Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kunihiko Hayashi | 9095 | 99.53% | 17 | 50.00% |
Andrew Lunn | 22 | 0.24% | 6 | 17.65% |
Thomas Gleixner | 4 | 0.04% | 1 | 2.94% |
Wang Hai | 3 | 0.03% | 1 | 2.94% |
Michael Walle | 3 | 0.03% | 1 | 2.94% |
Yue haibing | 2 | 0.02% | 1 | 2.94% |
Jakub Kiciński | 2 | 0.02% | 2 | 5.88% |
Jia-Ju Bai | 2 | 0.02% | 1 | 2.94% |
Wolfram Sang | 2 | 0.02% | 1 | 2.94% |
Arnd Bergmann | 1 | 0.01% | 1 | 2.94% |
wangyunjian | 1 | 0.01% | 1 | 2.94% |
Yang Shen | 1 | 0.01% | 1 | 2.94% |
Total | 9138 | 34 |
// SPDX-License-Identifier: GPL-2.0 /* * sni_ave.c - Socionext UniPhier AVE ethernet driver * Copyright 2014 Panasonic Corporation * Copyright 2015-2017 Socionext Inc. */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/etherdevice.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/mfd/syscon.h> #include <linux/mii.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/of_net.h> #include <linux/of_mdio.h> #include <linux/of_platform.h> #include <linux/phy.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/types.h> #include <linux/u64_stats_sync.h> /* General Register Group */ #define AVE_IDR 0x000 /* ID */ #define AVE_VR 0x004 /* Version */ #define AVE_GRR 0x008 /* Global Reset */ #define AVE_CFGR 0x00c /* Configuration */ /* Interrupt Register Group */ #define AVE_GIMR 0x100 /* Global Interrupt Mask */ #define AVE_GISR 0x104 /* Global Interrupt Status */ /* MAC Register Group */ #define AVE_TXCR 0x200 /* TX Setup */ #define AVE_RXCR 0x204 /* RX Setup */ #define AVE_RXMAC1R 0x208 /* MAC address (lower) */ #define AVE_RXMAC2R 0x20c /* MAC address (upper) */ #define AVE_MDIOCTR 0x214 /* MDIO Control */ #define AVE_MDIOAR 0x218 /* MDIO Address */ #define AVE_MDIOWDR 0x21c /* MDIO Data */ #define AVE_MDIOSR 0x220 /* MDIO Status */ #define AVE_MDIORDR 0x224 /* MDIO Rd Data */ /* Descriptor Control Register Group */ #define AVE_DESCC 0x300 /* Descriptor Control */ #define AVE_TXDC 0x304 /* TX Descriptor Configuration */ #define AVE_RXDC0 0x308 /* RX Descriptor Ring0 Configuration */ #define AVE_IIRQC 0x34c /* Interval IRQ Control */ /* Packet Filter Register Group */ #define AVE_PKTF_BASE 0x800 /* PF Base Address */ #define AVE_PFMBYTE_BASE 0xd00 /* PF Mask Byte Base Address */ #define AVE_PFMBIT_BASE 0xe00 /* PF Mask Bit Base Address */ #define AVE_PFSEL_BASE 0xf00 /* PF Selector Base Address */ #define AVE_PFEN 0xffc /* Packet Filter Enable */ #define AVE_PKTF(ent) (AVE_PKTF_BASE + (ent) * 0x40) #define AVE_PFMBYTE(ent) (AVE_PFMBYTE_BASE + (ent) * 8) #define AVE_PFMBIT(ent) (AVE_PFMBIT_BASE + (ent) * 4) #define AVE_PFSEL(ent) (AVE_PFSEL_BASE + (ent) * 4) /* 64bit descriptor memory */ #define AVE_DESC_SIZE_64 12 /* Descriptor Size */ #define AVE_TXDM_64 0x1000 /* Tx Descriptor Memory */ #define AVE_RXDM_64 0x1c00 /* Rx Descriptor Memory */ #define AVE_TXDM_SIZE_64 0x0ba0 /* Tx Descriptor Memory Size 3KB */ #define AVE_RXDM_SIZE_64 0x6000 /* Rx Descriptor Memory Size 24KB */ /* 32bit descriptor memory */ #define AVE_DESC_SIZE_32 8 /* Descriptor Size */ #define AVE_TXDM_32 0x1000 /* Tx Descriptor Memory */ #define AVE_RXDM_32 0x1800 /* Rx Descriptor Memory */ #define AVE_TXDM_SIZE_32 0x07c0 /* Tx Descriptor Memory Size 2KB */ #define AVE_RXDM_SIZE_32 0x4000 /* Rx Descriptor Memory Size 16KB */ /* RMII Bridge Register Group */ #define AVE_RSTCTRL 0x8028 /* Reset control */ #define AVE_RSTCTRL_RMIIRST BIT(16) #define AVE_LINKSEL 0x8034 /* Link speed setting */ #define AVE_LINKSEL_100M BIT(0) /* AVE_GRR */ #define AVE_GRR_RXFFR BIT(5) /* Reset RxFIFO */ #define AVE_GRR_PHYRST BIT(4) /* Reset external PHY */ #define AVE_GRR_GRST BIT(0) /* Reset all MAC */ /* AVE_CFGR */ #define AVE_CFGR_FLE BIT(31) /* Filter Function */ #define AVE_CFGR_CHE BIT(30) /* Checksum Function */ #define AVE_CFGR_MII BIT(27) /* Func mode (1:MII/RMII, 0:RGMII) */ #define AVE_CFGR_IPFCEN BIT(24) /* IP fragment sum Enable */ /* AVE_GISR (common with GIMR) */ #define AVE_GI_PHY BIT(24) /* PHY interrupt */ #define AVE_GI_TX BIT(16) /* Tx complete */ #define AVE_GI_RXERR BIT(8) /* Receive frame more than max size */ #define AVE_GI_RXOVF BIT(7) /* Overflow at the RxFIFO */ #define AVE_GI_RXDROP BIT(6) /* Drop packet */ #define AVE_GI_RXIINT BIT(5) /* Interval interrupt */ /* AVE_TXCR */ #define AVE_TXCR_FLOCTR BIT(18) /* Flow control */ #define AVE_TXCR_TXSPD_1G BIT(17) #define AVE_TXCR_TXSPD_100 BIT(16) /* AVE_RXCR */ #define AVE_RXCR_RXEN BIT(30) /* Rx enable */ #define AVE_RXCR_FDUPEN BIT(22) /* Interface mode */ #define AVE_RXCR_FLOCTR BIT(21) /* Flow control */ #define AVE_RXCR_AFEN BIT(19) /* MAC address filter */ #define AVE_RXCR_DRPEN BIT(18) /* Drop pause frame */ #define AVE_RXCR_MPSIZ_MASK GENMASK(10, 0) /* AVE_MDIOCTR */ #define AVE_MDIOCTR_RREQ BIT(3) /* Read request */ #define AVE_MDIOCTR_WREQ BIT(2) /* Write request */ /* AVE_MDIOSR */ #define AVE_MDIOSR_STS BIT(0) /* access status */ /* AVE_DESCC */ #define AVE_DESCC_STATUS_MASK GENMASK(31, 16) #define AVE_DESCC_RD0 BIT(8) /* Enable Rx descriptor Ring0 */ #define AVE_DESCC_RDSTP BIT(4) /* Pause Rx descriptor */ #define AVE_DESCC_TD BIT(0) /* Enable Tx descriptor */ /* AVE_TXDC */ #define AVE_TXDC_SIZE GENMASK(27, 16) /* Size of Tx descriptor */ #define AVE_TXDC_ADDR GENMASK(11, 0) /* Start address */ #define AVE_TXDC_ADDR_START 0 /* AVE_RXDC0 */ #define AVE_RXDC0_SIZE GENMASK(30, 16) /* Size of Rx descriptor */ #define AVE_RXDC0_ADDR GENMASK(14, 0) /* Start address */ #define AVE_RXDC0_ADDR_START 0 /* AVE_IIRQC */ #define AVE_IIRQC_EN0 BIT(27) /* Enable interval interrupt Ring0 */ #define AVE_IIRQC_BSCK GENMASK(15, 0) /* Interval count unit */ /* Command status for descriptor */ #define AVE_STS_OWN BIT(31) /* Descriptor ownership */ #define AVE_STS_INTR BIT(29) /* Request for interrupt */ #define AVE_STS_OK BIT(27) /* Normal transmit */ /* TX */ #define AVE_STS_NOCSUM BIT(28) /* No use HW checksum */ #define AVE_STS_1ST