Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yuval Mintz | 20859 | 84.19% | 68 | 52.31% |
Manish Chopra | 1635 | 6.60% | 15 | 11.54% |
Shahed Shaikh | 974 | 3.93% | 2 | 1.54% |
Rahul Verma | 665 | 2.68% | 3 | 2.31% |
Omkar Kulkarni | 210 | 0.85% | 2 | 1.54% |
Sudarsana Reddy Kalluru | 157 | 0.63% | 7 | 5.38% |
Prabhakar Kushwaha | 66 | 0.27% | 2 | 1.54% |
Michal Kalderon | 62 | 0.25% | 4 | 3.08% |
Ram Amrani | 23 | 0.09% | 2 | 1.54% |
Tom Rix | 20 | 0.08% | 1 | 0.77% |
Tomer Tayar | 19 | 0.08% | 2 | 1.54% |
Ariel Elior | 16 | 0.06% | 3 | 2.31% |
Baoyou Xie | 13 | 0.05% | 1 | 0.77% |
Daniil Tatianin | 12 | 0.05% | 1 | 0.77% |
Alok Prasad | 8 | 0.03% | 1 | 0.77% |
Alexander Lobakin | 7 | 0.03% | 3 | 2.31% |
Denis Bolotin | 7 | 0.03% | 1 | 0.77% |
Bhupesh Sharma | 3 | 0.01% | 1 | 0.77% |
Dmitry Bogdanov | 3 | 0.01% | 1 | 0.77% |
Shyam Saini | 3 | 0.01% | 1 | 0.77% |
Yue haibing | 3 | 0.01% | 1 | 0.77% |
Miaohe Lin | 3 | 0.01% | 1 | 0.77% |
Colin Ian King | 2 | 0.01% | 2 | 1.54% |
Dai Shixin | 1 | 0.00% | 1 | 0.77% |
Shai Malin | 1 | 0.00% | 1 | 0.77% |
Joe Perches | 1 | 0.00% | 1 | 0.77% |
Gustavo A. R. Silva | 1 | 0.00% | 1 | 0.77% |
Andy Shevchenko | 1 | 0.00% | 1 | 0.77% |
Total | 24775 | 130 |
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) /* QLogic qed NIC Driver * Copyright (c) 2015-2017 QLogic Corporation * Copyright (c) 2019-2020 Marvell International Ltd. */ #include <linux/etherdevice.h> #include <linux/crc32.h> #include <linux/vmalloc.h> #include <linux/crash_dump.h> #include <linux/qed/qed_iov_if.h> #include "qed_cxt.h" #include "qed_hsi.h" #include "qed_iro_hsi.h" #include "qed_hw.h" #include "qed_init_ops.h" #include "qed_int.h" #include "qed_mcp.h" #include "qed_reg_addr.h" #include "qed_sp.h" #include "qed_sriov.h" #include "qed_vf.h" static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid); static u16 qed_vf_from_entity_id(__le16 entity_id) { return le16_to_cpu(entity_id) - MAX_NUM_PFS; } static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf) { u8 legacy = 0; if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == ETH_HSI_VER_NO_PKT_LEN_TUNN) legacy |= QED_QCID_LEGACY_VF_RX_PROD; if (!(p_vf->acquire.vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS)) legacy |= QED_QCID_LEGACY_VF_CID; return legacy; } /* IOV ramrods */ static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf) { struct vf_start_ramrod_data *p_ramrod = NULL; struct qed_spq_entry *p_ent = NULL; struct qed_sp_init_data init_data; int rc = -EINVAL; u8 fp_minor; /* Get SPQ entry */ memset(&init_data, 0, sizeof(init_data)); init_data.cid = qed_spq_get_cid(p_hwfn); init_data.opaque_fid = p_vf->opaque_fid; init_data.comp_mode = QED_SPQ_MODE_EBLOCK; rc = qed_sp_init_request(p_hwfn, &p_ent, COMMON_RAMROD_VF_START, PROTOCOLID_COMMON, &init_data); if (rc) return rc; p_ramrod = &p_ent->ramrod.vf_start; p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID); p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid); switch (p_hwfn->hw_info.personality) { case QED_PCI_ETH: p_ramrod->personality = PERSONALITY_ETH; break; case QED_PCI_ETH_ROCE: case QED_PCI_ETH_IWARP: p_ramrod->personality = PERSONALITY_RDMA_AND_ETH; break; default: DP_NOTICE(p_hwfn, "Unknown VF personality %d\n", p_hwfn->hw_info.personality); qed_sp_destroy_request(p_hwfn, p_ent); return -EINVAL; } fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor; if (fp_minor > ETH_HSI_VER_MINOR && fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n", p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); fp_minor = ETH_HSI_VER_MINOR; } p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR; p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor; DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d] - Starting using HSI %02x.%02x\n", p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor); return qed_spq_post(p_hwfn, p_ent, NULL); } static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn, u32 concrete_vfid, u16 opaque_vfid) { struct vf_stop_ramrod_data *p_ramrod = NULL; struct qed_spq_entry *p_ent = NULL; struct qed_sp_init_data init_data; int rc = -EINVAL; /* Get SPQ entry */ memset(&init_data, 0, sizeof(init_data)); init_data.cid = qed_spq_get_cid(p_hwfn); init_data.opaque_fid = opaque_vfid; init_data.comp_mode = QED_SPQ_MODE_EBLOCK; rc = qed_sp_init_request(p_hwfn, &p_ent, COMMON_RAMROD_VF_STOP, PROTOCOLID_COMMON, &init_data); if (rc) return rc; p_ramrod = &p_ent->ramrod.vf_stop; p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID); return qed_spq_post(p_hwfn, p_ent, NULL); } bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn, int rel_vf_id, bool b_enabled_only, bool b_non_malicious) { if (!p_hwfn->pf_iov_info) { DP_NOTICE(p_hwfn->cdev, "No iov info\n"); return false; } if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) || (rel_vf_id < 0)) return false; if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) && b_enabled_only) return false; if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) && b_non_malicious) return false; return true; } static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn, u16 relative_vf_id, bool b_enabled_only) { struct qed_vf_info *vf = NULL; if (!p_hwfn->pf_iov_info) { DP_NOTICE(p_hwfn->cdev, "No iov info\n"); return NULL; } if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id, b_enabled_only, false)) vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id]; else DP_ERR(p_hwfn, "%s: VF[%d] is not enabled\n", __func__, relative_vf_id); return vf; } static struct qed_queue_cid * qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue) { int i; for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx) return p_queue->cids[i].p_cid; } return NULL; } enum qed_iov_validate_q_mode { QED_IOV_VALIDATE_Q_NA, QED_IOV_VALIDATE_Q_ENABLE, QED_IOV_VALIDATE_Q_DISABLE, }; static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf, u16 qid, enum qed_iov_validate_q_mode mode, bool b_is_tx) { int i; if (mode == QED_IOV_VALIDATE_Q_NA) return true; for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { struct qed_vf_queue_cid *p_qcid; p_qcid = &p_vf->vf_queues[qid].cids[i]; if (!p_qcid->p_cid) continue; if (p_qcid->b_is_tx != b_is_tx) continue; return mode == QED_IOV_VALIDATE_Q_ENABLE; } /* In case we haven't found any valid cid, then its disabled */ return mode == QED_IOV_VALIDATE_Q_DISABLE; } static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf, u16 rx_qid, enum qed_iov_validate_q_mode mode) { if (rx_qid >= p_vf->num_rxqs) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n", p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs); return false; } return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false); } static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf, u16 tx_qid, enum qed_iov_validate_q_mode mode) { if (tx_qid >= p_vf->num_txqs) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n", p_vf->abs_vf_id, tx_qid, p_vf->num_txqs); return false; } return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true); } static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf, u16 sb_idx) { int i; for (i = 0; i < p_vf->num_sbs; i++) if (p_vf->igu_sbs[i] == sb_idx) return true; DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n", p_vf->abs_vf_id, sb_idx, p_vf->num_sbs); return false; } static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf) { u8 i; for (i = 0; i < p_vf->num_rxqs; i++) if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, QED_IOV_VALIDATE_Q_ENABLE, false)) return true; return false; } static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf) { u8 i; for (i = 0; i < p_vf->num_txqs; i++) if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, QED_IOV_VALIDATE_Q_ENABLE, true)) return true; return false; } static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn, int vfid, struct qed_ptt *p_ptt) { struct qed_bulletin_content *p_bulletin; int crc_size = sizeof(p_bulletin->crc); struct qed_dmae_params params; struct qed_vf_info *p_vf; p_vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); if (!p_vf) return -EINVAL; if (!p_vf->vf_bulletin) return -EINVAL; p_bulletin = p_vf->bulletin.p_virt; /* Increment bulletin board version and compute crc */ p_bulletin->version++; p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size, p_vf->bulletin.size - crc_size); DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n", p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc); /* propagate bulletin board via dmae to vm memory */ memset(¶ms, 0, sizeof(params)); SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_VF_VALID, 0x1); params.dst_vfid = p_vf->abs_vf_id; return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys, p_vf->vf_bulletin, p_vf->bulletin.size / 4, ¶ms); } static int qed_iov_pci_cfg_info(struct qed_dev *cdev) { struct qed_hw_sriov_info *iov = cdev->p_iov_info; int pos = iov->pos; DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos); pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl); pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs); pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs); pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs); if (iov->num_vfs) { DP_VERBOSE(cdev, QED_MSG_IOV, "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n"); iov->num_vfs = 0; } pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset); pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride); pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_VF_DID, &iov->vf_device_id); pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap); pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); DP_VERBOSE(cdev, QED_MSG_IOV, "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", iov->nres, iov->cap, iov->ctrl, iov->total_vfs, iov->initial_vfs, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); /* Some sanity checks */ if (iov->num_vfs > NUM_OF_VFS(cdev) || iov->total_vfs > NUM_OF_VFS(cdev)) { /* This can happen only due to a bug. In this case we set * num_vfs to zero to avoid memory corruption in the code that * assumes max number of vfs */ DP_NOTICE(cdev, "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n", iov->num_vfs); iov->num_vfs = 0; iov->total_vfs = 0; } return 0; } static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn) { struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; struct qed_bulletin_content *p_bulletin_virt; dma_addr_t req_p, rply_p, bulletin_p; union pfvf_tlvs *p_reply_virt_addr; union vfpf_tlvs *p_req_virt_addr; u8 idx = 0; memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array)); p_req_virt_addr = p_iov_info->mbx_msg_virt_addr; req_p = p_iov_info->mbx_msg_phys_addr; p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr; rply_p = p_iov_info->mbx_reply_phys_addr; p_bulletin_virt = p_iov_info->p_bulletins; bulletin_p = p_iov_info->bulletins_phys; if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) { DP_ERR(p_hwfn, "%s called without allocating mem first\n", __func__); return; } for (idx = 0; idx < p_iov->total_vfs; idx++) { struct qed_vf_info *vf = &p_iov_info->vfs_array[idx]; u32 concrete; vf->vf_mbx.req_virt = p_req_virt_addr + idx; vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs); vf->vf_mbx.reply_virt = p_reply_virt_addr + idx; vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs); vf->state = VF_STOPPED; vf->b_init = false; vf->bulletin.phys = idx * sizeof(struct qed_bulletin_content) + bulletin_p; vf->bulletin.p_virt = p_bulletin_virt + idx; vf->bulletin.size = sizeof(struct qed_bulletin_content); vf->relative_vf_id = idx; vf->abs_vf_id = idx + p_iov->first_vf_in_pf; concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id); vf->concrete_fid = concrete; vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) | (vf->abs_vf_id << 8); vf->vport_id = idx + 1; vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS; vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS; } } static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn) { struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; void **p_v_addr; u16 num_vfs = 0; num_vfs = p_hwfn->cdev->p_iov_info->total_vfs; DP_VERBOSE(p_hwfn, QED_MSG_IOV, "%s for %d VFs\n", __func__, num_vfs); /* Allocate PF Mailbox buffer (per-VF) */ p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs; p_v_addr = &p_iov_info->mbx_msg_virt_addr; *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, p_iov_info->mbx_msg_size, &p_iov_info->mbx_msg_phys_addr, GFP_KERNEL); if (!*p_v_addr) return -ENOMEM; /* Allocate PF Mailbox Reply buffer (per-VF) */ p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs; p_v_addr = &p_iov_info->mbx_reply_virt_addr; *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, p_iov_info->mbx_reply_size, &p_iov_info->mbx_reply_phys_addr, GFP_KERNEL); if (!*p_v_addr) return -ENOMEM; p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) * num_vfs; p_v_addr = &p_iov_info->p_bulletins; *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, p_iov_info->bulletins_size, &p_iov_info->bulletins_phys, GFP_KERNEL); if (!*p_v_addr) return -ENOMEM; DP_VERBOSE(p_hwfn, QED_MSG_IOV, "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n", p_iov_info->mbx_msg_virt_addr, (u64)p_iov_info->mbx_msg_phys_addr, p_iov_info->mbx_reply_virt_addr, (u64)p_iov_info->mbx_reply_phys_addr, p_iov_info->p_bulletins, (u64)p_iov_info->bulletins_phys); return 0; } static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn) { struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; if (p_hwfn->pf_iov_info->mbx_msg_virt_addr) dma_free_coherent(&p_hwfn->cdev->pdev->dev, p_iov_info->mbx_msg_size, p_iov_info->mbx_msg_virt_addr, p_iov_info->mbx_msg_phys_addr); if (p_hwfn->pf_iov_info->mbx_reply_virt_addr) dma_free_coherent(&p_hwfn->cdev->pdev->dev, p_iov_info->mbx_reply_size, p_iov_info->mbx_reply_virt_addr, p_iov_info->mbx_reply_phys_addr); if (p_iov_info->p_bulletins) dma_free_coherent(&p_hwfn->cdev->pdev->dev, p_iov_info->bulletins_size, p_iov_info->p_bulletins, p_iov_info->bulletins_phys); } int qed_iov_alloc(struct qed_hwfn *p_hwfn) { struct qed_pf_iov *p_sriov; if (!IS_PF_SRIOV(p_hwfn)) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No SR-IOV - no need for IOV db\n"); return 0; } p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL); if (!p_sriov) return -ENOMEM; p_hwfn->pf_iov_info = p_sriov; qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON, qed_sriov_eqe_event); return qed_iov_allocate_vfdb(p_hwfn); } void qed_iov_setup(struct qed_hwfn *p_hwfn) { if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn)) return; qed_iov_setup_vfdb(p_hwfn); } void qed_iov_free(struct qed_hwfn *p_hwfn) { qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON); if (IS_PF_SRIOV_ALLOC(p_hwfn)) { qed_iov_free_vfdb(p_hwfn); kfree(p_hwfn->pf_iov_info); } } void qed_iov_free_hw_info(struct qed_dev *cdev) { kfree(cdev->p_iov_info); cdev->p_iov_info = NULL; } int qed_iov_hw_info(struct qed_hwfn *p_hwfn) { struct qed_dev *cdev = p_hwfn->cdev; int pos; int rc; if (is_kdump_kernel()) return 0; if (IS_VF(p_hwfn->cdev)) return 0; /* Learn the PCI configuration */ pos = pci_find_ext_capability(p_hwfn->cdev->pdev, PCI_EXT_CAP_ID_SRIOV); if (!pos) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n"); return 0; } /* Allocate a new struct for IOV information */ cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL); if (!cdev->p_iov_info) return -ENOMEM; cdev->p_iov_info->pos = pos; rc = qed_iov_pci_cfg_info(cdev); if (rc) return rc; /* We want PF IOV to be synonemous with the existence of p_iov_info; * In case the capability is published but there are no VFs, simply * de-allocate the struct. */ if (!cdev->p_iov_info->total_vfs) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "IOV capabilities, but no VFs are published\n"); kfree(cdev->p_iov_info); cdev->p_iov_info = NULL; return 0; } /* First VF index based on offset is tricky: * - If ARI is supported [likely], offset - (16 - pf_id) would * provide the number for eng0. 