[i].db[0]; if (!(db->status & FDMA_DCB_STATUS_DONE)) continue; dcb_buf->dev->stats.tx_packets++; dcb_buf->dev->stats.tx_bytes += dcb_buf->len; dcb_buf->used = false; if (dcb_buf->use_skb) { dma_unmap_single(lan966x->dev, dcb_buf->dma_addr, dcb_buf->len, DMA_TO_DEVICE); if (!dcb_buf->ptp) napi_consume_skb(dcb_buf->data.skb, weight); } else { if (dcb_buf->xdp_ndo) dma_unmap_single(lan966x->dev, dcb_buf->dma_addr, dcb_buf->len, DMA_TO_DEVICE); if (dcb_buf->xdp_ndo) xdp_return_frame_bulk(dcb_buf->data.xdpf, &bq); else xdp_return_frame_rx_napi(dcb_buf->data.xdpf); } clear = true; } xdp_flush_frame_bulk(&bq); if (clear) lan966x_fdma_wakeup_netdev(lan966x); spin_unlock_irqrestore(&lan966x->tx_lock, flags); } static bool lan966x_fdma_rx_more_frames(struct lan966x_rx *rx) { struct lan966x_db *db; /* Check if there is any data */ db = &rx->dcbs[rx->dcb_index].db[rx->db_index]; if (unlikely(!(db->status & FDMA_DCB_STATUS_DONE))) return false; return true; } static int lan966x_fdma_rx_check_frame(struct lan966x_rx *rx, u64 *src_port) { struct lan966x *lan966x = rx->lan966x; struct lan966x_port *port; struct lan966x_db *db; struct page *page; db = &rx->dcbs[rx->dcb_index].db[rx->db_index]; page = rx->page[rx->dcb_index][rx->db_index]; if (unlikely(!page)) return FDMA_ERROR; dma_sync_single_for_cpu(lan966x->dev, (dma_addr_t)db->dataptr + XDP_PACKET_HEADROOM, FDMA_DCB_STATUS_BLOCKL(db->status), DMA_FROM_DEVICE); lan966x_ifh_get_src_port(page_address(page) + XDP_PACKET_HEADROOM, src_port); if (WARN_ON(*src_port >= lan966x->num_phys_ports)) return FDMA_ERROR; port = lan966x->ports[*src_port]; if (!lan966x_xdp_port_present(port)) return FDMA_PASS; return lan966x_xdp_run(port, page, FDMA_DCB_STATUS_BLOCKL(db->status)); } static struct sk_buff *lan966x_fdma_rx_get_frame(struct lan966x_rx *rx, u64 src_port) { struct lan966x *lan966x = rx->lan966x; struct lan966x_db *db; struct sk_buff *skb; struct page *page; u64 timestamp; /* Get the received frame and unmap it */ db = &rx->dcbs[rx->dcb_index].db[rx->db_index]; page = rx->page[rx->dcb_index][rx->db_index]; skb = build_skb(page_address(page), PAGE_SIZE << rx->page_order); if (unlikely(!skb)) goto free_page; skb_mark_for_recycle(skb); skb_reserve(skb, XDP_PACKET_HEADROOM); skb_put(skb, FDMA_DCB_STATUS_BLOCKL(db->status)); lan966x_ifh_get_timestamp(skb->data, ×tamp); skb->dev = lan966x->ports[src_port]->dev; skb_pull(skb, IFH_LEN_BYTES); if (likely(!(skb->dev->features & NETIF_F_RXFCS))) skb_trim(skb, skb->len - ETH_FCS_LEN); lan966x_ptp_rxtstamp(lan966x, skb, timestamp); skb->protocol = eth_type_trans(skb, skb->dev); if (lan966x->bridge_mask & BIT(src_port)) { skb->offload_fwd_mark = 1; skb_reset_network_header(skb); if (!lan966x_hw_offload(lan966x, src_port, skb)) skb->offload_fwd_mark = 0; } skb->dev->stats.rx_bytes += skb->len; skb->dev->stats.rx_packets++; return skb; free_page: page_pool_recycle_direct(rx->page_pool, page); return