Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Elder | 2949 | 99.29% | 35 | 94.59% |
Kees Cook | 20 | 0.67% | 1 | 2.70% |
Jiang Jian | 1 | 0.03% | 1 | 2.70% |
Total | 2970 | 37 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2019-2022 Linaro Ltd. */ #include <linux/types.h> #include <linux/bits.h> #include <linux/bitfield.h> #include <linux/refcount.h> #include <linux/scatterlist.h> #include <linux/dma-direction.h> #include "gsi.h" #include "gsi_private.h" #include "gsi_trans.h" #include "ipa_gsi.h" #include "ipa_data.h" #include "ipa_cmd.h" /** * DOC: GSI Transactions * * A GSI transaction abstracts the behavior of a GSI channel by representing * everything about a related group of IPA operations in a single structure. * (A "operation" in this sense is either a data transfer or an IPA immediate * command.) Most details of interaction with the GSI hardware are managed * by the GSI transaction core, allowing users to simply describe operations * to be performed. When a transaction has completed a callback function * (dependent on the type of endpoint associated with the channel) allows * cleanup of resources associated with the transaction. * * To perform an operation (or set of them), a user of the GSI transaction * interface allocates a transaction, indicating the number of TREs required * (one per operation). If sufficient TREs are available, they are reserved * for use in the transaction and the allocation succeeds. This way * exhaustion of the available TREs in a channel ring is detected as early * as possible. Any other resources that might be needed to complete a * transaction are also allocated when the transaction is allocated. * * Operations performed as part of a transaction are represented in an array * of Linux scatterlist structures, allocated with the transaction. These * scatterlist structures are initialized by "adding" operations to the * transaction. If a buffer in an operation must be mapped for DMA, this is * done at the time it is added to the transaction. It is possible for a * mapping error to occur when an operation is added. In this case the * transaction should simply be freed; this correctly releases resources * associated with the transaction. * * Once all operations have been successfully added to a transaction, the * transaction is committed. Committing transfers ownership of the entire * transaction to the GSI transaction core. The GSI transaction code * formats the content of the scatterlist array into the channel ring * buffer and informs the hardware that new TREs are available to process. * * The last TRE in each transaction is marked to interrupt the AP when the * GSI hardware has completed it. Because transfers described by TREs are * performed strictly in order, signaling the completion of just the last * TRE in the transaction is sufficient to indicate the full transaction * is complete. * * When a transaction is complete, ipa_gsi_trans_complete() is called by the * GSI code into the IPA layer, allowing it to perform any final cleanup * required before the transaction is freed. */ /* Hardware values representing a transfer element type */ enum gsi_tre_type { GSI_RE_XFER = 0x2, GSI_RE_IMMD_CMD = 0x3, }; /* An entry in a channel ring */ struct gsi_tre { __le64 addr; /* DMA address */ __le16 len_opcode; /* length in bytes or enum IPA_CMD_* */ __le16 reserved; __le32 flags; /* TRE_FLAGS_* */ }; /* gsi_tre->flags mask values (in CPU byte order) */ #define TRE_FLAGS_CHAIN_FMASK GENMASK(0, 0) #define TRE_FLAGS_IEOT_FMASK GENMASK(9, 9) #define TRE_FLAGS_BEI_FMASK GENMASK(10, 10) #define TRE_FLAGS_TYPE_FMASK GENMASK(23, 16) int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count, u32 max_alloc) { size_t alloc_size; void *virt; if (!size) return -EINVAL; if (count < max_alloc) return -EINVAL; if (!max_alloc) return -EINVAL; /* By allocating a few extra entries in our pool (one less * than the maximum number that will be requested in a * single allocation), we can always satisfy requests without * ever worrying about straddling the end of the pool array. * If there aren't enough entries starting at the free index, * we just allocate free entries from the beginning of the pool. */ alloc_size = size_mul(count + max_alloc - 1, size); alloc_size = kmalloc_size_roundup(alloc_size); virt = kzalloc(alloc_size, GFP_KERNEL); if (!virt) return -ENOMEM; pool->base = virt; /* If the allocator gave us any extra memory, use it */ pool->count = alloc_size / size; pool->free = 0; pool->max_alloc = max_alloc; pool->size = size; pool->addr = 0; /* Only used for DMA pools */ return 0; } void gsi_trans_pool_exit(struct gsi_trans_pool *pool) { kfree(pool->base); memset(pool, 0, sizeof(*pool)); } /* Home-grown DMA pool. This way we can preallocate the pool, and guarantee * allocations will succeed. The immediate commands in a transaction can * require up to max_alloc elements from the pool. But we only allow * allocation of a single element from a DMA pool at a time. */ int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool, size_t size, u32 count, u32 max_alloc) { size_t total_size; dma_addr_t addr; void *virt; if (!size) return -EINVAL; if (count < max_alloc) return -EINVAL; if (!max_alloc) return -EINVAL; /* Don't let allocations cross a power-of-two boundary */ size = __roundup_pow_of_two(size); total_size = (count + max_alloc - 1) * size; /* The allocator will give us a power-of-2 number of pages * sufficient to satisfy our request. Round up our requested * size to avoid any unused space in the allocation. This way * gsi_trans_pool_exit_dma() can assume the total allocated * size is exactly (count * size). */ total_size = PAGE_SIZE << get_order(total_size); virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL); if (!virt) return -ENOMEM; pool->base = virt; pool->count = total_size / size; pool->free = 0; pool->size = size; pool->max_alloc = max_alloc; pool->addr = addr; return 0; } void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool) { size_t total_size = pool->count * pool->size; dma_free_coherent(dev, total_size, pool->base, pool->addr); memset(pool, 0, sizeof(*pool)); } /* Return the byte offset of the next free entry in the pool */ static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count) { u32 offset; WARN_ON(!count); WARN_ON(count > pool->max_alloc); /* Allocate from beginning if wrap would occur */ if (count > pool->count - pool->free) pool->free = 0; offset = pool->free * pool->size; pool->free += count; memset(pool->base + offset, 0, count * pool->size); return offset; } /* Allocate a contiguous block of zeroed entries from a pool */ void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count) { return pool->base + gsi_trans_pool_alloc_common(pool, count); } /* Allocate a single zeroed entry from a DMA pool */ void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr) { u32 offset = gsi_trans_pool_alloc_common(pool, 1); *addr = pool->addr + offset; return pool->base + offset; } /* Map a TRE ring entry index to the transaction it is associated with */ static void gsi_trans_map(struct gsi_trans *trans, u32 index) { struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; /* The completion event will indicate the last TRE used */ index += trans->used_count - 1; /* Note: index *must* be used modulo the ring count here */ channel->trans_info.map[index % channel->tre_ring.count] = trans; } /* Return the transaction mapped to a given ring entry */ struct gsi_trans * gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index) { /* Note: index *must* be used modulo the ring count here */ return channel->trans_info.map[index % channel->tre_ring.count]; } /* Return the oldest completed transaction for a channel (or null) */ struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel) { struct gsi_trans_info *trans_info = &channel->trans_info; u16 trans_id = trans_info->completed_id; if (trans_id == trans_info->pending_id) { gsi_channel_update(channel); if (trans_id == trans_info->pending_id) return NULL; } return &trans_info->trans[trans_id %= channel->tre_count]; } /* Move a transaction from allocated to committed state */ static void gsi_trans_move_committed(struct gsi_trans *trans) { struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; struct gsi_trans_info *trans_info = &channel->trans_info; /* This allocated transaction is now committed */ trans_info->allocated_id++; } /* Move committed transactions to pending state */ static void gsi_trans_move_pending(struct gsi_trans *trans) { struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; struct gsi_trans_info *trans_info = &channel->trans_info; u16 trans_index = trans - &trans_info->trans[0]; u16 delta; /* These committed transactions are now pending */ delta = trans_index - trans_info->committed_id + 1; trans_info->committed_id += delta % channel->tre_count; } /* Move pending transactions to completed state */ void gsi_trans_move_complete(struct gsi_trans *trans) { struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; struct gsi_trans_info *trans_info = &channel->trans_info; u16 trans_index = trans - trans_info->trans; u16 delta; /* These pending transactions are now completed */ delta = trans_index - trans_info->pending_id + 1; delta %= channel->tre_count; trans_info->pending_id += delta; } /* Move