Contributors: 30
Author Tokens Token Proportion Commits Commit Proportion
Jamal Hadi Salim 661 31.43% 1 1.75%
Tonghao Zhang 557 26.49% 1 1.75%
Eric Dumazet 406 19.31% 11 19.30%
Patrick McHardy 188 8.94% 5 8.77%
Stephen Hemminger 122 5.80% 4 7.02%
David S. Miller 29 1.38% 2 3.51%
Changli Gao 19 0.90% 2 3.51%
Emil Renner Berthing 13 0.62% 1 1.75%
Zhang Shengju 12 0.57% 2 3.51%
Willem de Bruijn 11 0.52% 3 5.26%
Lukas Wunner 11 0.52% 1 1.75%
Ding Tianhong 9 0.43% 2 3.51%
Eric W. Biedermann 8 0.38% 3 5.26%
Thomas Gleixner 7 0.33% 2 3.51%
Vlad Yasevich 7 0.33% 1 1.75%
John Stultz 6 0.29% 1 1.75%
Johannes Berg 5 0.24% 1 1.75%
Arnd Bergmann 5 0.24% 1 1.75%
Linus Torvalds 5 0.24% 1 1.75%
Américo Wang 4 0.19% 1 1.75%
Kirill V Tkhai 4 0.19% 2 3.51%
Pablo Neira Ayuso 3 0.14% 1 1.75%
Alexey Dobriyan 3 0.14% 1 1.75%
Tom Gundersen 2 0.10% 1 1.75%
Richard Lucassen 1 0.05% 1 1.75%
Neil Horman 1 0.05% 1 1.75%
Jon Maxwell 1 0.05% 1 1.75%
Hui Tang 1 0.05% 1 1.75%
Herbert Xu 1 0.05% 1 1.75%
Danny Kukawka 1 0.05% 1 1.75%
Total 2103 57


// SPDX-License-Identifier: GPL-2.0-or-later
/* drivers/net/ifb.c:

	The purpose of this driver is to provide a device that allows
	for sharing of resources:

	1) qdiscs/policies that are per device as opposed to system wide.
	ifb allows for a device which can be redirected to thus providing
	an impression of sharing.

	2) Allows for queueing incoming traffic for shaping instead of
	dropping.

	The original concept is based on what is known as the IMQ
	driver initially written by Martin Devera, later rewritten
	by Patrick McHardy and then maintained by Andre Correa.

	You need the tc action  mirror or redirect to feed this device
	packets.


	Authors:	Jamal Hadi Salim (2005)

*/


#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/ethtool.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/netfilter_netdev.h>
#include <net/pkt_sched.h>
#include <net/net_namespace.h>

#define TX_Q_LIMIT    32

struct ifb_q_stats {
	u64 packets;
	u64 bytes;
	struct u64_stats_sync	sync;
};

struct ifb_q_private {
	struct net_device	*dev;
	struct tasklet_struct   ifb_tasklet;
	int			tasklet_pending;
	int			txqnum;
	struct sk_buff_head     rq;
	struct sk_buff_head     tq;
	struct ifb_q_stats	rx_stats;
	struct ifb_q_stats	tx_stats;
} ____cacheline_aligned_in_smp;

struct ifb_dev_private {
	struct ifb_q_private *tx_private;
};

/* For ethtools stats. */
struct ifb_q_stats_desc {
	char	desc[ETH_GSTRING_LEN];
	size_t	offset;
};

#define IFB_Q_STAT(m)	offsetof(struct ifb_q_stats, m)

static const struct ifb_q_stats_desc ifb_q_stats_desc[] = {
	{ "packets",	IFB_Q_STAT(packets) },
	{ "bytes",	IFB_Q_STAT(bytes) },
};