2nd engine Vfs would begin * after the first engine's VFs. * - If !ARI, VFs would start on next device. * so offset - (256 - pf_id) would provide the number. * Utilize the fact that (256 - pf_id) is achieved only by later * to differentiate between the two. */ if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) { u32 first = p_hwfn->cdev->p_iov_info->offset + p_hwfn->abs_pf_id - 16; cdev->p_iov_info->first_vf_in_pf = first; if (QED_PATH_ID(p_hwfn)) cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB; } else { u32 first = p_hwfn->cdev->p_iov_info->offset + p_hwfn->abs_pf_id - 256; cdev->p_iov_info->first_vf_in_pf = first; } DP_VERBOSE(p_hwfn, QED_MSG_IOV, "First VF in hwfn 0x%08x\n", cdev->p_iov_info->first_vf_in_pf); return 0; } static bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid, bool b_fail_malicious) { /* Check PF supports sriov */ if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) || !IS_PF_SRIOV_ALLOC(p_hwfn)) return false; /* Check VF validity */ if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious)) return false; return true; } static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid) { return _qed_iov_pf_sanity_check(p_hwfn, vfid, true); } static void qed_iov_set_vf_to_disable(struct qed_dev *cdev, u16 rel_vf_id, u8 to_disable) { struct qed_vf_info *vf; int i; for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); if (!vf) continue; vf->to_disable = to_disable; } } static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable) { u16 i; if (!IS_QED_SRIOV(cdev)) return; for (i = 0; i < cdev->p_iov_info->total_vfs; i++) qed_iov_set_vf_to_disable(cdev, i, to_disable); } static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u8 abs_vfid) { qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4, 1 << (abs_vfid & 0x1f)); } static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { int i; /* Set VF masks and configuration - pretend */ qed_fid_pretend(p_hwfn, p_ptt, (u16)vf->concrete_fid); qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0); /* unpretend */ qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid); /* iterate over all queues, clear sb consumer */ for (i = 0; i < vf->num_sbs; i++) qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, vf->igu_sbs[i], vf->opaque_fid, true); } static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf, bool enable) { u32 igu_vf_conf; qed_fid_pretend(p_hwfn, p_ptt, (u16)vf->concrete_fid); igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION); if (enable) igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN; else igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN; qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf); /* unpretend */ qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid); } static int qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs) { u8 current_max = 0; int i; /* For AH onward, configuration is per-PF. Find maximum of all * the currently enabled child VFs, and set the number to be that. */ if (!QED_IS_BB(p_hwfn->cdev)) { qed_for_each_vf(p_hwfn, i) { struct qed_vf_info *p_vf; p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true); if (!p_vf) continue; current_max = max_t(u8, current_max, p_vf->num_sbs); } } if (num_sbs > current_max) return qed_mcp_config_vf_msix(p_hwfn, p_ptt, abs_vf_id, num_sbs); return 0; } static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN; int rc; /* It's possible VF was previously considered malicious - * clear the indication even if we're only going to disable VF. */ vf->b_malicious = false; if (vf->to_disable) return 0; DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Enable internal access for vf %x [abs %x]\n", vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf)); qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf)); qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt, vf->abs_vf_id, vf->num_sbs); if (rc) return rc; qed_fid_pretend(p_hwfn, p_ptt, (u16)vf->concrete_fid); SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id); STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf); qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id, p_hwfn->hw_info.hw_mode); /* unpretend */ qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid); vf->state = VF_FREE; return rc; } /** * qed_iov_config_perm_table() - Configure the permission zone table. * * @p_hwfn: HW device data. * @p_ptt: PTT window for writing the registers. * @vf: VF info data. * @enable: The actual permission for this VF. * * In E4, queue zone permission table size is 320x9. There * are 320 VF queues for single engine device (256 for dual * engine device), and each entry has the following format: * {Valid, VF[7:0]} */ static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf, u8 enable) { u32 reg_addr, val; u16 qzone_id = 0; int qid; for (qid = 0; qid < vf->num_rxqs; qid++) { qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid, &qzone_id); reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4; val = enable ? (vf->abs_vf_id | BIT(8)) : 0; qed_wr(p_hwfn, p_ptt, reg_addr, val); } } static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { /* Reset vf in IGU - interrupts are still disabled */ qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1); /* Permission Table */ qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true); } static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf, u16 num_rx_queues) { struct qed_igu_block *p_block; struct cau_sb_entry sb_entry; int qid = 0; u32 val = 0; if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov) num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov; p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues; SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id); SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1); SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0); for (qid = 0; qid < num_rx_queues; qid++) { p_block = qed_get_igu_free_sb(p_hwfn, false); vf->igu_sbs[qid] = p_block->igu_sb_id; p_block->status &= ~QED_IGU_STATUS_FREE; SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid); qed_wr(p_hwfn, p_ptt, IGU_REG_MAPPING_MEMORY + sizeof(u32) * p_block->igu_sb_id, val); /* Configure igu sb in CAU which were marked valid */ qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id, vf->abs_vf_id, 1); qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry, CAU_REG_SB_VAR_MEMORY + p_block->igu_sb_id * sizeof(u64), 2, NULL); } vf->num_sbs = (u8)num_rx_queues; return vf->num_sbs; } static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; int idx, igu_id; u32 addr, val; /* Invalidate igu CAM lines and mark them as free */ for (idx = 0; idx < vf->num_sbs; idx++) { igu_id = vf->igu_sbs[idx]; addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id; val = qed_rd(p_hwfn, p_ptt, addr); SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); qed_wr(p_hwfn, p_ptt, addr, val); p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE; p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++; } vf->num_sbs = 0; } static void qed_iov_set_link(struct qed_hwfn *p_hwfn, u16 vfid, struct qed_mcp_link_params *params, struct qed_mcp_link_state *link, struct qed_mcp_link_capabilities *p_caps) { struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, vfid, false); struct qed_bulletin_content *p_bulletin; if (!p_vf) return; p_bulletin = p_vf->bulletin.p_virt; p_bulletin->req_autoneg = params->speed.autoneg; p_bulletin->req_adv_speed = params->speed.advertised_speeds; p_bulletin->req_forced_speed = params->speed.forced_speed; p_bulletin->req_autoneg_pause = params->pause.autoneg; p_bulletin->req_forced_rx = params->pause.forced_rx; p_bulletin->req_forced_tx = params->pause.forced_tx; p_bulletin->req_loopback = params->loopback_mode; p_bulletin->link_up = link->link_up; p_bulletin->speed = link->speed; p_bulletin->full_duplex = link->full_duplex; p_bulletin->autoneg = link->an; p_bulletin->autoneg_complete = link->an_complete; p_bulletin->parallel_detection = link->parallel_detection; p_bulletin->pfc_enabled = link->pfc_enabled; p_bulletin->partner_adv_speed = link->partner_adv_speed; p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en; p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en; p_bulletin->partner_adv_pause = link->partner_adv_pause; p_bulletin->sfp_tx_fault = link->sfp_tx_fault; p_bulletin->capability_speed = p_caps->speed_capabilities; } static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_iov_vf_init_params *p_params) { struct qed_mcp_link_capabilities link_caps; struct qed_mcp_link_params link_params; struct qed_mcp_link_state link_state; u8 num_of_vf_avaiable_chains = 0; struct qed_vf_info *vf = NULL; u16 qid, num_irqs; int rc = 0; u32 cids; u8 i; vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false); if (!vf) { DP_ERR(p_hwfn, "%s : vf is NULL\n", __func__); return -EINVAL; } if (vf->b_init) { DP_NOTICE(p_hwfn, "VF[%d] is already active.\n", p_params->rel_vf_id); return -EINVAL; } /* Perform sanity checking on the requested queue_id */ for (i = 0; i < p_params->num_queues; i++) { u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE); u16 max_vf_qzone = min_vf_qzone + FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1; qid = p_params->req_rx_queue[i]; if (qid < min_vf_qzone || qid > max_vf_qzone) { DP_NOTICE(p_hwfn, "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n", qid, p_params->rel_vf_id, min_vf_qzone, max_vf_qzone); return -EINVAL; } qid = p_params->req_tx_queue[i]; if (qid > max_vf_qzone) { DP_NOTICE(p_hwfn, "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n", qid, p_params->rel_vf_id, max_vf_qzone); return -EINVAL; } /* If client *really* wants, Tx qid can be shared with PF */ if (qid < min_vf_qzone) DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n", p_params->rel_vf_id, qid, i); } /* Limit number of queues according to number of CIDs */ qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids); DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n", vf->relative_vf_id, p_params->num_queues, (u16)cids); num_irqs = min_t(u16, p_params->num_queues, ((u16)cids)); num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn, p_ptt, vf, num_irqs); if (!num_of_vf_avaiable_chains) { DP_ERR(p_hwfn, "no available igu sbs\n"); return -ENOMEM; } /* Choose queue number and index ranges */ vf->num_rxqs = num_of_vf_avaiable_chains; vf->num_txqs = num_of_vf_avaiable_chains; for (i = 0; i < vf->num_rxqs; i++) { struct qed_vf_queue *p_queue = &vf->vf_queues[i]; p_queue->fw_rx_qid = p_params->req_rx_queue[i]; p_queue->fw_tx_qid = p_params->req_tx_queue[i]; DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n", vf->relative_vf_id, i, vf->igu_sbs[i], p_queue->fw_rx_qid, p_queue->fw_tx_qid); } /* Update the link configuration in bulletin */ memcpy(&link_params, qed_mcp_get_link_params(p_hwfn), sizeof(link_params)); memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state)); memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(link_caps)); qed_iov_set_link(p_hwfn, p_params->rel_vf_id, &link_params, &link_state, &link_caps); rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf); if (!rc) { vf->b_init = true; if (IS_LEAD_HWFN(p_hwfn)) p_hwfn->cdev->p_iov_info->num_vfs++; } return rc; } static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 rel_vf_id) { struct qed_mcp_link_capabilities caps; struct qed_mcp_link_params params; struct qed_mcp_link_state link; struct qed_vf_info *vf = NULL; vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); if (!vf) { DP_ERR(p_hwfn, "%s : vf is NULL\n", __func__); return -EINVAL; } if (vf->bulletin.p_virt) memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt)); memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info)); /* Get the link configuration back in bulletin so * that when VFs are re-enabled they get the actual * link configuration. */ memcpy(¶ms, qed_mcp_get_link_params(p_hwfn), sizeof(params)); memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link)); memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps)); qed_iov_set_link(p_hwfn, rel_vf_id, ¶ms, &link, &caps); /* Forget the VF's acquisition message */ memset(&vf->acquire, 0, sizeof(vf->acquire)); /* disablng interrupts and resetting permission table was done during * vf-close, however, we could get here without going through vf_close */ /* Disable Interrupts for VF */ qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); /* Reset Permission table */ qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); vf->num_rxqs = 0; vf->num_txqs = 0; qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf); if (vf->b_init) { vf->b_init = false; if (IS_LEAD_HWFN(p_hwfn)) p_hwfn->cdev->p_iov_info->num_vfs--; } return 0; } static bool qed_iov_tlv_supported(u16 tlvtype) { return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX; } /* place a given tlv on the tlv buffer, continuing current tlv list */ void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length) { struct channel_tlv *tl = (struct channel_tlv *)*offset; tl->type = type; tl->length = length; /* Offset should keep pointing to next TLV (the end of the last) */ *offset += length; /* Return a pointer to the start of the added tlv */ return *offset - length; } /* list the types and lengths of the tlvs on the buffer */ void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list) { u16 i = 1, total_length = 0; struct channel_tlv *tlv; do { tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length); /* output tlv */ DP_VERBOSE(p_hwfn, QED_MSG_IOV, "TLV number %d: type %d, length %d\n", i, tlv->type, tlv->length); if (tlv->type == CHANNEL_TLV_LIST_END) return; /* Validate entry - protect against malicious VFs */ if (!tlv->length) { DP_NOTICE(p_hwfn, "TLV of length 0 found\n"); return; } total_length += tlv->length; if (total_length >= sizeof(struct tlv_buffer_size)) { DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n"); return; } i++; } while (1); } static void qed_iov_send_response(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *p_vf, u16 length, u8 status) { struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; struct qed_dmae_params params; u8 eng_vf_id; mbx->reply_virt->default_resp.hdr.status = status; qed_dp_tlv_list(p_hwfn, mbx->reply_virt); eng_vf_id = p_vf->abs_vf_id; memset(¶ms, 0, sizeof(params)); SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_VF_VALID, 0x1); params.dst_vfid = eng_vf_id; qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64), mbx->req_virt->first_tlv.reply_address + sizeof(u64), (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4, ¶ms); /* Once PF copies the rc to the VF, the latter can continue * and send an additional message. So we have to make sure the * channel would be re-set to ready prior to that. */ REG_WR(p_hwfn, GET_GTT_REG_ADDR(GTT_BAR0_MAP_REG_USDM_RAM, USTORM_VF_PF_CHANNEL_READY, eng_vf_id), 1); qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys, mbx->req_virt->first_tlv.reply_address, sizeof(u64) / 4, ¶ms); } static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn, enum qed_iov_vport_update_flag flag) { switch (flag) { case QED_IOV_VP_UPDATE_ACTIVATE: return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; case QED_IOV_VP_UPDATE_VLAN_STRIP: return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; case QED_IOV_VP_UPDATE_TX_SWITCH: return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; case QED_IOV_VP_UPDATE_MCAST: return CHANNEL_TLV_VPORT_UPDATE_MCAST; case QED_IOV_VP_UPDATE_ACCEPT_PARAM: return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; case QED_IOV_VP_UPDATE_RSS: return CHANNEL_TLV_VPORT_UPDATE_RSS; case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN: return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; case QED_IOV_VP_UPDATE_SGE_TPA: return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; default: return 0; } } static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf, struct qed_iov_vf_mbx *p_mbx, u8 status, u16 tlvs_mask, u16 tlvs_accepted) { struct pfvf_def_resp_tlv *resp; u16 size, total_len, i; memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs)); p_mbx->offset = (u8 *)p_mbx->reply_virt; size = sizeof(struct pfvf_def_resp_tlv); total_len = size; qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size); /* Prepare response for all extended tlvs if they are found by PF */ for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) { if (!