NULL; } static int lan966x_fdma_napi_poll(struct napi_struct *napi, int weight) { struct lan966x *lan966x = container_of(napi, struct lan966x, napi); struct lan966x_rx *rx = &lan966x->rx; int dcb_reload = rx->dcb_index; struct lan966x_rx_dcb *old_dcb; struct lan966x_db *db; bool redirect = false; struct sk_buff *skb; struct page *page; int counter = 0; u64 src_port; u64 nextptr; lan966x_fdma_tx_clear_buf(lan966x, weight); /* Get all received skb */ while (counter < weight) { if (!lan966x_fdma_rx_more_frames(rx)) break; counter++; switch (lan966x_fdma_rx_check_frame(rx, &src_port)) { case FDMA_PASS: break; case FDMA_ERROR: lan966x_fdma_rx_free_page(rx); lan966x_fdma_rx_advance_dcb(rx); goto allocate_new; case FDMA_REDIRECT: redirect = true; fallthrough; case FDMA_TX: lan966x_fdma_rx_advance_dcb(rx); continue; case FDMA_DROP: lan966x_fdma_rx_free_page(rx); lan966x_fdma_rx_advance_dcb(rx); continue; } skb = lan966x_fdma_rx_get_frame(rx, src_port); lan966x_fdma_rx_advance_dcb(rx); if (!skb) goto allocate_new; napi_gro_receive(&lan966x->napi, skb); } allocate_new: /* Allocate new pages and map them */ while (dcb_reload != rx->dcb_index) { db = &rx->dcbs[dcb_reload].db[rx->db_index]; page = lan966x_fdma_rx_alloc_page(rx, db); if (unlikely(!page)) break; rx->page[dcb_reload][rx->db_index] = page; old_dcb = &rx->dcbs[dcb_reload]; dcb_reload++; dcb_reload &= FDMA_DCB_MAX - 1; nextptr = rx->dma + ((unsigned long)old_dcb - (unsigned long)rx->dcbs); lan966x_fdma_rx_add_dcb(rx, old_dcb, nextptr); lan966x_fdma_rx_reload(rx); } if (redirect) xdp_do_flush(); if (counter < weight && napi_complete_done(napi, counter)) lan_wr(0xff, lan966x, FDMA_INTR_DB_ENA); return counter; } irqreturn_t lan966x_fdma_irq_handler(int irq, void *args) { struct lan966x *lan966x = args; u32 db, err, err_type; db = lan_rd(lan966x, FDMA_INTR_DB); err = lan_rd(lan966x, FDMA_INTR_ERR); if (db) { lan_wr(0, lan966x, FDMA_INTR_DB_ENA); lan_wr(db, lan966x, FDMA_INTR_DB); napi_schedule(&lan966x->napi); } if (err) { err_type = lan_rd(lan966x, FDMA_ERRORS); WARN(1, "Unexpected error: %d, error_type: %d\n", err, err_type); lan_wr(err, lan966x, FDMA_INTR_ERR); lan_wr(err_type, lan966x, FDMA_ERRORS); } return IRQ_HANDLED; } static int lan966x_fdma_get_next_dcb(struct lan966x_tx *tx) { struct lan966x_tx_dcb_buf *dcb_buf; int i; for (i = 0; i < FDMA_DCB_MAX; ++i) { dcb_buf = &tx->dcbs_buf[i]; if (!dcb_buf->used && i != tx->last_in_use) return i; } return -1; } static void lan966x_fdma_tx_setup_dcb(struct lan966x_tx *tx, int next_to_use, int len, dma_addr_t dma_addr) { struct lan966x_tx_dcb *next_dcb; struct lan966x_db *next_db; next_dcb = &tx->dcbs[next_to_use]; next_dcb->nextptr = FDMA_DCB_INVALID_DATA; next_db = &next_dcb->db[0]; next_db->dataptr = dma_addr; next_db->status = FDMA_DCB_STATUS_SOF | FDMA_DCB_STATUS_EOF | FDMA_DCB_STATUS_INTR | FDMA_DCB_STATUS_BLOCKO(0) | FDMA_DCB_STATUS_BLOCKL(len); } static void