BIT(26) /* Head of buffer chain */ #define AVE_STS_LAST BIT(25) /* Tail of buffer chain */ #define AVE_STS_OWC BIT(21) /* Out of window,Late Collision */ #define AVE_STS_EC BIT(20) /* Excess collision occurred */ #define AVE_STS_PKTLEN_TX_MASK GENMASK(15, 0) /* RX */ #define AVE_STS_CSSV BIT(21) /* Checksum check performed */ #define AVE_STS_CSER BIT(20) /* Checksum error detected */ #define AVE_STS_PKTLEN_RX_MASK GENMASK(10, 0) /* Packet filter */ #define AVE_PFMBYTE_MASK0 (GENMASK(31, 8) | GENMASK(5, 0)) #define AVE_PFMBYTE_MASK1 GENMASK(25, 0) #define AVE_PFMBIT_MASK GENMASK(15, 0) #define AVE_PF_SIZE 17 /* Number of all packet filter */ #define AVE_PF_MULTICAST_SIZE 7 /* Number of multicast filter */ #define AVE_PFNUM_FILTER 0 /* No.0 */ #define AVE_PFNUM_UNICAST 1 /* No.1 */ #define AVE_PFNUM_BROADCAST 2 /* No.2 */ #define AVE_PFNUM_MULTICAST 11 /* No.11-17 */ /* NETIF Message control */ #define AVE_DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | \ NETIF_MSG_PROBE | \ NETIF_MSG_LINK | \ NETIF_MSG_TIMER | \ NETIF_MSG_IFDOWN | \ NETIF_MSG_IFUP | \ NETIF_MSG_RX_ERR | \ NETIF_MSG_TX_ERR) /* Parameter for descriptor */ #define AVE_NR_TXDESC 64 /* Tx descriptor */ #define AVE_NR_RXDESC 256 /* Rx descriptor */ #define AVE_DESC_OFS_CMDSTS 0 #define AVE_DESC_OFS_ADDRL 4 #define AVE_DESC_OFS_ADDRU 8 /* Parameter for ethernet frame */ #define AVE_MAX_ETHFRAME 1518 #define AVE_FRAME_HEADROOM 2 /* Parameter for interrupt */ #define AVE_INTM_COUNT 20 #define AVE_FORCE_TXINTCNT 1 /* SG */ #define SG_ETPINMODE 0x540 #define SG_ETPINMODE_EXTPHY BIT(1) /* for LD11 */ #define SG_ETPINMODE_RMII(ins) BIT(ins) #define IS_DESC_64BIT(p) ((p)->data->is_desc_64bit) #define AVE_MAX_CLKS 4 #define AVE_MAX_RSTS 2 enum desc_id { AVE_DESCID_RX, AVE_DESCID_TX, }; enum desc_state { AVE_DESC_RX_PERMIT, AVE_DESC_RX_SUSPEND, AVE_DESC_START, AVE_DESC_STOP, }; struct ave_desc { struct sk_buff *skbs; dma_addr_t skbs_dma; size_t skbs_dmalen; }; struct ave_desc_info { u32 ndesc; /* number of descriptor */ u32 daddr; /* start address of descriptor */ u32 proc_idx; /* index of processing packet */ u32 done_idx; /* index of processed packet */ struct ave_desc *desc; /* skb info related descriptor */ }; struct ave_stats { struct u64_stats_sync syncp; u64 packets; u64 bytes; u64 errors; u64 dropped; u64 collisions; u64 fifo_errors; }; struct ave_private { void __iomem *base; int irq; int phy_id; unsigned int desc_size; u32 msg_enable; int nclks; struct clk *clk[AVE_MAX_CLKS]; int nrsts; struct reset_control *rst[AVE_MAX_RSTS]; phy_interface_t phy_mode; struct phy_device *phydev; struct mii_bus *mdio; struct regmap *regmap; unsigned int pinmode_mask; unsigned int pinmode_val; u32 wolopts; /* stats */ struct ave_stats stats_rx; struct ave_stats stats_tx; /* NAPI support */ struct net_device *ndev; struct napi_struct napi_rx; struct napi_struct napi_tx; /* descriptor */ struct ave_desc_info rx; struct ave_desc_info tx; /* flow control */ int pause_auto; int pause_rx; int pause_tx; const struct ave_soc_data *data; }; struct ave_soc_data { bool is_desc_64bit; const char *clock_names[AVE_MAX_CLKS]; const char *reset_names[AVE_MAX_RSTS]; int (*get_pinmode)(struct ave_private *priv, phy_interface_t phy_mode, u32 arg); }; static u32 ave_desc_read(struct net_device *ndev, enum desc_id id, int entry, int offset) { struct ave_private *priv = netdev_priv(ndev); u32 addr; addr = ((id == AVE_DESCID_TX) ? priv->tx.daddr : priv->rx.daddr) + entry * priv->desc_size + offset; return readl(priv->base + addr); } static u32 ave_desc_read_cmdsts(struct net_device *ndev, enum desc_id id, int entry) { return ave_desc_read(ndev, id, entry, AVE_DESC_OFS_CMDSTS); } static void ave_desc_write(struct net_device *ndev, enum desc_id id, int entry, int offset, u32 val) { struct ave_private *priv = netdev_priv(ndev); u32 addr; addr = ((id == AVE_DESCID_TX) ? priv->tx.daddr : priv->rx.daddr) + entry * priv->desc_size + offset; writel(val, priv->base + addr); } static void ave_desc_write_cmdsts(struct net_device *ndev, enum desc_id id, int entry, u32 val) { ave_desc_write(ndev, id, entry, AVE_DESC_OFS_CMDSTS, val); } static void ave_desc_write_addr(struct net_device *ndev, enum desc_id id, int entry, dma_addr_t paddr) { struct ave_private *priv = netdev_priv(ndev); ave_desc_write(ndev, id, entry, AVE_DESC_OFS_ADDRL, lower_32_bits(paddr)); if (IS_DESC_64BIT(priv)) ave_desc_write(ndev, id, entry, AVE_DESC_OFS_ADDRU, upper_32_bits(paddr)); } static u32 ave_irq_disable_all(struct net_device *ndev) { struct ave_private *priv = netdev_priv(ndev); u32 ret; ret = readl(priv->base + AVE_GIMR); writel(0, priv->base + AVE_GIMR); return ret; } static void ave_irq_restore(struct net_device *ndev, u32 val) { struct ave_private *priv = netdev_priv(ndev); writel(val, priv->base + AVE_GIMR); } static void ave_irq_enable(struct net_device *ndev, u32 bitflag) { struct ave_private *priv = netdev_priv(ndev); writel(readl(priv->base + AVE_GIMR) | bitflag, priv->base + AVE_GIMR); writel(bitflag, priv->base + AVE_GISR); } static void ave_hw_write_macaddr(struct net_device *ndev, const unsigned char *mac_addr, int reg1, int reg2) { struct ave_private *priv = netdev_priv(ndev); writel(mac_addr[0] | mac_addr[1] << 8 | mac_addr[2] << 16 | mac_addr[3] << 24, priv->base + reg1); writel(mac_addr[4] | mac_addr[5] << 8, priv->base + reg2); } static void ave_hw_read_version(struct net_device *ndev, char *buf, int len) { struct ave_private *priv = netdev_priv(ndev); u32 major, minor, vr; vr = readl(priv->base + AVE_VR); major = (vr & GENMASK(15, 8)) >> 8; minor = (vr & GENMASK(7, 0)); snprintf(buf, len, "v%u.