(tlvs_mask & BIT(i))) continue; resp = qed_add_tlv(p_hwfn, &p_mbx->offset, qed_iov_vport_to_tlv(p_hwfn, i), size); if (tlvs_accepted & BIT(i)) resp->hdr.status = status; else resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED; DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d] - vport_update response: TLV %d, status %02x\n", p_vf->relative_vf_id, qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status); total_len += size; } qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END, sizeof(struct channel_list_end_tlv)); return total_len; } static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf_info, u16 type, u16 length, u8 status) { struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx; mbx->offset = (u8 *)mbx->reply_virt; qed_add_tlv(p_hwfn, &mbx->offset, type, length); qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, sizeof(struct channel_list_end_tlv)); qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status); } static struct qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn, u16 relative_vf_id, bool b_enabled_only) { struct qed_vf_info *vf = NULL; vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only); if (!vf) return NULL; return &vf->p_vf_info; } static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid) { struct qed_public_vf_info *vf_info; vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false); if (!vf_info) return; /* Clear the VF mac */ eth_zero_addr(vf_info->mac); vf_info->rx_accept_mode = 0; vf_info->tx_accept_mode = 0; } static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf) { u32 i, j; p_vf->vf_bulletin = 0; p_vf->vport_instance = 0; p_vf->configured_features = 0; /* If VF previously requested less resources, go back to default */ p_vf->num_rxqs = p_vf->num_sbs; p_vf->num_txqs = p_vf->num_sbs; p_vf->num_active_rxqs = 0; for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) { if (!p_queue->cids[j].p_cid) continue; qed_eth_queue_cid_release(p_hwfn, p_queue->cids[j].p_cid); p_queue->cids[j].p_cid = NULL; } } memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config)); memset(&p_vf->acquire, 0, sizeof(p_vf->acquire)); qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id); } /* Returns either 0, or log(size) */ static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE); if (val) return val + 11; return 0; } static void qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *p_vf, struct vf_pf_resc_request *p_req, struct pf_vf_resc *p_resp) { u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons; u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) - qed_db_addr_vf(0, DQ_DEMS_LEGACY); u32 bar_size; p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons); /* If VF didn't bother asking for QIDs than don't bother limiting * number of CIDs. The VF doesn't care about the number, and this * has the likely result of causing an additional acquisition. */ if (!(p_vf->acquire.vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS)) return; /* If doorbell bar was mapped by VF, limit the VF CIDs to an amount * that would make sure doorbells for all CIDs fall within the bar. * If it doesn't, make sure regview window is sufficient. */ if (p_vf->acquire.vfdev_info.capabilities & VFPF_ACQUIRE_CAP_PHYSICAL_BAR) { bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); if (bar_size) bar_size = 1 << bar_size; if (p_hwfn->cdev->num_hwfns > 1) bar_size /= 2; } else { bar_size = PXP_VF_BAR0_DQ_LENGTH; } if (bar_size / db_size < 256) p_resp->num_cids = min_t(u8, p_resp->num_cids, (u8)(bar_size / db_size)); } static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *p_vf, struct vf_pf_resc_request *p_req, struct pf_vf_resc *p_resp) { u8 i; /* Queue related information */ p_resp->num_rxqs = p_vf->num_rxqs; p_resp->num_txqs = p_vf->num_txqs; p_resp->num_sbs = p_vf->num_sbs; for (i = 0; i < p_resp->num_sbs; i++) { p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i]; p_resp->hw_sbs[i].sb_qid = 0; } /* These fields are filled for backward compatibility. * Unused by modern vfs. */ for (i = 0; i < p_resp->num_rxqs; i++) { qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid, (u16 *)&p_resp->hw_qid[i]); p_resp->cid[i] = i; } /* Filter related information */ p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters, p_req->num_mac_filters); p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters, p_req->num_vlan_filters); qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp); /* This isn't really needed/enforced, but some legacy VFs might depend * on the correct filling of this field. */ p_resp->num_mc_filters = QED_MAX_MC_ADDRS; /* Validate sufficient resources for VF */ if (p_resp->num_rxqs < p_req->num_rxqs || p_resp->num_txqs < p_req->num_txqs || p_resp->num_sbs < p_req->num_sbs || p_resp->num_mac_filters < p_req->num_mac_filters || p_resp->num_vlan_filters < p_req->num_vlan_filters || p_resp->num_mc_filters < p_req->num_mc_filters || p_resp->num_cids < p_req->num_cids) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n", p_vf->abs_vf_id, p_req->num_rxqs, p_resp->num_rxqs, p_req->num_rxqs, p_resp->num_txqs, p_req->num_sbs, p_resp->num_sbs, p_req->num_mac_filters, p_resp->num_mac_filters, p_req->num_vlan_filters, p_resp->num_vlan_filters, p_req->num_mc_filters, p_resp->num_mc_filters, p_req->num_cids, p_resp->num_cids); /* Some legacy OSes are incapable of correctly handling this * failure. */ if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor == ETH_HSI_VER_NO_PKT_LEN_TUNN) && (p_vf->acquire.vfdev_info.os_type == VFPF_ACQUIRE_OS_WINDOWS)) return PFVF_STATUS_SUCCESS; return PFVF_STATUS_NO_RESOURCE; } return PFVF_STATUS_SUCCESS; } static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn, struct pfvf_stats_info *p_stats) { p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B + offsetof(struct mstorm_vf_zone, non_trigger.eth_queue_stat); p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat); p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B + offsetof(struct ustorm_vf_zone, non_trigger.eth_queue_stat); p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat); p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B + offsetof(struct pstorm_vf_zone, non_trigger.eth_queue_stat); p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat); p_stats->tstats.address = 0; p_stats->tstats.len = 0; } static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp; struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info; struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire; u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED; struct pf_vf_resc *resc = &resp->resc; int rc; memset(resp, 0, sizeof(*resp)); /* Write the PF version so that VF would know which version * is supported - might be later overridden. This guarantees that * VF could recognize legacy PF based on lack of versions in reply. */ pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR; pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR; if (vf->state != VF_FREE && vf->state != VF_STOPPED) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d] sent ACQUIRE but is already in state %d - fail request\n", vf->abs_vf_id, vf->state); goto out; } /* Validate FW compatibility */ if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) { if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_PRE_FP_HSI) { struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info; DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d] is pre-fastpath HSI\n", vf->abs_vf_id); p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR; p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN; } else { DP_INFO(p_hwfn, "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's fastpath HSI %02x.%02x\n", vf->abs_vf_id, req->vfdev_info.eth_fp_hsi_major, req->vfdev_info.eth_fp_hsi_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); goto out; } } /* On 100g PFs, prevent old VFs from loading */ if ((p_hwfn->cdev->num_hwfns > 1) && !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) { DP_INFO(p_hwfn, "VF[%d] is running an old driver that doesn't support 100g\n", vf->abs_vf_id); goto out; } /* Store the acquire message */ memcpy(&vf->acquire, req, sizeof(vf->acquire)); vf->opaque_fid = req->vfdev_info.opaque_fid; vf->vf_bulletin = req->bulletin_addr; vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ? vf->bulletin.size : req->bulletin_size; /* fill in pfdev info */ pfdev_info->chip_num = p_hwfn->cdev->chip_num; pfdev_info->db_size = 0; pfdev_info->indices_per_sb = PIS_PER_SB; pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED | PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE; if (p_hwfn->cdev->num_hwfns > 1) pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G; /* Share our ability to use multiple queue-ids only with VFs * that request it. */ if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS) pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS; /* Share the sizes of the bars with VF */ resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info); memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN); pfdev_info->fw_major = FW_MAJOR_VERSION; pfdev_info->fw_minor = FW_MINOR_VERSION; pfdev_info->fw_rev = FW_REVISION_VERSION; pfdev_info->fw_eng = FW_ENGINEERING_VERSION; /* Incorrect when legacy, but doesn't matter as legacy isn't reading * this field. */ pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR, req->vfdev_info.eth_fp_hsi_minor); pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX; qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL); pfdev_info->dev_type = p_hwfn->cdev->type; pfdev_info->chip_rev = p_hwfn->cdev->chip_rev; /* Fill resources available to VF; Make sure there are enough to * satisfy the VF's request. */ vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf, &req->resc_request, resc); if (vfpf_status != PFVF_STATUS_SUCCESS) goto out; /* Start the VF in FW */ rc = qed_sp_vf_start(p_hwfn, vf); if (rc) { DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id); vfpf_status = PFVF_STATUS_FAILURE; goto out; } /* Fill agreed size of bulletin board in response */ resp->bulletin_size = vf->bulletin.size; qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt); DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n" "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n", vf->abs_vf_id, resp->pfdev_info.chip_num, resp->pfdev_info.db_size, resp->pfdev_info.indices_per_sb, resp->pfdev_info.capabilities, resc->num_rxqs, resc->num_txqs, resc->num_sbs, resc->num_mac_filters, resc->num_vlan_filters); vf->state = VF_ACQUIRED; /* Prepare Response */ out: qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE, sizeof(struct pfvf_acquire_resp_tlv), vfpf_status); } static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf, bool val) { struct qed_sp_vport_update_params params; int rc; if (val == p_vf->spoof_chk) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Spoofchk value[%d] is already configured\n", val); return 0; } memset(¶ms, 0, sizeof(struct qed_sp_vport_update_params)); params.opaque_fid = p_vf->opaque_fid; params.vport_id = p_vf->vport_id; params.update_anti_spoofing_en_flg = 1; params.anti_spoofing_en = val; rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); if (!rc) { p_vf->spoof_chk = val; p_vf->req_spoofchk_val = p_vf->spoof_chk; DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Spoofchk val[%d] configured\n", val); } else { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Spoofchk configuration[val:%d] failed for VF[%d]\n", val, p_vf->relative_vf_id); } return rc; } static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf) { struct qed_filter_ucast filter; int rc = 0; int i; memset(&filter, 0, sizeof(filter)); filter.is_rx_filter = 1; filter.is_tx_filter = 1; filter.vport_to_add_to = p_vf->vport_id; filter.opcode = QED_FILTER_ADD; /* Reconfigure vlans */ for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { if (!p_vf->shadow_config.vlans[i].used) continue; filter.type = QED_FILTER_VLAN; filter.vlan = p_vf->shadow_config.vlans[i].vid; DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Reconfiguring VLAN [0x%04x] for VF [%04x]\n", filter.vlan, p_vf->relative_vf_id); rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, &filter, QED_SPQ_MODE_CB, NULL); if (rc) { DP_NOTICE(p_hwfn, "Failed to configure VLAN [%04x] to VF [%04x]\n", filter.vlan, p_vf->relative_vf_id); break; } } return rc; } static int qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf, u64 events) { int rc = 0; if ((events & BIT(VLAN_ADDR_FORCED)) && !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf); return rc; } static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf, u64 events) { int rc = 0; struct qed_filter_ucast filter; if (!p_vf->vport_instance) return -EINVAL; if ((events & BIT(MAC_ADDR_FORCED)) || p_vf->p_vf_info.is_trusted_configured) { /* Since there's no way [currently] of removing the MAC, * we can always assume this means we need to force it. */ memset(&filter, 0, sizeof(filter)); filter.type = QED_FILTER_MAC; filter.opcode = QED_FILTER_REPLACE; filter.is_rx_filter = 1; filter.is_tx_filter = 1; filter.vport_to_add_to = p_vf->vport_id; ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac); rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, &filter, QED_SPQ_MODE_CB, NULL); if (rc) { DP_NOTICE(p_hwfn, "PF failed to configure MAC for VF\n"); return rc; } if (p_vf->p_vf_info.is_trusted_configured) p_vf->configured_features |= BIT(VFPF_BULLETIN_MAC_ADDR); else p_vf->configured_features |= BIT(MAC_ADDR_FORCED); } if (events & BIT(VLAN_ADDR_FORCED)) { struct qed_sp_vport_update_params vport_update; u8 removal; int i; memset(&filter, 0, sizeof(filter)); filter.type = QED_FILTER_VLAN; filter.is_rx_filter = 1; filter.is_tx_filter = 1; filter.vport_to_add_to = p_vf->vport_id; filter.vlan = p_vf->bulletin.p_virt->pvid; filter.opcode = filter.vlan ? QED_FILTER_REPLACE : QED_FILTER_FLUSH; /* Send the ramrod */ rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, &filter, QED_SPQ_MODE_CB, NULL); if (rc) { DP_NOTICE(p_hwfn, "PF failed to configure VLAN for VF\n"); return rc; } /* Update the default-vlan & silent vlan stripping */ memset(&vport_update, 0, sizeof(vport_update)); vport_update.opaque_fid = p_vf->opaque_fid; vport_update.vport_id = p_vf->vport_id; vport_update.update_default_vlan_enable_flg = 1; vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0; vport_update.update_default_vlan_flg = 1; vport_update.default_vlan = filter.vlan; vport_update.update_inner_vlan_removal_flg = 1; removal = filter.vlan ? 