a transaction from completed to polled state */ void gsi_trans_move_polled(struct gsi_trans *trans) { struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; struct gsi_trans_info *trans_info = &channel->trans_info; /* This completed transaction is now polled */ trans_info->completed_id++; } /* Reserve some number of TREs on a channel. Returns true if successful */ static bool gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count) { int avail = atomic_read(&trans_info->tre_avail); int new; do { new = avail - (int)tre_count; if (unlikely(new < 0)) return false; } while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new)); return true; } /* Release previously-reserved TRE entries to a channel */ static void gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count) { atomic_add(tre_count, &trans_info->tre_avail); } /* Return true if no transactions are allocated, false otherwise */ bool gsi_channel_trans_idle(struct gsi *gsi, u32 channel_id) { u32 tre_max = gsi_channel_tre_max(gsi, channel_id); struct gsi_trans_info *trans_info; trans_info = &gsi->channel[channel_id].trans_info; return atomic_read(&trans_info->tre_avail) == tre_max; } /* Allocate a GSI transaction on a channel */ struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id, u32 tre_count, enum dma_data_direction direction) { struct gsi_channel *channel = &gsi->channel[channel_id]; struct gsi_trans_info *trans_info; struct gsi_trans *trans; u16 trans_index; if (WARN_ON(tre_count > channel->trans_tre_max)) return NULL; trans_info = &channel->trans_info; /* If we can't reserve the TREs for the transaction, we're done */ if (!gsi_trans_tre_reserve(trans_info, tre_count)) return NULL; trans_index = trans_info->free_id % channel->tre_count; trans = &trans_info->trans[trans_index]; memset(trans, 0, sizeof(*trans)); /* Initialize non-zero fields in the transaction */ trans->gsi = gsi; trans->channel_id = channel_id; trans->rsvd_count = tre_count; init_completion(&trans->completion); /* Allocate the scatterlist */ trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count); sg_init_marker(trans->sgl, tre_count); trans->direction = direction; refcount_set(&trans->refcount, 1); /* This free transaction is now allocated */ trans_info->free_id++; return trans; } /* Free a previously-allocated transaction */ void gsi_trans_free(struct gsi_trans *trans) { struct gsi_trans_info *trans_info; if (!refcount_dec_and_test(&trans->refcount)) return; /* Unused transactions are allocated but never committed, pending, * completed, or polled. */ trans_info = &trans->gsi->channel[trans->channel_id].trans_info; if (!trans->used_count) { trans_info->allocated_id++; trans_info->committed_id++; trans_info->pending_id++; trans_info->completed_id++; } else { ipa_gsi_trans_release(trans); } /* This transaction is now free */ trans_info->polled_id++; /* Releasing the reserved TREs implicitly frees the sgl[] and * (if present) info[] arrays, plus the transaction itself. */ gsi_trans_tre_release(trans_info, trans->rsvd_count); } /* Add an immediate command to a transaction */ void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size, dma_addr_t addr, enum ipa_cmd_opcode opcode) { u32 which = trans->used_count++; struct scatterlist *sg; WARN_ON(which >= trans->rsvd_count); /* Commands are quite different from data transfer requests. * Their payloads come from a pool whose memory is allocated * using dma_alloc_coherent(). We therefore do *not* map them * for DMA (unlike what we do for pages and skbs). * * When a transaction completes, the SGL is normally unmapped. * A command transaction has direction DMA_NONE, which tells * gsi_trans_complete() to skip the unmapping step. * * The only things we use directly in a command scatter/gather * entry are the DMA address and length. We still need the SG * table flags to be maintained though, so assign a NULL page * pointer for that purpose. */ sg = &trans->sgl[which]; sg_assign_page(sg, NULL); sg_dma_address(sg) = addr; sg_dma_len(sg) = size; trans->cmd_opcode[which] = opcode; } /* Add a page transfer to a transaction. It will fill the only TRE. */ int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size, u32 offset) { struct scatterlist *sg = &trans->sgl[0]; int ret; if (WARN_ON(trans->rsvd_count != 1)) return -EINVAL; if (WARN_ON(trans->used_count)) return -EINVAL; sg_set_page(sg, page, size, offset); ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction); if (!ret) return -ENOMEM; trans->used_count++; /* Transaction now owns the (DMA mapped) page */ return 0; } /* Add an SKB transfer to a transaction. No other TREs will be used. */ int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb) { struct scatterlist *sg = &trans->sgl[0]; u32 used_count; int ret; if (WARN_ON(trans->rsvd_count != 1)) return -EINVAL; if (WARN_ON(trans->used_count)) return -EINVAL; /* skb->len will not be 0 (checked early) */ ret = skb_to_sgvec(skb, sg, 0, skb->len); if (ret < 0) return ret; used_count = ret; ret = dma_map_sg(trans->gsi->dev, sg, used_count, trans->direction); if (!ret) return -ENOMEM; /* Transaction now owns the (DMA mapped) skb */ trans->used_count += used_count; return 0; } /* Compute the length/opcode value to use for a TRE */ static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len) { return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len) : cpu_to_le16((u16)opcode); } /* Compute the flags value to use for a given TRE */ static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode) { enum gsi_tre_type tre_type; u32 tre_flags; tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD; tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK); /* Last TRE contains interrupt flags */ if (last_tre) { /* All transactions end in a transfer completion interrupt */ tre_flags |= TRE_FLAGS_IEOT_FMASK; /* Don't interrupt when outbound commands are acknowledged */ if (bei) tre_flags |= TRE_FLAGS_BEI_FMASK; } else { /* All others indicate there's more to come */ tre_flags |= TRE_FLAGS_CHAIN_FMASK; } return cpu_to_le32(tre_flags); } static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr, u32 len, bool last_tre, bool bei, enum ipa_cmd_opcode opcode) { struct gsi_tre tre; tre.addr = cpu_to_le64(addr); tre.len_opcode = gsi_tre_len_opcode(opcode, len); tre.reserved = 0; tre.flags = gsi_tre_flags(last_tre, bei, opcode); /* ARM64 can write 16 bytes as a unit with a single instruction. * Doing the assignment this way is an attempt to make that happen. */ *dest_tre = tre; } /** * __gsi_trans_commit() - Common GSI transaction commit code * @trans: Transaction to commit * @ring_db: Whether to tell the hardware about these queued transfers * * Formats channel ring TRE entries based on the content of the scatterlist. * Maps a transaction pointer to the last ring entry used for the transaction, * so it can be recovered when it completes. Moves the transaction to * pending state. Finally, updates the channel ring pointer and optionally * rings the doorbell. */ static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db) { struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; struct gsi_ring *tre_ring = &channel->tre_ring; enum ipa_cmd_opcode opcode = IPA_CMD_NONE; bool bei = channel->toward_ipa; struct gsi_tre *dest_tre; struct scatterlist *sg; u32 byte_count = 0; u8 *cmd_opcode; u32 avail; u32 i; WARN_ON(!trans->used_count); /* Consume the entries. If we cross the end of the ring while * filling them we'll switch to the beginning to finish. * If there is no info array we're doing a simple data * transfer request, whose opcode is IPA_CMD_NONE. */ cmd_opcode = channel->command ? &trans->cmd_opcode[0] : NULL; avail = tre_ring->count - tre_ring->index % tre_ring->count; dest_tre = gsi_ring_virt(tre_ring, tre_ring->index); for_each_sg(trans->sgl, sg, trans->used_count, i) { bool last_tre = i == trans->used_count - 1; dma_addr_t addr = sg_dma_address(sg); u32 len = sg_dma_len(sg); byte_count += len; if (!avail--) dest_tre = gsi_ring_virt(tre_ring, 0); if (cmd_opcode) opcode = *cmd_opcode++; gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode); dest_tre++; } /* Associate the TRE with the transaction */ gsi_trans_map(trans, tre_ring->index); tre_ring->index += trans->used_count; trans->len = byte_count; if (channel->toward_ipa) gsi_trans_tx_committed(trans); gsi_trans_move_committed(trans); /* Ring doorbell if requested, or if all TREs are allocated */ if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) { /* Report what we're handing off to hardware for TX channels */ if (channel->toward_ipa) gsi_trans_tx_queued(trans); gsi_trans_move_pending(trans); gsi_channel_doorbell(channel); } } /* Commit a GSI transaction */ void gsi_trans_commit(struct gsi_trans *trans, bool ring_db) { if (trans->used_count) __gsi_trans_commit(trans, ring_db); else gsi_trans_free(trans); } /* Commit a GSI transaction and wait for it to complete */ void gsi_trans_commit_wait(struct gsi_trans *trans) { if (!trans->used_count) goto out_trans_free; refcount_inc(&trans->refcount); __gsi_trans_commit(trans, true); wait_for_completion(&trans->completion); out_trans_free: gsi_trans_free(trans); } /* Process the completion of a transaction; called while polling */ void gsi_trans_complete(struct gsi_trans *trans) { /* If the entire SGL was mapped when added, unmap