Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Edward Cree | 3236 | 70.49% | 3 | 4.84% |
Ben Hutchings | 839 | 18.27% | 31 | 50.00% |
Daniel Pieczko | 233 | 5.08% | 2 | 3.23% |
Jon Cooper | 87 | 1.90% | 4 | 6.45% |
Steve Hodgson | 49 | 1.07% | 4 | 6.45% |
Bert Kenward | 44 | 0.96% | 2 | 3.23% |
Martin Habets | 24 | 0.52% | 1 | 1.61% |
Robin Murphy | 24 | 0.52% | 1 | 1.61% |
Jiasheng Jiang | 14 | 0.30% | 1 | 1.61% |
Kees Cook | 12 | 0.26% | 1 | 1.61% |
Paul Gortmaker | 6 | 0.13% | 2 | 3.23% |
FUJITA Tomonori | 4 | 0.09% | 1 | 1.61% |
Stuart Hodgson | 3 | 0.07% | 1 | 1.61% |
Andrew Rybchenko | 3 | 0.07% | 1 | 1.61% |
Herbert Xu | 3 | 0.07% | 1 | 1.61% |
Jesse Brandeburg | 2 | 0.04% | 1 | 1.61% |
Thomas Meyer | 2 | 0.04% | 1 | 1.61% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.61% |
Linus Torvalds (pre-git) | 2 | 0.04% | 1 | 1.61% |
Linus Torvalds | 1 | 0.02% | 1 | 1.61% |
David Riddoch | 1 | 0.02% | 1 | 1.61% |
Total | 4591 | 62 |
// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2013 Solarflare Communications Inc. */ #include <linux/socket.h> #include <linux/in.h> #include <linux/slab.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/prefetch.h> #include <linux/moduleparam.h> #include <linux/iommu.h> #include <net/ip.h> #include <net/checksum.h> #include "net_driver.h" #include "efx.h" #include "filter.h" #include "nic.h" #include "selftest.h" #include "workarounds.h" /* Preferred number of descriptors to fill at once */ #define EF4_RX_PREFERRED_BATCH 8U /* Number of RX buffers to recycle pages for. When creating the RX page recycle * ring, this number is divided by the number of buffers per page to calculate * the number of pages to store in the RX page recycle ring. */ #define EF4_RECYCLE_RING_SIZE_IOMMU 4096 #define EF4_RECYCLE_RING_SIZE_NOIOMMU (2 * EF4_RX_PREFERRED_BATCH) /* Size of buffer allocated for skb header area. */ #define EF4_SKB_HEADERS 128u /* This is the percentage fill level below which new RX descriptors * will be added to the RX descriptor ring. */ static unsigned int rx_refill_threshold; /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */ #define EF4_RX_MAX_FRAGS DIV_ROUND_UP(EF4_MAX_FRAME_LEN(EF4_MAX_MTU), \ EF4_RX_USR_BUF_SIZE) /* * RX maximum head room required. * * This must be at least 1 to prevent overflow, plus one packet-worth * to allow pipelined receives. */ #define EF4_RXD_HEAD_ROOM (1 + EF4_RX_MAX_FRAGS) static inline u8 *ef4_rx_buf_va(struct ef4_rx_buffer *buf) { return page_address(buf->page) + buf->page_offset; } static inline u32 ef4_rx_buf_hash(struct ef4_nic *efx, const u8 *eh) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset)); #else const u8 *data = eh + efx->rx_packet_hash_offset; return (u32)data[0] | (u32)data[1] << 8 | (u32)data[2] << 16 | (u32)data[3] << 24; #endif } static inline struct ef4_rx_buffer * ef4_rx_buf_next(struct ef4_rx_queue *rx_queue, struct ef4_rx_buffer *rx_buf) { if (unlikely(rx_buf == ef4_rx_buffer(rx_queue, rx_queue->ptr_mask))) return ef4_rx_buffer(rx_queue, 0); else return rx_buf + 1; } static inline void ef4_sync_rx_buffer(struct ef4_nic *efx, struct ef4_rx_buffer *rx_buf, unsigned int len) { dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len, DMA_FROM_DEVICE); } void ef4_rx_config_page_split(struct ef4_nic *efx) { efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align, EF4_RX_BUF_ALIGNMENT); efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : ((PAGE_SIZE - sizeof(struct