Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Erik Stromdahl | 8041 | 74.74% | 5 | 7.69% |
Wen Gong | 2190 | 20.36% | 22 | 33.85% |
Alagu Sankar | 229 | 2.13% | 4 | 6.15% |
Kalle Valo | 114 | 1.06% | 9 | 13.85% |
Pali Rohár | 47 | 0.44% | 1 | 1.54% |
Michal Kazior | 39 | 0.36% | 6 | 9.23% |
Marcus Folkesson | 19 | 0.18% | 1 | 1.54% |
Rajkumar Manoharan | 13 | 0.12% | 2 | 3.08% |
Nicolas Boichat | 11 | 0.10% | 1 | 1.54% |
Claire Chang | 9 | 0.08% | 1 | 1.54% |
Fabio Estevam | 8 | 0.07% | 1 | 1.54% |
Brian Norris | 8 | 0.07% | 1 | 1.54% |
Alex Dewar | 7 | 0.07% | 1 | 1.54% |
Niklas Cassel | 6 | 0.06% | 2 | 3.08% |
Anilkumar Kolli | 4 | 0.04% | 1 | 1.54% |
Rakesh Pillai | 4 | 0.04% | 1 | 1.54% |
Alan Liu | 2 | 0.02% | 1 | 1.54% |
Ben Greear | 2 | 0.02% | 1 | 1.54% |
Colin Ian King | 2 | 0.02% | 1 | 1.54% |
Nicholas Mc Guire | 1 | 0.01% | 1 | 1.54% |
Mamatha Telu | 1 | 0.01% | 1 | 1.54% |
Jeff Johnson | 1 | 0.01% | 1 | 1.54% |
Total | 10758 | 65 |
// SPDX-License-Identifier: ISC /* * Copyright (c) 2004-2011 Atheros Communications Inc. * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc. * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com> */ #include <linux/module.h> #include <linux/mmc/card.h> #include <linux/mmc/mmc.h> #include <linux/mmc/host.h> #include <linux/mmc/sdio_func.h> #include <linux/mmc/sdio_ids.h> #include <linux/mmc/sdio.h> #include <linux/mmc/sd.h> #include <linux/bitfield.h> #include "core.h" #include "bmi.h" #include "debug.h" #include "hif.h" #include "htc.h" #include "mac.h" #include "targaddrs.h" #include "trace.h" #include "sdio.h" #include "coredump.h" void ath10k_sdio_fw_crashed_dump(struct ath10k *ar); #define ATH10K_SDIO_VSG_BUF_SIZE (64 * 1024) /* inlined helper functions */ static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio, size_t len) { return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask); } static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id) { return (enum ath10k_htc_ep_id)pipe_id; } static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt) { dev_kfree_skb(pkt->skb); pkt->skb = NULL; pkt->alloc_len = 0; pkt->act_len = 0; pkt->trailer_only = false; } static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt, size_t act_len, size_t full_len, bool part_of_bundle, bool last_in_bundle) { pkt->skb = dev_alloc_skb(full_len); if (!pkt->skb) return -ENOMEM; pkt->act_len = act_len; pkt->alloc_len = full_len; pkt->part_of_bundle = part_of_bundle; pkt->last_in_bundle = last_in_bundle; pkt->trailer_only = false; return 0; } static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt) { bool trailer_only = false; struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)pkt->skb->data; u16 len = __le16_to_cpu(htc_hdr->len); if (len == htc_hdr->trailer_len) trailer_only = true; return trailer_only; } /* sdio/mmc functions */ static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, unsigned int address, unsigned char val) { *arg = FIELD_PREP(BIT(31), write) | FIELD_PREP(BIT(27), raw) | FIELD_PREP(BIT(26), 1) | FIELD_PREP(GENMASK(25, 9), address) | FIELD_PREP(BIT(8), 1) | FIELD_PREP(GENMASK(7, 0), val); } static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card, unsigned int address, unsigned char byte) { struct mmc_command io_cmd; memset(&io_cmd, 0, sizeof(io_cmd)); ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); io_cmd.opcode = SD_IO_RW_DIRECT; io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; return mmc_wait_for_cmd(card->host, &io_cmd, 0); } static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card, unsigned int address, unsigned char *byte) { struct mmc_command io_cmd; int ret; memset(&io_cmd, 0, sizeof(io_cmd)); ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0); io_cmd.opcode = SD_IO_RW_DIRECT; io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; ret = mmc_wait_for_cmd(card->host, &io_cmd, 0); if (!ret) *byte = io_cmd.resp[0]; return ret; } static int ath10k_sdio_config(struct ath10k *ar) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct sdio_func *func = ar_sdio->func; unsigned char byte, asyncintdelay = 2; int ret; ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n"); sdio_claim_host(func); byte = 0; ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, SDIO_CCCR_DRIVE_STRENGTH, &byte); byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK; byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK, ATH10K_SDIO_DRIVE_DTSX_TYPE_D); ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, SDIO_CCCR_DRIVE_STRENGTH, byte); byte = 0; ret = ath10k_sdio_func0_cmd52_rd_byte( func->card, CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, &byte); byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A | CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C | CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D); ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, byte); if (ret) { ath10k_warn(ar, "failed to enable driver strength: %d\n", ret); goto out; } byte = 0; ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, CCCR_SDIO_IRQ_MODE_REG_SDIO3, &byte); byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3; ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, CCCR_SDIO_IRQ_MODE_REG_SDIO3, byte); if (ret) { ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n", ret); goto out; } byte = 0; ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, &byte); byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK; byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay); ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, byte); /* give us some time to enable, in ms */ func->enable_timeout = 100; ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size); if (ret) { ath10k_warn(ar, "failed to set sdio block size to %d: %d\n", ar_sdio->mbox_info.block_size, ret); goto out; } out: sdio_release_host(func); return ret; } static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct sdio_func *func = ar_sdio->func; int ret; sdio_claim_host(func); sdio_writel(func, val, addr, &ret); if (ret) { ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n", val, addr, ret); goto out; } ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n", addr, val); out: sdio_release_host(func); return ret; } static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct sdio_func *func = ar_sdio->func; __le32 *buf; int ret; buf = kzalloc(sizeof(*buf), GFP_KERNEL); if (!buf) return -ENOMEM; *buf = cpu_to_le32(val); sdio_claim_host(func); ret = sdio_writesb(func, addr, buf, sizeof(*buf)); if (ret) { ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n", val, addr, ret); goto out; } ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n", addr, val); out: sdio_release_host(func); kfree(buf); return ret; } static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct sdio_func *func = ar_sdio->func; int ret; sdio_claim_host(func); *val = sdio_readl(func, addr, &ret); if (ret) { ath10k_warn(ar, "failed to read from address 0x%x: %d\n", addr, ret); goto out; } ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n", addr, *val); out: sdio_release_host(func); return ret; } static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct sdio_func *func = ar_sdio->func; int ret; sdio_claim_host(func); ret = sdio_memcpy_fromio(func, buf, addr, len); if (ret) { ath10k_warn(ar, "failed to read from address 0x%x: %d\n", addr, ret); goto out; } ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n", addr, buf, len); ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len); out: sdio_release_host(func); return ret; } static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct sdio_func *func = ar_sdio->func; int ret; sdio_claim_host(func); /* For some reason toio() doesn't have const for the buffer, need * an ugly hack to