Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Luis R. Rodriguez | 832 | 39.77% | 13 | 20.31% |
Sujith Manoharan | 681 | 32.55% | 15 | 23.44% |
Felix Fietkau | 436 | 20.84% | 20 | 31.25% |
Oleksij Rempel | 70 | 3.35% | 1 | 1.56% |
Miaoqing Pan | 21 | 1.00% | 3 | 4.69% |
Rajkumar Manoharan | 19 | 0.91% | 3 | 4.69% |
Joe Perches | 17 | 0.81% | 2 | 3.12% |
Nikitas Angelinas | 5 | 0.24% | 1 | 1.56% |
Gabor Juhos | 3 | 0.14% | 1 | 1.56% |
Paul Gortmaker | 3 | 0.14% | 1 | 1.56% |
Colin McCabe | 2 | 0.10% | 1 | 1.56% |
Alexander A. Klimov | 1 | 0.05% | 1 | 1.56% |
Vasanthakumar Thiagarajan | 1 | 0.05% | 1 | 1.56% |
Mohammed Shafi Shajakhan | 1 | 0.05% | 1 | 1.56% |
Total | 2092 | 64 |
/* * Copyright (c) 2008-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/kernel.h> #include <linux/export.h> #include "hw.h" #include "hw-ops.h" struct ani_ofdm_level_entry { int spur_immunity_level; int fir_step_level; int ofdm_weak_signal_on; }; /* values here are relative to the INI */ /* * Legend: * * SI: Spur immunity * FS: FIR Step * WS: OFDM / CCK Weak Signal detection * MRC-CCK: Maximal Ratio Combining for CCK */ static const struct ani_ofdm_level_entry ofdm_level_table[] = { /* SI FS WS */ { 0, 0, 1 }, /* lvl 0 */ { 1, 1, 1 }, /* lvl 1 */ { 2, 2, 1 }, /* lvl 2 */ { 3, 2, 1 }, /* lvl 3 (default) */ { 4, 3, 1 }, /* lvl 4 */ { 5, 4, 1 }, /* lvl 5 */ { 6, 5, 1 }, /* lvl 6 */ { 7, 6, 1 }, /* lvl 7 */ { 7, 7, 1 }, /* lvl 8 */ { 7, 8, 0 } /* lvl 9 */ }; #define ATH9K_ANI_OFDM_NUM_LEVEL \ ARRAY_SIZE(ofdm_level_table) #define ATH9K_ANI_OFDM_MAX_LEVEL \ (ATH9K_ANI_OFDM_NUM_LEVEL-1) #define ATH9K_ANI_OFDM_DEF_LEVEL \ 3 /* default level - matches the INI settings */ /* * MRC (Maximal Ratio Combining) has always been used with multi-antenna ofdm. * With OFDM for single stream you just add up all antenna inputs, you're * only interested in what you get after FFT. Signal alignment is also not * required for OFDM because any phase difference adds up in the frequency * domain. * * MRC requires extra work for use with CCK. You need to align the antenna * signals from the different antenna before you can add the signals together. * You need alignment of signals as CCK is in time domain, so addition can cancel * your signal completely if phase is 180 degrees (think of adding sine waves). * You also need to remove noise before the addition and this is where ANI * MRC CCK comes into play. One of the antenna inputs may be stronger but * lower SNR, so just adding after alignment can be dangerous. * * Regardless of alignment in time, the antenna signals add constructively after * FFT and improve your reception. For more information: * * https://en.wikipedia.org/wiki/Maximal-ratio_combining */ struct ani_cck_level_entry { int fir_step_level; int mrc_cck_on; }; static const struct ani_cck_level_entry cck_level_table[] = { /* FS MRC-CCK */ { 0, 1 }, /* lvl 0 */ { 1, 1 }, /* lvl 1 */ { 2, 1 }, /* lvl 2 (default) */ { 3, 1 }, /* lvl 3 */ { 4, 0 }, /* lvl 4 */ { 5, 0 }, /* lvl 5 */ { 6, 0 }, /* lvl 6 */ { 7, 0 }, /* lvl 7 (only for high rssi) */ { 8, 0 } /* lvl 8 (only for high rssi) */ }; #define ATH9K_ANI_CCK_NUM_LEVEL \ ARRAY_SIZE(cck_level_table) #define ATH9K_ANI_CCK_MAX_LEVEL \ (ATH9K_ANI_CCK_NUM_LEVEL-1) #define ATH9K_ANI_CCK_MAX_LEVEL_LOW_RSSI \ (ATH9K_ANI_CCK_NUM_LEVEL-3) #define ATH9K_ANI_CCK_DEF_LEVEL \ 2 /* default level - matches the INI settings */ static void ath9k_hw_update_mibstats(struct ath_hw *ah, struct ath9k_mib_stats *stats) { u32 addr[5] = {AR_RTS_OK, AR_RTS_FAIL, AR_ACK_FAIL, AR_FCS_FAIL, AR_BEACON_CNT}; u32 data[5]; REG_READ_MULTI(ah, &addr[0], &data[0], 5); /* AR_RTS_OK */ stats->rts_good += data[0]; /* AR_RTS_FAIL */ stats->rts_bad += data[1]; /* AR_ACK_FAIL */ stats->ackrcv_bad += data[2]; /* AR_FCS_FAIL */ stats->fcs_bad += data[3]; /* AR_BEACON_CNT */ stats->beacons += data[4]; } static void ath9k_ani_restart(struct ath_hw *ah) { struct ar5416AniState *aniState = &ah->ani; aniState->listenTime = 0; ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_PHY_ERR_1, 0); REG_WRITE(ah, AR_PHY_ERR_2, 0); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); REGWRITE_BUFFER_FLUSH(ah); ath9k_hw_update_mibstats(ah, &ah->ah_mibStats); aniState->ofdmPhyErrCount = 0; aniState->cckPhyErrCount = 0; } /* Adjust the OFDM Noise Immunity Level */ static void ath9k_hw_set_ofdm_nil(struct ath_hw *ah, u8 immunityLevel, bool scan) { struct ar5416AniState *aniState = &ah->ani; struct ath_common *common = ath9k_hw_common(ah); const struct ani_ofdm_level_entry *entry_ofdm; const struct ani_cck_level_entry *entry_cck; bool weak_sig; ath_dbg(common, ANI, "**** ofdmlevel %d=>%d, rssi=%d[lo=%d hi=%d]\n", aniState->ofdmNoiseImmunityLevel, immunityLevel, BEACON_RSSI(ah), ATH9K_ANI_RSSI_THR_LOW, ATH9K_ANI_RSSI_THR_HIGH); if (AR_SREV_9100(ah) && immunityLevel < ATH9K_ANI_OFDM_DEF_LEVEL) immunityLevel = ATH9K_ANI_OFDM_DEF_LEVEL; if (!scan) aniState->ofdmNoiseImmunityLevel = immunityLevel; entry_ofdm = &ofdm_level_table[aniState->ofdmNoiseImmunityLevel]; entry_cck = &cck_level_table[aniState->cckNoiseImmunityLevel]; if (aniState->spurImmunityLevel != entry_ofdm->spur_immunity_level) ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, entry_ofdm->spur_immunity_level); if (aniState->firstepLevel != entry_ofdm->fir_step_level && entry_ofdm->fir_step_level >= entry_cck->fir_step_level) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, entry_ofdm->fir_step_level); weak_sig = entry_ofdm->ofdm_weak_signal_on; if (ah->opmode == NL80211_IFTYPE_STATION && BEACON_RSSI(ah) <= ATH9K_ANI_RSSI_THR_HIGH) weak_sig = true; /* * Newer chipsets are better at dealing with high PHY error counts - * keep weak signal detection enabled when no RSSI threshold is * available to determine if it is needed (mode != STA) */ else if (AR_SREV_9300_20_OR_LATER(ah) && ah->opmode != NL80211_IFTYPE_STATION) weak_sig = true; /* Older chipsets are more sensitive to high