ef4_rx_page_state)) / efx->rx_page_buf_step); efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / efx->rx_bufs_per_page; efx->rx_pages_per_batch = DIV_ROUND_UP(EF4_RX_PREFERRED_BATCH, efx->rx_bufs_per_page); } /* Check the RX page recycle ring for a page that can be reused. */ static struct page *ef4_reuse_page(struct ef4_rx_queue *rx_queue) { struct ef4_nic *efx = rx_queue->efx; struct page *page; struct ef4_rx_page_state *state; unsigned index; if (unlikely(!rx_queue->page_ring)) return NULL; index = rx_queue->page_remove & rx_queue->page_ptr_mask; page = rx_queue->page_ring[index]; if (page == NULL) return NULL; rx_queue->page_ring[index] = NULL; /* page_remove cannot exceed page_add. */ if (rx_queue->page_remove != rx_queue->page_add) ++rx_queue->page_remove; /* If page_count is 1 then we hold the only reference to this page. */ if (page_count(page) == 1) { ++rx_queue->page_recycle_count; return page; } else { state = page_address(page); dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, PAGE_SIZE << efx->rx_buffer_order, DMA_FROM_DEVICE); put_page(page); ++rx_queue->page_recycle_failed; } return NULL; } /** * ef4_init_rx_buffers - create EF4_RX_BATCH page-based RX buffers * * @rx_queue: Efx RX queue * @atomic: control memory allocation flags * * This allocates a batch of pages, maps them for DMA, and populates * struct ef4_rx_buffers for each one. Return a negative error code or * 0 on success. If a single page can be used for multiple buffers, * then the page will either be inserted fully, or not at all. */ static int ef4_init_rx_buffers(struct ef4_rx_queue *rx_queue, bool atomic) { struct ef4_nic *efx = rx_queue->efx; struct ef4_rx_buffer *rx_buf; struct page *page; unsigned int page_offset; struct ef4_rx_page_state *state; dma_addr_t dma_addr; unsigned index, count; count = 0; do { page = ef4_reuse_page(rx_queue); if (page == NULL) { page = alloc_pages(__GFP_COMP | (atomic ? GFP_ATOMIC : GFP_KERNEL), efx->rx_buffer_order); if (unlikely(page == NULL)) return -ENOMEM; dma_addr = dma_map_page(&efx->pci_dev->dev, page, 0, PAGE_SIZE << efx->rx_buffer_order, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&efx->pci_dev->dev, dma_addr))) { __free_pages(page, efx->rx_buffer_order); return -EIO; } state = page_address(page); state->dma_addr = dma_addr; } else { state = page_address(page); dma_addr = state->dma_addr; } dma_addr += sizeof(struct ef4_rx_page_state); page_offset = sizeof(struct ef4_rx_page_state); do { index = rx_queue->added_count & rx_queue->ptr_mask; rx_buf = ef4_rx_buffer(rx_queue, index); rx_buf->dma_addr = dma_addr + efx->rx_ip_align; rx_buf->page = page; rx_buf->page_offset = page_offset + efx->rx_ip_align; rx_buf->len = efx->rx_dma_len; rx_buf->flags = 0; ++rx_queue->added_count; get_page(page); dma_addr += efx->rx_page_buf_step; page_offset += efx->rx_page_buf_step; } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); rx_buf->flags = EF4_RX_BUF_LAST_IN_PAGE; } while (++count < efx->rx_pages_per_batch); return 0; } /* Unmap a DMA-mapped page. This function is only called for the final RX * buffer in a page. */ static void ef4_unmap_rx_buffer(struct ef4_nic *efx, struct ef4_rx_buffer *rx_buf) { struct page *page = rx_buf->page; if (page) { struct ef4_rx_page_state *state = page_address(page); dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, PAGE_SIZE << efx->rx_buffer_order, DMA_FROM_DEVICE); } } static void ef4_free_rx_buffers(struct ef4_rx_queue *rx_queue, struct ef4_rx_buffer *rx_buf, unsigned int