workaround that. */ ret = sdio_memcpy_toio(func, addr, (void *)buf, len); if (ret) { ath10k_warn(ar, "failed to write to address 0x%x: %d\n", addr, ret); goto out; } ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n", addr, buf, len); ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len); out: sdio_release_host(func); return ret; } static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct sdio_func *func = ar_sdio->func; int ret; sdio_claim_host(func); len = round_down(len, ar_sdio->mbox_info.block_size); ret = sdio_readsb(func, buf, addr, len); if (ret) { ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n", addr, ret); goto out; } ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n", addr, buf, len); ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len); out: sdio_release_host(func); return ret; } /* HIF mbox functions */ static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar, struct ath10k_sdio_rx_data *pkt, u32 *lookaheads, int *n_lookaheads) { struct ath10k_htc *htc = &ar->htc; struct sk_buff *skb = pkt->skb; struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data; bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT; enum ath10k_htc_ep_id eid; u8 *trailer; int ret; if (trailer_present) { trailer = skb->data + skb->len - htc_hdr->trailer_len; eid = pipe_id_to_eid(htc_hdr->eid); ret = ath10k_htc_process_trailer(htc, trailer, htc_hdr->trailer_len, eid, lookaheads, n_lookaheads); if (ret) return ret; if (is_trailer_only_msg(pkt)) pkt->trailer_only = true; skb_trim(skb, skb->len - htc_hdr->trailer_len); } skb_pull(skb, sizeof(*htc_hdr)); return 0; } static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar, u32 lookaheads[], int *n_lookahead) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct ath10k_htc *htc = &ar->htc; struct ath10k_sdio_rx_data *pkt; struct ath10k_htc_ep *ep; struct ath10k_skb_rxcb *cb; enum ath10k_htc_ep_id id; int ret, i, *n_lookahead_local; u32 *lookaheads_local; int lookahead_idx = 0; for (i = 0; i < ar_sdio->n_rx_pkts; i++) { lookaheads_local = lookaheads; n_lookahead_local = n_lookahead; id = ((struct ath10k_htc_hdr *) &lookaheads[lookahead_idx++])->eid; if (id >= ATH10K_HTC_EP_COUNT) { ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n", id); ret = -ENOMEM; goto out; } ep = &htc->endpoint[id]; if (ep->service_id == 0) { ath10k_warn(ar, "ep %d is not connected\n", id); ret = -ENOMEM; goto out; } pkt = &ar_sdio->rx_pkts[i]; if (pkt->part_of_bundle && !pkt->last_in_bundle) { /* Only read lookahead's from RX trailers * for the last packet in a bundle. */ lookahead_idx--; lookaheads_local = NULL; n_lookahead_local = NULL; } ret = ath10k_sdio_mbox_rx_process_packet(ar, pkt, lookaheads_local, n_lookahead_local); if (ret) goto out; if (!pkt->trailer_only) { cb = ATH10K_SKB_RXCB(pkt->skb); cb->eid = id; skb_queue_tail(&ar_sdio->rx_head, pkt->skb); queue_work(ar->workqueue_aux, &ar_sdio->async_work_rx); } else { kfree_skb(pkt->skb); } /* The RX complete handler now owns the skb...*/ pkt->skb = NULL; pkt->alloc_len = 0; } ret = 0; out: /* Free all packets that was not passed on to the RX completion * handler... */ for (; i < ar_sdio->n_rx_pkts; i++) ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); return ret; } static int ath10k_sdio_mbox_alloc_bundle(struct ath10k *ar, struct ath10k_sdio_rx_data *rx_pkts, struct ath10k_htc_hdr *htc_hdr, size_t full_len, size_t act_len, size_t *bndl_cnt) { int ret, i; u8 max_msgs = ar->htc.max_msgs_per_htc_bundle; *bndl_cnt = ath10k_htc_get_bundle_count(max_msgs, htc_hdr->flags); if (*bndl_cnt > max_msgs) { ath10k_warn(ar, "HTC bundle length %u exceeds maximum %u\n", le16_to_cpu(htc_hdr->len), max_msgs); return -ENOMEM; } /* Allocate bndl_cnt extra skb's for the bundle. * The package containing the * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included * in bndl_cnt. The skb for that packet will be * allocated separately. */ for (i = 0; i < *bndl_cnt; i++) { ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i], act_len, full_len, true, false); if (ret) return ret; } return 0; } static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar, u32 lookaheads[], int n_lookaheads) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct ath10k_htc_hdr *htc_hdr; size_t full_len, act_len; bool last_in_bundle; int ret, i; int pkt_cnt = 0; if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) { ath10k_warn(ar, "the total number of pkts to be fetched (%u) exceeds maximum %u\n", n_lookaheads, ATH10K_SDIO_MAX_RX_MSGS); ret = -ENOMEM; goto err; } for (i = 0; i < n_lookaheads; i++) { htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i]; last_in_bundle = false; if (le16_to_cpu(htc_hdr->len) > ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) { ath10k_warn(ar, "payload length %d exceeds max htc length: %zu\n", le16_to_cpu(htc_hdr->len), ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH); ret = -ENOMEM; ath10k_core_start_recovery(ar); ath10k_warn(ar, "exceeds length, start recovery\n"); goto err; } act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len); if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) { ath10k_warn(ar, "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n", htc_hdr->eid, htc_hdr->flags, le16_to_cpu(htc_hdr->len)); ret = -EINVAL; goto err; } if (ath10k_htc_get_bundle_count( ar->htc.max_msgs_per_htc_bundle, htc_hdr->flags)) { /* HTC header indicates that every packet to follow * has the same padded length so that it can be * optimally fetched as a full bundle. */ size_t bndl_cnt; ret = ath10k_sdio_mbox_alloc_bundle(ar, &ar_sdio->rx_pkts[pkt_cnt], htc_hdr, full_len, act_len, &bndl_cnt); if (ret) { ath10k_warn(ar, "failed to allocate a bundle: %d\n", ret); goto err; } pkt_cnt += bndl_cnt; /* next buffer will be the last in the bundle */ last_in_bundle = true; } /* Allocate skb for packet. If the packet had the * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled * packet skb's have been allocated in the previous step. */ if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK) full_len += ATH10K_HIF_MBOX_BLOCK_SIZE; ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[pkt_cnt], act_len, full_len, last_in_bundle, last_in_bundle); if (ret) { ath10k_warn(ar, "alloc_rx_pkt error %d\n", ret); goto err; } pkt_cnt++; } ar_sdio->n_rx_pkts = pkt_cnt; return 0; err: for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) { if (!ar_sdio->rx_pkts[i].alloc_len) break; ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); } return ret; } static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct ath10k_sdio_rx_data *pkt = &ar_sdio->rx_pkts[0]; struct sk_buff *skb = pkt->skb; struct ath10k_htc_hdr *htc_hdr; int ret; ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, skb->data, pkt->alloc_len); if (ret) goto err; htc_hdr = (struct ath10k_htc_hdr *)skb->data; pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); if (pkt->act_len > pkt->alloc_len) { ret = -EINVAL; goto err; } skb_put(skb, pkt->act_len); return 0; err: ar_sdio->n_rx_pkts = 0; ath10k_sdio_mbox_free_rx_pkt(pkt); return ret; } static int ath10k_sdio_mbox_rx_fetch_bundle(struct ath10k *ar) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct ath10k_sdio_rx_data *pkt; struct ath10k_htc_hdr *htc_hdr; int ret, i; u32 pkt_offset, virt_pkt_len; virt_pkt_len = 0; for (i = 0; i < ar_sdio->n_rx_pkts; i++) virt_pkt_len += ar_sdio->rx_pkts[i].alloc_len; if (virt_pkt_len > ATH10K_SDIO_VSG_BUF_SIZE) { ath10k_warn(ar, "sdio vsg buffer size limit: %d\n", virt_pkt_len); ret = -E2BIG; goto err; } ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, ar_sdio->vsg_buffer, virt_pkt_len); if (ret) { ath10k_warn(ar, "failed to read bundle packets: %d", ret); goto err; } pkt_offset = 0; for (i = 0; i < ar_sdio->n_rx_pkts; i++) { pkt = &ar_sdio->rx_pkts[i]; htc_hdr = (struct ath10k_htc_hdr *)(ar_sdio->vsg_buffer + pkt_offset); pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); if (pkt->act_len > pkt->alloc_len) { ret = -EINVAL; goto err; } skb_put_data(pkt->skb, htc_hdr, pkt->act_len); pkt_offset += pkt->alloc_len; } return 0; err: /* Free all packets that was not successfully fetched. */ for (i = 0; i < ar_sdio->n_rx_pkts; i++) ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); ar_sdio->n_rx_pkts = 0; return ret; } /* This is the timeout for mailbox processing done in the sdio irq * handler. The timeout is deliberately set quite high since SDIO dump logs * over serial port can/will add a substantial overhead to the processing * (if enabled). */ #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ) static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar, u32 msg_lookahead, bool *done) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS]; int n_lookaheads = 1; unsigned long timeout; int ret; *done = true; /* Copy the lookahead obtained from the HTC register table into our * temp array as a start value. */ lookaheads[0] = msg_lookahead; timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ; do { /* Try to allocate as many HTC RX packets indicated by * n_lookaheads. */ ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads, n_lookaheads); if (ret) break; if (ar_sdio->n_rx_pkts >= 2) /* A recv bundle was detected, force IRQ status * re-check again. */ *done = false; if (ar_sdio->n_rx_pkts > 1) ret = ath10k_sdio_mbox_rx_fetch_bundle(ar); else ret = ath10k_sdio_mbox_rx_fetch(ar); /* Process fetched packets. This will potentially update * n_lookaheads depending on if the packets contain lookahead * reports. */ n_lookaheads = 0; ret = ath10k_sdio_mbox_rx_process_packets(ar, lookaheads, &n_lookaheads); if (!n_lookaheads || ret) break; /* For SYNCH processing, if we get here, we are running * through the loop again due to updated lookaheads. Set * flag that we should re-check IRQ status registers again * before leaving IRQ processing, this can net better * performance in high throughput situations. */ *done = false; } while (time_before(jiffies, timeout)); if (ret && (ret != -ECANCELED)) ath10k_warn(ar, "failed to get pending recv messages: %d\n", ret); return ret; } static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar) { u32 val; int ret; /* TODO: Add firmware crash handling */ ath10k_warn(ar, "firmware crashed\n"); /* read counter to clear the interrupt, the debug error interrupt is * counter 0. */ ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val); if (ret) ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret); return ret; } static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; u8 counter_int_status; int ret; mutex_lock(&irq_data->mtx); counter_int_status = irq_data->irq_proc_reg->counter_int_status & irq_data->irq_en_reg->cntr_int_status_en; /* NOTE: other modules like GMBOX may use the counter interrupt for * credit flow control on other counters, we only need to check for * the debug assertion counter interrupt. */ if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK) ret = ath10k_sdio_mbox_proc_dbg_intr(ar); else ret = 0; mutex_unlock(&irq_data->mtx); return ret; } static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; u8 error_int_status; int ret; ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n"); error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F; if (!error_int_status) { ath10k_warn(ar, "invalid error interrupt status: 0x%x\n", error_int_status); return -EIO; } ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error_int_status 0x%x\n", error_int_status); if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK, error_int_status)) ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n"); if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK, error_int_status)) ath10k_warn(ar, "rx underflow interrupt error\n"); if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK, error_int_status)) ath10k_warn(ar, "tx overflow interrupt error\n"); /* Clear the interrupt */ irq_data->irq_proc_reg->error_int_status &= ~error_int_status; /* set W1C value to clear the interrupt, this hits the register first */ ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS, error_int_status); if (ret) { ath10k_warn(ar, "unable to write to error int status address: %d\n", ret); return ret; } return 0; } static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; u8 cpu_int_status; int ret; mutex_lock(&irq_data->mtx); cpu_int_status = irq_data->irq_proc_reg->cpu_int_status & irq_data->irq_en_reg->cpu_int_status_en; if (!cpu_int_status) { ath10k_warn(ar, "CPU interrupt status is zero\n"); ret = -EIO; goto out; } /* Clear the interrupt */ irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status; /* Set up the register transfer buffer to hit the register 4 times, * this is done to make the access 4-byte aligned to mitigate issues * with host bus interconnects that restrict bus transfer lengths to * be a multiple of 4-bytes. * * Set W1C value to clear the interrupt, this hits the register first. */ ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS, cpu_int_status); if (ret) { ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n", ret); goto out; } out: mutex_unlock(&irq_data->mtx); if (cpu_int_status & MBOX_CPU_STATUS_ENABLE_ASSERT_MASK) ath10k_sdio_fw_crashed_dump(ar); return ret; } static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar, u8 *host_int_status, u32 *lookahead) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg; struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg; u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1); int ret; mutex_lock(&irq_data->mtx); *lookahead = 0; *host_int_status = 0; /* int_status_en is supposed to be non zero, otherwise interrupts * shouldn't be enabled. There is however a short time frame during * initialization between the irq register and int_status_en init * where this can happen. * We silently ignore this condition. */ if (!irq_en_reg->int_status_en) { ret = 0; goto out; } /* Read the first sizeof(struct ath10k_irq_proc_registers) * bytes of the HTC register table. This * will yield us the value of different int status * registers and the lookahead registers. */ ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS, irq_proc_reg, sizeof(*irq_proc_reg)); if (ret) { ath10k_core_start_recovery(ar); ath10k_warn(ar, "read int status fail, start recovery\n"); goto out; } /* Update only those registers that are enabled */ *host_int_status = irq_proc_reg->host_int_status & irq_en_reg->int_status_en; /* Look at mbox status */ if (!(*host_int_status & htc_mbox)) { *lookahead = 0; ret = 0; goto out; } /* Mask out pending mbox value, we use look ahead as * the real flag for mbox processing. */ *host_int_status &= ~htc_mbox; if (irq_proc_reg->rx_lookahead_valid & htc_mbox) { *lookahead = le32_to_cpu( irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]); if (!