#define IFB_Q_STATS_LEN	ARRAY_SIZE(ifb_q_stats_desc)

static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev);
static int ifb_open(struct net_device *dev);
static int ifb_close(struct net_device *dev);

static void ifb_update_q_stats(struct ifb_q_stats *stats, int len)
{
	u64_stats_update_begin(&stats->sync);
	stats->packets++;
	stats->bytes += len;
	u64_stats_update_end(&stats->sync);
}

static void ifb_ri_tasklet(struct tasklet_struct *t)
{
	struct ifb_q_private *txp = from_tasklet(txp, t, ifb_tasklet);
	struct netdev_queue *txq;
	struct sk_buff *skb;

	txq = netdev_get_tx_queue(txp->dev, txp->txqnum);
	skb = skb_peek(&txp->tq);
	if (!skb) {
		if (!__netif_tx_trylock(txq))
			goto resched;
		skb_queue_splice_tail_init(&txp->rq, &txp->tq);
		__netif_tx_unlock(txq);
	}

	while ((skb = __skb_dequeue(&txp->tq)) != NULL) {
		/* Skip tc and netfilter to prevent redirection loop. */
		skb->redirected = 0;
#ifdef CONFIG_NET_CLS_ACT
		skb->tc_skip_classify = 1;
#endif
		nf_skip_egress(skb, true);

		ifb_update_q_stats(&txp->tx_stats, skb->len);

		rcu_read_lock();
		skb->dev = dev_get_by_index_rcu(dev_net(txp->dev), skb->skb_iif);
		if (!skb->dev) {
			rcu_read_unlock();
			dev_kfree_skb(skb);
			txp->dev->stats.tx_dropped++;
			if (skb_queue_len(&txp->tq) != 0)
				goto resched;
			break;
		}
		rcu_read_unlock();
		skb->skb_iif = txp->dev->ifindex;

		if (!skb->from_ingress) {
			dev_queue_xmit(skb);
		} else {
			skb_pull_rcsum(skb, skb->mac_len);
			netif_receive_skb(skb);
		}
	}

	if (__netif_tx_trylock(txq)) {
		skb = skb_peek(&txp->rq);
		if (!skb) {
			txp->tasklet_pending = 0;
			if (netif_tx_queue_stopped(txq))
				netif_tx_wake_queue(txq);
		} else {
			__netif_tx_unlock(txq);
			goto resched;
		}
		__netif_tx_unlock(txq);
	} else {
resched:
		txp->tasklet_pending = 1;
		tasklet_schedule(&txp->ifb_tasklet);
	}

}

static void ifb_stats64(struct net_device *dev,
			struct rtnl_link_stats64 *stats)
{
	struct ifb_dev_private *dp = netdev_priv(dev);
	struct ifb_q_private *txp = dp->tx_private;
	unsigned int start;
	u64 packets, bytes;
	int i;

	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
		do {
			start = u64_stats_fetch_begin(&txp->rx_stats.sync);
			packets = txp->rx_stats.packets;
			bytes = txp->rx_stats.bytes;
		} while (u64_stats_fetch_retry(&txp->rx_stats.sync, start));
		stats->rx_packets += packets;
		stats->rx_bytes += bytes;

		do {
			start = u64_stats_fetch_begin(&txp->tx_stats.sync);
			packets = txp->tx_stats.packets;
			bytes = txp->tx_stats.bytes;
		} while (u64_stats_fetch_retry(&txp->tx_stats.sync, start));
		stats->tx_packets += packets;
		stats->tx_bytes += bytes;
	}
	stats->rx_dropped = dev->stats.rx_dropped;
	stats->tx_dropped = dev->stats.tx_dropped;
}

static int ifb_dev_init(struct net_device *dev)
{
	struct ifb_dev_private *dp = netdev_priv(dev);
	struct ifb_q_private *txp;
	int i;

	txp = kcalloc(dev->num_tx_queues, sizeof(*txp), GFP_KERNEL);
	if (!txp)
		return -ENOMEM;
	dp->tx_private = txp;
	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
		txp->txqnum = i;
		txp->dev = dev;
		__skb_queue_head_init(&txp->rq);
		__skb_queue_head_init(&txp->tq);
		u64_stats_init(&txp->rx_stats.sync);
		u64_stats_init(&txp->tx_stats.sync);
		tasklet_setup(&txp->ifb_tasklet, ifb_ri_tasklet);
		netif_tx_start_queue(netdev_get_tx_queue(dev, i));
	}
	return 0;
}