lan966x_fdma_tx_start(struct lan966x_tx *tx, int next_to_use) { struct lan966x *lan966x = tx->lan966x; struct lan966x_tx_dcb *dcb; if (likely(lan966x->tx.activated)) { /* Connect current dcb to the next db */ dcb = &tx->dcbs[tx->last_in_use]; dcb->nextptr = tx->dma + (next_to_use * sizeof(struct lan966x_tx_dcb)); lan966x_fdma_tx_reload(tx); } else { /* Because it is first time, then just activate */ lan966x->tx.activated = true; lan966x_fdma_tx_activate(tx); } /* Move to next dcb because this last in use */ tx->last_in_use = next_to_use; } int lan966x_fdma_xmit_xdpf(struct lan966x_port *port, struct xdp_frame *xdpf, struct page *page, bool dma_map) { struct lan966x *lan966x = port->lan966x; struct lan966x_tx_dcb_buf *next_dcb_buf; struct lan966x_tx *tx = &lan966x->tx; dma_addr_t dma_addr; int next_to_use; __be32 *ifh; int ret = 0; spin_lock(&lan966x->tx_lock); /* Get next index */ next_to_use = lan966x_fdma_get_next_dcb(tx); if (next_to_use < 0) { netif_stop_queue(port->dev); ret = NETDEV_TX_BUSY; goto out; } /* Generate new IFH */ if (dma_map) { if (xdpf->headroom < IFH_LEN_BYTES) { ret = NETDEV_TX_OK; goto out; } ifh = xdpf->data - IFH_LEN_BYTES; memset(ifh, 0x0, sizeof(__be32) * IFH_LEN); lan966x_ifh_set_bypass(ifh, 1); lan966x_ifh_set_port(ifh, BIT_ULL(port->chip_port)); dma_addr = dma_map_single(lan966x->dev, xdpf->data - IFH_LEN_BYTES, xdpf->len + IFH_LEN_BYTES, DMA_TO_DEVICE); if (dma_mapping_error(lan966x->dev, dma_addr)) { ret = NETDEV_TX_OK; goto out; } /* Setup next dcb */ lan966x_fdma_tx_setup_dcb(tx, next_to_use, xdpf->len + IFH_LEN_BYTES, dma_addr); } else { ifh = page_address(page) + XDP_PACKET_HEADROOM; memset(ifh, 0x0, sizeof(__be32) * IFH_LEN); lan966x_ifh_set_bypass(ifh, 1); lan966x_ifh_set_port(ifh, BIT_ULL(port->chip_port)); dma_addr = page_pool_get_dma_addr(page); dma_sync_single_for_device(lan966x->dev, dma_addr + XDP_PACKET_HEADROOM, xdpf->len + IFH_LEN_BYTES, DMA_TO_DEVICE); /* Setup next dcb */ lan966x_fdma_tx_setup_dcb(tx, next_to_use, xdpf->len + IFH_LEN_BYTES, dma_addr + XDP_PACKET_HEADROOM); } /* Fill up the buffer */ next_dcb_buf = &tx->dcbs_buf[next_to_use]; next_dcb_buf->use_skb = false; next_dcb_buf->data.xdpf = xdpf; next_dcb_buf->xdp_ndo = dma_map; next_dcb_buf->len = xdpf->len + IFH_LEN_BYTES; next_dcb_buf->dma_addr = dma_addr; next_dcb_buf->used = true; next_dcb_buf->ptp = false; next_dcb_buf->dev = port->dev; /* Start the transmission */ lan966x_fdma_tx_start(tx, next_to_use); out: spin_unlock(&lan966x->tx_lock); return ret; } int lan966x_fdma_xmit(struct sk_buff *skb, __be32 *ifh, struct net_device *dev) { struct lan966x_port *port = netdev_priv(dev); struct lan966x *lan966x = port->lan966x; struct lan966x_tx_dcb_buf *next_dcb_buf; struct lan966x_tx *tx = &lan966x->tx; int needed_headroom; int needed_tailroom; dma_addr_t dma_addr; int next_to_use; int err; /* Get next index */ next_to_use = lan966x_fdma_get_next_dcb(tx); if (next_to_use < 0) { netif_stop_queue(dev); return NETDEV_TX_BUSY; } if (skb_put_padto(skb, ETH_ZLEN)) { dev->stats.tx_dropped++; return NETDEV_TX_OK; } /* skb processing */ needed_headroom = max_t(int, IFH_LEN_BYTES - skb_headroom(skb), 0); needed_tailroom = max_t(int, ETH_FCS_LEN - skb_tailroom(skb), 0); if (needed_headroom || needed_tailroom || skb_header_cloned(skb)) { err = pskb_expand_head(skb, needed_headroom, needed_tailroom, GFP_ATOMIC); if (unlikely(err)) { dev->stats.tx_dropped++; err = NETDEV_TX_OK; goto release; } } skb_tx_timestamp(skb); skb_push(skb, IFH_LEN_BYTES); memcpy(skb->data, ifh, IFH_LEN_BYTES); skb_put(skb, 4); dma_addr = dma_map_single(lan966x->dev, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(lan966x->dev, dma_addr)) { dev->stats.tx_dropped++; err = NETDEV_TX_OK; goto release; } /* Setup next dcb */ lan966x_fdma_tx_setup_dcb(tx, next_to_use, skb->len, dma_addr); /* Fill up the buffer */ next_dcb_buf = &tx->dcbs_buf[next_to_use]; next_dcb_buf->use_skb = true; next_dcb_buf->data.skb = skb; next_dcb_buf->xdp_ndo = false; next_dcb_buf->len = skb->len; next_dcb_buf->dma_addr = dma_addr; next_dcb_buf->used = true; next_dcb_buf->ptp = false; next_dcb_buf->dev = dev; if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && LAN966X_SKB_CB(skb)->rew_op == IFH_REW_OP_TWO_STEP_PTP) next_dcb_buf->ptp = true; /* Start the transmission */ lan966x_fdma_tx_start(tx, next_to_use); return NETDEV_TX_OK; release: if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && LAN966X_SKB_CB(skb)->rew_op == IFH_REW_OP_TWO_STEP_PTP) lan966x_ptp_txtstamp_release(port, skb); dev_kfree_skb_any(skb); return err; } static int lan966x_fdma_get_max_mtu(struct lan966x *lan966x) { int max_mtu = 0; int i; for (i = 0; i < lan966x->num_phys_ports; ++i) { struct lan966x_port *port; int mtu; port = lan966x->ports[i]; if (!port) continue; mtu = lan_rd(lan966x, DEV_MAC_MAXLEN_CFG(port->chip_port)); if (mtu > max_mtu) max_mtu = mtu; } return max_mtu; } static int lan966x_qsys_sw_status(struct lan966x *lan966x) { return lan_rd(lan966x, QSYS_SW_STATUS(CPU_PORT)); } static int lan966x_fdma_reload(struct lan966x *lan966x, int new_mtu) { struct page_pool *page_pool; dma_addr_t rx_dma; void *rx_dcbs; u32 size; int err; /* Store these for later to free them */ rx_dma = lan966x->rx.dma; rx_dcbs = lan966x->rx.dcbs; page_pool = lan966x->rx.page_pool; napi_synchronize(&lan966x->napi); napi_disable(&lan966x->napi); lan966x_fdma_stop_netdev(lan966x); lan966x_fdma_rx_disable(&lan966x->rx); lan966x_fdma_rx_free_pages(&lan966x->rx); lan966x->rx.page_order = round_up(new_mtu, PAGE_SIZE) / PAGE_SIZE - 1; lan966x->rx.max_mtu = new_mtu; err = lan966x_fdma_rx_alloc(&lan966x->rx); if (err) goto restore; lan966x_fdma_rx_start(&lan966x->rx); size = sizeof(struct lan966x_rx_dcb) * FDMA_DCB_MAX; size = ALIGN(size, PAGE_SIZE); dma_free_coherent(lan966x->dev, size, rx_dcbs, rx_dma); page_pool_destroy(page_pool); lan966x_fdma_wakeup_netdev(lan966x); napi_enable(&lan966x->napi); return