num_bufs) { do { if (rx_buf->page) { put_page(rx_buf->page); rx_buf->page = NULL; } rx_buf = ef4_rx_buf_next(rx_queue, rx_buf); } while (--num_bufs); } /* Attempt to recycle the page if there is an RX recycle ring; the page can * only be added if this is the final RX buffer, to prevent pages being used in * the descriptor ring and appearing in the recycle ring simultaneously. */ static void ef4_recycle_rx_page(struct ef4_channel *channel, struct ef4_rx_buffer *rx_buf) { struct page *page = rx_buf->page; struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel); struct ef4_nic *efx = rx_queue->efx; unsigned index; /* Only recycle the page after processing the final buffer. */ if (!(rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE)) return; index = rx_queue->page_add & rx_queue->page_ptr_mask; if (rx_queue->page_ring[index] == NULL) { unsigned read_index = rx_queue->page_remove & rx_queue->page_ptr_mask; /* The next slot in the recycle ring is available, but * increment page_remove if the read pointer currently * points here. */ if (read_index == index) ++rx_queue->page_remove; rx_queue->page_ring[index] = page; ++rx_queue->page_add; return; } ++rx_queue->page_recycle_full; ef4_unmap_rx_buffer(efx, rx_buf); put_page(rx_buf->page); } static void ef4_fini_rx_buffer(struct ef4_rx_queue *rx_queue, struct ef4_rx_buffer *rx_buf) { /* Release the page reference we hold for the buffer. */ if (rx_buf->page) put_page(rx_buf->page); /* If this is the last buffer in a page, unmap and free it. */ if (rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE) { ef4_unmap_rx_buffer(rx_queue->efx, rx_buf); ef4_free_rx_buffers(rx_queue, rx_buf, 1); } rx_buf->page = NULL; } /* Recycle the pages that are used by buffers that have just been received. */ static void ef4_recycle_rx_pages(struct ef4_channel *channel, struct ef4_rx_buffer *rx_buf, unsigned int n_frags) { struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel); if (unlikely(!rx_queue->page_ring)) return; do { ef4_recycle_rx_page(channel, rx_buf); rx_buf = ef4_rx_buf_next(rx_queue, rx_buf); } while (--n_frags); } static void ef4_discard_rx_packet(struct ef4_channel *channel, struct ef4_rx_buffer *rx_buf, unsigned int n_frags) { struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel); ef4_recycle_rx_pages(channel, rx_buf, n_frags); ef4_free_rx_buffers(rx_queue, rx_buf, n_frags); } /** * ef4_fast_push_rx_descriptors - push new RX descriptors quickly * @rx_queue: RX descriptor queue * * This will aim to fill the RX descriptor queue up to * @rx_queue->@max_fill. If there is insufficient atomic * memory to do so, a slow fill will be scheduled. * @atomic: control memory allocation flags * * The caller must provide serialisation (none is used here). In practise, * this means this function must run from the NAPI handler, or be called * when NAPI is disabled. */ void ef4_fast_push_rx_descriptors(struct ef4_rx_queue *rx_queue, bool atomic) { struct ef4_nic *efx = rx_queue->efx; unsigned int fill_level, batch_size; int space, rc = 0; if (!rx_queue->refill_enabled) return; /* Calculate current fill level, and exit if we don't need to fill */ fill_level = (rx_queue->added_count - rx_queue->removed_count); EF4_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries); if (fill_level >= rx_queue->fast_fill_trigger) goto out; /* Record minimum fill level */ if (unlikely(fill_level < rx_queue->min_fill)) { if (fill_level) rx_queue->min_fill = fill_level; } batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; space = rx_queue->max_fill - fill_level; EF4_BUG_ON_PARANOID(space < batch_size); netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, "RX queue %d fast-filling descriptor ring from" " level %d to level %d\n", ef4_rx_queue_index(rx_queue), fill_level, rx_queue->max_fill); do { rc = ef4_init_rx_buffers(rx_queue, atomic); if (unlikely(rc)) { /* Ensure that we don't leave the rx queue empty */ if (rx_queue->added_count == rx_queue->removed_count) ef4_schedule_slow_fill(rx_queue); goto out; } } while ((space -= batch_size) >= batch_size); netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, "RX queue %d fast-filled descriptor ring " "to level %d\n", ef4_rx_queue_index(rx_queue), rx_queue->added_count - rx_queue->removed_count); out: if (rx_queue->notified_count != rx_queue->added_count) ef4_nic_notify_rx_desc(rx_queue); } void ef4_rx_slow_fill(struct timer_list *t) { struct ef4_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill); /* Post an event to cause NAPI to run and refill the queue */ ef4_nic_generate_fill_event(rx_queue); ++rx_queue->slow_fill_count; } static void ef4_rx_packet__check_len(struct ef4_rx_queue *rx_queue, struct ef4_rx_buffer *rx_buf, int len) { struct ef4_nic *efx = rx_queue->efx; unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; if (likely(len <= max_len)) return; /* The packet must be discarded, but this is only a fatal error * if the caller indicated it was */ rx_buf->flags |= EF4_RX_PKT_DISCARD; if ((len > rx_buf->len) && EF4_WORKAROUND_8071(efx)) { if (net_ratelimit()) netif_err(efx, rx_err, efx->net_dev, " RX queue %d seriously overlength " "RX event (0x%x > 0x%x+0x%x). Leaking\n", ef4_rx_queue_index(rx_queue), len, max_len, efx->type->rx_buffer_padding); ef4_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); } else { if (net_ratelimit()) netif_err(efx, rx_err, efx->net_dev, " RX queue %d overlength RX event " "(0x%x > 0x%x)\n", ef4_rx_queue_index(rx_queue), len, max_len); } ef4_rx_queue_channel(rx_queue)->n_rx_overlength++; } /* Pass a received packet up through GRO. GRO can handle pages * regardless of checksum state and skbs with a good checksum. */ static void ef4_rx_packet_gro(struct ef4_channel *channel, struct ef4_rx_buffer *rx_buf, unsigned int n_frags, u8 *eh) { struct napi_struct *napi = &channel->napi_str; struct ef4_nic *efx = channel->efx; struct sk_buff *skb; skb = napi_get_frags(napi); if (unlikely(!skb)) { struct ef4_rx_queue *rx_queue; rx_queue = ef4_channel_get_rx_queue(channel); ef4_free_rx_buffers(rx_queue, rx_buf, n_frags); return; } if (efx->net_dev->features & NETIF_F_RXHASH) skb_set_hash(skb, ef4_rx_buf_hash(efx, eh), PKT_HASH_TYPE_L3); skb->ip_summed = ((rx_buf->flags & EF4_RX_PKT_CSUMMED) ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE); for (;;) { skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, rx_buf->page_offset, rx_buf->len); rx_buf->page = NULL; skb->len += rx_buf->len; if (skb_shinfo(skb)->nr_frags == n_frags) break; rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf); } skb->data_len = skb->len; skb->truesize += n_frags * efx->rx_buffer_truesize; skb_record_rx_queue(skb, channel->rx_queue.core_index); napi_gro_frags(napi); } /* Allocate and construct an SKB around page fragments */ static struct sk_buff *ef4_rx_mk_skb(struct ef4_channel *channel, struct ef4_rx_buffer *rx_buf, unsigned int n_frags, u8 *eh, int hdr_len) { struct ef4_nic *efx = channel->efx; struct sk_buff *skb; /* Allocate