%u", major, minor); } static void ave_ethtool_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info) { struct device *dev = ndev->dev.parent; strscpy(info->driver, dev->driver->name, sizeof(info->driver)); strscpy(info->bus_info, dev_name(dev), sizeof(info->bus_info)); ave_hw_read_version(ndev, info->fw_version, sizeof(info->fw_version)); } static u32 ave_ethtool_get_msglevel(struct net_device *ndev) { struct ave_private *priv = netdev_priv(ndev); return priv->msg_enable; } static void ave_ethtool_set_msglevel(struct net_device *ndev, u32 val) { struct ave_private *priv = netdev_priv(ndev); priv->msg_enable = val; } static void ave_ethtool_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) { wol->supported = 0; wol->wolopts = 0; if (ndev->phydev) phy_ethtool_get_wol(ndev->phydev, wol); } static int __ave_ethtool_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) { if (!ndev->phydev || (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))) return -EOPNOTSUPP; return phy_ethtool_set_wol(ndev->phydev, wol); } static int ave_ethtool_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) { int ret; ret = __ave_ethtool_set_wol(ndev, wol); if (!ret) device_set_wakeup_enable(&ndev->dev, !!wol->wolopts); return ret; } static void ave_ethtool_get_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause) { struct ave_private *priv = netdev_priv(ndev); pause->autoneg = priv->pause_auto; pause->rx_pause = priv->pause_rx; pause->tx_pause = priv->pause_tx; } static int ave_ethtool_set_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause) { struct ave_private *priv = netdev_priv(ndev); struct phy_device *phydev = ndev->phydev; if (!phydev) return -EINVAL; priv->pause_auto = pause->autoneg; priv->pause_rx = pause->rx_pause; priv->pause_tx = pause->tx_pause; phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause); return 0; } static const struct ethtool_ops ave_ethtool_ops = { .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, .get_drvinfo = ave_ethtool_get_drvinfo, .nway_reset = phy_ethtool_nway_reset, .get_link = ethtool_op_get_link, .get_msglevel = ave_ethtool_get_msglevel, .set_msglevel = ave_ethtool_set_msglevel, .get_wol = ave_ethtool_get_wol, .set_wol = ave_ethtool_set_wol, .get_pauseparam = ave_ethtool_get_pauseparam, .set_pauseparam = ave_ethtool_set_pauseparam, }; static int ave_mdiobus_read(struct mii_bus *bus, int phyid, int regnum) { struct net_device *ndev = bus->priv; struct ave_private *priv; u32 mdioctl, mdiosr; int ret; priv = netdev_priv(ndev); /* write address */ writel((phyid << 8) | regnum, priv->base + AVE_MDIOAR); /* read request */ mdioctl = readl(priv->base + AVE_MDIOCTR); writel((mdioctl | AVE_MDIOCTR_RREQ) & ~AVE_MDIOCTR_WREQ, priv->base + AVE_MDIOCTR); ret = readl_poll_timeout(priv->base + AVE_MDIOSR, mdiosr, !(mdiosr & AVE_MDIOSR_STS), 20, 2000); if (ret) { netdev_err(ndev, "failed to read (phy:%d reg:%x)\n", phyid, regnum); return ret; } return readl(priv->base + AVE_MDIORDR) & GENMASK(15, 0); } static int ave_mdiobus_write(struct mii_bus *bus, int phyid, int regnum, u16 val) { struct net_device *ndev = bus->priv; struct ave_private *priv; u32 mdioctl, mdiosr; int ret; priv = netdev_priv(ndev); /* write address */ writel((phyid << 8) | regnum, priv->base + AVE_MDIOAR); /* write data */ writel(val, priv->base + AVE_MDIOWDR); /* write request */ mdioctl = readl(priv->base + AVE_MDIOCTR); writel((mdioctl | AVE_MDIOCTR_WREQ) & ~AVE_MDIOCTR_RREQ, priv->base + AVE_MDIOCTR); ret = readl_poll_timeout(priv->base + AVE_MDIOSR, mdiosr, !(mdiosr & AVE_MDIOSR_STS), 20, 2000); if (ret) netdev_err(ndev, "failed to write (phy:%d reg:%x)\n", phyid, regnum); return ret; } static int ave_dma_map(struct net_device *ndev, struct ave_desc *desc, void *ptr, size_t len, enum dma_data_direction dir, dma_addr_t *paddr) { dma_addr_t map_addr; map_addr = dma_map_single(ndev->dev.parent, ptr, len, dir); if (unlikely(dma_mapping_error(ndev->dev.parent, map_addr))) return -ENOMEM; desc->skbs_dma = map_addr; desc->skbs_dmalen = len; *paddr = map_addr; return 0; } static void ave_dma_unmap(struct net_device *ndev, struct ave_desc *desc, enum dma_data_direction dir) { if (!desc->skbs_dma) return; dma_unmap_single(ndev->dev.parent, desc->skbs_dma, desc->skbs_dmalen, dir); desc->skbs_dma = 0; } /* Prepare Rx descriptor and memory */ static int ave_rxdesc_prepare(struct net_device *ndev, int entry) { struct ave_private *priv = netdev_priv(ndev); struct sk_buff *skb; dma_addr_t paddr; int ret; skb = priv->rx.desc[entry].skbs; if (!skb) { skb = netdev_alloc_skb(ndev, AVE_MAX_ETHFRAME); if (!skb) { netdev_err(ndev, "can't allocate skb for Rx\n"); return -ENOMEM; } skb->data += AVE_FRAME_HEADROOM; skb->tail += AVE_FRAME_HEADROOM; } /* set disable to cmdsts */ ave_desc_write_cmdsts(ndev, AVE_DESCID_RX, entry, AVE_STS_INTR | AVE_STS_OWN); /* map Rx buffer * Rx buffer set to the Rx descriptor has two restrictions: * - Rx buffer address is 4 byte aligned. * - Rx buffer begins with 2 byte headroom, and data will be put from * (buffer + 2). * To satisfy this, specify the address to put back the buffer * pointer advanced by AVE_FRAME_HEADROOM, and expand the map size * by AVE_FRAME_HEADROOM. */ ret = ave_dma_map(ndev, &priv->rx.desc[entry], skb->data - AVE_FRAME_HEADROOM, AVE_MAX_ETHFRAME + AVE_FRAME_HEADROOM, DMA_FROM_DEVICE, &paddr); if (ret) { netdev_err(ndev, "can't map skb for Rx\n"); dev_kfree_skb_any(skb); return ret; } priv->rx.desc[entry].skbs = skb; /* set buffer pointer */ ave_desc_write_addr(ndev, AVE_DESCID_RX, entry, paddr); /* set enable to cmdsts */ ave_desc_write_cmdsts(ndev, AVE_DESCID_RX, entry, AVE_STS_INTR | AVE_MAX_ETHFRAME); return ret; } /* Switch state of descriptor */ static int ave_desc_switch(struct net_device *ndev, enum desc_state state) { struct ave_private *priv = netdev_priv(ndev); int ret = 0; u32 val; switch (state) { case AVE_DESC_START: writel(AVE_DESCC_TD | AVE_DESCC_RD0, priv->base + AVE_DESCC); break; case AVE_DESC_STOP: writel(0, priv->base + AVE_DESCC); if (readl_poll_timeout(priv->base + AVE_DESCC, val, !val, 150, 15000)) { netdev_err(ndev, "can't stop descriptor\n"); ret = -EBUSY; } break; case AVE_DESC_RX_SUSPEND: val = readl(priv->base + AVE_DESCC); val |= AVE_DESCC_RDSTP; val &= ~AVE_DESCC_STATUS_MASK; writel(val, priv->base + AVE_DESCC); if (readl_poll_timeout(priv->base + AVE_DESCC, val, val & (AVE_DESCC_RDSTP << 16), 150, 150000)) { netdev_err(ndev, "can't suspend descriptor\n"); ret = -EBUSY; } break; case AVE_DESC_RX_PERMIT: val = readl(priv->base + AVE_DESCC); val &= ~AVE_DESCC_RDSTP; val &= ~AVE_DESCC_STATUS_MASK; writel(val, priv->base + AVE_DESCC); break; default: ret = -EINVAL; break; } return ret; } static int ave_tx_complete(struct net_device *ndev) { struct ave_private *priv = netdev_priv(ndev); u32 proc_idx, done_idx, ndesc, cmdsts; unsigned int nr_freebuf = 0; unsigned int tx_packets = 0; unsigned int tx_bytes = 0; proc_idx = priv->tx.proc_idx; done_idx = priv->tx.done_idx; ndesc = priv->tx.ndesc; /* free pre-stored skb from done_idx to proc_idx */ while (proc_idx != done_idx) { cmdsts = ave_desc_read_cmdsts(ndev, AVE_DESCID_TX, done_idx); /* do nothing if owner is HW (==1 for Tx) */ if (cmdsts & AVE_STS_OWN) break; /* check Tx status and updates statistics */ if (cmdsts & AVE_STS_OK) { tx_bytes += cmdsts & AVE_STS_PKTLEN_TX_MASK; /* success */ if (cmdsts & AVE_STS_LAST) tx_packets++; } else { /* error */ if (cmdsts & AVE_STS_LAST) { priv->stats_tx.errors++; if (cmdsts & (AVE_STS_OWC | AVE_STS_EC)) priv->stats_tx.collisions++; } } /* release skb */ if (priv->tx.desc[done_idx].skbs) { ave_dma_unmap(ndev, &priv->tx.desc[done_idx], DMA_TO_DEVICE); dev_consume_skb_any(priv->tx.desc[done_idx].skbs); priv->tx.desc[done_idx].skbs = NULL; nr_freebuf++; } done_idx = (done_idx + 1) % ndesc; } priv->tx.done_idx = done_idx; /* update stats */ u64_stats_update_begin(&priv->stats_tx.syncp); priv->stats_tx.packets += tx_packets; priv->stats_tx.bytes += tx_bytes; u64_stats_update_end(&priv->stats_tx.syncp); /* wake queue for freeing buffer */ if (unlikely(netif_queue_stopped(ndev)) && nr_freebuf) netif_wake_queue(ndev); return nr_freebuf; } static int ave_rx_receive(struct net_device *ndev, int num) { struct ave_private *priv = netdev_priv(ndev); unsigned int rx_packets = 0; unsigned int rx_bytes = 0; u32 proc_idx, done_idx; struct sk_buff *skb; unsigned int pktlen; int restpkt, npkts; u32 ndesc, cmdsts; proc_idx = priv->rx.proc_idx; done_idx = priv->rx.done_idx; ndesc = priv->rx.ndesc; restpkt = ((proc_idx + ndesc - 1) - done_idx) % ndesc; for (npkts = 0; npkts < num; npkts++) { /* we can't receive more packet, so fill desc quickly */ if (--restpkt < 0) break; cmdsts = ave_desc_read_cmdsts(ndev, AVE_DESCID_RX, proc_idx); /* do nothing if owner is HW (==0 for Rx) */ if (!(cmdsts & AVE_STS_OWN)) break; if (!(cmdsts & AVE_STS_OK)) { priv->stats_rx.errors++; proc_idx = (proc_idx + 1) % ndesc; continue; } pktlen = cmdsts & AVE_STS_PKTLEN_RX_MASK; /* get skbuff for rx */ skb = priv->rx.desc[proc_idx].skbs; priv->rx.desc[proc_idx].skbs = NULL; ave_dma_unmap(ndev, &priv->rx.desc[proc_idx], DMA_FROM_DEVICE); skb->dev = ndev; skb_put(skb, pktlen); skb->protocol = eth_type_trans(skb, ndev); if ((cmdsts & AVE_STS_CSSV) && (!(cmdsts & AVE_STS_CSER))) skb->ip_summed = CHECKSUM_UNNECESSARY; rx_packets++; rx_bytes += pktlen; netif_receive_skb(skb); proc_idx = (proc_idx + 1) % ndesc; } priv->rx.proc_idx = proc_idx; /* update stats */ u64_stats_update_begin(&priv->stats_rx.syncp); priv->stats_rx.packets += rx_packets; priv->stats_rx.bytes += rx_bytes; u64_stats_update_end(&priv->stats_rx.syncp); /* refill the Rx buffers */ while (proc_idx != done_idx) { if (ave_rxdesc_prepare(ndev, done_idx)) break; done_idx = (done_idx + 1) % ndesc; } priv->rx.done_idx = done_idx; return npkts; } static int ave_napi_poll_rx(struct napi_struct *napi, int budget) { struct ave_private *priv; struct net_device *ndev; int num; priv = container_of(napi, struct ave_private, napi_rx); ndev = priv->ndev; num = ave_rx_receive(ndev, budget); if (num < budget) { napi_complete_done(napi, num); /* enable Rx interrupt when NAPI finishes */ ave_irq_enable(ndev, AVE_GI_RXIINT); } return num; } static int ave_napi_poll_tx(struct napi_struct *napi, int budget) { struct ave_private *priv; struct net_device *ndev; int num; priv = container_of(napi, struct ave_private, napi_tx); ndev = priv->ndev; num = ave_tx_complete(ndev); napi_complete(napi); /* enable Tx interrupt when NAPI finishes */ ave_irq_enable(ndev, AVE_GI_TX); return num; } static void ave_global_reset(struct net_device *ndev) { struct ave_private *priv = netdev_priv(ndev); u32 val; /* set config register */ val = AVE_CFGR_FLE | AVE_CFGR_IPFCEN | AVE_CFGR_CHE; if (!phy_interface_mode_is_rgmii(priv->phy_mode)) val |= AVE_CFGR_MII; writel(val, priv->base + AVE_CFGR); /* reset RMII register */ val = readl(priv->base + AVE_RSTCTRL); val &= ~AVE_RSTCTRL_RMIIRST; writel(val, priv->base + AVE_RSTCTRL); /* assert reset */ writel(AVE_GRR_GRST | AVE_GRR_PHYRST, priv->base + AVE_GRR); msleep(20); /* 1st, negate PHY reset only */ writel(AVE_GRR_GRST, priv->base + AVE_GRR); msleep(40); /* negate reset */ writel(0, priv->base + AVE_GRR); msleep(40); /* negate RMII register */ val = readl(priv->base + AVE_RSTCTRL); val |= AVE_RSTCTRL_RMIIRST; writel(val, priv->base + AVE_RSTCTRL); ave_irq_disable_all(ndev); } static void ave_rxfifo_reset(struct net_device *ndev) { struct ave_private *priv = netdev_priv(ndev); u32 rxcr_org; /* save and disable MAC receive op */ rxcr_org = readl(priv->base + AVE_RXCR); writel(rxcr_org & (~AVE_RXCR_RXEN), priv->base + AVE_RXCR); /* suspend Rx descriptor */ ave_desc_switch(ndev, AVE_DESC_RX_SUSPEND); /* receive all packets before descriptor starts */ ave_rx_receive(ndev, priv->rx.ndesc); /* assert reset */ writel(AVE_GRR_RXFFR, priv->base + AVE_GRR); udelay(50); /* negate reset */ writel(0, priv->base + AVE_GRR); udelay(20); /* negate interrupt status */ writel(AVE_GI_RXOVF, priv->base + AVE_GISR); /* permit descriptor */ ave_desc_switch(ndev, AVE_DESC_RX_PERMIT); /* restore MAC reccieve