*lookahead) ath10k_warn(ar, "sdio mbox lookahead is zero\n"); } out: mutex_unlock(&irq_data->mtx); return ret; } static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar, bool *done) { u8 host_int_status; u32 lookahead; int ret; /* NOTE: HIF implementation guarantees that the context of this * call allows us to perform SYNCHRONOUS I/O, that is we can block, * sleep or call any API that can block or switch thread/task * contexts. This is a fully schedulable context. */ ret = ath10k_sdio_mbox_read_int_status(ar, &host_int_status, &lookahead); if (ret) { *done = true; goto out; } if (!host_int_status && !lookahead) { ret = 0; *done = true; goto out; } if (lookahead) { ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio pending mailbox msg lookahead 0x%08x\n", lookahead); ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar, lookahead, done); if (ret) goto out; } /* now, handle the rest of the interrupts */ ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio host_int_status 0x%x\n", host_int_status); if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) { /* CPU Interrupt */ ret = ath10k_sdio_mbox_proc_cpu_intr(ar); if (ret) goto out; } if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) { /* Error Interrupt */ ret = ath10k_sdio_mbox_proc_err_intr(ar); if (ret) goto out; } if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status)) /* Counter Interrupt */ ret = ath10k_sdio_mbox_proc_counter_intr(ar); ret = 0; out: /* An optimization to bypass reading the IRQ status registers * unnecessarily which can re-wake the target, if upper layers * determine that we are in a low-throughput mode, we can rely on * taking another interrupt rather than re-checking the status * registers which can re-wake the target. * * NOTE : for host interfaces that makes use of detecting pending * mbox messages at hif can not use this optimization due to * possible side effects, SPI requires the host to drain all * messages from the mailbox before exiting the ISR routine. */ ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio pending irqs done %d status %d", *done, ret); return ret; } static void ath10k_sdio_set_mbox_info(struct ath10k *ar) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev; mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR; mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE; mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1; mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR; mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH; mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR; dev_id_base = (device & 0x0F00); dev_id_chiprev = (device & 0x00FF); switch (dev_id_base) { case (SDIO_DEVICE_ID_ATHEROS_AR6005 & 0x0F00): if (dev_id_chiprev < 4) mbox_info->ext_info[0].htc_ext_sz = ATH10K_HIF_MBOX0_EXT_WIDTH; else /* from QCA6174 2.0(0x504), the width has been extended * to 56K */ mbox_info->ext_info[0].htc_ext_sz = ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; break; case (SDIO_DEVICE_ID_ATHEROS_QCA9377 & 0x0F00): mbox_info->ext_info[0].htc_ext_sz = ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; break; default: mbox_info->ext_info[0].htc_ext_sz = ATH10K_HIF_MBOX0_EXT_WIDTH; } mbox_info->ext_info[1].htc_ext_addr = mbox_info->ext_info[0].htc_ext_addr + mbox_info->ext_info[0].htc_ext_sz + ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE; mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH; } /* BMI functions */ static int ath10k_sdio_bmi_credits(struct ath10k *ar) { u32 addr, cmd_credits; unsigned long timeout; int ret; /* Read the counter register to get the command credits */ addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4; timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; cmd_credits = 0; while (time_before(jiffies, timeout) && !cmd_credits) { /* Hit the credit counter with a 4-byte access, the first byte * read will hit the counter and cause a decrement, while the * remaining 3 bytes has no effect. The rationale behind this * is to make all HIF accesses 4-byte aligned. */ ret = ath10k_sdio_read32(ar, addr, &cmd_credits); if (ret) { ath10k_warn(ar, "unable to decrement the command credit count register: %d\n", ret); return ret; } /* The counter is only 8 bits. * Ignore anything in the upper 3 bytes */ cmd_credits &= 0xFF; } if (!cmd_credits) { ath10k_warn(ar, "bmi communication timeout\n"); return -ETIMEDOUT; } return 0; } static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar) { unsigned long timeout; u32 rx_word; int ret; timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; rx_word = 0; while ((time_before(jiffies, timeout)) && !rx_word) { ret = ath10k_sdio_read32(ar, MBOX_HOST_INT_STATUS_ADDRESS, &rx_word); if (ret) { ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret); return ret; } /* all we really want is one bit */ rx_word &= 1; } if (!rx_word) { ath10k_warn(ar, "bmi_recv_buf FIFO empty\n"); return -EINVAL; } return ret; } static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar, void *req, u32 req_len, void *resp, u32 *resp_len) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); u32 addr; int ret; if (req) { ret = ath10k_sdio_bmi_credits(ar); if (ret) return ret; addr = ar_sdio->mbox_info.htc_addr; memcpy(ar_sdio->bmi_buf, req, req_len); ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len); if (ret) { ath10k_warn(ar, "unable to send the bmi data to the device: %d\n", ret); return ret; } } if (!resp || !resp_len) /* No response expected */ return 0; /* During normal bootup, small reads may be required. * Rather than issue an HIF Read and then wait as the Target * adds successive bytes to the FIFO, we wait here until * we know that response data is available. * * This allows us to cleanly timeout on an unexpected * Target failure rather than risk problems at the HIF level. * In particular, this avoids SDIO timeouts and possibly garbage * data on some host controllers. And on an interconnect * such as Compact Flash (as well as some SDIO masters) which * does not provide any indication on data timeout, it avoids * a potential hang or garbage response. * * Synchronization is more difficult for reads larger than the * size of the MBOX FIFO (128B), because the Target is unable * to push the 129th byte of data until AFTER the Host posts an * HIF Read and removes some FIFO data. So for large reads the * Host proceeds to post an HIF Read BEFORE all the data is * actually available to read. Fortunately, large BMI reads do * not occur in practice -- they're supported for debug/development. * * So Host/Target BMI synchronization is divided into these cases: * CASE 1: length < 4 * Should not happen * * CASE 2: 4 <= length <= 128 * Wait for first 4 bytes to be in FIFO * If CONSERVATIVE_BMI_READ is enabled, also wait for * a BMI command credit, which indicates that the ENTIRE * response is available in the FIFO * * CASE 3: length > 128 * Wait for the first 4 bytes to be in FIFO * * For most uses, a small timeout should be sufficient and we will * usually see a response quickly; but there may be some unusual * (debug) cases of BMI_EXECUTE where we want an larger timeout. * For now, we use an unbounded busy loop while waiting for * BMI_EXECUTE. * * If BMI_EXECUTE ever needs to support longer-latency execution, * especially in production, this code needs to be enhanced to sleep * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently * a function of Host processor speed. */ ret = ath10k_sdio_bmi_get_rx_lookahead(ar); if (ret) return ret; /* We always read from the start of the mbox address */ addr = ar_sdio->mbox_info.htc_addr; ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len); if (ret) { ath10k_warn(ar, "unable to read the bmi data from the device: %d\n", ret); return ret; } memcpy(resp, ar_sdio->bmi_buf, *resp_len); return 0; } /* sdio async handling functions */ static struct ath10k_sdio_bus_request *ath10k_sdio_alloc_busreq(struct ath10k *ar) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct ath10k_sdio_bus_request *bus_req; spin_lock_bh(&ar_sdio->lock); if (list_empty(&ar_sdio->bus_req_freeq)) { bus_req = NULL; goto out; } bus_req = list_first_entry(&ar_sdio->bus_req_freeq, struct ath10k_sdio_bus_request, list); list_del(&bus_req->list); out: spin_unlock_bh(&ar_sdio->lock); return bus_req; } static void ath10k_sdio_free_bus_req(struct ath10k *ar, struct ath10k_sdio_bus_request *bus_req) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); memset(bus_req, 0, sizeof(*bus_req)); spin_lock_bh(&ar_sdio->lock); list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); spin_unlock_bh(&ar_sdio->lock); } static