static void ifb_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
{
	u8 *p = buf;
	int i, j;

	switch (stringset) {
	case ETH_SS_STATS:
		for (i = 0; i < dev->real_num_rx_queues; i++)
			for (j = 0; j < IFB_Q_STATS_LEN; j++)
				ethtool_sprintf(&p, "rx_queue_%u_%.18s",
						i, ifb_q_stats_desc[j].desc);

		for (i = 0; i < dev->real_num_tx_queues; i++)
			for (j = 0; j < IFB_Q_STATS_LEN; j++)
				ethtool_sprintf(&p, "tx_queue_%u_%.18s",
						i, ifb_q_stats_desc[j].desc);

		break;
	}
}

static int ifb_get_sset_count(struct net_device *dev, int sset)
{
	switch (sset) {
	case ETH_SS_STATS:
		return IFB_Q_STATS_LEN * (dev->real_num_rx_queues +
					  dev->real_num_tx_queues);
	default:
		return -EOPNOTSUPP;
	}
}

static void ifb_fill_stats_data(u64 **data,
				struct ifb_q_stats *q_stats)
{
	void *stats_base = (void *)q_stats;
	unsigned int start;
	size_t offset;
	int j;

	do {
		start = u64_stats_fetch_begin(&q_stats->sync);
		for (j = 0; j < IFB_Q_STATS_LEN; j++) {
			offset = ifb_q_stats_desc[j].offset;
			(*data)[j] = *(u64 *)(stats_base + offset);
		}
	} while (u64_stats_fetch_retry(&q_stats->sync, start));

	*data += IFB_Q_STATS_LEN;
}

static void ifb_get_ethtool_stats(struct net_device *dev,
				  struct ethtool_stats *stats, u64 *data)
{
	struct ifb_dev_private *dp = netdev_priv(dev);
	struct ifb_q_private *txp;
	int i;

	for (i = 0; i < dev->real_num_rx_queues; i++) {
		txp = dp->tx_private + i;
		ifb_fill_stats_data(&data, &txp->rx_stats);
	}

	for (i = 0; i < dev->real_num_tx_queues; i++) {
		txp = dp->tx_private + i;
		ifb_fill_stats_data(&data, &txp->tx_stats);
	}
}

static const struct net_device_ops ifb_netdev_ops = {
	.ndo_open	= ifb_open,
	.ndo_stop	= ifb_close,
	.ndo_get_stats64 = ifb_stats64,
	.ndo_start_xmit	= ifb_xmit,
	.ndo_validate_addr = eth_validate_addr,
	.ndo_init	= ifb_dev_init,
};

static const struct ethtool_ops ifb_ethtool_ops = {
	.get_strings		= ifb_get_strings,
	.get_sset_count		= ifb_get_sset_count,
	.get_ethtool_stats	= ifb_get_ethtool_stats,
};

#define IFB_FEATURES (NETIF_F_HW_CSUM | NETIF_F_SG  | NETIF_F_FRAGLIST	| \
		      NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL	| \
		      NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX		| \
		      NETIF_F_HW_VLAN_STAG_TX)

static void ifb_dev_free(struct net_device *dev)
{
	struct ifb_dev_private *dp = netdev_priv(dev);
	struct ifb_q_private *txp = dp->tx_private;
	int i;

	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
		tasklet_kill(&txp->ifb_tasklet);
		__skb_queue_purge(&txp->rq);
		__skb_queue_purge(&txp->tq);
	}
	kfree(dp->tx_private);
}

static void ifb_setup(struct net_device *dev)
{
	/* Initialize the device structure. */
	dev->netdev_ops = &ifb_netdev_ops;
	dev->ethtool_ops = &ifb_ethtool_ops;