op */ writel(rxcr_org, priv->base + AVE_RXCR); } static irqreturn_t ave_irq_handler(int irq, void *netdev) { struct net_device *ndev = (struct net_device *)netdev; struct ave_private *priv = netdev_priv(ndev); u32 gimr_val, gisr_val; gimr_val = ave_irq_disable_all(ndev); /* get interrupt status */ gisr_val = readl(priv->base + AVE_GISR); /* PHY */ if (gisr_val & AVE_GI_PHY) writel(AVE_GI_PHY, priv->base + AVE_GISR); /* check exceeding packet */ if (gisr_val & AVE_GI_RXERR) { writel(AVE_GI_RXERR, priv->base + AVE_GISR); netdev_err(ndev, "receive a packet exceeding frame buffer\n"); } gisr_val &= gimr_val; if (!gisr_val) goto exit_isr; /* RxFIFO overflow */ if (gisr_val & AVE_GI_RXOVF) { priv->stats_rx.fifo_errors++; ave_rxfifo_reset(ndev); goto exit_isr; } /* Rx drop */ if (gisr_val & AVE_GI_RXDROP) { priv->stats_rx.dropped++; writel(AVE_GI_RXDROP, priv->base + AVE_GISR); } /* Rx interval */ if (gisr_val & AVE_GI_RXIINT) { napi_schedule(&priv->napi_rx); /* still force to disable Rx interrupt until NAPI finishes */ gimr_val &= ~AVE_GI_RXIINT; } /* Tx completed */ if (gisr_val & AVE_GI_TX) { napi_schedule(&priv->napi_tx); /* still force to disable Tx interrupt until NAPI finishes */ gimr_val &= ~AVE_GI_TX; } exit_isr: ave_irq_restore(ndev, gimr_val); return IRQ_HANDLED; } static int ave_pfsel_start(struct net_device *ndev, unsigned int entry) { struct ave_private *priv = netdev_priv(ndev); u32 val; if (WARN_ON(entry > AVE_PF_SIZE)) return -EINVAL; val = readl(priv->base + AVE_PFEN); writel(val | BIT(entry), priv->base + AVE_PFEN); return 0; } static int ave_pfsel_stop(struct net_device *ndev, unsigned int entry) { struct ave_private *priv = netdev_priv(ndev); u32 val; if (WARN_ON(entry > AVE_PF_SIZE)) return -EINVAL; val = readl(priv->base + AVE_PFEN); writel(val & ~BIT(entry), priv->base + AVE_PFEN); return 0; } static int ave_pfsel_set_macaddr(struct net_device *ndev, unsigned int entry, const unsigned char *mac_addr, unsigned int set_size) { struct ave_private *priv = netdev_priv(ndev); if (WARN_ON(entry > AVE_PF_SIZE)) return -EINVAL; if (WARN_ON(set_size > 6)) return -EINVAL; ave_pfsel_stop(ndev, entry); /* set MAC address for the filter */ ave_hw_write_macaddr(ndev, mac_addr, AVE_PKTF(entry), AVE_PKTF(entry) + 4); /* set byte mask */ writel(GENMASK(31, set_size) & AVE_PFMBYTE_MASK0, priv->base + AVE_PFMBYTE(entry)); writel(AVE_PFMBYTE_MASK1, priv->base + AVE_PFMBYTE(entry) + 4); /* set bit mask filter */ writel(AVE_PFMBIT_MASK, priv->base + AVE_PFMBIT(entry)); /* set selector to ring 0 */ writel(0, priv->base + AVE_PFSEL(entry)); /* restart filter */ ave_pfsel_start(ndev, entry); return 0; } static void ave_pfsel_set_promisc(struct net_device *ndev, unsigned int entry, u32 rxring) { struct ave_private *priv = netdev_priv(ndev); if (WARN_ON(entry > AVE_PF_SIZE)) return; ave_pfsel_stop(ndev, entry); /* set byte mask */ writel(AVE_PFMBYTE_MASK0, priv->base + AVE_PFMBYTE(entry)); writel(AVE_PFMBYTE_MASK1, priv->base + AVE_PFMBYTE(entry) + 4); /* set bit mask filter */ writel(AVE_PFMBIT_MASK, priv->base + AVE_PFMBIT(entry)); /* set selector to rxring */ writel(rxring, priv->base + AVE_PFSEL(entry)); ave_pfsel_start(ndev, entry); } static void ave_pfsel_init(struct net_device *ndev) { unsigned char bcast_mac[ETH_ALEN]; int i; eth_broadcast_addr(bcast_mac); for (i = 0; i < AVE_PF_SIZE; i++) ave_pfsel_stop(ndev, i); /* promiscious entry, select ring 0 */ ave_pfsel_set_promisc(ndev, AVE_PFNUM_FILTER, 0); /* unicast entry */ ave_pfsel_set_macaddr(ndev, AVE_PFNUM_UNICAST, ndev->dev_addr, 6); /* broadcast entry */ ave_pfsel_set_macaddr(ndev, AVE_PFNUM_BROADCAST, bcast_mac, 6); } static void ave_phy_adjust_link(struct net_device *ndev) { struct ave_private *priv = netdev_priv(ndev); struct phy_device *phydev = ndev->phydev; u32 val, txcr, rxcr, rxcr_org; u16 rmt_adv = 0, lcl_adv = 0; u8 cap; /* set RGMII speed */ val = readl(priv->base + AVE_TXCR); val &= ~(AVE_TXCR_TXSPD_100 | AVE_TXCR_TXSPD_1G); if (phy_interface_is_rgmii(phydev) && phydev->speed == SPEED_1000) val |= AVE_TXCR_TXSPD_1G; else if (phydev->speed == SPEED_100) val |= AVE_TXCR_TXSPD_100; writel(val, priv->base + AVE_TXCR); /* set RMII speed (100M/10M only) */ if (!phy_interface_is_rgmii(phydev)) { val = readl(priv->base + AVE_LINKSEL); if (phydev->speed == SPEED_10) val &= ~AVE_LINKSEL_100M; else val |= AVE_LINKSEL_100M; writel(val, priv->base + AVE_LINKSEL); } /* check current RXCR/TXCR */ rxcr = readl(priv->base + AVE_RXCR); txcr = readl(priv->base + AVE_TXCR); rxcr_org = rxcr; if (phydev->duplex) { rxcr |= AVE_RXCR_FDUPEN; if (phydev->pause) rmt_adv |= LPA_PAUSE_CAP; if (phydev->asym_pause) rmt_adv |= LPA_PAUSE_ASYM; lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising); cap = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); if (cap & FLOW_CTRL_TX) txcr |= AVE_TXCR_FLOCTR; else txcr &= ~AVE_TXCR_FLOCTR; if (cap & FLOW_CTRL_RX) rxcr |= AVE_RXCR_FLOCTR; else rxcr &= ~AVE_RXCR_FLOCTR; } else { rxcr &= ~AVE_RXCR_FDUPEN; rxcr &= ~AVE_RXCR_FLOCTR; txcr &= ~AVE_TXCR_FLOCTR; } if (rxcr_org != rxcr) { /* disable Rx mac */ writel(rxcr & ~AVE_RXCR_RXEN, priv->base + AVE_RXCR); /* change and enable TX/Rx mac */ writel(txcr, priv->base + AVE_TXCR); writel(rxcr, priv->base + AVE_RXCR); } phy_print_status(phydev); } static void ave_macaddr_init(struct net_device *ndev) { ave_hw_write_macaddr(ndev, ndev->dev_addr, AVE_RXMAC1R, AVE_RXMAC2R); /* pfsel unicast entry */ ave_pfsel_set_macaddr(ndev, AVE_PFNUM_UNICAST, ndev->dev_addr, 6); } static int ave_init(struct net_device *ndev) { struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; struct ave_private *priv = netdev_priv(ndev); struct device *dev = ndev->dev.parent; struct device_node *np = dev->of_node; struct device_node *mdio_np; struct phy_device *phydev; int nc, nr, ret; /* enable clk because of hw access until ndo_open */ for (nc = 0; nc < priv->nclks; nc++) { ret = clk_prepare_enable(priv->clk[nc]); if (ret) { dev_err(dev, "can't enable clock\n"); goto out_clk_disable; } } for (nr = 0; nr < priv->nrsts; nr++) { ret = reset_control_deassert(priv->rst[nr]); if (ret) { dev_err(dev, "can't deassert reset\n"); goto out_reset_assert; } } ret = regmap_update_bits(priv->regmap, SG_ETPINMODE, priv->pinmode_mask, priv->pinmode_val); if (ret) goto out_reset_assert; ave_global_reset(ndev); mdio_np = of_get_child_by_name(np, "mdio"); if (!mdio_np) { dev_err(dev, "mdio node not found\n"); ret = -EINVAL; goto out_reset_assert; } ret = of_mdiobus_register(priv->mdio, mdio_np); of_node_put(mdio_np); if (ret) { dev_err(dev, "failed to register mdiobus\n"); goto out_reset_assert; } phydev = of_phy_get_and_connect(ndev, np, ave_phy_adjust_link); if (!phydev) { dev_err(dev, "could not attach to PHY\n"); ret = -ENODEV; goto out_mdio_unregister; } priv->phydev = phydev; ave_ethtool_get_wol(ndev, &wol); device_set_wakeup_capable(&ndev->dev, !!wol.supported); /* set wol initial state disabled */ wol.wolopts = 0; __ave_ethtool_set_wol(ndev, &wol); if (!phy_interface_is_rgmii(phydev)) phy_set_max_speed(phydev, SPEED_100); phy_support_asym_pause(phydev); phydev->mac_managed_pm = true; phy_attached_info(phydev); return 0; out_mdio_unregister: mdiobus_unregister(priv->mdio); out_reset_assert: while (--nr >= 0) reset_control_assert(priv->rst[nr]); out_clk_disable: while (--nc >= 0) clk_disable_unprepare(priv->clk[nc]); return ret; } static void ave_uninit(struct net_device *ndev) { struct ave_private *priv = netdev_priv(ndev); int i; phy_disconnect(priv->phydev); mdiobus_unregister(priv->mdio); /* disable clk because of hw access after ndo_stop */ for (i = 0; i < priv->nrsts; i++) reset_control_assert(priv->rst[i]); for (i = 0; i < priv->nclks; i++) clk_disable_unprepare(priv->clk[i]); } static int ave_open(struct net_device *ndev) { struct ave_private *priv = netdev_priv(ndev); int entry; int ret; u32 val; ret = request_irq(priv->irq, ave_irq_handler, IRQF_SHARED, ndev->name, ndev); if (ret) return ret; priv->tx.desc = kcalloc(priv->tx.ndesc, sizeof(*priv->tx.desc), GFP_KERNEL); if (!priv->tx.desc) { ret = -ENOMEM; goto out_free_irq; } priv->rx.desc = kcalloc(priv->rx.ndesc, sizeof(*priv->rx.desc), GFP_KERNEL); if (!priv->rx.desc) { kfree(priv->tx.desc); ret = -ENOMEM; goto out_free_irq; } /* initialize Tx work and descriptor */ priv->tx.proc_idx = 0; priv->tx.done_idx = 0; for (entry = 0; entry < priv->tx.ndesc; entry++) { ave_desc_write_cmdsts(ndev, AVE_DESCID_TX, entry, 0); ave_desc_write_addr(ndev, AVE_DESCID_TX, entry, 0); } writel(AVE_TXDC_ADDR_START | (((priv->tx.ndesc * priv->desc_size) << 16) & AVE_TXDC_SIZE), priv->base + AVE_TXDC); /* initialize Rx work and descriptor */ priv->rx.proc_idx = 0; priv->rx.done_idx = 0; for (entry = 0; entry < priv->rx.ndesc; entry++) { if (ave_rxdesc_prepare(ndev, entry)) break; } writel(AVE_RXDC0_ADDR_START | (((priv->rx.ndesc * priv->desc_size) << 16) & AVE_RXDC0_SIZE), priv->base + AVE_RXDC0); ave_desc_switch(ndev, AVE_DESC_START); ave_pfsel_init(ndev); ave_macaddr_init(ndev); /* set Rx configuration */ /* full duplex, enable pause drop, enalbe flow control */ val = AVE_RXCR_RXEN | AVE_RXCR_FDUPEN | AVE_RXCR_DRPEN | AVE_RXCR_FLOCTR | (AVE_MAX_ETHFRAME & AVE_RXCR_MPSIZ_MASK); writel(val, priv->base + AVE_RXCR); /* set Tx configuration */ /* enable flow control, disable loopback */ writel(AVE_TXCR_FLOCTR, priv->base + AVE_TXCR); /* enable timer, clear EN,INTM, and mask interval unit(BSCK) */ val = readl(priv->base + AVE_IIRQC) & AVE_IIRQC_BSCK; val |= AVE_IIRQC_EN0 | (AVE_INTM_COUNT << 16); writel(val, priv->base + AVE_IIRQC); val = AVE_GI_RXIINT | AVE_GI_RXOVF | AVE_GI_TX | AVE_GI_RXDROP; ave_irq_restore(ndev, val); napi_enable(&priv->napi_rx); napi_enable(&priv->napi_tx); phy_start(ndev->phydev); phy_start_aneg(ndev->phydev); netif_start_queue(ndev); return 0; out_free_irq: disable_irq(priv->irq); free_irq(priv->irq, ndev); return ret; } static int ave_stop(struct net_device *ndev) { struct ave_private *priv = netdev_priv(ndev); int entry; ave_irq_disable_all(ndev); disable_irq(priv->irq); free_irq(priv->irq, ndev); netif_tx_disable(ndev); phy_stop(ndev->phydev); napi_disable(&priv->napi_tx); napi_disable(&priv->napi_rx); ave_desc_switch(ndev, AVE_DESC_STOP); /* free Tx buffer */ for (entry = 0; entry < priv->tx.ndesc; entry++) { if (!priv->tx.desc[entry].skbs) continue; ave_dma_unmap(ndev, &priv->tx.desc[entry], DMA_TO_DEVICE); dev_kfree_skb_any(priv->tx.desc[entry].skbs); priv->tx.desc[entry].skbs = NULL; } priv->tx.proc_idx = 0; priv->tx.done_idx = 0; /* free Rx buffer */ for (entry = 0; entry < priv->rx.ndesc; entry++) { if (!priv->rx.desc[entry].skbs) continue; ave_dma_unmap(ndev, &priv->rx.desc[entry], DMA_FROM_DEVICE); dev_kfree_skb_any(priv->rx.desc[entry].skbs); priv->rx.desc[entry].skbs = NULL; } priv->rx.proc_idx = 0; priv->rx.done_idx = 0; kfree(priv->tx.desc); kfree(priv->rx.desc); return 0; } static netdev_tx_t ave_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct ave_private *priv = netdev_priv(ndev); u32 proc_idx, done_idx, ndesc, cmdsts; int ret, freepkt; dma_addr_t paddr; proc_idx = priv->tx.proc_idx; done_idx = priv->tx.done_idx; ndesc = priv->tx.ndesc; freepkt = ((done_idx + ndesc - 1) - proc_idx) % ndesc; /* stop queue when not enough entry */ if (unlikely(freepkt < 1)) { netif_stop_queue(ndev); return NETDEV_TX_BUSY; } /* add padding for short packet */ if (skb_put_padto(skb, ETH_ZLEN)) { priv->stats_tx.dropped++; return NETDEV_TX_OK; } /* map Tx buffer * Tx buffer set to the Tx descriptor doesn't have any restriction. */ ret = ave_dma_map(ndev, &priv->tx.desc[proc_idx], skb->data, skb->len, DMA_TO_DEVICE, &paddr); if (ret) { dev_kfree_skb_any(skb); priv->stats_tx.dropped++; return NETDEV_TX_OK; } priv->tx.desc[proc_idx].skbs = skb; ave_desc_write_addr(ndev, AVE_DESCID_TX, proc_idx, paddr); cmdsts = AVE_STS_OWN | AVE_STS_1ST | AVE_STS_LAST | (skb->len & AVE_STS_PKTLEN_TX_MASK); /* set interrupt per AVE_FORCE_TXINTCNT or when queue is stopped */ if (!