void __ath10k_sdio_write_async(struct ath10k *ar, struct ath10k_sdio_bus_request *req) { struct ath10k_htc_ep *ep; struct sk_buff *skb; int ret; skb = req->skb; ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len); if (ret) ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d", req->address, ret); if (req->htc_msg) { ep = &ar->htc.endpoint[req->eid]; ath10k_htc_notify_tx_completion(ep, skb); } else if (req->comp) { complete(req->comp); } ath10k_sdio_free_bus_req(ar, req); } /* To improve throughput use workqueue to deliver packets to HTC layer, * this way SDIO bus is utilised much better. */ static void ath10k_rx_indication_async_work(struct work_struct *work) { struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, async_work_rx); struct ath10k *ar = ar_sdio->ar; struct ath10k_htc_ep *ep; struct ath10k_skb_rxcb *cb; struct sk_buff *skb; while (true) { skb = skb_dequeue(&ar_sdio->rx_head); if (!skb) break; cb = ATH10K_SKB_RXCB(skb); ep = &ar->htc.endpoint[cb->eid]; ep->ep_ops.ep_rx_complete(ar, skb); } if (test_bit(ATH10K_FLAG_CORE_REGISTERED, &ar->dev_flags)) { local_bh_disable(); napi_schedule(&ar->napi); local_bh_enable(); } } static int ath10k_sdio_read_rtc_state(struct ath10k_sdio *ar_sdio, unsigned char *state) { struct ath10k *ar = ar_sdio->ar; unsigned char rtc_state = 0; int ret = 0; rtc_state = sdio_f0_readb(ar_sdio->func, ATH10K_CIS_RTC_STATE_ADDR, &ret); if (ret) { ath10k_warn(ar, "failed to read rtc state: %d\n", ret); return ret; } *state = rtc_state & 0x3; return ret; } static int ath10k_sdio_set_mbox_sleep(struct ath10k *ar, bool enable_sleep) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); u32 val; int retry = ATH10K_CIS_READ_RETRY, ret = 0; unsigned char rtc_state = 0; sdio_claim_host(ar_sdio->func); ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val); if (ret) { ath10k_warn(ar, "failed to read fifo/chip control register: %d\n", ret); goto release; } if (enable_sleep) { val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF; ar_sdio->mbox_state = SDIO_MBOX_SLEEP_STATE; } else { val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON; ar_sdio->mbox_state = SDIO_MBOX_AWAKE_STATE; } ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val); if (ret) { ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d", ret); } if (!enable_sleep) { do { udelay(ATH10K_CIS_READ_WAIT_4_RTC_CYCLE_IN_US); ret = ath10k_sdio_read_rtc_state(ar_sdio, &rtc_state); if (ret) { ath10k_warn(ar, "failed to disable mbox sleep: %d", ret); break; } ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read rtc state: %d\n", rtc_state); if (rtc_state == ATH10K_CIS_RTC_STATE_ON) break; udelay(ATH10K_CIS_XTAL_SETTLE_DURATION_IN_US); retry--; } while (retry > 0); } release: sdio_release_host(ar_sdio->func); return ret; } static void ath10k_sdio_sleep_timer_handler(struct timer_list *t) { struct ath10k_sdio *ar_sdio = from_timer(ar_sdio, t, sleep_timer); ar_sdio->mbox_state = SDIO_MBOX_REQUEST_TO_SLEEP_STATE; queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); } static void ath10k_sdio_write_async_work(struct work_struct *work) { struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, wr_async_work); struct ath10k *ar = ar_sdio->ar; struct ath10k_sdio_bus_request *req, *tmp_req; struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; spin_lock_bh(&ar_sdio->wr_async_lock); list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { list_del(&req->list); spin_unlock_bh(&ar_sdio->wr_async_lock); if (req->address >= mbox_info->htc_addr && ar_sdio->mbox_state == SDIO_MBOX_SLEEP_STATE) { ath10k_sdio_set_mbox_sleep(ar, false); mod_timer(&ar_sdio->sleep_timer, jiffies + msecs_to_jiffies(ATH10K_MIN_SLEEP_INACTIVITY_TIME_MS)); } __ath10k_sdio_write_async(ar, req); spin_lock_bh(&ar_sdio->wr_async_lock); } spin_unlock_bh(&ar_sdio->wr_async_lock); if (ar_sdio->mbox_state == SDIO_MBOX_REQUEST_TO_SLEEP_STATE) ath10k_sdio_set_mbox_sleep(ar, true); } static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr, struct sk_buff *skb, struct completion *comp, bool htc_msg, enum ath10k_htc_ep_id eid) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct ath10k_sdio_bus_request *bus_req; /* Allocate a bus request for the message and queue it on the * SDIO workqueue. */ bus_req = ath10k_sdio_alloc_busreq(ar); if (!bus_req) { ath10k_warn(ar, "unable to allocate bus request for async request\n"); return -ENOMEM; } bus_req->skb = skb; bus_req->eid = eid; bus_req->address = addr; bus_req->htc_msg = htc_msg; bus_req->comp = comp; spin_lock_bh(&ar_sdio->wr_async_lock); list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); spin_unlock_bh(&ar_sdio->wr_async_lock); return 0; } /* IRQ handler */ static void ath10k_sdio_irq_handler(struct sdio_func *func) { struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); struct ath10k *ar = ar_sdio->ar; unsigned long timeout; bool done = false; int ret; /* Release the host during interrupts so we can pick it back up when * we process commands. */ sdio_release_host(ar_sdio->func); timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ; do { ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done); if (ret) break; } while (time_before(jiffies, timeout) && !done); ath10k_mac_tx_push_pending(ar); sdio_claim_host(ar_sdio->func); if (ret && ret != -ECANCELED) ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n", ret); } /* sdio HIF functions */ static int ath10k_sdio_disable_intrs(struct ath10k *ar) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; int ret; mutex_lock(&irq_data->mtx); memset(regs, 0, sizeof(*regs)); ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, ®s->int_status_en, sizeof(*regs)); if (ret) ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret); mutex_unlock(&irq_data->mtx); return ret; } static int ath10k_sdio_hif_power_up(struct ath10k *ar, enum ath10k_firmware_mode fw_mode) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct sdio_func *func = ar_sdio->func; int ret; if (!ar_sdio->is_disabled) return 0; ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n"); ret = ath10k_sdio_config(ar); if (ret) { ath10k_err(ar, "failed to config sdio: %d\n", ret); return ret; } sdio_claim_host(func); ret = sdio_enable_func(func); if (ret) { ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret); sdio_release_host(func); return ret; } sdio_release_host(func); /* Wait for hardware to initialise. It should take a lot less than * 20 ms but let's be conservative here. */ msleep(20); ar_sdio->is_disabled = false; ret = ath10k_sdio_disable_intrs(ar); if (ret) return ret; return 0; } static void ath10k_sdio_hif_power_down(struct ath10k *ar) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); int ret; if (ar_sdio->is_disabled) return; ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n"); del_timer_sync(&ar_sdio->sleep_timer); ath10k_sdio_set_mbox_sleep(ar, true); /* Disable the card */ sdio_claim_host(ar_sdio->func); ret = sdio_disable_func(ar_sdio->func); if (ret) { ath10k_warn(ar, "unable to disable sdio function: %d\n", ret); sdio_release_host(ar_sdio->func); return; } ret = mmc_hw_reset(ar_sdio->func->card); if (ret) ath10k_warn(ar, "unable to reset sdio: %d\n", ret); sdio_release_host(ar_sdio->func); ar_sdio->is_disabled = true; } static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id, struct ath10k_hif_sg_item *items, int n_items) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); enum ath10k_htc_ep_id eid; struct sk_buff *skb; int ret, i; eid = pipe_id_to_eid(pipe_id); for (i = 0; i < n_items; i++) { size_t padded_len; u32 address; skb = items[i].transfer_context; padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, skb->len); skb_trim(skb, padded_len); /* Write TX data to the end of the mbox