Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Govind Singh | 6752 | 79.73% | 20 | 28.17% |
Rakesh Pillai | 833 | 9.84% | 10 | 14.08% |
Stephen Boyd | 230 | 2.72% | 3 | 4.23% |
Björn Andersson | 215 | 2.54% | 4 | 5.63% |
Surabhi Vishnoi | 181 | 2.14% | 1 | 1.41% |
Doug Anderson | 65 | 0.77% | 1 | 1.41% |
Kalle Valo | 45 | 0.53% | 6 | 8.45% |
Michal Kazior | 43 | 0.51% | 4 | 5.63% |
Youghandhar Chintala | 29 | 0.34% | 1 | 1.41% |
Erik Stromdahl | 20 | 0.24% | 3 | 4.23% |
Brian Norris | 17 | 0.20% | 6 | 8.45% |
Alan Liu | 13 | 0.15% | 1 | 1.41% |
Lad Prabhakar | 9 | 0.11% | 1 | 1.41% |
Dan Carpenter | 3 | 0.04% | 1 | 1.41% |
Wen Gong | 3 | 0.04% | 2 | 2.82% |
Ben Greear | 2 | 0.02% | 1 | 1.41% |
Maharaja Kennadyrajan | 2 | 0.02% | 1 | 1.41% |
Wei Yongjun | 2 | 0.02% | 1 | 1.41% |
Jason Gunthorpe | 2 | 0.02% | 1 | 1.41% |
Colin Ian King | 1 | 0.01% | 1 | 1.41% |
Vasyl Gomonovych | 1 | 0.01% | 1 | 1.41% |
Krzysztof Kozlowski | 1 | 0.01% | 1 | 1.41% |
Total | 8469 | 71 |
// SPDX-License-Identifier: ISC /* * Copyright (c) 2018 The Linux Foundation. All rights reserved. */ #include <linux/bits.h> #include <linux/clk.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/regulator/consumer.h> #include <linux/remoteproc/qcom_rproc.h> #include <linux/of_address.h> #include <linux/iommu.h> #include "ce.h" #include "coredump.h" #include "debug.h" #include "hif.h" #include "htc.h" #include "snoc.h" #define ATH10K_SNOC_RX_POST_RETRY_MS 50 #define CE_POLL_PIPE 4 #define ATH10K_SNOC_WAKE_IRQ 2 static char *const ce_name[] = { "WLAN_CE_0", "WLAN_CE_1", "WLAN_CE_2", "WLAN_CE_3", "WLAN_CE_4", "WLAN_CE_5", "WLAN_CE_6", "WLAN_CE_7", "WLAN_CE_8", "WLAN_CE_9", "WLAN_CE_10", "WLAN_CE_11", }; static const char * const ath10k_regulators[] = { "vdd-0.8-cx-mx", "vdd-1.8-xo", "vdd-1.3-rfa", "vdd-3.3-ch0", "vdd-3.3-ch1", }; static const char * const ath10k_clocks[] = { "cxo_ref_clk_pin", "qdss", }; static void ath10k_snoc_htc_tx_cb(struct ath10k_ce_pipe *ce_state); static void ath10k_snoc_htt_tx_cb(struct ath10k_ce_pipe *ce_state); static void ath10k_snoc_htc_rx_cb(struct ath10k_ce_pipe *ce_state); static void ath10k_snoc_htt_rx_cb(struct ath10k_ce_pipe *ce_state); static void ath10k_snoc_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state); static void ath10k_snoc_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state); static const struct ath10k_snoc_drv_priv drv_priv = { .hw_rev = ATH10K_HW_WCN3990, .dma_mask = DMA_BIT_MASK(35), .msa_size = 0x100000, }; #define WCN3990_SRC_WR_IDX_OFFSET 0x3C #define WCN3990_DST_WR_IDX_OFFSET 0x40 static struct ath10k_shadow_reg_cfg target_shadow_reg_cfg_map[] = { { .ce_id = __cpu_to_le16(0), .reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET), }, { .ce_id = __cpu_to_le16(3), .reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET), }, { .ce_id = __cpu_to_le16(4), .reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET), }, { .ce_id = __cpu_to_le16(5), .reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET), }, { .ce_id = __cpu_to_le16(7), .reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET), }, { .ce_id = __cpu_to_le16(1), .reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET), }, { .ce_id = __cpu_to_le16(2), .reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET), }, { .ce_id = __cpu_to_le16(7), .reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET), }, { .ce_id = __cpu_to_le16(8), .reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET), }, { .ce_id = __cpu_to_le16(9), .reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET), }, { .ce_id = __cpu_to_le16(10), .reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET), }, { .ce_id = __cpu_to_le16(11), .reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET), }, }; static struct ce_attr host_ce_config_wlan[] = { /* CE0: host->target HTC control streams */ { .flags = CE_ATTR_FLAGS, .src_nentries = 16, .src_sz_max = 2048, .dest_nentries = 0, .send_cb = ath10k_snoc_htc_tx_cb, }, /* CE1: target->host HTT + HTC control */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 512, .recv_cb = ath10k_snoc_htt_htc_rx_cb, }, /* CE2: target->host WMI */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 64, .recv_cb = ath10k_snoc_htc_rx_cb, }, /* CE3: host->target WMI */ { .flags = CE_ATTR_FLAGS, .src_nentries = 32, .src_sz_max = 2048, .dest_nentries = 0, .send_cb = ath10k_snoc_htc_tx_cb, }, /* CE4: host->target HTT */ { .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, .src_nentries = 2048, .src_sz_max = 256, .dest_nentries = 0, .send_cb = ath10k_snoc_htt_tx_cb, }, /* CE5: target->host HTT (ipa_uc->target ) */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 512, .dest_nentries = 512, .recv_cb = ath10k_snoc_htt_rx_cb, }, /* CE6: target autonomous hif_memcpy */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 0, .dest_nentries = 0, }, /* CE7: ce_diag, the Diagnostic Window */ { .flags = CE_ATTR_FLAGS, .src_nentries = 2, .src_sz_max = 2048, .dest_nentries = 2, }, /* CE8: Target to uMC */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 128, }, /* CE9 target->host HTT */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 512, .recv_cb = ath10k_snoc_htt_htc_rx_cb, }, /* CE10: target->host