err; restore: lan966x->rx.page_pool = page_pool; lan966x->rx.dma = rx_dma; lan966x->rx.dcbs = rx_dcbs; lan966x_fdma_rx_start(&lan966x->rx); return err; } static int lan966x_fdma_get_max_frame(struct lan966x *lan966x) { return lan966x_fdma_get_max_mtu(lan966x) + IFH_LEN_BYTES + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + VLAN_HLEN * 2 + XDP_PACKET_HEADROOM; } static int __lan966x_fdma_reload(struct lan966x *lan966x, int max_mtu) { int err; u32 val; /* Disable the CPU port */ lan_rmw(QSYS_SW_PORT_MODE_PORT_ENA_SET(0), QSYS_SW_PORT_MODE_PORT_ENA, lan966x, QSYS_SW_PORT_MODE(CPU_PORT)); /* Flush the CPU queues */ readx_poll_timeout(lan966x_qsys_sw_status, lan966x, val, !(QSYS_SW_STATUS_EQ_AVAIL_GET(val)), READL_SLEEP_US, READL_TIMEOUT_US); /* Add a sleep in case there are frames between the queues and the CPU * port */ usleep_range(1000, 2000); err = lan966x_fdma_reload(lan966x, max_mtu); /* Enable back the CPU port */ lan_rmw(QSYS_SW_PORT_MODE_PORT_ENA_SET(1), QSYS_SW_PORT_MODE_PORT_ENA, lan966x, QSYS_SW_PORT_MODE(CPU_PORT)); return err; } int lan966x_fdma_change_mtu(struct lan966x *lan966x) { int max_mtu; max_mtu = lan966x_fdma_get_max_frame(lan966x); if (max_mtu == lan966x->rx.max_mtu) return 0; return __lan966x_fdma_reload(lan966x, max_mtu); } int lan966x_fdma_reload_page_pool(struct lan966x *lan966x) { int max_mtu; max_mtu = lan966x_fdma_get_max_frame(lan966x); return __lan966x_fdma_reload(lan966x, max_mtu); } void lan966x_fdma_netdev_init(struct lan966x *lan966x, struct net_device *dev) { if (lan966x->fdma_ndev) return; lan966x->fdma_ndev = dev; netif_napi_add(dev, &lan966x->napi, lan966x_fdma_napi_poll); napi_enable(&lan966x->napi); } void lan966x_fdma_netdev_deinit(struct lan966x *lan966x, struct net_device *dev) { if (lan966x->fdma_ndev == dev) { netif_napi_del(&lan966x->napi); lan966x->fdma_ndev = NULL; } } int lan966x_fdma_init(struct lan966x *lan966x) { int err; if (!lan966x->fdma) return 0; lan966x->rx.lan966x = lan966x; lan966x->rx.channel_id = FDMA_XTR_CHANNEL; lan966x->rx.max_mtu = lan966x_fdma_get_max_frame(lan966x); lan966x->tx.lan966x = lan966x; lan966x->tx.channel_id = FDMA_INJ_CHANNEL; lan966x->tx.last_in_use = -1; err = lan966x_fdma_rx_alloc(&lan966x->rx); if (err) return err; err = lan966x_fdma_tx_alloc(&lan966x->tx); if (err) { lan966x_fdma_rx_free(&lan966x->rx); return err; } lan966x_fdma_rx_start(&lan966x->rx); return 0; } void lan966x_fdma_deinit(struct lan966x *lan966x) { if (!lan966x->fdma) return; lan966x_fdma_rx_disable(&lan966x->rx); lan966x_fdma_tx_disable(&lan966x->tx); napi_synchronize(&lan966x->napi); napi_disable(&lan966x->napi); lan966x_fdma_rx_free_pages(&lan966x->rx); lan966x_fdma_rx_free(&lan966x->rx); page_pool_destroy(lan966x->rx.page_pool); lan966x_fdma_tx_free(&lan966x->tx); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1