(proc_idx % AVE_FORCE_TXINTCNT) || netif_queue_stopped(ndev)) cmdsts |= AVE_STS_INTR; /* disable checksum calculation when skb doesn't calurate checksum */ if (skb->ip_summed == CHECKSUM_NONE || skb->ip_summed == CHECKSUM_UNNECESSARY) cmdsts |= AVE_STS_NOCSUM; ave_desc_write_cmdsts(ndev, AVE_DESCID_TX, proc_idx, cmdsts); priv->tx.proc_idx = (proc_idx + 1) % ndesc; return NETDEV_TX_OK; } static int ave_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd) { return phy_mii_ioctl(ndev->phydev, ifr, cmd); } static const u8 v4multi_macadr[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 }; static const u8 v6multi_macadr[] = { 0x33, 0x00, 0x00, 0x00, 0x00, 0x00 }; static void ave_set_rx_mode(struct net_device *ndev) { struct ave_private *priv = netdev_priv(ndev); struct netdev_hw_addr *hw_adr; int count, mc_cnt; u32 val; /* MAC addr filter enable for promiscious mode */ mc_cnt = netdev_mc_count(ndev); val = readl(priv->base + AVE_RXCR); if (ndev->flags & IFF_PROMISC || !mc_cnt) val &= ~AVE_RXCR_AFEN; else val |= AVE_RXCR_AFEN; writel(val, priv->base + AVE_RXCR); /* set all multicast address */ if ((ndev->flags & IFF_ALLMULTI) || mc_cnt > AVE_PF_MULTICAST_SIZE) { ave_pfsel_set_macaddr(ndev, AVE_PFNUM_MULTICAST, v4multi_macadr, 1); ave_pfsel_set_macaddr(ndev, AVE_PFNUM_MULTICAST + 1, v6multi_macadr, 1); } else { /* stop all multicast filter */ for (count = 0; count < AVE_PF_MULTICAST_SIZE; count++) ave_pfsel_stop(ndev, AVE_PFNUM_MULTICAST + count); /* set multicast addresses */ count = 0; netdev_for_each_mc_addr(hw_adr, ndev) { if (count == mc_cnt) break; ave_pfsel_set_macaddr(ndev, AVE_PFNUM_MULTICAST + count, hw_adr->addr, 6); count++; } } } static void ave_get_stats64(struct net_device *ndev, struct rtnl_link_stats64 *stats) { struct ave_private *priv = netdev_priv(ndev); unsigned int start; do { start = u64_stats_fetch_begin(&priv->stats_rx.syncp); stats->rx_packets = priv->stats_rx.packets; stats->rx_bytes = priv->stats_rx.bytes; } while (u64_stats_fetch_retry(&priv->stats_rx.syncp, start)); do { start = u64_stats_fetch_begin(&priv->stats_tx.syncp); stats->tx_packets = priv->stats_tx.packets; stats->tx_bytes = priv->stats_tx.bytes; } while (u64_stats_fetch_retry(&priv->stats_tx.syncp, start)); stats->rx_errors = priv->stats_rx.errors; stats->tx_errors = priv->stats_tx.errors; stats->rx_dropped = priv->stats_rx.dropped; stats->tx_dropped = priv->stats_tx.dropped; stats->rx_fifo_errors = priv->stats_rx.fifo_errors; stats->collisions = priv->stats_tx.collisions; } static int ave_set_mac_address(struct net_device *ndev, void *p) { int ret = eth_mac_addr(ndev, p); if (ret) return ret; ave_macaddr_init(ndev); return 0; } static const struct net_device_ops ave_netdev_ops = { .ndo_init = ave_init, .ndo_uninit = ave_uninit, .ndo_open = ave_open, .ndo_stop = ave_stop, .ndo_start_xmit = ave_start_xmit, .ndo_eth_ioctl = ave_ioctl, .ndo_set_rx_mode = ave_set_rx_mode, .ndo_get_stats64 = ave_get_stats64, .ndo_set_mac_address = ave_set_mac_address, }; static int ave_probe(struct platform_device *pdev) { const struct ave_soc_data *data; struct device *dev = &pdev->dev; char buf[ETHTOOL_FWVERS_LEN]; struct of_phandle_args args; phy_interface_t phy_mode; struct ave_private *priv; struct net_device *ndev; struct device_node *np; void __iomem *base; const char *name; int i, irq, ret; u64 dma_mask; u32 ave_id; data = of_device_get_match_data(dev); if (WARN_ON(!data)) return -EINVAL; np = dev->of_node; ret = of_get_phy_mode(np, &phy_mode); if (ret) { dev_err(dev, "phy-mode not found\n"); return ret; } irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); ndev = devm_alloc_etherdev(dev, sizeof(struct ave_private)); if (!ndev) { dev_err(dev, "can't allocate ethernet device\n"); return -ENOMEM; } ndev->netdev_ops = &ave_netdev_ops; ndev->ethtool_ops = &ave_ethtool_ops; SET_NETDEV_DEV(ndev, dev); ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_RXCSUM); ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_RXCSUM); ndev->max_mtu = AVE_MAX_ETHFRAME - (ETH_HLEN + ETH_FCS_LEN); ret = of_get_ethdev_address(np, ndev); if (ret) { /* if the mac address is invalid, use random mac address */ eth_hw_addr_random(ndev); dev_warn(dev, "Using random MAC address: %pM\n", ndev->dev_addr); } priv = netdev_priv(ndev); priv->base = base; priv->irq = irq; priv->ndev = ndev; priv->msg_enable = netif_msg_init(-1, AVE_DEFAULT_MSG_ENABLE); priv->phy_mode = phy_mode; priv->data = data; if (IS_DESC_64BIT(priv)) { priv->desc_size = AVE_DESC_SIZE_64; priv->tx.daddr = AVE_TXDM_64; priv->rx.daddr = AVE_RXDM_64; dma_mask = DMA_BIT_MASK(64); } else { priv->desc_size = AVE_DESC_SIZE_32; priv->tx.daddr = AVE_TXDM_32; priv->rx.daddr = AVE_RXDM_32; dma_mask = DMA_BIT_MASK(32); } ret = dma_set_mask(dev, dma_mask); if (ret) return ret; priv->tx.ndesc = AVE_NR_TXDESC; priv->rx.ndesc = AVE_NR_RXDESC; u64_stats_init(&priv->stats_tx.syncp); u64_stats_init(&priv->stats_rx.syncp); for (i = 0; i < AVE_MAX_CLKS; i++) { name = priv->data->clock_names[i]; if (!name) break; priv->clk[i] = devm_clk_get(dev, name); if (IS_ERR(priv->clk[i])) return PTR_ERR(priv->clk[i]); priv->nclks++; } for (i = 0; i < AVE_MAX_RSTS; i++) { name = priv->data->reset_names[i]; if (!name) break; priv->rst[i] = devm_reset_control_get_shared(dev, name); if (IS_ERR(priv->rst[i])) return PTR_ERR(priv->rst[i]); priv->nrsts++; } ret = of_parse_phandle_with_fixed_args(np, "socionext,syscon-phy-mode", 1, 0, &args); if (ret) { dev_err(dev, "can't get syscon-phy-mode property\n"); return ret; } priv->regmap = syscon_node_to_regmap(args.np); of_node_put(args.np); if (IS_ERR(priv->regmap)) { dev_err(dev, "can't map syscon-phy-mode\n"); return PTR_ERR(priv->regmap); } ret = priv->data->get_pinmode(priv, phy_mode, args.args[0]); if (ret) { dev_err(dev, "invalid