HTT */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 512, .recv_cb = ath10k_snoc_htt_htc_rx_cb, }, /* CE11: target -> host PKTLOG */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 512, .recv_cb = ath10k_snoc_pktlog_rx_cb, }, }; static struct ce_pipe_config target_ce_config_wlan[] = { /* CE0: host->target HTC control and raw streams */ { .pipenum = __cpu_to_le32(0), .pipedir = __cpu_to_le32(PIPEDIR_OUT), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE1: target->host HTT + HTC control */ { .pipenum = __cpu_to_le32(1), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE2: target->host WMI */ { .pipenum = __cpu_to_le32(2), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(64), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE3: host->target WMI */ { .pipenum = __cpu_to_le32(3), .pipedir = __cpu_to_le32(PIPEDIR_OUT), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE4: host->target HTT */ { .pipenum = __cpu_to_le32(4), .pipedir = __cpu_to_le32(PIPEDIR_OUT), .nentries = __cpu_to_le32(256), .nbytes_max = __cpu_to_le32(256), .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), .reserved = __cpu_to_le32(0), }, /* CE5: target->host HTT (HIF->HTT) */ { .pipenum = __cpu_to_le32(5), .pipedir = __cpu_to_le32(PIPEDIR_OUT), .nentries = __cpu_to_le32(1024), .nbytes_max = __cpu_to_le32(64), .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), .reserved = __cpu_to_le32(0), }, /* CE6: Reserved for target autonomous hif_memcpy */ { .pipenum = __cpu_to_le32(6), .pipedir = __cpu_to_le32(PIPEDIR_INOUT), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(16384), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE7 used only by Host */ { .pipenum = __cpu_to_le32(7), .pipedir = __cpu_to_le32(4), .nentries = __cpu_to_le32(0), .nbytes_max = __cpu_to_le32(0), .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), .reserved = __cpu_to_le32(0), }, /* CE8 Target to uMC */ { .pipenum = __cpu_to_le32(8), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(0), .reserved = __cpu_to_le32(0), }, /* CE9 target->host HTT */ { .pipenum = __cpu_to_le32(9), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE10 target->host HTT */ { .pipenum = __cpu_to_le32(10), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, /* CE11 target autonomous qcache memcpy */ { .pipenum = __cpu_to_le32(11), .pipedir = __cpu_to_le32(PIPEDIR_IN), .nentries = __cpu_to_le32(32), .nbytes_max = __cpu_to_le32(2048), .flags = __cpu_to_le32(CE_ATTR_FLAGS), .reserved = __cpu_to_le32(0), }, }; static struct ce_service_to_pipe target_service_to_ce_map_wlan[] = { { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(3), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(3), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(3), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(3), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(3), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(0), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { /* not used */ __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(0), }, { /* not used */ __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(2), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ __cpu_to_le32(4), }, { __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(1), }, { /* not used */ __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), __cpu_to_le32(PIPEDIR_OUT), __cpu_to_le32(5), }, { /* in = DL = target -> host */ __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA2_MSG), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(9), }, { /* in = DL = target -> host */ __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA3_MSG), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(10), }, { /* in = DL = target -> host pktlog */ __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_LOG_MSG), __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ __cpu_to_le32(11), }, /* (Additions here) */ { /* must be last */ __cpu_to_le32(0), __cpu_to_le32(0), __cpu_to_le32(0), }, }; static void ath10k_snoc_write32(struct ath10k *ar, u32 offset, u32 value) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); iowrite32(value, ar_snoc->mem + offset); } static u32 ath10k_snoc_read32(struct ath10k *ar, u32 offset) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); u32 val; val = ioread32(ar_snoc->mem + offset); return val; } static int __ath10k_snoc_rx_post_buf(struct ath10k_snoc_pipe *pipe) { struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; struct ath10k *ar = pipe->hif_ce_state; struct ath10k_ce *ce = ath10k_ce_priv(ar); struct sk_buff *skb; dma_addr_t paddr; int ret; skb = dev_alloc_skb(pipe->buf_sz); if (!skb) return -ENOMEM; WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb"); paddr = dma_map_single(ar->dev, skb->data, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(ar->dev, paddr))) { ath10k_warn(ar, "failed to dma map snoc rx buf\n"); dev_kfree_skb_any(skb); return -EIO; } ATH10K_SKB_RXCB(skb)->paddr = paddr; spin_lock_bh(&ce->ce_lock); ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr); spin_unlock_bh(&ce->ce_lock); if (ret) { dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); dev_kfree_skb_any(skb); return ret; } return 