an SKB to store the headers */ skb = netdev_alloc_skb(efx->net_dev, efx->rx_ip_align + efx->rx_prefix_size + hdr_len); if (unlikely(skb == NULL)) { atomic_inc(&efx->n_rx_noskb_drops); return NULL; } EF4_BUG_ON_PARANOID(rx_buf->len < hdr_len); memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size, efx->rx_prefix_size + hdr_len); skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size); __skb_put(skb, hdr_len); /* Append the remaining page(s) onto the frag list */ if (rx_buf->len > hdr_len) { rx_buf->page_offset += hdr_len; rx_buf->len -= hdr_len; for (;;) { skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, rx_buf->page_offset, rx_buf->len); rx_buf->page = NULL; skb->len += rx_buf->len; skb->data_len += rx_buf->len; if (skb_shinfo(skb)->nr_frags == n_frags) break; rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf); } } else { __free_pages(rx_buf->page, efx->rx_buffer_order); rx_buf->page = NULL; n_frags = 0; } skb->truesize += n_frags * efx->rx_buffer_truesize; /* Move past the ethernet header */ skb->protocol = eth_type_trans(skb, efx->net_dev); skb_mark_napi_id(skb, &channel->napi_str); return skb; } void ef4_rx_packet(struct ef4_rx_queue *rx_queue, unsigned int index, unsigned int n_frags, unsigned int len, u16 flags) { struct ef4_nic *efx = rx_queue->efx; struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue); struct ef4_rx_buffer *rx_buf; rx_queue->rx_packets++; rx_buf = ef4_rx_buffer(rx_queue, index); rx_buf->flags |= flags; /* Validate the number of fragments and completed length */ if (n_frags == 1) { if (!(flags & EF4_RX_PKT_PREFIX_LEN)) ef4_rx_packet__check_len(rx_queue, rx_buf, len); } else if (unlikely(n_frags > EF4_RX_MAX_FRAGS) || unlikely(len <= (n_frags - 1) * efx->rx_dma_len) || unlikely(len > n_frags * efx->rx_dma_len) || unlikely(!efx->rx_scatter)) { /* If this isn't an explicit discard request, either * the hardware or the driver is broken. */ WARN_ON(!(len == 0 && rx_buf->flags & EF4_RX_PKT_DISCARD)); rx_buf->flags |= EF4_RX_PKT_DISCARD; } netif_vdbg(efx, rx_status, efx->net_dev, "RX queue %d received ids %x-%x len %d %s%s\n", ef4_rx_queue_index(rx_queue), index, (index + n_frags - 1) & rx_queue->ptr_mask, len, (rx_buf->flags & EF4_RX_PKT_CSUMMED) ? " [SUMMED]" : "", (rx_buf->flags & EF4_RX_PKT_DISCARD) ? " [DISCARD]" : ""); /* Discard packet, if instructed to do so. Process the * previous receive first. */ if (unlikely(rx_buf->flags & EF4_RX_PKT_DISCARD)) { ef4_rx_flush_packet(channel); ef4_discard_rx_packet(channel, rx_buf, n_frags); return; } if (n_frags == 1 && !(flags & EF4_RX_PKT_PREFIX_LEN)) rx_buf->len = len; /* Release and/or sync the DMA mapping - assumes all RX buffers * consumed in-order per RX queue. */ ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len); /* Prefetch nice and early so data will (hopefully) be in cache by * the time we look at it. */ prefetch(ef4_rx_buf_va(rx_buf)); rx_buf->page_offset += efx->rx_prefix_size; rx_buf->len -= efx->rx_prefix_size; if (n_frags > 1) { /* Release/sync DMA mapping for additional fragments. * Fix length for last fragment. */ unsigned int tail_frags = n_frags - 1; for (;;) { rx_buf = ef4_rx_buf_next(rx_queue, rx_buf); if (--tail_frags == 0) break; ef4_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len); } rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len; ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len); } /* All fragments have been DMA-synced, so recycle pages. */ rx_buf = ef4_rx_buffer(rx_queue, index); ef4_recycle_rx_pages(channel, rx_buf, n_frags); /* Pipeline receives so that we give time for packet headers to be * prefetched into cache. */ ef4_rx_flush_packet(channel); channel->rx_pkt_n_frags = n_frags; channel->rx_pkt_index = index; } static void ef4_rx_deliver(struct ef4_channel *channel, u8 *eh, struct ef4_rx_buffer *rx_buf, unsigned int n_frags) { struct sk_buff *skb; u16 hdr_len = min_t(u16, rx_buf->len, EF4_SKB_HEADERS); skb = ef4_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len); if (unlikely(skb == NULL)) { struct ef4_rx_queue *rx_queue; rx_queue = ef4_channel_get_rx_queue(channel); ef4_free_rx_buffers(rx_queue, rx_buf, n_frags); return; } skb_record_rx_queue(skb, channel->rx_queue.core_index); /* Set the SKB flags */ skb_checksum_none_assert(skb); if (likely(rx_buf->flags & EF4_RX_PKT_CSUMMED)) skb->ip_summed = CHECKSUM_UNNECESSARY; if (channel->type->receive_skb) if (channel->type->receive_skb(channel, skb)) return; /* Pass the packet up */ netif_receive_skb(skb); } /* Handle a received packet. Second half: Touches packet payload. */ void __ef4_rx_packet(struct ef4_channel *channel) { struct ef4_nic *efx = channel->efx; struct ef4_rx_buffer *rx_buf = ef4_rx_buffer(&channel->rx_queue, channel->rx_pkt_index); u8 *eh = ef4_rx_buf_va(rx_buf); /* Read length from the prefix if necessary. This already * excludes the length of the prefix itself. */ if (rx_buf->flags & EF4_RX_PKT_PREFIX_LEN) rx_buf->len = le16_to_cpup((__le16 *) (eh + efx->rx_packet_len_offset)); /* If we're in loopback test, then pass the packet directly to the * loopback layer, and free the rx_buf here */ if (unlikely(efx->loopback_selftest)) { struct ef4_rx_queue *rx_queue; ef4_loopback_rx_packet(efx, eh, rx_buf->len); rx_queue = ef4_channel_get_rx_queue(channel); ef4_free_rx_buffers(rx_queue, rx_buf, channel->rx_pkt_n_frags); goto out; } if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) rx_buf->flags &= ~EF4_RX_PKT_CSUMMED; if ((rx_buf->flags & EF4_RX_PKT_TCP) && !channel->type->receive_skb) ef4_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh); else ef4_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags); out: channel->rx_pkt_n_frags = 0; } int ef4_probe_rx_queue(struct ef4_rx_queue *rx_queue) { struct ef4_nic *efx = rx_queue->efx; unsigned int entries; int rc; /* Create the smallest power-of-two aligned ring */ entries = max(roundup_pow_of_two(efx->rxq_entries), EF4_MIN_DMAQ_SIZE); EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE); rx_queue->ptr_mask = entries - 1; netif_dbg(efx, probe, efx->net_dev, "creating RX queue %d size %#x mask %#x\n", ef4_rx_queue_index(rx_queue), efx->rxq_entries, rx_queue->ptr_mask); /* Allocate RX buffers */ rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), GFP_KERNEL); if (!rx_queue->buffer) return -ENOMEM; rc = ef4_nic_probe_rx(rx_queue); if (rc) { kfree(rx_queue->buffer); rx_queue->buffer = NULL; } return rc; } static void ef4_init_rx_recycle_ring(struct ef4_nic *efx, struct ef4_rx_queue *rx_queue) { unsigned int bufs_in_recycle_ring, page_ring_size; struct iommu_domain __maybe_unused *domain; /* Set the RX recycle ring size */ #ifdef CONFIG_PPC64 bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU; #else domain = iommu_get_domain_for_dev(&efx->pci_dev->dev); if (domain && domain->type != IOMMU_DOMAIN_IDENTITY) bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU; else bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_NOIOMMU; #endif /* CONFIG_PPC64 */ page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / efx->rx_bufs_per_page); rx_queue->page_ring = kcalloc(page_ring_size, sizeof(*rx_queue->page_ring), GFP_KERNEL); if (!rx_queue->page_ring) rx_queue->page_ptr_mask = 0; else rx_queue->page_ptr_mask = page_ring_size - 1; } void ef4_init_rx_queue(struct ef4_rx_queue *rx_queue) { struct ef4_nic *efx = rx_queue->efx; unsigned int max_fill, trigger, max_trigger; netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, "initialising RX queue %d\n", ef4_rx_queue_index(rx_queue)); /* Initialise ptr fields */ rx_queue->added_count = 0; rx_queue->notified_count = 0; rx_queue->removed_count = 0; rx_queue->min_fill = -1U; ef4_init_rx_recycle_ring(efx, rx_queue); rx_queue->page_remove = 0; rx_queue->page_add = rx_queue->page_ptr_mask + 1; rx_queue->page_recycle_count = 0; rx_queue->page_recycle_failed = 0; rx_queue->page_recycle_full = 0; /* Initialise limit fields */ max_fill = efx->rxq_entries - EF4_RXD_HEAD_ROOM; max_trigger = max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; if (rx_refill_threshold != 0) { trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; if (trigger > max_trigger) trigger = max_trigger; } else { trigger = max_trigger; } rx_queue->max_fill = max_fill; rx_queue->fast_fill_trigger = trigger; rx_queue->refill_enabled = true; /* Set up RX descriptor ring */ ef4_nic_init_rx(rx_queue); } void ef4_fini_rx_queue(struct ef4_rx_queue *rx_queue) { int i; struct ef4_nic *efx = rx_queue->efx; struct ef4_rx_buffer *rx_buf; netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, "shutting down RX queue %d\n", ef4_rx_queue_index(rx_queue)); del_timer_sync(&rx_queue->slow_fill); /* Release RX buffers from the current read ptr to the write ptr */ if (rx_queue->buffer) { for (i = rx_queue->removed_count; i < rx_queue->added_count; i++) { unsigned index = i & rx_queue->ptr_mask; rx_buf = ef4_rx_buffer(rx_queue, index); ef4_fini_rx_buffer(rx_queue, rx_buf); } } /* Unmap and release the pages in the recycle ring. Remove the ring. */ for (i = 0; i <= rx_queue->page_ptr_mask; i++) { struct page *page = rx_queue->page_ring[i]; struct ef4_rx_page_state *state; if (page == NULL) continue; state = page_address(page); dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, PAGE_SIZE << efx->rx_buffer_order, DMA_FROM_DEVICE); put_page(page); } kfree(rx_queue->page_ring); rx_queue->page_ring = NULL; } void ef4_remove_rx_queue(struct ef4_rx_queue *rx_queue) { netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, "destroying RX queue %d\n", ef4_rx_queue_index(rx_queue)); ef4_nic_remove_rx(rx_queue); kfree(rx_queue->buffer); rx_queue->buffer = NULL; } module_param(rx_refill_threshold, uint, 0444); MODULE_PARM_DESC(rx_refill_threshold, "RX descriptor ring refill threshold (%)"); #ifdef CONFIG_RFS_ACCEL int ef4_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, u16 rxq_index, u32 flow_id) { struct ef4_nic *efx = netdev_priv(net_dev); struct ef4_channel *channel; struct ef4_filter_spec spec; struct flow_keys fk; int rc; if (flow_id == RPS_FLOW_ID_INVALID) return -EINVAL; if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) return -EPROTONOSUPPORT; if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) return -EPROTONOSUPPORT; if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) return -EPROTONOSUPPORT; ef4_filter_init_rx(&spec, EF4_FILTER_PRI_HINT, efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0, rxq_index); spec.match_flags = EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO | EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT | EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT; spec.ether_type = fk.basic.n_proto; spec.ip_proto = fk.basic.ip_proto; if (fk.basic.n_proto == htons(ETH_P_IP)) { spec.rem_host[0] = fk.addrs.v4addrs.src; spec.loc_host[0] = fk.addrs.v4addrs.dst; } else { memcpy(spec.rem_host, &fk.addrs.v6addrs.src, sizeof(struct in6_addr)); memcpy(spec.loc_host, &fk.addrs.v6addrs.dst, sizeof(struct in6_addr)); } spec.rem_port = fk.ports.src; spec.loc_port = fk.ports.dst; rc = efx->type->filter_rfs_insert(efx, &spec); if (rc < 0) return rc; /* Remember this so we can check whether to expire the filter later */ channel = ef4_get_channel(efx, rxq_index); channel->rps_flow_id[rc] = flow_id; ++channel->rfs_filters_added; if (spec.ether_type == htons(ETH_P_IP)) netif_info(efx, rx_status, efx->net_dev, "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n", (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", spec.rem_host, ntohs(spec.rem_port), spec.loc_host, ntohs(spec.loc_port), rxq_index, flow_id, rc); else netif_info(efx, rx_status, efx->net_dev, "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n", (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", spec.rem_host, ntohs(spec.rem_port), spec.loc_host, ntohs(spec.loc_port), rxq_index, flow_id, rc); return rc; } bool __ef4_filter_rfs_expire(struct ef4_nic *efx, unsigned int quota) { bool (*expire_one)(struct ef4_nic *efx, u32 flow_id, unsigned int index); unsigned int channel_idx, index, size; u32 flow_id; if (!spin_trylock_bh(&efx->filter_lock)) return false; expire_one = efx->type->filter_rfs_expire_one; channel_idx = efx->rps_expire_channel; index = efx->rps_expire_index; size = efx->type->max_rx_ip_filters; while (quota--) { struct ef4_channel *channel = ef4_get_channel(efx, channel_idx); flow_id = channel->rps_flow_id[index]; if (flow_id != RPS_FLOW_ID_INVALID && expire_one(efx, flow_id, index)) { netif_info(efx, rx_status, efx->net_dev, "expired filter %d [queue %u flow %u]\n", index, channel_idx, flow_id); channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID; } if (++index == size) { if (++channel_idx == efx->n_channels) channel_idx = 0; index = 0; } } efx->rps_expire_channel = channel_idx; efx->rps_expire_index = index; spin_unlock_bh(&efx->filter_lock); return true; } #endif /* CONFIG_RFS_ACCEL */ /** * ef4_filter_is_mc_recipient - test whether spec is a multicast recipient * @spec: Specification to test * * Return: %true if the specification is a non-drop RX filter that * matches a local MAC address I/G bit value of 1 or matches a local * IPv4 or IPv6 address value in the respective multicast address * range. Otherwise %false. */ bool ef4_filter_is_mc_recipient(const struct ef4_filter_spec *spec) { if (!(spec->flags & EF4_FILTER_FLAG_RX) || spec->dmaq_id == EF4_FILTER_RX_DMAQ_ID_DROP) return false; if (spec->match_flags & (EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_LOC_MAC_IG) && is_multicast_ether_addr(spec->loc_mac)) return true; if ((spec->match_flags & (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) == (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) { if (spec->ether_type == htons(ETH_P_IP) && ipv4_is_multicast(spec->loc_host[0])) return true; if (spec->ether_type == htons(ETH_P_IPV6) && ((const u8 *)spec->loc_host)[0] == 0xff) return true; } return false; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1