it now */ if (trans->direction != DMA_NONE) dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used_count, trans->direction); ipa_gsi_trans_complete(trans); complete(&trans->completion); gsi_trans_free(trans); } /* Cancel a channel's pending transactions */ void gsi_channel_trans_cancel_pending(struct gsi_channel *channel) { struct gsi_trans_info *trans_info = &channel->trans_info; u16 trans_id = trans_info->pending_id; /* channel->gsi->mutex is held by caller */ /* If there are no pending transactions, we're done */ if (trans_id == trans_info->committed_id) return; /* Mark all pending transactions cancelled */ do { struct gsi_trans *trans; trans = &trans_info->trans[trans_id % channel->tre_count]; trans->cancelled = true; } while (++trans_id != trans_info->committed_id); /* All pending transactions are now completed */ trans_info->pending_id = trans_info->committed_id; /* Schedule NAPI polling to complete the cancelled transactions */ napi_schedule(&channel->napi); } /* Issue a command to read a single byte from a channel */ int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr) { struct gsi_channel *channel = &gsi->channel[channel_id]; struct gsi_ring *tre_ring = &channel->tre_ring; struct gsi_trans_info *trans_info; struct gsi_tre *dest_tre; trans_info = &channel->trans_info; /* First reserve the TRE, if possible */ if (!gsi_trans_tre_reserve(trans_info, 1)) return -EBUSY; /* Now fill the reserved TRE and tell the hardware */ dest_tre = gsi_ring_virt(tre_ring, tre_ring->index); gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE); tre_ring->index++; gsi_channel_doorbell(channel); return 0; } /* Mark a gsi_trans_read_byte() request done */ void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id) { struct gsi_channel *channel = &gsi->channel[channel_id]; gsi_trans_tre_release(&channel->trans_info, 1); } /* Initialize a channel's GSI transaction info */ int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id) { struct gsi_channel *channel = &gsi->channel[channel_id]; u32 tre_count = channel->tre_count; struct gsi_trans_info *trans_info; u32 tre_max; int ret; /* Ensure the size of a channel element is what's expected */ BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE); trans_info = &channel->trans_info; /* The tre_avail field is what ultimately limits the number of * outstanding transactions and their resources. A transaction * allocation succeeds only if the TREs available are sufficient * for what the transaction might need. */ tre_max = gsi_channel_tre_max(channel->gsi, channel_id); atomic_set(&trans_info->tre_avail, tre_max); /* We can't use more TREs than the number available in the ring. * This limits the number of transactions that can be outstanding. * Worst case is one TRE per transaction (but we actually limit * it to something a little less than that). By allocating a * power-of-two number of transactions we can use an index * modulo that number to determine the next one that's free. * Transactions are allocated one at a time. */ trans_info->trans = kcalloc(tre_count, sizeof(*trans_info->trans), GFP_KERNEL); if (!trans_info->trans) return -ENOMEM; trans_info->free_id = 0; /* all modulo channel->tre_count */ trans_info->allocated_id = 0; trans_info->committed_id = 0; trans_info->pending_id = 0; trans_info->completed_id = 0; trans_info->polled_id = 0; /* A completion event contains a pointer to the TRE that caused * the event (which will be the last one used by the transaction). * Each entry in this map records the transaction associated * with a corresponding completed TRE. */ trans_info->map = kcalloc(tre_count, sizeof(*trans_info->map), GFP_KERNEL); if (!trans_info->map) { ret = -ENOMEM; goto err_trans_free; } /* A transaction uses a scatterlist array to represent the data * transfers implemented by the transaction. Each scatterlist * element is used to fill a single TRE when the transaction is * committed. So we need as many scatterlist elements as the * maximum number of TREs that can be outstanding. */ ret = gsi_trans_pool_init(&trans_info->sg_pool, sizeof(struct scatterlist), tre_max, channel->trans_tre_max); if (ret) goto err_map_free; return 0; err_map_free: kfree(trans_info->map); err_trans_free: kfree(trans_info->trans); dev_err(gsi->dev, "error %d initializing channel %u transactions\n", ret, channel_id); return ret; } /* Inverse of gsi_channel_trans_init() */ void gsi_channel_trans_exit(struct gsi_channel *channel) { struct gsi_trans_info *trans_info = &channel->trans_info; gsi_trans_pool_exit(&trans_info->sg_pool); kfree(trans_info->trans); kfree(trans_info->map); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1