0; } static void ath10k_snoc_rx_post_pipe(struct ath10k_snoc_pipe *pipe) { struct ath10k *ar = pipe->hif_ce_state; struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; int ret, num; if (pipe->buf_sz == 0) return; if (!ce_pipe->dest_ring) return; spin_lock_bh(&ce->ce_lock); num = __ath10k_ce_rx_num_free_bufs(ce_pipe); spin_unlock_bh(&ce->ce_lock); while (num--) { ret = __ath10k_snoc_rx_post_buf(pipe); if (ret) { if (ret == -ENOSPC) break; ath10k_warn(ar, "failed to post rx buf: %d\n", ret); mod_timer(&ar_snoc->rx_post_retry, jiffies + ATH10K_SNOC_RX_POST_RETRY_MS); break; } } } static void ath10k_snoc_rx_post(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); int i; for (i = 0; i < CE_COUNT; i++) ath10k_snoc_rx_post_pipe(&ar_snoc->pipe_info[i]); } static void ath10k_snoc_process_rx_cb(struct ath10k_ce_pipe *ce_state, void (*callback)(struct ath10k *ar, struct sk_buff *skb)) { struct ath10k *ar = ce_state->ar; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); struct ath10k_snoc_pipe *pipe_info = &ar_snoc->pipe_info[ce_state->id]; struct sk_buff *skb; struct sk_buff_head list; void *transfer_context; unsigned int nbytes, max_nbytes; __skb_queue_head_init(&list); while (ath10k_ce_completed_recv_next(ce_state, &transfer_context, &nbytes) == 0) { skb = transfer_context; max_nbytes = skb->len + skb_tailroom(skb); dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, max_nbytes, DMA_FROM_DEVICE); if (unlikely(max_nbytes < nbytes)) { ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)\n", nbytes, max_nbytes); dev_kfree_skb_any(skb); continue; } skb_put(skb, nbytes); __skb_queue_tail(&list, skb); } while ((skb = __skb_dequeue(&list))) { ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc rx ce pipe %d len %d\n", ce_state->id, skb->len); callback(ar, skb); } ath10k_snoc_rx_post_pipe(pipe_info); } static void ath10k_snoc_htc_rx_cb(struct ath10k_ce_pipe *ce_state) { ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler); } static void ath10k_snoc_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state) { /* CE4 polling needs to be done whenever CE pipe which transports * HTT Rx (target->host) is processed. */ ath10k_ce_per_engine_service(ce_state->ar, CE_POLL_PIPE); ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler); } /* Called by lower (CE) layer when data is received from the Target. * WCN3990 firmware uses separate CE(CE11) to transfer pktlog data. */ static void ath10k_snoc_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state) { ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler); } static void ath10k_snoc_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb) { skb_pull(skb, sizeof(struct ath10k_htc_hdr)); ath10k_htt_t2h_msg_handler(ar, skb); } static void ath10k_snoc_htt_rx_cb(struct ath10k_ce_pipe *ce_state) { ath10k_ce_per_engine_service(ce_state->ar, CE_POLL_PIPE); ath10k_snoc_process_rx_cb(ce_state, ath10k_snoc_htt_rx_deliver); } static void ath10k_snoc_rx_replenish_retry(struct timer_list *t) { struct ath10k_snoc *ar_snoc = from_timer(ar_snoc, t, rx_post_retry); struct ath10k *ar = ar_snoc->ar; ath10k_snoc_rx_post(ar); } static void ath10k_snoc_htc_tx_cb(struct ath10k_ce_pipe *ce_state) { struct ath10k *ar = ce_state->ar; struct sk_buff_head list; struct sk_buff *skb; __skb_queue_head_init(&list); while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) { if (!skb) continue; __skb_queue_tail(&list, skb); } while ((skb = __skb_dequeue(&list))) ath10k_htc_tx_completion_handler(ar, skb); } static void ath10k_snoc_htt_tx_cb(struct ath10k_ce_pipe *ce_state) { struct ath10k *ar = ce_state->ar; struct sk_buff *skb; while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) { if (!skb) continue; dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr, skb->len, DMA_TO_DEVICE); ath10k_htt_hif_tx_complete(ar, skb); } } static int ath10k_snoc_hif_tx_sg(struct ath10k *ar, u8 pipe_id, struct ath10k_hif_sg_item *items, int n_items) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_snoc_pipe *snoc_pipe; struct ath10k_ce_pipe *ce_pipe; int err, i = 0; snoc_pipe = &ar_snoc->pipe_info[pipe_id]; ce_pipe = snoc_pipe->ce_hdl; spin_lock_bh(&ce->ce_lock); for (i = 0; i < n_items - 1; i++) { ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc tx item %d paddr %pad len %d n_items %d\n", i, &items[i].paddr, items[i].len, n_items); err = ath10k_ce_send_nolock(ce_pipe, items[i].transfer_context, items[i].paddr, items[i].len, items[i].transfer_id, CE_SEND_FLAG_GATHER); if (err) goto err; } ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc tx item %d paddr %pad len %d n_items %d\n", i, &items[i].paddr, items[i].len, n_items); err = ath10k_ce_send_nolock(ce_pipe, items[i].transfer_context, items[i].paddr, items[i].len, items[i].transfer_id, 0); if (err) goto err; spin_unlock_bh(&ce->ce_lock); return 0; err: for (; i > 0; i--) __ath10k_ce_send_revert(ce_pipe); spin_unlock_bh(&ce->ce_lock); return err; } static int ath10k_snoc_hif_get_target_info(struct ath10k *ar, struct bmi_target_info *target_info) { target_info->version = ATH10K_HW_WCN3990; target_info->type = ATH10K_HW_WCN3990; return 0; } static u16 ath10k_snoc_hif_get_free_queue_number(struct ath10k *ar, u8 