1 : p_vf->shadow_config.inner_vlan_removal; vport_update.inner_vlan_removal_flg = removal; vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0; rc = qed_sp_vport_update(p_hwfn, &vport_update, QED_SPQ_MODE_EBLOCK, NULL); if (rc) { DP_NOTICE(p_hwfn, "PF failed to configure VF vport for vlan\n"); return rc; } /* Update all the Rx queues */ for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; struct qed_queue_cid *p_cid = NULL; /* There can be at most 1 Rx queue on qzone. Find it */ p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); if (!p_cid) continue; rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&p_cid, 1, 0, 1, QED_SPQ_MODE_EBLOCK, NULL); if (rc) { DP_NOTICE(p_hwfn, "Failed to send Rx update fo queue[0x%04x]\n", p_cid->rel.queue_id); return rc; } } if (filter.vlan) p_vf->configured_features |= 1 << VLAN_ADDR_FORCED; else p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED); } /* If forced features are terminated, we need to configure the shadow * configuration back again. */ if (events) qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events); return rc; } static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { struct qed_sp_vport_start_params params = { 0 }; struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; struct vfpf_vport_start_tlv *start; u8 status = PFVF_STATUS_SUCCESS; struct qed_vf_info *vf_info; u64 *p_bitmap; int sb_id; int rc; vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vf->relative_vf_id, true); if (!vf_info) { DP_NOTICE(p_hwfn->cdev, "Failed to get VF info, invalid vfid [%d]\n", vf->relative_vf_id); return; } vf->state = VF_ENABLED; start = &mbx->req_virt->start_vport; qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf); /* Initialize Status block in CAU */ for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) { if (!start->sb_addr[sb_id]) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d] did not fill the address of SB %d\n", vf->relative_vf_id, sb_id); break; } qed_int_cau_conf_sb(p_hwfn, p_ptt, start->sb_addr[sb_id], vf->igu_sbs[sb_id], vf->abs_vf_id, 1); } vf->mtu = start->mtu; vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal; /* Take into consideration configuration forced by hypervisor; * If none is configured, use the supplied VF values [for old * vfs that would still be fine, since they passed '0' as padding]. */ p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap; if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) { u8 vf_req = start->only_untagged; vf_info->bulletin.p_virt->default_only_untagged = vf_req; *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT; } params.tpa_mode = start->tpa_mode; params.remove_inner_vlan = start->inner_vlan_removal; params.tx_switching = true; params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged; params.drop_ttl0 = false; params.concrete_fid = vf->concrete_fid; params.opaque_fid = vf->opaque_fid; params.vport_id = vf->vport_id; params.max_buffers_per_cqe = start->max_buffers_per_cqe; params.mtu = vf->mtu; /* Non trusted VFs should enable control frame filtering */ params.check_mac = !vf->p_vf_info.is_trusted_configured; rc = qed_sp_eth_vport_start(p_hwfn, ¶ms); if (rc) { DP_ERR(p_hwfn, "%s returned error %d\n", __func__, rc); status = PFVF_STATUS_FAILURE; } else { vf->vport_instance++; /* Force configuration if needed on the newly opened vport */ qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap); __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val); } qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START, sizeof(struct pfvf_def_resp_tlv), status); } static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { u8 status = PFVF_STATUS_SUCCESS; int rc; vf->vport_instance--; vf->spoof_chk = false; if ((qed_iov_validate_active_rxq(p_hwfn, vf)) || (qed_iov_validate_active_txq(p_hwfn, vf))) { vf->b_malicious = true; DP_NOTICE(p_hwfn, "VF [%02x] - considered malicious; Unable to stop RX/TX queues\n", vf->abs_vf_id); status = PFVF_STATUS_MALICIOUS; goto out; } rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id); if (rc) { DP_ERR(p_hwfn, "%s returned error %d\n", __func__, rc); status = PFVF_STATUS_FAILURE; } /* Forget the configuration on the vport */ vf->configured_features = 0; memset(&vf->shadow_config, 0, sizeof(vf->shadow_config)); out: qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN, sizeof(struct pfvf_def_resp_tlv), status); } static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf, u8 status, bool b_legacy) { struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; struct pfvf_start_queue_resp_tlv *p_tlv; struct vfpf_start_rxq_tlv *req; u16 length; mbx->offset = (u8 *)mbx->reply_virt; /* Taking a bigger struct instead of adding a TLV to list was a * mistake, but one which we're now stuck with, as some older * clients assume the size of the previous response. */ if (!b_legacy) length = sizeof(*p_tlv); else length = sizeof(struct pfvf_def_resp_tlv); p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ, length); qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, sizeof(struct channel_list_end_tlv)); /* Update the TLV with the response */ if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) { req = &mbx->req_virt->start_rxq; p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B + offsetof(struct mstorm_vf_zone, non_trigger.eth_rx_queue_producers) + sizeof(struct eth_rx_prod_data) * req->rx_qid; } qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); } static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf, bool b_is_tx) { struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx; struct vfpf_qid_tlv *p_qid_tlv; /* Search for the qid if the VF published its going to provide it */ if (!(p_vf->acquire.vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS)) { if (b_is_tx) return QED_IOV_LEGACY_QID_TX; else return QED_IOV_LEGACY_QID_RX; } p_qid_tlv = (struct vfpf_qid_tlv *) qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, CHANNEL_TLV_QID); if (!p_qid_tlv) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%2x]: Failed to provide qid\n", p_vf->relative_vf_id); return QED_IOV_QID_INVALID; } if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%02x]: Provided qid out-of-bounds %02x\n", p_vf->relative_vf_id, p_qid_tlv->qid); return QED_IOV_QID_INVALID; } return p_qid_tlv->qid; } static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { struct qed_queue_start_common_params params; struct qed_queue_cid_vf_params vf_params; struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; u8 status = PFVF_STATUS_NO_RESOURCE; u8 qid_usage_idx, vf_legacy = 0; struct vfpf_start_rxq_tlv *req; struct qed_vf_queue *p_queue; struct qed_queue_cid *p_cid; struct qed_sb_info sb_dummy; int rc; req = &mbx->req_virt->start_rxq; if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid, QED_IOV_VALIDATE_Q_DISABLE) || !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) goto out; qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); if (qid_usage_idx == QED_IOV_QID_INVALID) goto out; p_queue = &vf->vf_queues[req->rx_qid]; if (p_queue->cids[qid_usage_idx].p_cid) goto out; vf_legacy = qed_vf_calculate_legacy(vf); /* Acquire a new queue-cid */ memset(¶ms, 0, sizeof(params)); params.queue_id = p_queue->fw_rx_qid; params.vport_id = vf->vport_id; params.stats_id = vf->abs_vf_id + 0x10; /* Since IGU index is passed via sb_info, construct a dummy one */ memset(&sb_dummy, 0, sizeof(sb_dummy)); sb_dummy.igu_sb_id = req->hw_sb; params.p_sb = &sb_dummy; params.sb_idx = req->sb_index; memset(&vf_params, 0, sizeof(vf_params)); vf_params.vfid = vf->relative_vf_id; vf_params.vf_qid = (u8)req->rx_qid; vf_params.vf_legacy = vf_legacy; vf_params.qid_usage_idx = qid_usage_idx; p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, ¶ms, true, &vf_params); if (!p_cid) goto out; /* Legacy VFs have their Producers in a different location, which they * calculate on their own and clean the producer prior to this. */ if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD)) qed_wr(p_hwfn, p_ptt, MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid), 0); rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid, req->bd_max_bytes, req->rxq_addr, req->cqe_pbl_addr, req->cqe_pbl_size); if (rc) { status = PFVF_STATUS_FAILURE; qed_eth_queue_cid_release(p_hwfn, p_cid); } else { p_queue->cids[qid_usage_idx].p_cid = p_cid; p_queue->cids[qid_usage_idx].b_is_tx = false; status = PFVF_STATUS_SUCCESS; vf->num_active_rxqs++; } out: qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status, !!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD)); } static void qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp, struct qed_tunnel_info *p_tun, u16 tunn_feature_mask) { p_resp->tunn_feature_mask = tunn_feature_mask; p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled; p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled; p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled; p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled; p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled; p_resp->vxlan_clss = p_tun->vxlan.tun_cls; p_resp->l2gre_clss = p_tun->l2_gre.tun_cls; p_resp->ipgre_clss = p_tun->ip_gre.tun_cls; p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls; p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls; p_resp->geneve_udp_port = p_tun->geneve_port.port; p_resp->vxlan_udp_port = p_tun->vxlan_port.port; } static void __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, struct qed_tunn_update_type *p_tun, enum qed_tunn_mode mask, u8 tun_cls) { if (p_req->tun_mode_update_mask & BIT(mask)) { p_tun->b_update_mode = true; if (p_req->tunn_mode & BIT(mask)) p_tun->b_mode_enabled = true; } p_tun->tun_cls = tun_cls; } static void qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, struct qed_tunn_update_type *p_tun, struct qed_tunn_update_udp_port *p_port, enum qed_tunn_mode mask, u8 tun_cls, u8 update_port, u16 port) { if (update_port) { p_port->b_update_port = true; p_port->port = port; } __qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls); } static bool qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req) { bool b_update_requested = false; if (p_req->tun_mode_update_mask || p_req->update_tun_cls || p_req->update_geneve_port || p_req->update_vxlan_port) b_update_requested = true; return b_update_requested; } static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc) { if (tun->b_update_mode && !tun->b_mode_enabled) { tun->b_update_mode = false; *rc = -EINVAL; } } static int qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn, u16 *tun_features, bool *update, struct qed_tunnel_info *tun_src) { struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth; struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel; u16 bultn_vxlan_port, bultn_geneve_port; void *cookie = p_hwfn->cdev->ops_cookie; int i, rc = 0; *tun_features = p_hwfn->cdev->tunn_feature_mask; bultn_vxlan_port = tun->vxlan_port.port; bultn_geneve_port = tun->geneve_port.port; qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc); qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc); qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc); qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc); qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc); if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) && (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN || tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN || tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) { tun_src->b_update_rx_cls = false; tun_src->b_update_tx_cls = false; rc = -EINVAL; } if (tun_src->vxlan_port.b_update_port) { if (tun_src->vxlan_port.port == tun->vxlan_port.port) { tun_src->vxlan_port.b_update_port = false; } else { *update = true; bultn_vxlan_port = tun_src->vxlan_port.port; } } if (tun_src->geneve_port.b_update_port) { if (tun_src->geneve_port.port == tun->geneve_port.port) { tun_src->geneve_port.b_update_port = false; } else { *update = true; bultn_geneve_port = tun_src->geneve_port.port; } } qed_for_each_vf(p_hwfn, i) { qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port, bultn_geneve_port); } qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port); return rc; } static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *p_vf) { struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel; struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; struct pfvf_update_tunn_param_tlv *p_resp; struct vfpf_update_tunn_param_tlv *p_req; u8 status = PFVF_STATUS_SUCCESS; bool b_update_required = false; struct qed_tunnel_info tunn; u16 tunn_feature_mask = 0; int i, rc = 0; mbx->offset = (u8 *)mbx->reply_virt; memset(&tunn, 0, sizeof(tunn)); p_req = &mbx->req_virt->tunn_param_update; if (!qed_iov_pf_validate_tunn_param(p_req)) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No tunnel update requested by VF\n"); status = PFVF_STATUS_FAILURE; goto send_resp; } tunn.b_update_rx_cls = p_req->update_tun_cls; tunn.b_update_tx_cls = p_req->update_tun_cls; qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port, QED_MODE_VXLAN_TUNN, p_req->vxlan_clss, p_req->update_vxlan_port, p_req->vxlan_port); qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port, QED_MODE_L2GENEVE_TUNN, p_req->l2geneve_clss, p_req->update_geneve_port, p_req->geneve_port); __qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve, QED_MODE_IPGENEVE_TUNN, p_req->ipgeneve_clss); __qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre, QED_MODE_L2GRE_TUNN, p_req->l2gre_clss); __qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre, QED_MODE_IPGRE_TUNN, p_req->ipgre_clss); /* If PF modifies VF's req then it should * still return an error in case of partial configuration * or modified configuration as opposed to requested one. */ rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask, &b_update_required, &tunn); if (rc) status = PFVF_STATUS_FAILURE; /* If QED client is willing to update anything ? */ if (b_update_required) { u16 geneve_port; rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn, QED_SPQ_MODE_EBLOCK, NULL); if (rc) status = PFVF_STATUS_FAILURE; geneve_port = p_tun->geneve_port.port; qed_for_each_vf(p_hwfn, i) { qed_iov_bulletin_set_udp_ports(p_hwfn, i, p_tun->vxlan_port.port, geneve_port); } } send_resp: p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp)); qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask); qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, sizeof(struct channel_list_end_tlv)); qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); } static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *p_vf, u32 cid, u8 status) { struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; struct pfvf_start_queue_resp_tlv *p_tlv; bool b_legacy = false; u16 length; mbx->offset = (u8 *)mbx->reply_virt; /* Taking a bigger struct instead of adding a TLV to list was a * mistake, but one which we're now stuck with, as some older * clients assume the size of the previous response. */ if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == ETH_HSI_VER_NO_PKT_LEN_TUNN) b_legacy = true; if (!b_legacy) length = sizeof(*p_tlv); else length = sizeof(struct pfvf_def_resp_tlv); p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ, length); qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, sizeof(struct channel_list_end_tlv)); /* Update the TLV with the response */ if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY); qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status); } static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { struct qed_queue_start_common_params params; struct qed_queue_cid_vf_params vf_params; struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; u8 status = PFVF_STATUS_NO_RESOURCE; struct vfpf_start_txq_tlv *req; struct qed_vf_queue *p_queue; struct qed_queue_cid *p_cid; struct qed_sb_info sb_dummy; u8 qid_usage_idx, vf_legacy; u32 cid = 0; int rc; u16 pq; memset(¶ms, 0, sizeof(params)); req = &mbx->req_virt->start_txq; if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid, QED_IOV_VALIDATE_Q_NA) || !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) goto out; qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); if (qid_usage_idx == QED_IOV_QID_INVALID) goto out; p_queue = &vf->vf_queues[req->tx_qid]; if (p_queue->cids[qid_usage_idx].p_cid) goto out; vf_legacy = qed_vf_calculate_legacy(vf); /* Acquire a new queue-cid */ params.queue_id = p_queue->fw_tx_qid; params.vport_id = vf->vport_id; params.stats_id = vf->abs_vf_id + 0x10; /* Since IGU index is passed via sb_info, construct a dummy one */ memset(&sb_dummy, 0, sizeof(sb_dummy)); sb_dummy.igu_sb_id = req->hw_sb; params.p_sb = &sb_dummy; params.sb_idx = req->sb_index; memset(&vf_params, 0, sizeof(vf_params)); vf_params.vfid = vf->relative_vf_id; vf_params.vf_qid = (u8)req->tx_qid; vf_params.vf_legacy = vf_legacy; vf_params.qid_usage_idx = qid_usage_idx; p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, ¶ms, false, &vf_params); if (!p_cid) goto out; pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id); rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid, req->pbl_addr, req->pbl_size, pq); if (rc) { status = PFVF_STATUS_FAILURE; qed_eth_queue_cid_release(p_hwfn, p_cid); } else { status = PFVF_STATUS_SUCCESS; p_queue->cids[qid_usage_idx].p_cid = p_cid; p_queue->cids[qid_usage_idx].b_is_tx = true; cid = p_cid->cid; } out: qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status); } static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn, struct qed_vf_info *vf, u16 rxq_id, u8 qid_usage_idx, bool cqe_completion) { struct qed_vf_queue *p_queue; int rc = 0; if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n", vf->relative_vf_id, rxq_id, qid_usage_idx); return -EINVAL; } p_queue = &vf->vf_queues[rxq_id]; /* We've validated the index and the existence of the active RXQ - * now we need to make sure that it's using the correct qid. */ if (!p_queue->cids[qid_usage_idx].p_cid || p_queue->cids[qid_usage_idx].b_is_tx) { struct qed_queue_cid *p_cid; p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n", vf->relative_vf_id, rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx); return -EINVAL; } /* Now that we know we have a valid Rx-queue - close it */ rc = qed_eth_rx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid, false, cqe_completion); if (rc) return rc; p_queue->cids[qid_usage_idx].p_cid = NULL; vf->num_active_rxqs--; return 0; } static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn, struct qed_vf_info *vf, u16 txq_id, u8 qid_usage_idx) { struct qed_vf_queue *p_queue; int rc = 0; if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA)) return -EINVAL; p_queue = &vf->vf_queues[txq_id]; if (!p_queue->cids[qid_usage_idx].p_cid || !p_queue->cids[qid_usage_idx].b_is_tx) return -EINVAL; rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid); if (rc) return rc; p_queue->cids[qid_usage_idx].p_cid = NULL; return 0; } static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { u16 length = sizeof(struct pfvf_def_resp_tlv); struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; u8 status = PFVF_STATUS_FAILURE; struct vfpf_stop_rxqs_tlv *req; u8 qid_usage_idx; int rc; /* There has never been an official driver that used this interface * for stopping multiple queues, and it is now considered deprecated. * Validate this isn't used here. */ req = &mbx->req_virt->stop_rxqs; if (req->num_rxqs != 1) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Odd; VF[%d] tried stopping multiple Rx queues\n", vf->relative_vf_id); status = PFVF_STATUS_NOT_SUPPORTED; goto out; } /* Find which qid-index is associated with the queue */ qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); if (qid_usage_idx == QED_IOV_QID_INVALID) goto out; rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid, qid_usage_idx, req->cqe_completion); if (!rc) status = PFVF_STATUS_SUCCESS; out: qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS, length, status); } static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { u16 length = sizeof(struct pfvf_def_resp_tlv); struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; u8 status = PFVF_STATUS_FAILURE; struct vfpf_stop_txqs_tlv *req; u8 qid_usage_idx; int rc; /* There has never been an official driver that used this interface * for stopping multiple queues, and it is now considered deprecated. * Validate this isn't used here. */ req = &mbx->req_virt->stop_txqs; if (req->num_txqs != 1) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Odd; VF[%d] tried stopping multiple Tx queues\n", vf->relative_vf_id); status = PFVF_STATUS_NOT_SUPPORTED; goto out; } /* Find which qid-index is associated with the queue */ qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); if (qid_usage_idx == QED_IOV_QID_INVALID) goto out; rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx); if (!rc) status = PFVF_STATUS_SUCCESS; out: qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS, length, status); } static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF]; u16 length = sizeof(struct pfvf_def_resp_tlv); struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; struct vfpf_update_rxq_tlv *req; u8 status = PFVF_STATUS_FAILURE; u8 complete_event_flg; u8 complete_cqe_flg; u8 qid_usage_idx; int rc; u8 i; req = &mbx->req_virt->update_rxq; complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG); complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG); qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); if (qid_usage_idx == QED_IOV_QID_INVALID) goto out; /* There shouldn't exist a VF that uses queue-qids yet uses this * API with multiple Rx queues. Validate this. */ if ((vf->acquire.vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d] supports QIDs but sends multiple queues\n", vf->relative_vf_id); goto out; } /* Validate inputs - for the legacy case this is still true since * qid_usage_idx for each Rx queue would be LEGACY_QID_RX. */ for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) { if (!qed_iov_validate_rxq(p_hwfn, vf, i, QED_IOV_VALIDATE_Q_NA) || !vf->vf_queues[i].cids[qid_usage_idx].p_cid || vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d]: Incorrect Rxqs [%04x, %02x]\n", vf->relative_vf_id, req->rx_qid, req->num_rxqs); goto out; } } /* Prepare the handlers */ for (i = 0; i < req->num_rxqs; i++) { u16 qid = req->rx_qid + i; handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid; } rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers, req->num_rxqs, complete_cqe_flg, complete_event_flg, QED_SPQ_MODE_EBLOCK, NULL); if (rc) goto out; status = PFVF_STATUS_SUCCESS; out: qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ, length, status); } void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn, void *p_tlvs_list, u16 req_type) { struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list; int len = 0; do { if (!p_tlv->length) { DP_NOTICE(p_hwfn, "Zero length TLV found\n"); return NULL; } if (p_tlv->type == req_type) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Extended tlv type %d, length %d found\n", p_tlv->type, p_tlv->length); return p_tlv; } len += p_tlv->length; p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length); if ((len + p_tlv->length) > TLV_BUFFER_SIZE) { DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n"); return NULL; } } while (p_tlv->type != CHANNEL_TLV_LIST_END); return NULL; } static void qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn, struct qed_sp_vport_update_params *p_data, struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) { struct vfpf_vport_update_activate_tlv *p_act_tlv; u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; p_act_tlv = (struct vfpf_vport_update_activate_tlv *) qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); if (!p_act_tlv) return; p_data->update_vport_active_rx_flg = p_act_tlv->update_rx; p_data->vport_active_rx_flg = p_act_tlv->active_rx; p_data->update_vport_active_tx_flg = p_act_tlv->update_tx; p_data->vport_active_tx_flg = p_act_tlv->active_tx; *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE; } static void qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn, struct qed_sp_vport_update_params *p_data, struct qed_vf_info *p_vf, struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) { struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv; u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *) qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); if (!p_vlan_tlv) return; p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan; /* Ignore the VF request if we're forcing a vlan */ if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) { p_data->update_inner_vlan_removal_flg = 1; p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan; } *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP; } static void qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn, struct qed_sp_vport_update_params *p_data, struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) { struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv; u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *) qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); if (!p_tx_switch_tlv) return; p_data->update_tx_switching_flg = 1; p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching; *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH; } static void qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn, struct qed_sp_vport_update_params *p_data, struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) { struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv; u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST; p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *) qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); if (!p_mcast_tlv) return; p_data->update_approx_mcast_flg = 1; memcpy(p_data->bins, p_mcast_tlv->bins, sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS); *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST; } static void qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn, struct qed_sp_vport_update_params *p_data, struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) { struct qed_filter_accept_flags *p_flags = &p_data->accept_flags; struct vfpf_vport_update_accept_param_tlv *p_accept_tlv; u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *) qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); if (!p_accept_tlv) return; p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode; p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter; p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode; p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter; *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM; } static void qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn, struct qed_sp_vport_update_params *p_data, struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) { struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan; u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *) qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); if (!p_accept_any_vlan) return; p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan; p_data->update_accept_any_vlan_flg = p_accept_any_vlan->update_accept_any_vlan_flg; *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN; } static void qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn, struct qed_vf_info *vf, struct qed_sp_vport_update_params *p_data, struct qed_rss_params *p_rss, struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask, u16 *tlvs_accepted) { struct vfpf_vport_update_rss_tlv *p_rss_tlv; u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS; bool b_reject = false; u16 table_size; u16 i, q_idx; p_rss_tlv = (struct vfpf_vport_update_rss_tlv *) qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); if (!p_rss_tlv) { p_data->rss_params = NULL; return; } memset(p_rss, 0, sizeof(struct qed_rss_params)); p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags & VFPF_UPDATE_RSS_CONFIG_FLAG); p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags & VFPF_UPDATE_RSS_CAPS_FLAG); p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags & VFPF_UPDATE_RSS_IND_TABLE_FLAG); p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags & VFPF_UPDATE_RSS_KEY_FLAG); p_rss->rss_enable = p_rss_tlv->rss_enable; p_rss->rss_eng_id = vf->relative_vf_id + 1; p_rss->rss_caps = p_rss_tlv->rss_caps; p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log; memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key)); table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table), (1 << p_rss_tlv->rss_table_size_log)); for (i = 0; i < table_size; i++) { struct qed_queue_cid *p_cid; q_idx = p_rss_tlv->rss_ind_table[i]; if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx, QED_IOV_VALIDATE_Q_ENABLE)) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d]: Omitting RSS due to wrong queue %04x\n", vf->relative_vf_id, q_idx); b_reject = true; goto out; } p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]); p_rss->rss_ind_table[i] = p_cid; } p_data->rss_params = p_rss; out: *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS; if (!b_reject) *tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS; } static void qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn, struct qed_vf_info *vf, struct qed_sp_vport_update_params *p_data, struct qed_sge_tpa_params *p_sge_tpa, struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) { struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv; u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *) qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); if (!p_sge_tpa_tlv) { p_data->sge_tpa_params = NULL; return; } memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params)); p_sge_tpa->update_tpa_en_flg = !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG); p_sge_tpa->update_tpa_param_flg = !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_PARAM_FLAG); p_sge_tpa->tpa_ipv4_en_flg = !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG); p_sge_tpa->tpa_ipv6_en_flg = !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG); p_sge_tpa->tpa_pkt_split_flg = !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG); p_sge_tpa->tpa_hdr_data_split_flg = !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG); p_sge_tpa->tpa_gro_consistent_flg = !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG); p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num; p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size; p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start; p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont; p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe; p_data->sge_tpa_params = p_sge_tpa; *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA; } static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn, u8 vfid, struct qed_sp_vport_update_params *params, u16 *tlvs) { u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; struct qed_filter_accept_flags *flags = ¶ms->accept_flags; struct qed_public_vf_info *vf_info; u16 tlv_mask; tlv_mask = BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM) | BIT(QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN); /* Untrusted VFs can't even be trusted to know that fact. * Simply indicate everything is configured fine, and trace * configuration 'behind their back'. */ if (!(*tlvs & tlv_mask)) return 0; vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); if (flags->update_rx_mode_config) { vf_info->rx_accept_mode = flags->rx_accept_filter; if (!vf_info->is_trusted_configured) flags->rx_accept_filter &= ~mask; } if (flags->update_tx_mode_config) { vf_info->tx_accept_mode = flags->tx_accept_filter; if (!vf_info->is_trusted_configured) flags->tx_accept_filter &= ~mask; } if (params->update_accept_any_vlan_flg) { vf_info->accept_any_vlan = params->accept_any_vlan; if (vf_info->forced_vlan && !vf_info->is_trusted_configured) params->accept_any_vlan = false; } return 0; } static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { struct qed_rss_params *p_rss_params = NULL; struct qed_sp_vport_update_params params; struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; struct qed_sge_tpa_params sge_tpa_params; u16 tlvs_mask = 0, tlvs_accepted = 0; u8 status = PFVF_STATUS_SUCCESS; u16 length; int rc; /* Valiate PF can send such a request */ if (!vf->vport_instance) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No VPORT instance available for VF[%d], failing vport update\n", vf->abs_vf_id); status = PFVF_STATUS_FAILURE; goto out; } p_rss_params = vzalloc(sizeof(*p_rss_params)); if (!p_rss_params) { status = PFVF_STATUS_FAILURE; goto out; } memset(¶ms, 0, sizeof(params)); params.opaque_fid = vf->opaque_fid; params.vport_id = vf->vport_id; params.rss_params = NULL; /* Search for extended tlvs list and update values * from VF in struct qed_sp_vport_update_params. */ qed_iov_vp_update_act_param(p_hwfn, ¶ms, mbx, &tlvs_mask); qed_iov_vp_update_vlan_param(p_hwfn, ¶ms, vf, mbx, &tlvs_mask); qed_iov_vp_update_tx_switch(p_hwfn, ¶ms, mbx, &tlvs_mask); qed_iov_vp_update_mcast_bin_param(p_hwfn, ¶ms, mbx, &tlvs_mask); qed_iov_vp_update_accept_flag(p_hwfn, ¶ms, mbx, &tlvs_mask); qed_iov_vp_update_accept_any_vlan(p_hwfn, ¶ms, mbx, &tlvs_mask); qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, ¶ms, &sge_tpa_params, mbx, &tlvs_mask); tlvs_accepted = tlvs_mask; /* Some of the extended TLVs need to be validated first; In that case, * they can update the mask without updating the accepted [so that * PF could communicate to VF it has rejected request]. */ qed_iov_vp_update_rss_param(p_hwfn, vf, ¶ms, p_rss_params, mbx, &tlvs_mask, &tlvs_accepted); if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id, ¶ms, &tlvs_accepted)) { tlvs_accepted = 0; status = PFVF_STATUS_NOT_SUPPORTED; goto out; } if (!tlvs_accepted) { if (tlvs_mask) DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Upper-layer prevents VF vport configuration\n"); else DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No feature tlvs found for vport update\n"); status = PFVF_STATUS_NOT_SUPPORTED; goto out; } rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); if (rc) status = PFVF_STATUS_FAILURE; out: vfree(p_rss_params); length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status, tlvs_mask, tlvs_accepted); qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); } static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf, struct qed_filter_ucast *p_params) { int i; /* First remove entries and then add new ones */ if (p_params->opcode == QED_FILTER_REMOVE) { for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) if (p_vf->shadow_config.vlans[i].used && p_vf->shadow_config.vlans[i].vid == p_params->vlan) { p_vf->shadow_config.vlans[i].used = false; break; } if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF [%d] - Tries to remove a non-existing vlan\n", p_vf->relative_vf_id); return -EINVAL; } } else if (p_params->opcode == QED_FILTER_REPLACE || p_params->opcode == QED_FILTER_FLUSH) { for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) p_vf->shadow_config.vlans[i].used = false; } /* In forced mode, we're willing to remove entries - but we don't add * new ones. */ if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)) return 0; if (p_params->opcode == QED_FILTER_ADD || p_params->opcode == QED_FILTER_REPLACE) { for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { if (p_vf->shadow_config.vlans[i].used) continue; p_vf->shadow_config.vlans[i].used = true; p_vf->shadow_config.vlans[i].vid = p_params->vlan; break; } if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF [%d] - Tries to configure more than %d vlan filters\n", p_vf->relative_vf_id, QED_ETH_VF_NUM_VLAN_FILTERS + 1); return -EINVAL; } } return 0; } static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf, struct qed_filter_ucast *p_params) { int i; /* If we're in forced-mode, we don't allow any change */ if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) return 0; /* Don't keep track of shadow copy since we don't intend to restore. */ if (p_vf->p_vf_info.is_trusted_configured) return 0; /* First remove entries and then add new ones */ if (p_params->opcode == QED_FILTER_REMOVE) { for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { if (ether_addr_equal(p_vf->shadow_config.macs[i], p_params->mac)) { eth_zero_addr(p_vf->shadow_config.macs[i]); break; } } if (i == QED_ETH_VF_NUM_MAC_FILTERS) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "MAC isn't configured\n"); return -EINVAL; } } else if (p_params->opcode == QED_FILTER_REPLACE || p_params->opcode == QED_FILTER_FLUSH) { for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) eth_zero_addr(p_vf->shadow_config.macs[i]); } /* List the new MAC address */ if (p_params->opcode != QED_FILTER_ADD && p_params->opcode != QED_FILTER_REPLACE) return 0; for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) { ether_addr_copy(p_vf->shadow_config.macs[i], p_params->mac); DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Added MAC at %d entry in shadow\n", i); break; } } if (i == QED_ETH_VF_NUM_MAC_FILTERS) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n"); return -EINVAL; } return 0; } static int qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf, struct qed_filter_ucast *p_params) { int rc = 0; if (p_params->type == QED_FILTER_MAC) { rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params); if (rc) return rc; } if (p_params->type == QED_FILTER_VLAN) rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params); return rc; } static int qed_iov_chk_ucast(struct qed_hwfn *hwfn, int vfid, struct qed_filter_ucast *params) { struct qed_public_vf_info *vf; vf = qed_iov_get_public_vf_info(hwfn, vfid, true); if (!vf) return -EINVAL; /* No real decision to make; Store the configured MAC */ if (params->type == QED_FILTER_MAC || params->type == QED_FILTER_MAC_VLAN) { ether_addr_copy(vf->mac, params->mac); if (vf->is_trusted_configured) { qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid); /* Update and post bulleitin again */ qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); } } return 0; } static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt; struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; struct vfpf_ucast_filter_tlv *req; u8 status = PFVF_STATUS_SUCCESS; struct qed_filter_ucast params; int rc; /* Prepare the unicast filter params */ memset(¶ms, 0, sizeof(struct qed_filter_ucast)); req = &mbx->req_virt->ucast_filter; params.opcode = (enum qed_filter_opcode)req->opcode; params.type = (enum qed_filter_ucast_type)req->type; params.is_rx_filter = 1; params.is_tx_filter = 1; params.vport_to_remove_from = vf->vport_id; params.vport_to_add_to = vf->vport_id; memcpy(params.mac, req->mac, ETH_ALEN); params.vlan = req->vlan; DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %pM, vlan 0x%04x\n", vf->abs_vf_id, params.opcode, params.type, params.is_rx_filter ? "RX" : "", params.is_tx_filter ? "TX" : "", params.vport_to_add_to, params.mac, params.vlan); if (!vf->vport_instance) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No VPORT instance available for VF[%d], failing ucast MAC configuration\n", vf->abs_vf_id); status = PFVF_STATUS_FAILURE; goto out; } /* Update shadow copy of the VF configuration */ if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, ¶ms)) { status = PFVF_STATUS_FAILURE; goto out; } /* Determine if the unicast filtering is acceptible by PF */ if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) && (params.type == QED_FILTER_VLAN || params.type == QED_FILTER_MAC_VLAN)) { /* Once VLAN is forced or PVID is set, do not allow * to add/replace any further VLANs. */ if (params.opcode == QED_FILTER_ADD || params.opcode == QED_FILTER_REPLACE) status = PFVF_STATUS_FORCED; goto out; } if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) && (params.type == QED_FILTER_MAC || params.type == QED_FILTER_MAC_VLAN)) { if (!ether_addr_equal(p_bulletin->mac, params.mac) || (params.opcode != QED_FILTER_ADD && params.opcode != QED_FILTER_REPLACE)) status = PFVF_STATUS_FORCED; goto out; } rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, ¶ms); if (rc) { status = PFVF_STATUS_FAILURE; goto out; } rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, ¶ms, QED_SPQ_MODE_CB, NULL); if (rc) status = PFVF_STATUS_FAILURE; out: qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER, sizeof(struct pfvf_def_resp_tlv), status); } static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { int i; /* Reset the SBs */ for (i = 0; i < vf->num_sbs; i++) qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, vf->igu_sbs[i], vf->opaque_fid, false); qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP, sizeof(struct pfvf_def_resp_tlv), PFVF_STATUS_SUCCESS); } static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { u16 length = sizeof(struct pfvf_def_resp_tlv); u8 status = PFVF_STATUS_SUCCESS; /* Disable Interrupts for VF */ qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); /* Reset Permission table */ qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE, length, status); } static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *p_vf) { u16 length = sizeof(struct pfvf_def_resp_tlv); u8 status = PFVF_STATUS_SUCCESS; int rc = 0; qed_iov_vf_cleanup(p_hwfn, p_vf); if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) { /* Stopping the VF */ rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid, p_vf->opaque_fid); if (rc) { DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n", rc); status = PFVF_STATUS_FAILURE; } p_vf->state = VF_STOPPED; } qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE, length, status); } static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *p_vf) { struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; struct pfvf_read_coal_resp_tlv *p_resp; struct vfpf_read_coal_req_tlv *req; u8 status = PFVF_STATUS_FAILURE; struct qed_vf_queue *p_queue; struct qed_queue_cid *p_cid; u16 coal = 0, qid, i; bool b_is_rx; int rc = 0; mbx->offset = (u8 *)mbx->reply_virt; req = &mbx->req_virt->read_coal_req; qid = req->qid; b_is_rx = req->is_rx ? true : false; if (b_is_rx) { if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid, QED_IOV_VALIDATE_Q_ENABLE)) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d]: Invalid Rx queue_id = %d\n", p_vf->abs_vf_id, qid); goto send_resp; } p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]); rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal); if (rc) goto send_resp; } else { if (!qed_iov_validate_txq(p_hwfn, p_vf, qid, QED_IOV_VALIDATE_Q_ENABLE)) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d]: Invalid Tx queue_id = %d\n", p_vf->abs_vf_id, qid); goto send_resp; } for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { p_queue = &p_vf->vf_queues[qid]; if ((!p_queue->cids[i].p_cid) || (!p_queue->cids[i].b_is_tx)) continue; p_cid = p_queue->cids[i].p_cid; rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal); if (rc) goto send_resp; break; } } status = PFVF_STATUS_SUCCESS; send_resp: p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ, sizeof(*p_resp)); p_resp->coal = coal; qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, sizeof(struct channel_list_end_tlv)); qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); } static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *vf) { struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; struct vfpf_update_coalesce *req; u8 status = PFVF_STATUS_FAILURE; struct qed_queue_cid *p_cid; u16 rx_coal, tx_coal; int rc = 0, i; u16 qid; req = &mbx->req_virt->update_coalesce; rx_coal = req->rx_coal; tx_coal = req->tx_coal; qid = req->qid; if (!qed_iov_validate_rxq(p_hwfn, vf, qid, QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d]: Invalid Rx queue_id = %d\n", vf->abs_vf_id, qid); goto out; } if (!qed_iov_validate_txq(p_hwfn, vf, qid, QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d]: Invalid Tx queue_id = %d\n", vf->abs_vf_id, qid); goto out; } DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n", vf->abs_vf_id, rx_coal, tx_coal, qid); if (rx_coal) { p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]); rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); if (rc) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d]: Unable to set rx queue = %d coalesce\n", vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid); goto out; } vf->rx_coal = rx_coal; } if (tx_coal) { struct qed_vf_queue *p_queue = &vf->vf_queues[qid]; for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { if (!p_queue->cids[i].p_cid) continue; if (!p_queue->cids[i].b_is_tx) continue; rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_queue->cids[i].p_cid); if (rc) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d]: Unable to set tx queue coalesce\n", vf->abs_vf_id); goto out; } } vf->tx_coal = tx_coal; } status = PFVF_STATUS_SUCCESS; out: qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE, sizeof(struct pfvf_def_resp_tlv), status); } static int qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) { int cnt; u32 val; qed_fid_pretend(p_hwfn, p_ptt, (u16)p_vf->concrete_fid); for (cnt = 0; cnt < 50; cnt++) { val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT); if (!val) break; msleep(20); } qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid); if (cnt == 50) { DP_ERR(p_hwfn, "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n", p_vf->abs_vf_id, val); return -EBUSY; } return 0; } #define MAX_NUM_EXT_VOQS (MAX_NUM_PORTS * NUM_OF_TCS) static int qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) { u32 prod, cons[MAX_NUM_EXT_VOQS], distance[MAX_NUM_EXT_VOQS], tmp; u8 max_phys_tcs_per_port = p_hwfn->qm_info.max_phys_tcs_per_port; u8 max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine; u32 prod_voq0_addr = PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0; u32 cons_voq0_addr = PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0; u8 port_id, tc, tc_id = 0, voq = 0; int cnt; memset(cons, 0, MAX_NUM_EXT_VOQS * sizeof(u32)); memset(distance, 0, MAX_NUM_EXT_VOQS * sizeof(u32)); /* Read initial consumers & producers */ for (port_id = 0; port_id < max_ports_per_engine; port_id++) { /* "max_phys_tcs_per_port" active TCs + 1 pure LB TC */ for (tc = 0; tc < max_phys_tcs_per_port + 1; tc++) { tc_id = (tc < max_phys_tcs_per_port) ? tc : PURE_LB_TC; voq = VOQ(port_id, tc_id, max_phys_tcs_per_port); cons[voq] = qed_rd(p_hwfn, p_ptt, cons_voq0_addr + voq * 0x40); prod = qed_rd(p_hwfn, p_ptt, prod_voq0_addr + voq * 0x40); distance[voq] = prod - cons[voq]; } } /* Wait for consumers to pass the producers */ port_id = 0; tc = 0; for (cnt = 0; cnt < 50; cnt++) { for (; port_id < max_ports_per_engine; port_id++) { /* "max_phys_tcs_per_port" active TCs + 1 pure LB TC */ for (; tc < max_phys_tcs_per_port + 1; tc++) { tc_id = (tc < max_phys_tcs_per_port) ? tc : PURE_LB_TC; voq = VOQ(port_id, tc_id, max_phys_tcs_per_port); tmp = qed_rd(p_hwfn, p_ptt, cons_voq0_addr + voq * 0x40); if (distance[voq] > tmp - cons[voq]) break; } if (tc == max_phys_tcs_per_port + 1) tc = 0; else break; } if (port_id == max_ports_per_engine) break; msleep(20); } if (cnt == 50) { DP_ERR(p_hwfn, "VF[%d]: pbf poll failed on VOQ%d\n", p_vf->abs_vf_id, (int)voq); DP_ERR(p_hwfn, "VOQ %d has port_id as %d and tc_id as %d]\n", (int)voq, (int)port_id, (int)tc_id); return -EBUSY; } return 0; } static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) { int rc; rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt); if (rc) return rc; rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt); if (rc) return rc; return 0; } static int qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 rel_vf_id, u32 *ack_vfs) { struct qed_vf_info *p_vf; int rc = 0; p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); if (!p_vf) return 0; if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] & (1ULL << (rel_vf_id % 64))) { u16 vfid = p_vf->abs_vf_id; DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d] - Handling FLR\n", vfid); qed_iov_vf_cleanup(p_hwfn, p_vf); /* If VF isn't active, no need for anything but SW */ if (!p_vf->b_init) goto cleanup; rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt); if (rc) goto cleanup; rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true); if (rc) { DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid); return rc; } /* Workaround to make VF-PF channel ready, as FW * doesn't do that as a part of FLR. */ REG_WR(p_hwfn, GET_GTT_REG_ADDR(GTT_BAR0_MAP_REG_USDM_RAM, USTORM_VF_PF_CHANNEL_READY, vfid), 1); /* VF_STOPPED has to be set only after final cleanup * but prior to re-enabling the VF. */ p_vf->state = VF_STOPPED; rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf); if (rc) { DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n", vfid); return rc; } cleanup: /* Mark VF for ack and clean pending state */ if (p_vf->state == VF_RESET) p_vf->state = VF_STOPPED; ack_vfs[vfid / 32] |= BIT((vfid % 32)); p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &= ~(1ULL << (rel_vf_id % 64)); p_vf->vf_mbx.b_pending_msg = false; } return rc; } static int qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u32 ack_vfs[VF_MAX_STATIC / 32]; int rc = 0; u16 i; memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32)); /* Since BRB <-> PRS interface can't be tested as part of the flr * polling due to HW limitations, simply sleep a bit. And since * there's no need to wait per-vf, do it before looping. */ msleep(100); for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs); rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs); return rc; } bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs) { bool found = false; u16 i; DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n"); for (i = 0; i < (VF_MAX_STATIC / 32); i++) DP_VERBOSE(p_hwfn, QED_MSG_IOV, "[%08x,...,%08x]: %08x\n", i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]); if (!p_hwfn->cdev->p_iov_info) { DP_NOTICE(p_hwfn, "VF flr but no IOV\n"); return false; } /* Mark VFs */ for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) { struct qed_vf_info *p_vf; u8 vfid; p_vf = qed_iov_get_vf_info(p_hwfn, i, false); if (!p_vf) continue; vfid = p_vf->abs_vf_id; if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) { u64 *p_flr = p_hwfn->pf_iov_info->pending_flr; u16 rel_vf_id = p_vf->relative_vf_id; DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%d] [rel %d] got FLR-ed\n", vfid, rel_vf_id); p_vf->state = VF_RESET; /* No need to lock here, since pending_flr should * only change here and before ACKing MFw. Since * MFW will not trigger an additional attention for * VF flr until ACKs, we're safe. */ p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64); found = true; } } return found; } static int qed_iov_get_link(struct qed_hwfn *p_hwfn, u16 vfid, struct qed_mcp_link_params *p_params, struct qed_mcp_link_state *p_link, struct qed_mcp_link_capabilities *p_caps) { struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, vfid, false); struct qed_bulletin_content *p_bulletin; if (!p_vf) return -EINVAL; p_bulletin = p_vf->bulletin.p_virt; if (p_params) __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin); if (p_link) __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin); if (p_caps) __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin); return 0; } static int qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_vf_info *p_vf) { struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt; struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; struct vfpf_bulletin_update_mac_tlv *p_req; u8 status = PFVF_STATUS_SUCCESS; int rc = 0; if (!p_vf->p_vf_info.is_trusted_configured) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Blocking bulletin update request from untrusted VF[%d]\n", p_vf->abs_vf_id); status = PFVF_STATUS_NOT_SUPPORTED; rc = -EINVAL; goto send_status; } p_req = &mbx->req_virt->bulletin_update_mac; ether_addr_copy(p_bulletin->mac, p_req->mac); DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Updated bulletin of VF[%d] with requested MAC[%pM]\n", p_vf->abs_vf_id, p_req->mac); send_status: qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_BULLETIN_UPDATE_MAC, sizeof(struct pfvf_def_resp_tlv), status); return rc; } static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, int vfid) { struct qed_iov_vf_mbx *mbx; struct qed_vf_info *p_vf; p_vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); if (!p_vf) return; mbx = &p_vf->vf_mbx; /* qed_iov_process_mbx_request */ if (!mbx->b_pending_msg) { DP_NOTICE(p_hwfn, "VF[%02x]: Trying to process mailbox message when none is pending\n", p_vf->abs_vf_id); return; } mbx->b_pending_msg = false; mbx->first_tlv = mbx->req_virt->first_tlv; DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%02x]: Processing mailbox message [type %04x]\n", p_vf->abs_vf_id, mbx->first_tlv.tl.type); /* check if tlv type is known */ if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) && !p_vf->b_malicious) { switch (mbx->first_tlv.tl.type) { case CHANNEL_TLV_ACQUIRE: qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_VPORT_START: qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_VPORT_TEARDOWN: qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_START_RXQ: qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_START_TXQ: qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_STOP_RXQS: qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_STOP_TXQS: qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_UPDATE_RXQ: qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_VPORT_UPDATE: qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_UCAST_FILTER: qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_CLOSE: qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_INT_CLEANUP: qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_RELEASE: qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_UPDATE_TUNN_PARAM: qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_COALESCE_UPDATE: qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_COALESCE_READ: qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf); break; case CHANNEL_TLV_BULLETIN_UPDATE_MAC: qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf); break; } } else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n", p_vf->abs_vf_id, mbx->first_tlv.tl.type); qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, mbx->first_tlv.tl.type, sizeof(struct pfvf_def_resp_tlv), PFVF_STATUS_MALICIOUS); } else { /* unknown TLV - this may belong to a VF driver from the future * - a version written after this PF driver was written, which * supports features unknown as of yet. Too bad since we don't * support them. Or this may be because someone wrote a crappy * VF driver and is sending garbage over the channel. */ DP_NOTICE(p_hwfn, "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n", p_vf->abs_vf_id, mbx->first_tlv.tl.type, mbx->first_tlv.tl.length, mbx->first_tlv.padding, mbx->first_tlv.reply_address); /* Try replying in case reply address matches the acquisition's * posted address. */ if (p_vf->acquire.first_tlv.reply_address && (mbx->first_tlv.reply_address == p_vf->acquire.first_tlv.reply_address)) { qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, mbx->first_tlv.tl.type, sizeof(struct pfvf_def_resp_tlv), PFVF_STATUS_NOT_SUPPORTED); } else { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "VF[%02x]: Can't respond to TLV - no valid reply address\n", p_vf->abs_vf_id); } } } static void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events) { int i; memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH); qed_for_each_vf(p_hwfn, i) { struct qed_vf_info *p_vf; p_vf = &p_hwfn->pf_iov_info->vfs_array[i]; if (p_vf->vf_mbx.b_pending_msg) events[i / 64] |= 1ULL << (i % 64); } } static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn, u16 abs_vfid) { u8 min = (u8)p_hwfn->cdev->p_iov_info->first_vf_in_pf; if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n", abs_vfid); return NULL; } return &p_hwfn->pf_iov_info->vfs_array[(u8)abs_vfid - min]; } static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn, u16 abs_vfid, struct regpair *vf_msg) { struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn, abs_vfid); if (!p_vf) return 0; /* List the physical address of the request so that handler * could later on copy the message from it. */ p_vf->vf_mbx.pending_req = HILO_64(vf_msg->hi, vf_msg->lo); /* Mark the event and schedule the workqueue */ p_vf->vf_mbx.b_pending_msg = true; qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG); return 0; } void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn, struct fw_err_data *p_data) { struct qed_vf_info *p_vf; p_vf = qed_sriov_get_vf_from_absid(p_hwfn, qed_vf_from_entity_id (p_data->entity_id)); if (!p_vf) return; if (!p_vf->b_malicious) { DP_NOTICE(p_hwfn, "VF [%d] - Malicious behavior [%02x]\n", p_vf->abs_vf_id, p_data->err_id); p_vf->b_malicious = true; } else { DP_INFO(p_hwfn, "VF [%d] - Malicious behavior [%02x]\n", p_vf->abs_vf_id, p_data->err_id); } } int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, u8 opcode, __le16 echo, union event_ring_data *data, u8 fw_return_code) { switch (opcode) { case COMMON_EVENT_VF_PF_CHANNEL: return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo), &data->vf_pf_channel.msg_addr); default: DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n", opcode); return -EINVAL; } } u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id) { struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; u16 i; if (!p_iov) goto out; for (i = rel_vf_id; i < p_iov->total_vfs; i++) if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false)) return i; out: return MAX_NUM_VFS; } static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt, int vfid) { struct qed_dmae_params params; struct qed_vf_info *vf_info; vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); if (!vf_info) return -EINVAL; memset(¶ms, 0, sizeof(params)); SET_FIELD(params.flags, QED_DMAE_PARAMS_SRC_VF_VALID, 0x1); SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 0x1); params.src_vfid = vf_info->abs_vf_id; if (qed_dmae_host2host(p_hwfn, ptt, vf_info->vf_mbx.pending_req, vf_info->vf_mbx.req_phys, sizeof(union vfpf_tlvs) / 4, ¶ms)) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Failed to copy message from VF 0x%02x\n", vfid); return -EIO; } return 0; } static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid) { struct qed_vf_info *vf_info; u64 feature; vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); if (!vf_info) { DP_NOTICE(p_hwfn->cdev, "Can not set forced MAC, invalid vfid [%d]\n", vfid); return; } if (vf_info->b_malicious) { DP_NOTICE(p_hwfn->cdev, "Can't set forced MAC to malicious VF [%d]\n", vfid); return; } if (vf_info->p_vf_info.is_trusted_configured) { feature = BIT(VFPF_BULLETIN_MAC_ADDR); /* Trust mode will disable Forced MAC */ vf_info->bulletin.p_virt->valid_bitmap &= ~BIT(MAC_ADDR_FORCED); } else { feature = BIT(MAC_ADDR_FORCED); /* Forced MAC will disable MAC_ADDR */ vf_info->bulletin.p_virt->valid_bitmap &= ~BIT(VFPF_BULLETIN_MAC_ADDR); } memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN); vf_info->bulletin.p_virt->valid_bitmap |= feature; qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); } static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid) { struct qed_vf_info *vf_info; u64 feature; vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); if (!vf_info) { DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n", vfid); return -EINVAL; } if (vf_info->b_malicious) { DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n", vfid); return -EINVAL; } if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Can not set MAC, Forced MAC is configured\n"); return -EINVAL; } feature = BIT(VFPF_BULLETIN_MAC_ADDR); ether_addr_copy(vf_info->bulletin.p_virt->mac, mac); vf_info->bulletin.p_virt->valid_bitmap |= feature; if (vf_info->p_vf_info.is_trusted_configured) qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); return 0; } static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn, u16 pvid, int vfid) { struct qed_vf_info *vf_info; u64 feature; vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); if (!vf_info) { DP_NOTICE(p_hwfn->cdev, "Can not set forced MAC, invalid vfid [%d]\n", vfid); return; } if (vf_info->b_malicious) { DP_NOTICE(p_hwfn->cdev, "Can't set forced vlan to malicious VF [%d]\n", vfid); return; } feature = 1 << VLAN_ADDR_FORCED; vf_info->bulletin.p_virt->pvid = pvid; if (pvid) vf_info->bulletin.p_virt->valid_bitmap |= feature; else vf_info->bulletin.p_virt->valid_bitmap &= ~feature; qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); } void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn, int vfid, u16 vxlan_port, u16 geneve_port) { struct qed_vf_info *vf_info; vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); if (!vf_info) { DP_NOTICE(p_hwfn->cdev, "Can not set udp ports, invalid vfid [%d]\n", vfid); return; } if (vf_info->b_malicious) { DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Can not set udp ports to malicious VF [%d]\n", vfid); return; } vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port; vf_info->bulletin.p_virt->geneve_udp_port = geneve_port; } static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid) { struct qed_vf_info *p_vf_info; p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); if (!p_vf_info) return false; return !!p_vf_info->vport_instance; } static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid) { struct qed_vf_info *p_vf_info; p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); if (!p_vf_info) return true; return p_vf_info->state == VF_STOPPED; } static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid) { struct qed_vf_info *vf_info; vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); if (!vf_info) return false; return vf_info->spoof_chk; } static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val) { struct qed_vf_info *vf; int rc = -EINVAL; if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { DP_NOTICE(p_hwfn, "SR-IOV sanity check failed, can't set spoofchk\n"); goto out; } vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); if (!vf) goto out; if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) { /* After VF VPORT start PF will configure spoof check */ vf->req_spoofchk_val = val; rc = 0; goto out; } rc = __qed_iov_spoofchk_set(p_hwfn, vf, val); out: return rc; } static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id) { struct qed_vf_info *p_vf; p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); if (!p_vf || !p_vf->bulletin.p_virt) return NULL; if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VFPF_BULLETIN_MAC_ADDR))) return NULL; return p_vf->bulletin.p_virt->mac; } static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id) { struct qed_vf_info *p_vf; p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); if (!p_vf || !p_vf->bulletin.p_virt) return NULL; if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) return NULL; return p_vf->bulletin.p_virt->mac; } static u16 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id) { struct qed_vf_info *p_vf; p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); if (!p_vf || !p_vf->bulletin.p_virt) return 0; if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))) return 0; return p_vf->bulletin.p_virt->pvid; } static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, int vfid, int val) { struct qed_vf_info *vf; u8 abs_vp_id = 0; u16 rl_id; int rc; vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); if (!vf) return -EINVAL; rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id); if (rc) return rc; rl_id = abs_vp_id; /* The "rl_id" is set as the "vport_id" */ return qed_init_global_rl(p_hwfn, p_ptt, rl_id, (u32)val, QM_RL_TYPE_NORMAL); } static int qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate) { struct qed_vf_info *vf; u8 vport_id; int i; for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { DP_NOTICE(p_hwfn, "SR-IOV sanity check failed, can't set min rate\n"); return -EINVAL; } } vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true); if (!vf) return -EINVAL; vport_id = vf->vport_id; return qed_configure_vport_wfq(cdev, vport_id, rate); } static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid) { struct qed_wfq_data *vf_vp_wfq; struct qed_vf_info *vf_info; vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); if (!vf_info) return 0; vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id]; if (vf_vp_wfq->configured) return vf_vp_wfq->min_speed; else return 0; } /** * qed_schedule_iov - schedules IOV task for VF and PF * @hwfn: hardware function pointer * @flag: IOV flag for VF/PF */ void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag) { /* Memory barrier for setting atomic bit */ smp_mb__before_atomic(); set_bit(flag, &hwfn->iov_task_flags); /* Memory barrier after setting atomic bit */ smp_mb__after_atomic(); DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0); } void qed_vf_start_iov_wq(struct qed_dev *cdev) { int i; for_each_hwfn(cdev, i) queue_delayed_work(cdev->hwfns[i].iov_wq, &cdev->hwfns[i].iov_task, 0); } int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled) { int i, j; for_each_hwfn(cdev, i) if (cdev->hwfns[i].iov_wq) flush_workqueue(cdev->hwfns[i].iov_wq); /* Mark VFs for disablement */ qed_iov_set_vfs_to_disable(cdev, true); if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled) pci_disable_sriov(cdev->pdev); if (cdev->recov_in_prog) { DP_VERBOSE(cdev, QED_MSG_IOV, "Skip SRIOV disable operations in the device since a recovery is in progress\n"); goto out; } for_each_hwfn(cdev, i) { struct qed_hwfn *hwfn = &cdev->hwfns[i]; struct qed_ptt *ptt = qed_ptt_acquire(hwfn); /* Failure to acquire the ptt in 100g creates an odd error * where the first engine has already relased IOV. */ if (!ptt) { DP_ERR(hwfn, "Failed to acquire ptt\n"); return -EBUSY; } /* Clean WFQ db and configure equal weight for all vports */ qed_clean_wfq_db(hwfn, ptt); qed_for_each_vf(hwfn, j) { int k; if (!qed_iov_is_valid_vfid(hwfn, j, true, false)) continue; /* Wait until VF is disabled before releasing */ for (k = 0; k < 100; k++) { if (!qed_iov_is_vf_stopped(hwfn, j)) msleep(20); else break; } if (k < 100) qed_iov_release_hw_for_vf(&cdev->hwfns[i], ptt, j); else DP_ERR(hwfn, "Timeout waiting for VF's FLR to end\n"); } qed_ptt_release(hwfn, ptt); } out: qed_iov_set_vfs_to_disable(cdev, false); return 0; } static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn, u16 vfid, struct qed_iov_vf_init_params *params) { u16 base, i; /* Since we have an equal resource distribution per-VF, and we assume * PF has acquired the QED_PF_L2_QUE first queues, we start setting * sequentially from there. */ base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues; params->rel_vf_id = vfid; for (i = 0; i < params->num_queues; i++) { params->req_rx_queue[i] = base + i; params->req_tx_queue[i] = base + i; } } static int qed_sriov_enable(struct qed_dev *cdev, int num) { struct qed_iov_vf_init_params params; struct qed_hwfn *hwfn; struct qed_ptt *ptt; int i, j, rc; if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) { DP_NOTICE(cdev, "Can start at most %d VFs\n", RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1); return -EINVAL; } memset(¶ms, 0, sizeof(params)); /* Initialize HW for VF access */ for_each_hwfn(cdev, j) { hwfn = &cdev->hwfns[j]; ptt = qed_ptt_acquire(hwfn); /* Make sure not to use more than 16 queues per VF */ params.num_queues = min_t(int, FEAT_NUM(hwfn, QED_VF_L2_QUE) / num, 16); if (!ptt) { DP_ERR(hwfn, "Failed to acquire ptt\n"); rc = -EBUSY; goto err; } for (i = 0; i < num; i++) { if (!qed_iov_is_valid_vfid(hwfn, i, false, true)) continue; qed_sriov_enable_qid_config(hwfn, i, ¶ms); rc = qed_iov_init_hw_for_vf(hwfn, ptt, ¶ms); if (rc) { DP_ERR(cdev, "Failed to enable VF[%d]\n", i); qed_ptt_release(hwfn, ptt); goto err; } } qed_ptt_release(hwfn, ptt); } /* Enable SRIOV PCIe functions */ rc = pci_enable_sriov(cdev->pdev, num); if (rc) { DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc); goto err; } hwfn = QED_LEADING_HWFN(cdev); ptt = qed_ptt_acquire(hwfn); if (!ptt) { DP_ERR(hwfn, "Failed to acquire ptt\n"); rc = -EBUSY; goto err; } rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB); if (rc) DP_INFO(cdev, "Failed to update eswitch mode\n"); qed_ptt_release(hwfn, ptt); return num; err: qed_sriov_disable(cdev, false); return rc; } static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param) { if (!IS_QED_SRIOV(cdev)) { DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n"); return -EOPNOTSUPP; } if (num_vfs_param) return qed_sriov_enable(cdev, num_vfs_param); else return qed_sriov_disable(cdev, true); } static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid) { int i; if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { DP_VERBOSE(cdev, QED_MSG_IOV, "Cannot set a VF MAC; Sriov is not enabled\n"); return -EINVAL; } if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { DP_VERBOSE(cdev, QED_MSG_IOV, "Cannot set VF[%d] MAC (VF is not active)\n", vfid); return -EINVAL; } for_each_hwfn(cdev, i) { struct qed_hwfn *hwfn = &cdev->hwfns[i]; struct qed_public_vf_info *vf_info; vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); if (!vf_info) continue; /* Set the MAC, and schedule the IOV task */ if (vf_info->is_trusted_configured) ether_addr_copy(vf_info->mac, mac); else ether_addr_copy(vf_info->forced_mac, mac); qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); } return 0; } static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid) { int i; if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { DP_VERBOSE(cdev, QED_MSG_IOV, "Cannot set a VF MAC; Sriov is not enabled\n"); return -EINVAL; } if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { DP_VERBOSE(cdev, QED_MSG_IOV, "Cannot set VF[%d] MAC (VF is not active)\n", vfid); return -EINVAL; } for_each_hwfn(cdev, i) { struct qed_hwfn *hwfn = &cdev->hwfns[i]; struct qed_public_vf_info *vf_info; vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); if (!vf_info) continue; /* Set the forced vlan, and schedule the IOV task */ vf_info->forced_vlan = vid; qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); } return 0; } static int qed_get_vf_config(struct qed_dev *cdev, int vf_id, struct ifla_vf_info *ivi) { struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); struct qed_public_vf_info *vf_info; struct qed_mcp_link_state link; u32 tx_rate; int ret; /* Sanitize request */ if (IS_VF(cdev)) return -EINVAL; if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) { DP_VERBOSE(cdev, QED_MSG_IOV, "VF index [%d] isn't active\n", vf_id); return -EINVAL; } vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); ret = qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL); if (ret) return ret; /* Fill information about VF */ ivi->vf = vf_id; if (is_valid_ether_addr(vf_info->forced_mac)) ether_addr_copy(ivi->mac, vf_info->forced_mac); else ether_addr_copy(ivi->mac, vf_info->mac); ivi->vlan = vf_info->forced_vlan; ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id); ivi->linkstate = vf_info->link_state; tx_rate = vf_info->tx_rate; ivi->max_tx_rate = tx_rate ? tx_rate : link.speed; ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id); ivi->trusted = vf_info->is_trusted_request; return 0; } void qed_inform_vf_link_state(struct qed_hwfn *hwfn) { struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev); struct qed_mcp_link_capabilities caps; struct qed_mcp_link_params params; struct qed_mcp_link_state link; int i; if (!hwfn->pf_iov_info) return; /* Update bulletin of all future possible VFs with link configuration */ for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) { struct qed_public_vf_info *vf_info; vf_info = qed_iov_get_public_vf_info(hwfn, i, false); if (!vf_info) continue; /* Only hwfn0 is actually interested in the link speed. * But since only it would receive an MFW indication of link, * need to take configuration from it - otherwise things like * rate limiting for hwfn1 VF would not work. */ memcpy(¶ms, qed_mcp_get_link_params(lead_hwfn), sizeof(params)); memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link)); memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn), sizeof(caps)); /* Modify link according to the VF's configured link state */ switch (vf_info->link_state) { case IFLA_VF_LINK_STATE_DISABLE: link.link_up = false; break; case IFLA_VF_LINK_STATE_ENABLE: link.link_up = true; /* Set speed according to maximum supported by HW. * that is 40G for regular devices and 100G for CMT * mode devices. */ link.speed = (hwfn->cdev->num_hwfns > 1) ? 100000 : 40000; break; default: /* In auto mode pass PF link image to VF */ break; } if (link.link_up && vf_info->tx_rate) { struct qed_ptt *ptt; int rate; rate = min_t(int, vf_info->tx_rate, link.speed); ptt = qed_ptt_acquire(hwfn); if (!ptt) { DP_NOTICE(hwfn, "Failed to acquire PTT\n"); return; } if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) { vf_info->tx_rate = rate; link.speed = rate; } qed_ptt_release(hwfn, ptt); } qed_iov_set_link(hwfn, i, ¶ms, &link, &caps); } qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); } static int qed_set_vf_link_state(struct qed_dev *cdev, int vf_id, int link_state) { int i; /* Sanitize request */ if (IS_VF(cdev)) return -EINVAL; if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) { DP_VERBOSE(cdev, QED_MSG_IOV, "VF index [%d] isn't active\n", vf_id); return -EINVAL; } /* Handle configuration of link state */ for_each_hwfn(cdev, i) { struct qed_hwfn *hwfn = &cdev->hwfns[i]; struct qed_public_vf_info *vf; vf = qed_iov_get_public_vf_info(hwfn, vf_id, true); if (!vf) continue; if (vf->link_state == link_state) continue; vf->link_state = link_state; qed_inform_vf_link_state(&cdev->hwfns[i]); } return 0; } static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val) { int i, rc = -EINVAL; for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; rc = qed_iov_spoofchk_set(p_hwfn, vfid, val); if (rc) break; } return rc; } static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate) { int i; for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; struct qed_public_vf_info *vf; if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { DP_NOTICE(p_hwfn, "SR-IOV sanity check failed, can't set tx rate\n"); return -EINVAL; } vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true); vf->tx_rate = rate; qed_inform_vf_link_state(p_hwfn); } return 0; } static int qed_set_vf_rate(struct qed_dev *cdev, int vfid, u32 min_rate, u32 max_rate) { int rc_min = 0, rc_max = 0; if (max_rate) rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate); if (min_rate) rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate); if (rc_max | rc_min) return -EINVAL; return 0; } static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust) { int i; for_each_hwfn(cdev, i) { struct qed_hwfn *hwfn = &cdev->hwfns[i]; struct qed_public_vf_info *vf; if (!qed_iov_pf_sanity_check(hwfn, vfid)) { DP_NOTICE(hwfn, "SR-IOV sanity check failed, can't set trust\n"); return -EINVAL; } vf = qed_iov_get_public_vf_info(hwfn, vfid, true); if (vf->is_trusted_request == trust) return 0; vf->is_trusted_request = trust; qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG); } return 0; } static void qed_handle_vf_msg(struct qed_hwfn *hwfn) { u64 events[QED_VF_ARRAY_LENGTH]; struct qed_ptt *ptt; int i; ptt = qed_ptt_acquire(hwfn); if (!ptt) { DP_VERBOSE(hwfn, QED_MSG_IOV, "Can't acquire PTT; re-scheduling\n"); qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG); return; } qed_iov_pf_get_pending_events(hwfn, events); DP_VERBOSE(hwfn, QED_MSG_IOV, "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n", events[0], events[1], events[2]); qed_for_each_vf(hwfn, i) { /* Skip VFs with no pending messages */ if (!(events[i / 64] & (1ULL << (i % 64)))) continue; DP_VERBOSE(hwfn, QED_MSG_IOV, "Handling VF message from VF 0x%02x [Abs 0x%02x]\n", i, hwfn->cdev->p_iov_info->first_vf_in_pf + i); /* Copy VF's message to PF's request buffer for that VF */ if (qed_iov_copy_vf_msg(hwfn, ptt, i)) continue; qed_iov_process_mbx_req(hwfn, ptt, i); } qed_ptt_release(hwfn, ptt); } static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn, u8 *mac, struct qed_public_vf_info *info) { if (info->is_trusted_configured) { if (is_valid_ether_addr(info->mac) && (!mac || !ether_addr_equal(mac, info->mac))) return true; } else { if (is_valid_ether_addr(info->forced_mac) && (!mac || !ether_addr_equal(mac, info->forced_mac))) return true; } return false; } static void qed_set_bulletin_mac(struct qed_hwfn *hwfn, struct qed_public_vf_info *info, int vfid) { if (info->is_trusted_configured) qed_iov_bulletin_set_mac(hwfn, info->mac, vfid); else qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid); } static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn) { int i; qed_for_each_vf(hwfn, i) { struct qed_public_vf_info *info; bool update = false; u8 *mac; info = qed_iov_get_public_vf_info(hwfn, i, true); if (!info) continue; /* Update data on bulletin board */ if (info->is_trusted_configured) mac = qed_iov_bulletin_get_mac(hwfn, i); else mac = qed_iov_bulletin_get_forced_mac(hwfn, i); if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) { DP_VERBOSE(hwfn, QED_MSG_IOV, "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n", i, hwfn->cdev->p_iov_info->first_vf_in_pf + i); /* Update bulletin board with MAC */ qed_set_bulletin_mac(hwfn, info, i); update = true; } if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^ info->forced_vlan) { DP_VERBOSE(hwfn, QED_MSG_IOV, "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n", info->forced_vlan, i, hwfn->cdev->p_iov_info->first_vf_in_pf + i); qed_iov_bulletin_set_forced_vlan(hwfn, info->forced_vlan, i); update = true; } if (update) qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); } } static void qed_handle_bulletin_post(struct qed_hwfn *hwfn) { struct qed_ptt *ptt; int i; ptt = qed_ptt_acquire(hwfn); if (!ptt) { DP_NOTICE(hwfn, "Failed allocating a ptt entry\n"); qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); return; } qed_for_each_vf(hwfn, i) qed_iov_post_vf_bulletin(hwfn, i, ptt); qed_ptt_release(hwfn, ptt); } static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id) { struct qed_public_vf_info *vf_info; struct qed_vf_info *vf; u8 *force_mac; int i; vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); vf = qed_iov_get_vf_info(hwfn, vf_id, true); if (!vf_info || !vf) return; /* Force MAC converted to generic MAC in case of VF trust on */ if (vf_info->is_trusted_configured && (vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) { force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id); if (force_mac) { /* Clear existing shadow copy of MAC to have a clean * slate. */ for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { if (ether_addr_equal(vf->shadow_config.macs[i], vf_info->mac)) { eth_zero_addr(vf->shadow_config.macs[i]); DP_VERBOSE(hwfn, QED_MSG_IOV, "Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n", vf_info->mac, vf_id); break; } } ether_addr_copy(vf_info->mac, force_mac); eth_zero_addr(vf_info->forced_mac); vf->bulletin.p_virt->valid_bitmap &= ~BIT(MAC_ADDR_FORCED); qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); } } /* Update shadow copy with VF MAC when trust mode is turned off */ if (!vf_info->is_trusted_configured) { u8 empty_mac[ETH_ALEN]; eth_zero_addr(empty_mac); for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { if (ether_addr_equal(vf->shadow_config.macs[i], empty_mac)) { ether_addr_copy(vf->shadow_config.macs[i], vf_info->mac); DP_VERBOSE(hwfn, QED_MSG_IOV, "Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n", vf_info->mac, vf_id); break; } } /* Clear bulletin when trust mode is turned off, * to have a clean slate for next (normal) operations. */ qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id); qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); } } static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn) { struct qed_sp_vport_update_params params; struct qed_filter_accept_flags *flags; struct qed_public_vf_info *vf_info; struct qed_vf_info *vf; u8 mask; int i; mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; flags = ¶ms.accept_flags; qed_for_each_vf(hwfn, i) { /* Need to make sure current requested configuration didn't * flip so that we'll end up configuring something that's not * needed. */ vf_info = qed_iov_get_public_vf_info(hwfn, i, true); if (vf_info->is_trusted_configured == vf_info->is_trusted_request) continue; vf_info->is_trusted_configured = vf_info->is_trusted_request; /* Handle forced MAC mode */ qed_update_mac_for_vf_trust_change(hwfn, i); /* Validate that the VF has a configured vport */ vf = qed_iov_get_vf_info(hwfn, i, true); if (!vf || !vf->vport_instance) continue; memset(¶ms, 0, sizeof(params)); params.opaque_fid = vf->opaque_fid; params.vport_id = vf->vport_id; params.update_ctl_frame_check = 1; params.mac_chk_en = !vf_info->is_trusted_configured; params.update_accept_any_vlan_flg = 0; if (vf_info->accept_any_vlan && vf_info->forced_vlan) { params.update_accept_any_vlan_flg = 1; params.accept_any_vlan = vf_info->accept_any_vlan; } if (vf_info->rx_accept_mode & mask) { flags->update_rx_mode_config = 1; flags->rx_accept_filter = vf_info->rx_accept_mode; } if (vf_info->tx_accept_mode & mask) { flags->update_tx_mode_config = 1; flags->tx_accept_filter = vf_info->tx_accept_mode; } /* Remove if needed; Otherwise this would set the mask */ if (!vf_info->is_trusted_configured) { flags->rx_accept_filter &= ~mask; flags->tx_accept_filter &= ~mask; params.accept_any_vlan = false; } if (flags->update_rx_mode_config || flags->update_tx_mode_config || params.update_ctl_frame_check || params.update_accept_any_vlan_flg) { DP_VERBOSE(hwfn, QED_MSG_IOV, "vport update config for %s VF[abs 0x%x rel 0x%x]\n", vf_info->is_trusted_configured ? "trusted" : "untrusted", vf->abs_vf_id, vf->relative_vf_id); qed_sp_vport_update(hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); } } } static void qed_iov_pf_task(struct work_struct *work) { struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn, iov_task.work); int rc; if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags)) return; if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) { struct qed_ptt *ptt = qed_ptt_acquire(hwfn); if (!ptt) { qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); return; } rc = qed_iov_vf_flr_cleanup(hwfn, ptt); if (rc) qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); qed_ptt_release(hwfn, ptt); } if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags)) qed_handle_vf_msg(hwfn); if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG, &hwfn->iov_task_flags)) qed_handle_pf_set_vf_unicast(hwfn); if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG, &hwfn->iov_task_flags)) qed_handle_bulletin_post(hwfn); if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags)) qed_iov_handle_trust_change(hwfn); } void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first) { int i; for_each_hwfn(cdev, i) { if (!cdev->hwfns[i].iov_wq) continue; if (schedule_first) { qed_schedule_iov(&cdev->hwfns[i], QED_IOV_WQ_STOP_WQ_FLAG); cancel_delayed_work_sync(&cdev->hwfns[i].iov_task); } destroy_workqueue(cdev->hwfns[i].iov_wq); } } int qed_iov_wq_start(struct qed_dev *cdev) { char name[NAME_SIZE]; int i; for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; /* PFs needs a dedicated workqueue only if they support IOV. * VFs always require one. */ if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn)) continue; snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x", cdev->pdev->bus->number, PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id); p_hwfn->iov_wq = create_singlethread_workqueue(name); if (!p_hwfn->iov_wq) { DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n"); return -ENOMEM; } if (IS_PF(cdev)) INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task); else INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task); } return 0; } const struct qed_iov_hv_ops qed_iov_ops_pass = { .configure = &qed_sriov_configure, .set_mac = &qed_sriov_pf_set_mac, .set_vlan = &qed_sriov_pf_set_vlan, .get_config = &qed_get_vf_config, .set_link_state = &qed_set_vf_link_state, .set_spoof = &qed_spoof_configure, .set_rate = &qed_set_vf_rate, .set_trust = &qed_set_vf_trust, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1