address space */ address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] - skb->len; ret = ath10k_sdio_prep_async_req(ar, address, skb, NULL, true, eid); if (ret) return ret; } queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); return 0; } static int ath10k_sdio_enable_intrs(struct ath10k *ar) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; int ret; mutex_lock(&irq_data->mtx); /* Enable all but CPU interrupts */ regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) | FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) | FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1); /* NOTE: There are some cases where HIF can do detection of * pending mbox messages which is disabled now. */ regs->int_status_en |= FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1); /* Set up the CPU Interrupt Status Register, enable CPU sourced interrupt #0 * #0 is used for report assertion from target */ regs->cpu_int_status_en = FIELD_PREP(MBOX_CPU_STATUS_ENABLE_ASSERT_MASK, 1); /* Set up the Error Interrupt status Register */ regs->err_int_status_en = FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) | FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1); /* Enable Counter interrupt status register to get fatal errors for * debugging. */ regs->cntr_int_status_en = FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK, ATH10K_SDIO_TARGET_DEBUG_INTR_MASK); ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, ®s->int_status_en, sizeof(*regs)); if (ret) ath10k_warn(ar, "failed to update mbox interrupt status register : %d\n", ret); mutex_unlock(&irq_data->mtx); return ret; } /* HIF diagnostics */ static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf, size_t buf_len) { int ret; void *mem; mem = kzalloc(buf_len, GFP_KERNEL); if (!mem) return -ENOMEM; /* set window register to start read cycle */ ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address); if (ret) { ath10k_warn(ar, "failed to set mbox window read address: %d", ret); goto out; } /* read the data */ ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, mem, buf_len); if (ret) { ath10k_warn(ar, "failed to read from mbox window data address: %d\n", ret); goto out; } memcpy(buf, mem, buf_len); out: kfree(mem); return ret; } static int ath10k_sdio_diag_read32(struct ath10k *ar, u32 address, u32 *value) { __le32 *val; int ret; val = kzalloc(sizeof(*val), GFP_KERNEL); if (!val) return -ENOMEM; ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val)); if (ret) goto out; *value = __le32_to_cpu(*val); out: kfree(val); return ret; } static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address, const void *data, int nbytes) { int ret; /* set write data */ ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes); if (ret) { ath10k_warn(ar, "failed to write 0x%p to mbox window data address: %d\n", data, ret); return ret; } /* set window register, which starts the write cycle */ ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address); if (ret) { ath10k_warn(ar, "failed to set mbox window write address: %d", ret); return ret; } return 0; } static int ath10k_sdio_hif_start_post(struct ath10k *ar) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); u32 addr, val; int ret = 0; addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); ret = ath10k_sdio_diag_read32(ar, addr, &val); if (ret) { ath10k_warn(ar, "unable to read hi_acs_flags : %d\n", ret); return ret; } if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) { ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio mailbox swap service enabled\n"); ar_sdio->swap_mbox = true; } else { ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio mailbox swap service disabled\n"); ar_sdio->swap_mbox = false; } ath10k_sdio_set_mbox_sleep(ar, true); return 0; } static int ath10k_sdio_get_htt_tx_complete(struct ath10k *ar) { u32 addr, val; int ret; addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); ret = ath10k_sdio_diag_read32(ar, addr, &val); if (ret) { ath10k_warn(ar, "unable to read hi_acs_flags for htt tx comple : %d\n", ret); return ret; } ret = (val & HI_ACS_FLAGS_SDIO_REDUCE_TX_COMPL_FW_ACK); ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio reduce tx complete fw%sack\n", ret ? " " : " not "); return ret; } /* HIF start/stop */ static int ath10k_sdio_hif_start(struct ath10k *ar) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); int ret; ath10k_core_napi_enable(ar); /* Sleep 20 ms before HIF interrupts are disabled. * This will give target plenty of time to process the BMI done * request before interrupts are disabled. */ msleep(20); ret = ath10k_sdio_disable_intrs(ar); if (ret) return ret; /* eid 0 always uses the lower part of the extended mailbox address * space (ext_info[0].htc_ext_addr). */ ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; sdio_claim_host(ar_sdio->func); /* Register the isr */ ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler); if (ret) { ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret); sdio_release_host(ar_sdio->func); return ret; } sdio_release_host(ar_sdio->func); ret = ath10k_sdio_enable_intrs(ar); if (ret) ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret); /* Enable sleep and then disable it again */ ret = ath10k_sdio_set_mbox_sleep(ar, true); if (ret) return ret; /* Wait for 20ms for the written value to take effect */ msleep(20); ret = ath10k_sdio_set_mbox_sleep(ar, false); if (ret) return ret; return 0; } #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ) static void ath10k_sdio_irq_disable(struct ath10k *ar) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; struct sk_buff *skb; struct completion irqs_disabled_comp; int ret; skb = dev_alloc_skb(sizeof(*regs)); if (!skb) return; mutex_lock(&irq_data->mtx); memset(regs, 0, sizeof(*regs)); /* disable all interrupts */ memcpy(skb->data, regs, sizeof(*regs)); skb_put(skb, sizeof(*regs)); mutex_unlock(&irq_data->mtx); init_completion(&irqs_disabled_comp); ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, skb, &irqs_disabled_comp, false, 0); if (ret) goto out; queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); /* Wait for the completion of the IRQ disable request. * If there is a timeout we will try to disable irq's anyway. */ ret = wait_for_completion_timeout(&irqs_disabled_comp, SDIO_IRQ_DISABLE_TIMEOUT_HZ); if (!ret) ath10k_warn(ar, "sdio irq disable request timed out\n"); sdio_claim_host(ar_sdio->func); ret = sdio_release_irq(ar_sdio->func); if (ret) ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret); sdio_release_host(ar_sdio->func); out: kfree_skb(skb); } static void ath10k_sdio_hif_stop(struct ath10k *ar) { struct ath10k_sdio_bus_request *req, *tmp_req; struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct sk_buff *skb; ath10k_sdio_irq_disable(ar); cancel_work_sync(&ar_sdio->async_work_rx); while ((skb = skb_dequeue(&ar_sdio->rx_head))) dev_kfree_skb_any(skb); cancel_work_sync(&ar_sdio->wr_async_work); spin_lock_bh(&ar_sdio->wr_async_lock); /* Free all bus requests that have not been handled */ list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { struct ath10k_htc_ep *ep; list_del(&req->list); if (req->htc_msg) { ep = &ar->htc.endpoint[req->eid]; ath10k_htc_notify_tx_completion(ep, req->skb); } else if (req->skb) { kfree_skb(req->skb); } ath10k_sdio_free_bus_req(ar, req); } spin_unlock_bh(&ar_sdio->wr_async_lock); ath10k_core_napi_sync_disable(ar); } #ifdef CONFIG_PM static int ath10k_sdio_hif_suspend(struct ath10k *ar) { return 0; } static int ath10k_sdio_hif_resume(struct ath10k *ar) { switch (ar->state) { case ATH10K_STATE_OFF: ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio resume configuring sdio\n"); /* need to set sdio settings after power is cut from sdio */ ath10k_sdio_config(ar); break; case