pipe) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); ath10k_dbg(ar, ATH10K_DBG_SNOC, "hif get free queue number\n"); return ath10k_ce_num_free_src_entries(ar_snoc->pipe_info[pipe].ce_hdl); } static void ath10k_snoc_hif_send_complete_check(struct ath10k *ar, u8 pipe, int force) { int resources; ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif send complete check\n"); if (!force) { resources = ath10k_snoc_hif_get_free_queue_number(ar, pipe); if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1)) return; } ath10k_ce_per_engine_service(ar, pipe); } static int ath10k_snoc_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id, u8 *ul_pipe, u8 *dl_pipe) { const struct ce_service_to_pipe *entry; bool ul_set = false, dl_set = false; int i; ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif map service\n"); for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) { entry = &target_service_to_ce_map_wlan[i]; if (__le32_to_cpu(entry->service_id) != service_id) continue; switch (__le32_to_cpu(entry->pipedir)) { case PIPEDIR_NONE: break; case PIPEDIR_IN: WARN_ON(dl_set); *dl_pipe = __le32_to_cpu(entry->pipenum); dl_set = true; break; case PIPEDIR_OUT: WARN_ON(ul_set); *ul_pipe = __le32_to_cpu(entry->pipenum); ul_set = true; break; case PIPEDIR_INOUT: WARN_ON(dl_set); WARN_ON(ul_set); *dl_pipe = __le32_to_cpu(entry->pipenum); *ul_pipe = __le32_to_cpu(entry->pipenum); dl_set = true; ul_set = true; break; } } if (!ul_set || !dl_set) return -ENOENT; return 0; } static void ath10k_snoc_hif_get_default_pipe(struct ath10k *ar, u8 *ul_pipe, u8 *dl_pipe) { ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif get default pipe\n"); (void)ath10k_snoc_hif_map_service_to_pipe(ar, ATH10K_HTC_SVC_ID_RSVD_CTRL, ul_pipe, dl_pipe); } static inline void ath10k_snoc_irq_disable(struct ath10k *ar) { ath10k_ce_disable_interrupts(ar); } static inline void ath10k_snoc_irq_enable(struct ath10k *ar) { ath10k_ce_enable_interrupts(ar); } static void ath10k_snoc_rx_pipe_cleanup(struct ath10k_snoc_pipe *snoc_pipe) { struct ath10k_ce_pipe *ce_pipe; struct ath10k_ce_ring *ce_ring; struct sk_buff *skb; struct ath10k *ar; int i; ar = snoc_pipe->hif_ce_state; ce_pipe = snoc_pipe->ce_hdl; ce_ring = ce_pipe->dest_ring; if (!ce_ring) return; if (!snoc_pipe->buf_sz) return; for (i = 0; i < ce_ring->nentries; i++) { skb = ce_ring->per_transfer_context[i]; if (!skb) continue; ce_ring->per_transfer_context[i] = NULL; dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); dev_kfree_skb_any(skb); } } static void ath10k_snoc_tx_pipe_cleanup(struct ath10k_snoc_pipe *snoc_pipe) { struct ath10k_ce_pipe *ce_pipe; struct ath10k_ce_ring *ce_ring; struct sk_buff *skb; struct ath10k *ar; int i; ar = snoc_pipe->hif_ce_state; ce_pipe = snoc_pipe->ce_hdl; ce_ring = ce_pipe->src_ring; if (!ce_ring) return; if (!snoc_pipe->buf_sz) return; for (i = 0; i < ce_ring->nentries; i++) { skb = ce_ring->per_transfer_context[i]; if (!skb) continue; ce_ring->per_transfer_context[i] = NULL; ath10k_htc_tx_completion_handler(ar, skb); } } static void ath10k_snoc_buffer_cleanup(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); struct ath10k_snoc_pipe *pipe_info; int pipe_num; del_timer_sync(&ar_snoc->rx_post_retry); for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { pipe_info = &ar_snoc->pipe_info[pipe_num]; ath10k_snoc_rx_pipe_cleanup(pipe_info); ath10k_snoc_tx_pipe_cleanup(pipe_info); } } static void ath10k_snoc_hif_stop(struct ath10k *ar) { if (!test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags)) ath10k_snoc_irq_disable(ar); ath10k_core_napi_sync_disable(ar); ath10k_snoc_buffer_cleanup(ar); ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n"); } static int ath10k_snoc_hif_start(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); bitmap_clear(ar_snoc->pending_ce_irqs, 0, CE_COUNT_MAX); ath10k_core_napi_enable(ar); ath10k_snoc_irq_enable(ar); ath10k_snoc_rx_post(ar); clear_bit(ATH10K_SNOC_FLAG_RECOVERY, &ar_snoc->flags); ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n"); return 0; } static int ath10k_snoc_init_pipes(struct ath10k *ar) { int i, ret; for (i = 0; i < CE_COUNT; i++) { ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]); if (ret) { ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n", i, ret); return ret; } } return 0; } static int ath10k_snoc_wlan_enable(struct ath10k *ar, enum ath10k_firmware_mode fw_mode) { struct ath10k_tgt_pipe_cfg tgt_cfg[CE_COUNT_MAX]; struct ath10k_qmi_wlan_enable_cfg cfg; enum wlfw_driver_mode_enum_v01 mode; int pipe_num; for (pipe_num = 0; pipe_num < CE_COUNT_MAX; pipe_num++) { tgt_cfg[pipe_num].pipe_num = target_ce_config_wlan[pipe_num].pipenum; tgt_cfg[pipe_num].pipe_dir = target_ce_config_wlan[pipe_num].pipedir; tgt_cfg[pipe_num].nentries = target_ce_config_wlan[pipe_num].nentries; tgt_cfg[pipe_num].nbytes_max = target_ce_config_wlan[pipe_num].nbytes_max; tgt_cfg[pipe_num].flags = target_ce_config_wlan[pipe_num].flags; tgt_cfg[pipe_num].reserved = 0; } cfg.num_ce_tgt_cfg = sizeof(target_ce_config_wlan) / sizeof(struct ath10k_tgt_pipe_cfg); cfg.ce_tgt_cfg = (struct ath10k_tgt_pipe_cfg *) &tgt_cfg; cfg.num_ce_svc_pipe_cfg = sizeof(target_service_to_ce_map_wlan) / sizeof(struct ath10k_svc_pipe_cfg); cfg.ce_svc_cfg = (struct ath10k_svc_pipe_cfg *) &target_service_to_ce_map_wlan; cfg.num_shadow_reg_cfg = ARRAY_SIZE(target_shadow_reg_cfg_map); cfg.shadow_reg_cfg = (struct ath10k_shadow_reg_cfg *) &target_shadow_reg_cfg_map; switch (fw_mode) { case ATH10K_FIRMWARE_MODE_NORMAL: mode = QMI_WLFW_MISSION_V01; break; case ATH10K_FIRMWARE_MODE_UTF: mode = QMI_WLFW_FTM_V01; break; default: ath10k_err(ar, "invalid firmware mode %d\n", fw_mode); return -EINVAL; } return ath10k_qmi_wlan_enable(ar, &cfg, mode, NULL); } static int ath10k_hw_power_on(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); int ret; ath10k_dbg(ar, ATH10K_DBG_SNOC, "soc power on\n"); ret = regulator_bulk_enable(ar_snoc->num_vregs, ar_snoc->vregs); if (ret) return ret; ret = clk_bulk_prepare_enable(ar_snoc->num_clks, ar_snoc->clks); if (ret) goto vreg_off; return ret; vreg_off: regulator_bulk_disable(ar_snoc->num_vregs, ar_snoc->vregs); return ret; } static int ath10k_hw_power_off(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); ath10k_dbg(ar, ATH10K_DBG_SNOC, "soc power off\n"); clk_bulk_disable_unprepare(ar_snoc->num_clks, ar_snoc->clks); return regulator_bulk_disable(ar_snoc->num_vregs, ar_snoc->vregs); } static void ath10k_snoc_wlan_disable(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); /* If both ATH10K_FLAG_CRASH_FLUSH and ATH10K_SNOC_FLAG_RECOVERY * flags are not set, it means that the driver has restarted * due to a crash inject via debugfs. In this case, the driver * needs to restart the firmware and hence send qmi wlan disable, * during the driver restart sequence. */ if (!test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags) || !test_bit(ATH10K_SNOC_FLAG_RECOVERY, &ar_snoc->flags)) ath10k_qmi_wlan_disable(ar); } static void ath10k_snoc_hif_power_down(struct ath10k *ar) { ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n"); ath10k_snoc_wlan_disable(ar); ath10k_ce_free_rri(ar); ath10k_hw_power_off(ar); } static int ath10k_snoc_hif_power_up(struct ath10k *ar, enum ath10k_firmware_mode fw_mode) { int ret; ath10k_dbg(ar, ATH10K_DBG_SNOC, "%s:WCN3990 driver state = %d\n", __func__, ar->state); ret = ath10k_hw_power_on(ar); if (ret) { ath10k_err(ar, "failed to power on device: %d\n", ret); return ret; } ret = ath10k_snoc_wlan_enable(ar, fw_mode); if (ret) { ath10k_err(ar, "failed to enable wcn3990: %d\n", ret); goto err_hw_power_off; } ath10k_ce_alloc_rri(ar); ret = ath10k_snoc_init_pipes(ar); if (ret) { ath10k_err(ar, "failed to initialize CE: %d\n", ret); goto err_free_rri; } return 0; err_free_rri: ath10k_ce_free_rri(ar); ath10k_snoc_wlan_disable(ar); err_hw_power_off: ath10k_hw_power_off(ar); return ret; } static int ath10k_snoc_hif_set_target_log_mode(struct ath10k *ar, u8 fw_log_mode) { u8 fw_dbg_mode; if (fw_log_mode) fw_dbg_mode = ATH10K_ENABLE_FW_LOG_CE; else fw_dbg_mode = ATH10K_ENABLE_FW_LOG_DIAG; return ath10k_qmi_set_fw_log_mode(ar, fw_dbg_mode); } #ifdef CONFIG_PM static int ath10k_snoc_hif_suspend(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); int ret; if (!device_may_wakeup(ar->dev)) return -EPERM; ret = enable_irq_wake(ar_snoc->ce_irqs[ATH10K_SNOC_WAKE_IRQ].irq_line); if (ret) { ath10k_err(ar, "failed to enable wakeup irq :%d\n", ret); return ret; } ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc device suspended\n"); return ret; } static int ath10k_snoc_hif_resume(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); int ret; if (!device_may_wakeup(ar->dev)) return -EPERM; ret = disable_irq_wake(ar_snoc->ce_irqs[ATH10K_SNOC_WAKE_IRQ].irq_line); if (ret) { ath10k_err(ar, "failed to disable wakeup irq: %d\n", ret); return ret; } ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc device resumed\n"); return ret; } #endif static const struct ath10k_hif_ops ath10k_snoc_hif_ops = { .read32 = ath10k_snoc_read32, .write32 = ath10k_snoc_write32, .start = ath10k_snoc_hif_start, .stop = ath10k_snoc_hif_stop, .map_service_to_pipe = ath10k_snoc_hif_map_service_to_pipe, .get_default_pipe = ath10k_snoc_hif_get_default_pipe, .power_up = ath10k_snoc_hif_power_up, .power_down = ath10k_snoc_hif_power_down, .tx_sg = ath10k_snoc_hif_tx_sg, .send_complete_check = ath10k_snoc_hif_send_complete_check, .get_free_queue_number = ath10k_snoc_hif_get_free_queue_number, .get_target_info = ath10k_snoc_hif_get_target_info, .set_target_log_mode = ath10k_snoc_hif_set_target_log_mode, #ifdef CONFIG_PM .suspend = ath10k_snoc_hif_suspend, .resume = ath10k_snoc_hif_resume, #endif }; static const struct ath10k_bus_ops ath10k_snoc_bus_ops = { .read32 = ath10k_snoc_read32, .write32 = ath10k_snoc_write32, }; static int ath10k_snoc_get_ce_id_from_irq(struct ath10k *ar, int irq) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); int i; for (i = 0; i < CE_COUNT_MAX; i++) { if (ar_snoc->ce_irqs[i].irq_line == irq) return i; } ath10k_err(ar, "No matching CE id for irq %d\n", irq); return -EINVAL; } static irqreturn_t ath10k_snoc_per_engine_handler(int irq, void *arg) { struct ath10k *ar = arg; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); int ce_id = ath10k_snoc_get_ce_id_from_irq(ar, irq); if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_snoc->pipe_info)) { ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq, ce_id); return