phy-mode setting\n"); return ret; } priv->mdio = devm_mdiobus_alloc(dev); if (!priv->mdio) return -ENOMEM; priv->mdio->priv = ndev; priv->mdio->parent = dev; priv->mdio->read = ave_mdiobus_read; priv->mdio->write = ave_mdiobus_write; priv->mdio->name = "uniphier-mdio"; snprintf(priv->mdio->id, MII_BUS_ID_SIZE, "%s-%x", pdev->name, pdev->id); /* Register as a NAPI supported driver */ netif_napi_add(ndev, &priv->napi_rx, ave_napi_poll_rx); netif_napi_add_tx(ndev, &priv->napi_tx, ave_napi_poll_tx); platform_set_drvdata(pdev, ndev); ret = register_netdev(ndev); if (ret) { dev_err(dev, "failed to register netdevice\n"); goto out_del_napi; } /* get ID and version */ ave_id = readl(priv->base + AVE_IDR); ave_hw_read_version(ndev, buf, sizeof(buf)); dev_info(dev, "Socionext %c%c%c%c Ethernet IP %s (irq=%d, phy=%s)\n", (ave_id >> 24) & 0xff, (ave_id >> 16) & 0xff, (ave_id >> 8) & 0xff, (ave_id >> 0) & 0xff, buf, priv->irq, phy_modes(phy_mode)); return 0; out_del_napi: netif_napi_del(&priv->napi_rx); netif_napi_del(&priv->napi_tx); return ret; } static int ave_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct ave_private *priv = netdev_priv(ndev); unregister_netdev(ndev); netif_napi_del(&priv->napi_rx); netif_napi_del(&priv->napi_tx); return 0; } #ifdef CONFIG_PM_SLEEP static int ave_suspend(struct device *dev) { struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; struct net_device *ndev = dev_get_drvdata(dev); struct ave_private *priv = netdev_priv(ndev); int ret = 0; if (netif_running(ndev)) { ret = ave_stop(ndev); netif_device_detach(ndev); } ave_ethtool_get_wol(ndev, &wol); priv->wolopts = wol.wolopts; return ret; } static int ave_resume(struct device *dev) { struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; struct net_device *ndev = dev_get_drvdata(dev); struct ave_private *priv = netdev_priv(ndev); int ret = 0; ave_global_reset(ndev); ret = phy_init_hw(ndev->phydev); if (ret) return ret; ave_ethtool_get_wol(ndev, &wol); wol.wolopts = priv->wolopts; __ave_ethtool_set_wol(ndev, &wol); if (netif_running(ndev)) { ret = ave_open(ndev); netif_device_attach(ndev); } return ret; } static SIMPLE_DEV_PM_OPS(ave_pm_ops, ave_suspend, ave_resume); #define AVE_PM_OPS (&ave_pm_ops) #else #define AVE_PM_OPS NULL #endif static int ave_pro4_get_pinmode(struct ave_private *priv, phy_interface_t phy_mode, u32 arg) { if (arg > 0) return -EINVAL; priv->pinmode_mask = SG_ETPINMODE_RMII(0); switch (phy_mode) { case PHY_INTERFACE_MODE_RMII: priv->pinmode_val = SG_ETPINMODE_RMII(0); break; case PHY_INTERFACE_MODE_MII: case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: priv->pinmode_val = 0; break; default: return -EINVAL; } return 0; } static int ave_ld11_get_pinmode(struct ave_private *priv, phy_interface_t phy_mode, u32 arg) { if (arg > 0) return -EINVAL; priv->pinmode_mask = SG_ETPINMODE_EXTPHY | SG_ETPINMODE_RMII(0); switch (phy_mode) { case PHY_INTERFACE_MODE_INTERNAL: priv->pinmode_val = 0; break; case PHY_INTERFACE_MODE_RMII: priv->pinmode_val = SG_ETPINMODE_EXTPHY | SG_ETPINMODE_RMII(0); break; default: return -EINVAL; } return 0; } static int ave_ld20_get_pinmode(struct ave_private *priv, phy_interface_t phy_mode, u32 arg) { if (arg > 0) return -EINVAL; priv->pinmode_mask = SG_ETPINMODE_RMII(0); switch (phy_mode) { case PHY_INTERFACE_MODE_RMII: priv->pinmode_val = SG_ETPINMODE_RMII(0); break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: priv->pinmode_val = 0; break; default: return -EINVAL; } return 0; } static int ave_pxs3_get_pinmode(struct ave_private *priv, phy_interface_t phy_mode, u32 arg) { if (arg > 1) return -EINVAL; priv->pinmode_mask = SG_ETPINMODE_RMII(arg); switch (phy_mode) { case PHY_INTERFACE_MODE_RMII: priv->pinmode_val = SG_ETPINMODE_RMII(arg); break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: priv->pinmode_val = 0; break; default: return -EINVAL; } return 0; } static const struct ave_soc_data ave_pro4_data = { .is_desc_64bit = false, .clock_names = { "gio", "ether", "ether-gb", "ether-phy", }, .reset_names = { "gio", "ether", }, .get_pinmode = ave_pro4_get_pinmode, }; static const struct ave_soc_data ave_pxs2_data = { .is_desc_64bit = false, .clock_names = { "ether", }, .reset_names = { "ether", }, .get_pinmode = ave_pro4_get_pinmode, }; static const struct ave_soc_data ave_ld11_data = { .is_desc_64bit = false, .clock_names = { "ether", }, .reset_names = { "ether", }, .get_pinmode = ave_ld11_get_pinmode, }; static const struct ave_soc_data ave_ld20_data = { .is_desc_64bit = true, .clock_names = { "ether", }, .reset_names = { "ether", }, .get_pinmode = ave_ld20_get_pinmode, }; static const struct ave_soc_data ave_pxs3_data = { .is_desc_64bit = false, .clock_names = { "ether", }, .reset_names = { "ether", }, .get_pinmode = ave_pxs3_get_pinmode, }; static const struct ave_soc_data ave_nx1_data = { .is_desc_64bit = true, .clock_names = { "ether", }, .reset_names = { "ether", }, .get_pinmode = ave_pxs3_get_pinmode, }; static const struct of_device_id of_ave_match[] = { { .compatible = "socionext,uniphier-pro4-ave4", .data = &ave_pro4_data, }, { .compatible = "socionext,uniphier-pxs2-ave4", .data = &ave_pxs2_data, }, { .compatible = "socionext,uniphier-ld11-ave4", .data = &ave_ld11_data, }, { .compatible = "socionext,uniphier-ld20-ave4", .data = &ave_ld20_data, }, { .compatible = "socionext,uniphier-pxs3-ave4", .data = &ave_pxs3_data, }, { .compatible = "socionext,uniphier-nx1-ave4", .data = &ave_nx1_data, }, { /* Sentinel */ } }; MODULE_DEVICE_TABLE(of, of_ave_match); static struct platform_driver ave_driver = { .probe = ave_probe, .remove = ave_remove, .driver = { .name = "ave", .pm = AVE_PM_OPS, .of_match_table = of_ave_match, }, }; module_platform_driver(ave_driver); MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>"); MODULE_DESCRIPTION("Socionext UniPhier AVE ethernet driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1