ATH10K_STATE_ON: default: break; } return 0; } #endif static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id, u8 *ul_pipe, u8 *dl_pipe) { struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); struct ath10k_htc *htc = &ar->htc; u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size; enum ath10k_htc_ep_id eid; bool ep_found = false; int i; /* For sdio, we are interested in the mapping between eid * and pipeid rather than service_id to pipe_id. * First we find out which eid has been allocated to the * service... */ for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) { if (htc->endpoint[i].service_id == service_id) { eid = htc->endpoint[i].eid; ep_found = true; break; } } if (!ep_found) return -EINVAL; /* Then we create the simplest mapping possible between pipeid * and eid */ *ul_pipe = *dl_pipe = (u8)eid; /* Normally, HTT will use the upper part of the extended * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl * the lower part (ext_info[0].htc_ext_addr). * If fw wants swapping of mailbox addresses, the opposite is true. */ if (ar_sdio->swap_mbox) { htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; } else { htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; } switch (service_id) { case ATH10K_HTC_SVC_ID_RSVD_CTRL: /* HTC ctrl ep mbox address has already been setup in * ath10k_sdio_hif_start */ break; case ATH10K_HTC_SVC_ID_WMI_CONTROL: ar_sdio->mbox_addr[eid] = wmi_addr; ar_sdio->mbox_size[eid] = wmi_mbox_size; ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n", ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); break; case ATH10K_HTC_SVC_ID_HTT_DATA_MSG: ar_sdio->mbox_addr[eid] = htt_addr; ar_sdio->mbox_size[eid] = htt_mbox_size; ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio htt data mbox_addr 0x%x mbox_size %d\n", ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); break; default: ath10k_warn(ar, "unsupported HTC service id: %d\n", service_id); return -EINVAL; } return 0; } static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar, u8 *ul_pipe, u8 *dl_pipe) { ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n"); /* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our * case) == 0 */ *ul_pipe = 0; *dl_pipe = 0; } static const struct ath10k_hif_ops ath10k_sdio_hif_ops = { .tx_sg = ath10k_sdio_hif_tx_sg, .diag_read = ath10k_sdio_hif_diag_read, .diag_write = ath10k_sdio_hif_diag_write_mem, .exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg, .start = ath10k_sdio_hif_start, .stop = ath10k_sdio_hif_stop, .start_post = ath10k_sdio_hif_start_post, .get_htt_tx_complete = ath10k_sdio_get_htt_tx_complete, .map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe, .get_default_pipe = ath10k_sdio_hif_get_default_pipe, .power_up = ath10k_sdio_hif_power_up, .power_down = ath10k_sdio_hif_power_down, #ifdef CONFIG_PM .suspend = ath10k_sdio_hif_suspend, .resume = ath10k_sdio_hif_resume, #endif }; #ifdef CONFIG_PM_SLEEP /* Empty handlers so that mmc subsystem doesn't remove us entirely during * suspend. We instead follow cfg80211 suspend/resume handlers. */ static int ath10k_sdio_pm_suspend(struct device *device) { struct sdio_func *func = dev_to_sdio_func(device); struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); struct ath10k *ar = ar_sdio->ar; mmc_pm_flag_t pm_flag, pm_caps; int ret; if (!device_may_wakeup(ar->dev)) return 0; ath10k_sdio_set_mbox_sleep(ar, true); pm_flag = MMC_PM_KEEP_POWER; ret = sdio_set_host_pm_flags(func, pm_flag); if (ret) { pm_caps = sdio_get_host_pm_caps(func); ath10k_warn(ar, "failed to set sdio host pm flags (0x%x, 0x%x): %d\n", pm_flag, pm_caps, ret); return ret; } return ret; } static int ath10k_sdio_pm_resume(struct device *device) { return 0; } static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend, ath10k_sdio_pm_resume); #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops) #else #define ATH10K_SDIO_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ static int ath10k_sdio_napi_poll(struct napi_struct *ctx, int budget) { struct ath10k *ar = container_of(ctx, struct ath10k, napi); int done; done = ath10k_htt_rx_hl_indication(ar, budget); ath10k_dbg(ar, ATH10K_DBG_SDIO, "napi poll: done: %d, budget:%d\n", done, budget); if (done < budget) napi_complete_done(ctx, done); return done; } static int ath10k_sdio_read_host_interest_value(struct ath10k *ar, u32 item_offset, u32 *val) { u32 addr; int ret; addr = host_interest_item_address(item_offset); ret = ath10k_sdio_diag_read32(ar, addr, val); if (ret) ath10k_warn(ar, "unable to read host interest offset %d value\n", item_offset); return ret; } static int ath10k_sdio_read_mem(struct ath10k *ar, u32 address, void *buf, u32 buf_len) { u32 val; int i, ret; for (i = 0; i < buf_len; i += 4) { ret = ath10k_sdio_diag_read32(ar, address + i, &val); if (ret) { ath10k_warn(ar, "unable to read mem %d value\n", address + i); break; } memcpy(buf + i, &val, 4); } return ret; } static bool ath10k_sdio_is_fast_dump_supported(struct ath10k *ar) { u32 param; ath10k_sdio_read_host_interest_value(ar, HI_ITEM(hi_option_flag2), ¶m); ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hi_option_flag2 %x\n", param); return !!(param & HI_OPTION_SDIO_CRASH_DUMP_ENHANCEMENT_FW); } static void ath10k_sdio_dump_registers(struct ath10k *ar, struct ath10k_fw_crash_data *crash_data, bool fast_dump) { u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {}; int i, ret; u32 reg_dump_area; ret = ath10k_sdio_read_host_interest_value(ar, HI_ITEM(hi_failure_state), ®_dump_area); if (ret) { ath10k_warn(ar, "failed to read firmware dump area: %d\n", ret); return; } if (fast_dump) ret = ath10k_bmi_read_memory(ar, reg_dump_area, reg_dump_values, sizeof(reg_dump_values)); else ret = ath10k_sdio_read_mem(ar, reg_dump_area, reg_dump_values, sizeof(reg_dump_values)); if (ret) { ath10k_warn(ar, "failed to read firmware dump value: %d\n", ret); return; } ath10k_err(ar, "firmware register dump:\n"); for (i = 0; i < ARRAY_SIZE(reg_dump_values); i += 4) ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, reg_dump_values[i], reg_dump_values[i + 1], reg_dump_values[i + 2], reg_dump_values[i + 3]); if (!crash_data) return; for (i = 0; i < ARRAY_SIZE(reg_dump_values); i++) crash_data->registers[i] = __cpu_to_le32(reg_dump_values[i]); } static int ath10k_sdio_dump_memory_section(struct ath10k *ar, const struct ath10k_mem_region *mem_region, u8 *buf, size_t buf_len) { const struct ath10k_mem_section *cur_section, *next_section; unsigned int count, section_size, skip_size; int ret, i, j; if (!mem_region || !buf) return 0; cur_section = &mem_region->section_table.sections[0]; if (mem_region->start > cur_section->start) { ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n", mem_region->start, cur_section->start); return 0; } skip_size = cur_section->start - mem_region->start; /* fill the gap between the first register section and register * start address */ for (i = 0; i < skip_size; i++) { *buf = ATH10K_MAGIC_NOT_COPIED; buf++; } count = 0; i = 0; for (; cur_section; cur_section = next_section) { section_size = cur_section->end - cur_section->start; if (section_size <= 0) { ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n", cur_section->start, cur_section->end); break; } if (++i == mem_region->section_table.size) { /* last section */ next_section = NULL; skip_size = 0; } else { next_section = cur_section + 1; if (cur_section->end > next_section->start) { ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n", next_section->start, cur_section->end); break; } skip_size = next_section->start - cur_section->end; } if (buf_len < (skip_size + section_size)) { ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len); break; } buf_len -= skip_size + section_size; /* read section to dest memory */ ret = ath10k_sdio_read_mem(ar, cur_section->start, buf, section_size); if (ret) { ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n", cur_section->start, ret); break; } buf += section_size; count += section_size; /* fill in the gap between this section and the next */ for (j = 0; j < skip_size; j++) { *buf = ATH10K_MAGIC_NOT_COPIED; buf++; } count += skip_size; } return count; } /* if an error happened returns < 0, otherwise the length */ static int ath10k_sdio_dump_memory_generic(struct ath10k *ar, const struct ath10k_mem_region *current_region, u8 *buf, bool fast_dump) { int ret; if (current_region->section_table.size > 0) /* Copy each section individually. */ return ath10k_sdio_dump_memory_section(ar, current_region, buf, current_region->len); /* No individiual memory sections defined so we can * copy the entire memory region. */ if (fast_dump) ret = ath10k_bmi_read_memory(ar, current_region->start, buf, current_region->len); else ret = ath10k_sdio_read_mem(ar, current_region->start, buf, current_region->len); if (ret) { ath10k_warn(ar, "failed to copy ramdump region %s: %d\n", current_region->name, ret); return ret; } return current_region->len; } static void ath10k_sdio_dump_memory(struct ath10k *ar, struct ath10k_fw_crash_data *crash_data, bool fast_dump) { const struct ath10k_hw_mem_layout *mem_layout; const struct ath10k_mem_region *current_region; struct ath10k_dump_ram_data_hdr *hdr; u32 count; size_t buf_len; int ret, i; u8 *buf; if (!crash_data) return; mem_layout = ath10k_coredump_get_mem_layout(ar); if (!mem_layout) return; current_region = &mem_layout->region_table.regions[0]; buf = crash_data->ramdump_buf; buf_len = crash_data->ramdump_buf_len; memset(buf, 0, buf_len); for (i = 0; i < mem_layout->region_table.size; i++) { count = 0; if (current_region->len > buf_len) { ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n", current_region->name, current_region->len, buf_len); break; } /* Reserve space for the header. */ hdr = (void *)buf; buf += sizeof(*hdr); buf_len -= sizeof(*hdr); ret = ath10k_sdio_dump_memory_generic(ar, current_region, buf, fast_dump); if (ret >= 0) count = ret; hdr->region_type = cpu_to_le32(current_region->type); hdr->start = cpu_to_le32(current_region->start); hdr->length = cpu_to_le32(count); if (count == 0) /* Note: the header remains, just with zero length. */ break; buf += count; buf_len -= count; current_region++; } } void ath10k_sdio_fw_crashed_dump(struct ath10k *ar) { struct ath10k_fw_crash_data *crash_data; char guid[UUID_STRING_LEN + 1]; bool fast_dump; fast_dump = ath10k_sdio_is_fast_dump_supported(ar); if (fast_dump) ath10k_bmi_start(ar); ar->stats.fw_crash_counter++; ath10k_sdio_disable_intrs(ar); crash_data = ath10k_coredump_new(ar); if (crash_data) scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid); else scnprintf(guid, sizeof(guid), "n/a"); ath10k_err(ar, "firmware crashed! (guid %s)\n", guid); ath10k_print_driver_info(ar); ath10k_sdio_dump_registers(ar, crash_data, fast_dump); ath10k_sdio_dump_memory(ar, crash_data, fast_dump); ath10k_sdio_enable_intrs(ar); ath10k_core_start_recovery(ar); } static int ath10k_sdio_probe(struct sdio_func *func, const struct sdio_device_id *id) { struct ath10k_sdio *ar_sdio; struct ath10k *ar; enum ath10k_hw_rev hw_rev; u32 dev_id_base; struct ath10k_bus_params bus_params = {}; int ret, i; /* Assumption: All SDIO based chipsets (so far) are QCA6174 based. * If there will be newer chipsets that does not use the hw reg * setup as defined in qca6174_regs and qca6174_values, this * assumption is no longer valid and hw_rev must be setup differently * depending on chipset. */ hw_rev = ATH10K_HW_QCA6174; ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO, hw_rev, &ath10k_sdio_hif_ops); if (!ar) { dev_err(&func->dev, "failed to allocate core\n"); return -ENOMEM; } netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_sdio_napi_poll); ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", func->num, func->vendor, func->device, func->max_blksize, func->cur_blksize); ar_sdio = ath10k_sdio_priv(ar); ar_sdio->irq_data.irq_proc_reg = devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs), GFP_KERNEL); if (!ar_sdio->irq_data.irq_proc_reg) { ret = -ENOMEM; goto err_core_destroy; } ar_sdio->vsg_buffer = devm_kmalloc(ar->dev, ATH10K_SDIO_VSG_BUF_SIZE, GFP_KERNEL); if (!ar_sdio->vsg_buffer) { ret = -ENOMEM; goto err_core_destroy; } ar_sdio->irq_data.irq_en_reg = devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs), GFP_KERNEL); if (!ar_sdio->irq_data.irq_en_reg) { ret = -ENOMEM; goto err_core_destroy; } ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_LARGE_CMDBUF_SIZE, GFP_KERNEL); if (!ar_sdio->bmi_buf) { ret = -ENOMEM; goto err_core_destroy; } ar_sdio->func = func; sdio_set_drvdata(func, ar_sdio); ar_sdio->is_disabled = true; ar_sdio->ar = ar; spin_lock_init(&ar_sdio->lock); spin_lock_init(&ar_sdio->wr_async_lock); mutex_init(&ar_sdio->irq_data.mtx); INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); INIT_LIST_HEAD(&ar_sdio->wr_asyncq); INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work); ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq"); if (!ar_sdio->workqueue) { ret = -ENOMEM; goto err_core_destroy; } for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++) ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]); skb_queue_head_init(&ar_sdio->rx_head); INIT_WORK(&ar_sdio->async_work_rx, ath10k_rx_indication_async_work); dev_id_base = (id->device & 0x0F00); if (dev_id_base != (SDIO_DEVICE_ID_ATHEROS_AR6005 & 0x0F00) && dev_id_base != (SDIO_DEVICE_ID_ATHEROS_QCA9377 & 0x0F00)) { ret = -ENODEV; ath10k_err(ar, "unsupported device id %u (0x%x)\n", dev_id_base, id->device); goto err_free_wq; } ar->dev_id = QCA9377_1_0_DEVICE_ID; ar->id.vendor = id->vendor; ar->id.device = id->device; ath10k_sdio_set_mbox_info(ar); bus_params.dev_type = ATH10K_DEV_TYPE_HL; /* TODO: don't know yet how to get chip_id with SDIO */ bus_params.chip_id = 0; bus_params.hl_msdu_ids = true; ar->hw->max_mtu = ETH_DATA_LEN; ret = ath10k_core_register(ar, &bus_params); if (ret) { ath10k_err(ar, "failed to register driver core: %d\n", ret); goto err_free_wq; } timer_setup(&ar_sdio->sleep_timer, ath10k_sdio_sleep_timer_handler, 0); return 0; err_free_wq: destroy_workqueue(ar_sdio->workqueue); err_core_destroy: ath10k_core_destroy(ar); return ret; } static void ath10k_sdio_remove(struct sdio_func *func) { struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); struct ath10k *ar = ar_sdio->ar; ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio removed func %d vendor 0x%x device 0x%x\n", func->num, func->vendor, func->device); ath10k_core_unregister(ar); netif_napi_del(&ar->napi); ath10k_core_destroy(ar); destroy_workqueue(ar_sdio->workqueue); } static const struct sdio_device_id ath10k_sdio_devices[] = { {SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6005)}, {SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_QCA9377)}, {}, }; MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices); static struct sdio_driver ath10k_sdio_driver = { .name = "ath10k_sdio", .id_table = ath10k_sdio_devices, .probe = ath10k_sdio_probe, .remove = ath10k_sdio_remove, .drv = { .owner = THIS_MODULE, .pm = ATH10K_SDIO_PM_OPS, }, }; static int __init ath10k_sdio_init(void) { int ret; ret = sdio_register_driver(&ath10k_sdio_driver); if (ret) pr_err("sdio driver registration failed: %d\n", ret); return ret; } static void __exit ath10k_sdio_exit(void) { sdio_unregister_driver(&ath10k_sdio_driver); } module_init(ath10k_sdio_init); module_exit(ath10k_sdio_exit); MODULE_AUTHOR("Qualcomm Atheros"); MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices"); MODULE_LICENSE("Dual BSD/GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1