IRQ_HANDLED; } ath10k_ce_disable_interrupt(ar, ce_id); set_bit(ce_id, ar_snoc->pending_ce_irqs); napi_schedule(&ar->napi); return IRQ_HANDLED; } static int ath10k_snoc_napi_poll(struct napi_struct *ctx, int budget) { struct ath10k *ar = container_of(ctx, struct ath10k, napi); struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); int done = 0; int ce_id; if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags)) { napi_complete(ctx); return done; } for (ce_id = 0; ce_id < CE_COUNT; ce_id++) if (test_and_clear_bit(ce_id, ar_snoc->pending_ce_irqs)) { ath10k_ce_per_engine_service(ar, ce_id); ath10k_ce_enable_interrupt(ar, ce_id); } done = ath10k_htt_txrx_compl_task(ar, budget); if (done < budget) napi_complete(ctx); return done; } static void ath10k_snoc_init_napi(struct ath10k *ar) { netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_snoc_napi_poll); } static int ath10k_snoc_request_irq(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); int ret, id; for (id = 0; id < CE_COUNT_MAX; id++) { ret = request_irq(ar_snoc->ce_irqs[id].irq_line, ath10k_snoc_per_engine_handler, 0, ce_name[id], ar); if (ret) { ath10k_err(ar, "failed to register IRQ handler for CE %d: %d\n", id, ret); goto err_irq; } } return 0; err_irq: for (id -= 1; id >= 0; id--) free_irq(ar_snoc->ce_irqs[id].irq_line, ar); return ret; } static void ath10k_snoc_free_irq(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); int id; for (id = 0; id < CE_COUNT_MAX; id++) free_irq(ar_snoc->ce_irqs[id].irq_line, ar); } static int ath10k_snoc_resource_init(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); struct platform_device *pdev; struct resource *res; int i, ret = 0; pdev = ar_snoc->dev; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "membase"); if (!res) { ath10k_err(ar, "Memory base not found in DT\n"); return -EINVAL; } ar_snoc->mem_pa = res->start; ar_snoc->mem = devm_ioremap(&pdev->dev, ar_snoc->mem_pa, resource_size(res)); if (!ar_snoc->mem) { ath10k_err(ar, "Memory base ioremap failed with physical address %pa\n", &ar_snoc->mem_pa); return -EINVAL; } for (i = 0; i < CE_COUNT; i++) { ret = platform_get_irq(ar_snoc->dev, i); if (ret < 0) return ret; ar_snoc->ce_irqs[i].irq_line = ret; } ret = device_property_read_u32(&pdev->dev, "qcom,xo-cal-data", &ar_snoc->xo_cal_data); ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc xo-cal-data return %d\n", ret); if (ret == 0) { ar_snoc->xo_cal_supported = true; ath10k_dbg(ar, ATH10K_DBG_SNOC, "xo cal data %x\n", ar_snoc->xo_cal_data); } return 0; } static void ath10k_snoc_quirks_init(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); struct device *dev = &ar_snoc->dev->dev; if (of_property_read_bool(dev->of_node, "qcom,snoc-host-cap-8bit-quirk")) set_bit(ATH10K_SNOC_FLAG_8BIT_HOST_CAP_QUIRK, &ar_snoc->flags); } int ath10k_snoc_fw_indication(struct ath10k *ar, u64 type) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); struct ath10k_bus_params bus_params = {}; int ret; if (test_bit(ATH10K_SNOC_FLAG_UNREGISTERING, &ar_snoc->flags)) return 0; switch (type) { case ATH10K_QMI_EVENT_FW_READY_IND: if (test_bit(ATH10K_SNOC_FLAG_REGISTERED, &ar_snoc->flags)) { ath10k_core_start_recovery(ar); break; } bus_params.dev_type = ATH10K_DEV_TYPE_LL; bus_params.chip_id = ar_snoc->target_info.soc_version; ret = ath10k_core_register(ar, &bus_params); if (ret) { ath10k_err(ar, "Failed to register driver core: %d\n", ret); return ret; } set_bit(ATH10K_SNOC_FLAG_REGISTERED, &ar_snoc->flags); break; case ATH10K_QMI_EVENT_FW_DOWN_IND: set_bit(ATH10K_SNOC_FLAG_RECOVERY, &ar_snoc->flags); set_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags); break; default: ath10k_err(ar, "invalid fw indication: %llx\n", type); return -EINVAL; } return 0; } static int ath10k_snoc_setup_resource(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); struct ath10k_ce *ce = ath10k_ce_priv(ar); struct ath10k_snoc_pipe *pipe; int i, ret; timer_setup(&ar_snoc->rx_post_retry, ath10k_snoc_rx_replenish_retry, 0); spin_lock_init(&ce->ce_lock); for (i = 0; i < CE_COUNT; i++) { pipe = &ar_snoc->pipe_info[i]; pipe->ce_hdl = &ce->ce_states[i]; pipe->pipe_num = i; pipe->hif_ce_state = ar; ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]); if (ret) { ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n", i, ret); return ret; } pipe->buf_sz = host_ce_config_wlan[i].src_sz_max; } ath10k_snoc_init_napi(ar); return 0; } static void ath10k_snoc_release_resource(struct ath10k *ar) { int i; netif_napi_del(&ar->napi); for (i = 0; i < CE_COUNT; i++) ath10k_ce_free_pipe(ar, i); } static void ath10k_msa_dump_memory(struct ath10k *ar, struct ath10k_fw_crash_data *crash_data) { const struct ath10k_hw_mem_layout *mem_layout; const struct ath10k_mem_region *current_region; struct ath10k_dump_ram_data_hdr *hdr; size_t buf_len; u8 *buf; if (!crash_data || !crash_data->ramdump_buf) return; mem_layout = ath10k_coredump_get_mem_layout(ar); if (!mem_layout) return; current_region = &mem_layout->region_table.regions[0]; buf = crash_data->ramdump_buf; buf_len = crash_data->ramdump_buf_len; memset(buf, 0, buf_len); /* Reserve space for the header. */ hdr = (void *)buf; buf += sizeof(*hdr); buf_len -= sizeof(*hdr); hdr->region_type = cpu_to_le32(current_region->type); hdr->start = cpu_to_le32((unsigned long)ar->msa.vaddr); hdr->length = cpu_to_le32(ar->msa.mem_size); if (current_region->len < ar->msa.mem_size) { memcpy(buf, ar->msa.vaddr, current_region->len); ath10k_warn(ar, "msa dump length is less than msa size %x, %x\n", current_region->len, ar->msa.mem_size); } else { memcpy(buf, ar->msa.vaddr, ar->msa.mem_size); } } void ath10k_snoc_fw_crashed_dump(struct ath10k *ar) { struct ath10k_fw_crash_data *crash_data; char guid[UUID_STRING_LEN + 1]; mutex_lock(&ar->dump_mutex); spin_lock_bh(&ar->data_lock); ar->stats.fw_crash_counter++; spin_unlock_bh(&ar->data_lock); crash_data = ath10k_coredump_new(ar); if (crash_data) scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid); else scnprintf(guid, sizeof(guid), "n/a"); ath10k_err(ar, "firmware crashed! (guid %s)\n", guid); ath10k_print_driver_info(ar); ath10k_msa_dump_memory(ar, crash_data); mutex_unlock(&ar->dump_mutex); } static int ath10k_snoc_modem_notify(struct notifier_block *nb, unsigned long action, void *data) { struct ath10k_snoc *ar_snoc = container_of(nb, struct ath10k_snoc, nb); struct ath10k *ar = ar_snoc->ar; struct qcom_ssr_notify_data *notify_data = data; switch (action) { case QCOM_SSR_BEFORE_POWERUP: ath10k_dbg(ar, ATH10K_DBG_SNOC, "received modem starting event\n"); clear_bit(ATH10K_SNOC_FLAG_MODEM_STOPPED, &ar_snoc->flags); break; case QCOM_SSR_AFTER_POWERUP: ath10k_dbg(ar, ATH10K_DBG_SNOC, "received modem running event\n"); break; case QCOM_SSR_BEFORE_SHUTDOWN: ath10k_dbg(ar, ATH10K_DBG_SNOC, "received modem %s event\n", notify_data->crashed ? "crashed" : "stopping"); if (!notify_data->crashed) set_bit(ATH10K_SNOC_FLAG_MODEM_STOPPED, &ar_snoc->flags); else clear_bit(ATH10K_SNOC_FLAG_MODEM_STOPPED, &ar_snoc->flags); break; case QCOM_SSR_AFTER_SHUTDOWN: ath10k_dbg(ar, ATH10K_DBG_SNOC, "received modem offline event\n"); break; default: ath10k_err(ar, "received unrecognized event %lu\n", action); break; } return NOTIFY_OK; } static int ath10k_modem_init(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); void *notifier; int ret; ar_snoc->nb.notifier_call = ath10k_snoc_modem_notify; notifier = qcom_register_ssr_notifier("mpss", &ar_snoc->nb); if (IS_ERR(notifier)) { ret = PTR_ERR(notifier); ath10k_err(ar, "failed to initialize modem notifier: %d\n", ret); return ret; } ar_snoc->notifier = notifier; return 0; } static void ath10k_modem_deinit(struct ath10k *ar) { int ret; struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); ret = qcom_unregister_ssr_notifier(ar_snoc->notifier, &ar_snoc->nb); if (ret) ath10k_err(ar, "error %d unregistering notifier\n", ret); } static int ath10k_setup_msa_resources(struct ath10k *ar, u32 msa_size) { struct device *dev = ar->dev; struct device_node *node; struct resource r; int ret; node = of_parse_phandle(dev->of_node, "memory-region", 0); if (node) { ret = of_address_to_resource(node, 0, &r); of_node_put(node); if (ret) { dev_err(dev, "failed to resolve msa fixed region\n"); return ret; } ar->msa.paddr = r.start; ar->msa.mem_size = resource_size(&r); ar->msa.vaddr = devm_memremap(dev, ar->msa.paddr, ar->msa.mem_size, MEMREMAP_WT); if (IS_ERR(ar->msa.vaddr)) { dev_err(dev, "failed to map memory region: %pa\n", &r.start); return PTR_ERR(ar->msa.vaddr); } } else { ar->msa.vaddr = dmam_alloc_coherent(dev, msa_size, &ar->msa.paddr, GFP_KERNEL); if (!ar->msa.vaddr) { ath10k_err(ar, "failed to allocate dma memory for msa region\n"); return -ENOMEM; } ar->msa.mem_size = msa_size; } ath10k_dbg(ar, ATH10K_DBG_QMI, "qmi msa.paddr: %pad , msa.vaddr: 0x%p\n", &ar->msa.paddr, ar->msa.vaddr); return 0; } static int ath10k_fw_init(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); struct device *host_dev = &ar_snoc->dev->dev; struct platform_device_info info; struct iommu_domain *iommu_dom; struct platform_device *pdev; struct device_node *node; int ret; node = of_get_child_by_name(host_dev->of_node, "wifi-firmware"); if (!node) { ar_snoc->use_tz = true; return 0; } memset(&info, 0, sizeof(info)); info.fwnode = &node->fwnode; info.parent = host_dev; info.name = node->name; info.dma_mask = DMA_BIT_MASK(32); pdev = platform_device_register_full(&info); if (IS_ERR(pdev)) { of_node_put(node); return PTR_ERR(pdev); } pdev->dev.of_node = node; ret = of_dma_configure(&pdev->dev, node, true); if (ret) { ath10k_err(ar, "dma configure fail: %d\n", ret); goto err_unregister; } ar_snoc->fw.dev = &pdev->dev; iommu_dom = iommu_domain_alloc(&platform_bus_type); if (!iommu_dom) { ath10k_err(ar, "failed to allocate iommu domain\n"); ret = -ENOMEM; goto err_unregister; } ret = iommu_attach_device(iommu_dom, ar_snoc->fw.dev); if (ret) { ath10k_err(ar, "could not attach device: %d\n", ret); goto err_iommu_free; } ar_snoc->fw.iommu_domain = iommu_dom; ar_snoc->fw.fw_start_addr = ar->msa.paddr; ret = iommu_map(iommu_dom, ar_snoc->fw.fw_start_addr, ar->msa.paddr, ar->msa.mem_size, IOMMU_READ | IOMMU_WRITE, GFP_KERNEL); if (ret) { ath10k_err(ar, "failed to map firmware region: %d\n", ret); goto err_iommu_detach; } of_node_put(node); return 0; err_iommu_detach: iommu_detach_device(iommu_dom, ar_snoc->fw.dev); err_iommu_free: iommu_domain_free(iommu_dom); err_unregister: platform_device_unregister(pdev); of_node_put(node); return ret; } static int ath10k_fw_deinit(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); const size_t mapped_size = ar_snoc->fw.mapped_mem_size; struct iommu_domain *iommu; size_t unmapped_size; if (ar_snoc->use_tz) return 0; iommu = ar_snoc->fw.iommu_domain; unmapped_size = iommu_unmap(iommu, ar_snoc->fw.fw_start_addr, mapped_size); if (unmapped_size != mapped_size) ath10k_err(ar, "failed to unmap firmware: %zu\n", unmapped_size); iommu_detach_device(iommu, ar_snoc->fw.dev); iommu_domain_free(iommu); platform_device_unregister(to_platform_device(ar_snoc->fw.dev)); return 0; } static const struct of_device_id ath10k_snoc_dt_match[] = { { .compatible = "qcom,wcn3990-wifi", .data = &drv_priv, }, { } }; MODULE_DEVICE_TABLE(of, ath10k_snoc_dt_match); static int ath10k_snoc_probe(struct platform_device *pdev) { const struct ath10k_snoc_drv_priv *drv_data; struct ath10k_snoc *ar_snoc; struct device *dev; struct ath10k *ar; u32 msa_size; int ret; u32 i; dev = &pdev->dev; drv_data = device_get_match_data(dev); if (!drv_data) { dev_err(dev, "failed to find matching device tree id\n"); return -EINVAL; } ret = dma_set_mask_and_coherent(dev, drv_data->dma_mask); if (ret) { dev_err(dev, "failed to set dma mask: %d\n", ret); return ret; } ar = ath10k_core_create(sizeof(*ar_snoc), dev, ATH10K_BUS_SNOC, drv_data->hw_rev, &ath10k_snoc_hif_ops); if (!ar) { dev_err(dev, "failed to allocate core\n"); return -ENOMEM; } ar_snoc = ath10k_snoc_priv(ar); ar_snoc->dev = pdev; platform_set_drvdata(pdev, ar); ar_snoc->ar = ar; ar_snoc->ce.bus_ops = &ath10k_snoc_bus_ops; ar->ce_priv = &ar_snoc->ce; msa_size = drv_data->msa_size; ath10k_snoc_quirks_init(ar); ret = ath10k_snoc_resource_init(ar); if (ret) { ath10k_warn(ar, "failed to initialize resource: %d\n", ret); goto err_core_destroy; } ret = ath10k_snoc_setup_resource(ar); if (ret) { ath10k_warn(ar, "failed to setup resource: %d\n", ret); goto err_core_destroy; } ret = ath10k_snoc_request_irq(ar); if (ret) { ath10k_warn(ar, "failed to request irqs: %d\n", ret); goto err_release_resource; } ar_snoc->num_vregs = ARRAY_SIZE(ath10k_regulators); ar_snoc->vregs = devm_kcalloc(&pdev->dev, ar_snoc->num_vregs, sizeof(*ar_snoc->vregs), GFP_KERNEL); if (!ar_snoc->vregs) { ret = -ENOMEM; goto err_free_irq; } for (i = 0; i < ar_snoc->num_vregs; i++) ar_snoc->vregs[i].supply = ath10k_regulators[i]; ret = devm_regulator_bulk_get(&pdev->dev, ar_snoc->num_vregs, ar_snoc->vregs); if (ret < 0) goto err_free_irq; ar_snoc->num_clks = ARRAY_SIZE(ath10k_clocks); ar_snoc->clks = devm_kcalloc(&pdev->dev, ar_snoc->num_clks, sizeof(*ar_snoc->clks), GFP_KERNEL); if (!ar_snoc->clks) { ret = -ENOMEM; goto err_free_irq; } for (i = 0; i < ar_snoc->num_clks; i++) ar_snoc->clks[i].id = ath10k_clocks[i]; ret = devm_clk_bulk_get_optional(&pdev->dev, ar_snoc->num_clks, ar_snoc->clks); if (ret) goto err_free_irq; ret = ath10k_setup_msa_resources(ar, msa_size); if (ret) { ath10k_warn(ar, "failed to setup msa resources: %d\n", ret); goto err_free_irq; } ret = ath10k_fw_init(ar); if (ret) { ath10k_err(ar, "failed to initialize firmware: %d\n", ret); goto err_free_irq; } ret = ath10k_qmi_init(ar, msa_size); if (ret) { ath10k_warn(ar, "failed to register wlfw qmi client: %d\n", ret); goto err_fw_deinit; } ret = ath10k_modem_init(ar); if (ret) goto err_qmi_deinit; ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc probe\n"); return 0; err_qmi_deinit: ath10k_qmi_deinit(ar); err_fw_deinit: ath10k_fw_deinit(ar); err_free_irq: ath10k_snoc_free_irq(ar); err_release_resource: ath10k_snoc_release_resource(ar); err_core_destroy: ath10k_core_destroy(ar); return ret; } static int ath10k_snoc_free_resources(struct ath10k *ar) { struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc free resources\n"); set_bit(ATH10K_SNOC_FLAG_UNREGISTERING, &ar_snoc->flags); ath10k_core_unregister(ar); ath10k_fw_deinit(ar); ath10k_snoc_free_irq(ar); ath10k_snoc_release_resource(ar); ath10k_modem_deinit(ar); ath10k_qmi_deinit(ar); ath10k_core_destroy(ar); return 0; } static int ath10k_snoc_remove(struct platform_device *pdev) { struct ath10k *ar = platform_get_drvdata(pdev); struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar); ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc remove\n"); reinit_completion(&ar->driver_recovery); if (test_bit(ATH10K_SNOC_FLAG_RECOVERY, &ar_snoc->flags)) wait_for_completion_timeout(&ar->driver_recovery, 3 * HZ); ath10k_snoc_free_resources(ar); return 0; } static void ath10k_snoc_shutdown(struct platform_device *pdev) { struct ath10k *ar = platform_get_drvdata(pdev); ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc shutdown\n"); ath10k_snoc_free_resources(ar); } static struct platform_driver ath10k_snoc_driver = { .probe = ath10k_snoc_probe, .remove = ath10k_snoc_remove, .shutdown = ath10k_snoc_shutdown, .driver = { .name = "ath10k_snoc", .of_match_table = ath10k_snoc_dt_match, }, }; module_platform_driver(ath10k_snoc_driver); MODULE_AUTHOR("Qualcomm"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("Driver support for Atheros WCN3990 SNOC devices");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1