	/* Fill in device structure with ethernet-generic values. */
	ether_setup(dev);
	dev->tx_queue_len = TX_Q_LIMIT;

	dev->features |= IFB_FEATURES;
	dev->hw_features |= dev->features;
	dev->hw_enc_features |= dev->features;
	dev->vlan_features |= IFB_FEATURES & ~(NETIF_F_HW_VLAN_CTAG_TX |
					       NETIF_F_HW_VLAN_STAG_TX);

	dev->flags |= IFF_NOARP;
	dev->flags &= ~IFF_MULTICAST;
	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
	netif_keep_dst(dev);
	eth_hw_addr_random(dev);
	dev->needs_free_netdev = true;
	dev->priv_destructor = ifb_dev_free;

	dev->min_mtu = 0;
	dev->max_mtu = 0;
}

static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct ifb_dev_private *dp = netdev_priv(dev);
	struct ifb_q_private *txp = dp->tx_private + skb_get_queue_mapping(skb);

	ifb_update_q_stats(&txp->rx_stats, skb->len);

	if (!skb->redirected || !skb->skb_iif) {
		dev_kfree_skb(skb);
		dev->stats.rx_dropped++;
		return NETDEV_TX_OK;
	}

	if (skb_queue_len(&txp->rq) >= dev->tx_queue_len)
		netif_tx_stop_queue(netdev_get_tx_queue(dev, txp->txqnum));

	__skb_queue_tail(&txp->rq, skb);
	if (!txp->tasklet_pending) {
		txp->tasklet_pending = 1;
		tasklet_schedule(&txp->ifb_tasklet);
	}

	return NETDEV_TX_OK;
}

static int ifb_close(struct net_device *dev)
{
	netif_tx_stop_all_queues(dev);
	return 0;
}

static int ifb_open(struct net_device *dev)
{
	netif_tx_start_all_queues(dev);
	return 0;
}

static int ifb_validate(struct nlattr *tb[], struct nlattr *data[],
			struct netlink_ext_ack *extack)
{
	if (tb[IFLA_ADDRESS]) {
		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
			return -EINVAL;
		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
			return -EADDRNOTAVAIL;
	}
	return 0;
}

static struct rtnl_link_ops ifb_link_ops __read_mostly = {
	.kind		= "ifb",
	.priv_size	= sizeof(struct ifb_dev_private),
	.setup		= ifb_setup,
	.validate	= ifb_validate,
};

/* Number of ifb devices to be set up by this module.
 * Note that these legacy devices have one queue.
 * Prefer something like : ip link add ifb10 numtxqueues 8 type ifb
 */
static int numifbs = 2;
module_param(numifbs, int, 0);
MODULE_PARM_DESC(numifbs, "Number of ifb devices");

static int __init ifb_init_one(int index)
{
	struct net_device *dev_ifb;
	int err;

	dev_ifb = alloc_netdev(sizeof(struct ifb_dev_private), "ifb%d",
			       NET_NAME_UNKNOWN, ifb_setup);

	if (!dev_ifb)
		return -ENOMEM;

	dev_ifb->rtnl_link_ops = &ifb_link_ops;
	err = register_netdevice(dev_ifb);
	if (err < 0)
		goto err;

	return 0;

err:
	free_netdev(dev_ifb);
	return err;
}

static int __init ifb_init_module(void)
{
	int i, err;

	down_write(&pernet_ops_rwsem);
	rtnl_lock();
	err = __rtnl_link_register(&ifb_link_ops);
	if (err < 0)
		goto out;

	for (i = 0; i < numifbs && !err; i++) {
		err = ifb_init_one(i);
		cond_resched();
	}
	if (err)
		__rtnl_link_unregister(&ifb_link_ops);

out:
	rtnl_unlock();
	up_write(&pernet_ops_rwsem);

	return err;
}

static void __exit ifb_cleanup_module(void)
{
	rtnl_link_unregister(&ifb_link_ops);
}

module_init(ifb_init_module);
module_exit(ifb_cleanup_module);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Jamal Hadi Salim");
MODULE_ALIAS_RTNL_LINK("ifb");