PHY error counts */ else if (!AR_SREV_9300_20_OR_LATER(ah) && aniState->ofdmNoiseImmunityLevel >= 8) weak_sig = false; if (aniState->ofdmWeakSigDetect != weak_sig) ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, weak_sig); if (!AR_SREV_9300_20_OR_LATER(ah)) return; if (aniState->ofdmNoiseImmunityLevel >= ATH9K_ANI_OFDM_DEF_LEVEL) { ah->config.ofdm_trig_high = ATH9K_ANI_OFDM_TRIG_HIGH; ah->config.ofdm_trig_low = ATH9K_ANI_OFDM_TRIG_LOW_ABOVE_INI; } else { ah->config.ofdm_trig_high = ATH9K_ANI_OFDM_TRIG_HIGH_BELOW_INI; ah->config.ofdm_trig_low = ATH9K_ANI_OFDM_TRIG_LOW; } } static void ath9k_hw_ani_ofdm_err_trigger(struct ath_hw *ah) { struct ar5416AniState *aniState = &ah->ani; if (aniState->ofdmNoiseImmunityLevel < ATH9K_ANI_OFDM_MAX_LEVEL) ath9k_hw_set_ofdm_nil(ah, aniState->ofdmNoiseImmunityLevel + 1, false); } /* * Set the ANI settings to match an CCK level. */ static void ath9k_hw_set_cck_nil(struct ath_hw *ah, u_int8_t immunityLevel, bool scan) { struct ar5416AniState *aniState = &ah->ani; struct ath_common *common = ath9k_hw_common(ah); const struct ani_ofdm_level_entry *entry_ofdm; const struct ani_cck_level_entry *entry_cck; ath_dbg(common, ANI, "**** ccklevel %d=>%d, rssi=%d[lo=%d hi=%d]\n", aniState->cckNoiseImmunityLevel, immunityLevel, BEACON_RSSI(ah), ATH9K_ANI_RSSI_THR_LOW, ATH9K_ANI_RSSI_THR_HIGH); if (AR_SREV_9100(ah) && immunityLevel < ATH9K_ANI_CCK_DEF_LEVEL) immunityLevel = ATH9K_ANI_CCK_DEF_LEVEL; if (ah->opmode == NL80211_IFTYPE_STATION && BEACON_RSSI(ah) <= ATH9K_ANI_RSSI_THR_LOW && immunityLevel > ATH9K_ANI_CCK_MAX_LEVEL_LOW_RSSI) immunityLevel = ATH9K_ANI_CCK_MAX_LEVEL_LOW_RSSI; if (!scan) aniState->cckNoiseImmunityLevel = immunityLevel; entry_ofdm = &ofdm_level_table[aniState->ofdmNoiseImmunityLevel]; entry_cck = &cck_level_table[aniState->cckNoiseImmunityLevel]; if (aniState->firstepLevel != entry_cck->fir_step_level && entry_cck->fir_step_level >= entry_ofdm->fir_step_level) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, entry_cck->fir_step_level); /* Skip MRC CCK for pre AR9003 families */ if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah) || AR_SREV_9561(ah)) return; if (aniState->mrcCCK != entry_cck->mrc_cck_on) ath9k_hw_ani_control(ah, ATH9K_ANI_MRC_CCK, entry_cck->mrc_cck_on); } static void ath9k_hw_ani_cck_err_trigger(struct ath_hw *ah) { struct ar5416AniState *aniState = &ah->ani; if (aniState->cckNoiseImmunityLevel < ATH9K_ANI_CCK_MAX_LEVEL) ath9k_hw_set_cck_nil(ah, aniState->cckNoiseImmunityLevel + 1, false); } /* * only lower either OFDM or CCK errors per turn * we lower the other one next time */ static void ath9k_hw_ani_lower_immunity(struct ath_hw *ah) { struct ar5416AniState *aniState = &ah->ani; /* lower OFDM noise immunity */ if (aniState->ofdmNoiseImmunityLevel > 0 && (aniState->ofdmsTurn || aniState->cckNoiseImmunityLevel == 0)) { ath9k_hw_set_ofdm_nil(ah, aniState->ofdmNoiseImmunityLevel - 1, false); return; } /* lower CCK noise immunity */ if (aniState->cckNoiseImmunityLevel > 0) ath9k_hw_set_cck_nil(ah, aniState->cckNoiseImmunityLevel - 1, false); } /* * Restore the ANI parameters in the HAL and reset the statistics. * This routine should be called for every hardware reset and for * every channel change. */ void ath9k_ani_reset(struct ath_hw *ah, bool is_scanning) { struct ar5416AniState *aniState = &ah->ani; struct ath9k_channel *chan = ah->curchan; struct ath_common *common = ath9k_hw_common(ah); int ofdm_nil, cck_nil; if (!chan) return; BUG_ON(aniState == NULL); ah->stats.ast_ani_reset++; ofdm_nil = max_t(int, ATH9K_ANI_OFDM_DEF_LEVEL, aniState->ofdmNoiseImmunityLevel); cck_nil = max_t(int, ATH9K_ANI_CCK_DEF_LEVEL, aniState->cckNoiseImmunityLevel); if (is_scanning || (ah->opmode != NL80211_IFTYPE_STATION && ah->opmode != NL80211_IFTYPE_ADHOC)) { /* * If we're scanning or in AP mode, the defaults (ini) * should be in place. For an AP we assume the historical * levels for this channel are probably outdated so start * from defaults instead. */ if (aniState->ofdmNoiseImmunityLevel != ATH9K_ANI_OFDM_DEF_LEVEL || aniState->cckNoiseImmunityLevel != ATH9K_ANI_CCK_DEF_LEVEL) { ath_dbg(common, ANI, "Restore defaults: opmode %u chan %d Mhz is_scanning=%d ofdm:%d cck:%d\n", ah->opmode, chan->channel, is_scanning, aniState->ofdmNoiseImmunityLevel, aniState->cckNoiseImmunityLevel); ofdm_nil = ATH9K_ANI_OFDM_DEF_LEVEL; cck_nil = ATH9K_ANI_CCK_DEF_LEVEL; } } else { /* * restore historical levels for this channel */ ath_dbg(common, ANI, "Restore history: opmode %u chan %d Mhz is_scanning=%d ofdm:%d cck:%d\n", ah->opmode, chan->channel, is_scanning, aniState->ofdmNoiseImmunityLevel, aniState->cckNoiseImmunityLevel); } ath9k_hw_set_ofdm_nil(ah, ofdm_nil, is_scanning); ath9k_hw_set_cck_nil(ah, cck_nil, is_scanning); ath9k_ani_restart(ah); } static bool ath9k_hw_ani_read_counters(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); struct ar5416AniState *aniState = &ah->ani; u32 phyCnt1, phyCnt2; int32_t listenTime; ath_hw_cycle_counters_update(common); listenTime = ath_hw_get_listen_time(common); if (listenTime <= 0) { ah->stats.ast_ani_lneg_or_lzero++; ath9k_ani_restart(ah); return false; } aniState->listenTime += listenTime; ath9k_hw_update_mibstats(ah, &ah->ah_mibStats); phyCnt1 = REG_READ(ah, AR_PHY_ERR_1); phyCnt2 = REG_READ(ah, AR_PHY_ERR_2); ah->stats.ast_ani_ofdmerrs += phyCnt1 - aniState->ofdmPhyErrCount; aniState->ofdmPhyErrCount = phyCnt1; ah->stats.ast_ani_cckerrs += phyCnt2 - aniState->cckPhyErrCount; aniState->cckPhyErrCount = phyCnt2; return true; } void ath9k_hw_ani_monitor(struct ath_hw *ah, struct ath9k_channel *chan) { struct ar5416AniState *aniState = &ah->ani; struct ath_common *common = ath9k_hw_common(ah); u32 ofdmPhyErrRate, cckPhyErrRate; if (!ath9k_hw_ani_read_counters(ah)) return; ofdmPhyErrRate = aniState->ofdmPhyErrCount * 1000 / aniState->listenTime; cckPhyErrRate = aniState->cckPhyErrCount * 1000 / aniState->listenTime; ath_dbg(common, ANI, "listenTime=%d OFDM:%d errs=%d/s CCK:%d errs=%d/s ofdm_turn=%d\n", aniState->listenTime, aniState->ofdmNoiseImmunityLevel, ofdmPhyErrRate, aniState->cckNoiseImmunityLevel, cckPhyErrRate, aniState->ofdmsTurn); if (aniState->listenTime > ah->aniperiod) { if (cckPhyErrRate < ah->config.cck_trig_low && ofdmPhyErrRate < ah->config.ofdm_trig_low) { ath9k_hw_ani_lower_immunity(ah); aniState->ofdmsTurn = !aniState->ofdmsTurn; } else if (ofdmPhyErrRate > ah->config.ofdm_trig_high) { ath9k_hw_ani_ofdm_err_trigger(ah); aniState->ofdmsTurn = false; } else if (cckPhyErrRate > ah->config.cck_trig_high) { ath9k_hw_ani_cck_err_trigger(ah); aniState->ofdmsTurn = true; } else return; ath9k_ani_restart(ah); } } EXPORT_SYMBOL(ath9k_hw_ani_monitor); void ath9k_enable_mib_counters(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); ath_dbg(common, ANI, "Enable MIB counters\n"); ath9k_hw_update_mibstats(ah, &ah->ah_mibStats); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_FILT_OFDM, 0); REG_WRITE(ah, AR_FILT_CCK, 0); REG_WRITE(ah, AR_MIBC, ~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS) & 0x0f); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); REGWRITE_BUFFER_FLUSH(ah); } /* Freeze the MIB counters, get the stats and then clear them */ void ath9k_hw_disable_mib_counters(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); ath_dbg(common, ANI, "Disable MIB counters\n"); REG_WRITE(ah, AR_MIBC, AR_MIBC_FMC); ath9k_hw_update_mibstats(ah, &ah->ah_mibStats); REG_WRITE(ah, AR_MIBC, AR_MIBC_CMC); REG_WRITE(ah, AR_FILT_OFDM, 0); REG_WRITE(ah, AR_FILT_CCK, 0); } EXPORT_SYMBOL(ath9k_hw_disable_mib_counters); void ath9k_hw_ani_init(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); struct ar5416AniState *ani = &ah->ani; ath_dbg(common, ANI, "Initialize ANI\n"); if (AR_SREV_9300_20_OR_LATER(ah)) { ah->config.ofdm_trig_high = ATH9K_ANI_OFDM_TRIG_HIGH; ah->config.ofdm_trig_low = ATH9K_ANI_OFDM_TRIG_LOW; ah->config.cck_trig_high = ATH9K_ANI_CCK_TRIG_HIGH; ah->config.cck_trig_low = ATH9K_ANI_CCK_TRIG_LOW; } else { ah->config.ofdm_trig_high = ATH9K_ANI_OFDM_TRIG_HIGH_OLD; ah->config.ofdm_trig_low = ATH9K_ANI_OFDM_TRIG_LOW_OLD; ah->config.cck_trig_high = ATH9K_ANI_CCK_TRIG_HIGH_OLD; ah->config.cck_trig_low = ATH9K_ANI_CCK_TRIG_LOW_OLD; } ani->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL; ani->firstepLevel = ATH9K_ANI_FIRSTEP_LVL; ani->mrcCCK = AR_SREV_9300_20_OR_LATER(ah) ? true : false; ani->ofdmsTurn = true; ani->ofdmWeakSigDetect = true; ani->cckNoiseImmunityLevel = ATH9K_ANI_CCK_DEF_LEVEL; ani->ofdmNoiseImmunityLevel = ATH9K_ANI_OFDM_DEF_LEVEL; /* * since we expect some ongoing maintenance on the tables, let's sanity * check here default level should not modify INI setting. */ ah->aniperiod = ATH9K_ANI_PERIOD; ah->config.ani_poll_interval = ATH9K_ANI_POLLINTERVAL; ath9k_ani_restart(ah); ath9k_enable_mib_counters(ah); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1