Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sujith Manoharan | 4910 | 65.41% | 14 | 21.21% |
Rajkumar Manoharan | 1105 | 14.72% | 4 | 6.06% |
Senthil Balasubramanian | 472 | 6.29% | 5 | 7.58% |
Vivek Natarajan | 261 | 3.48% | 1 | 1.52% |
Martin Blumenstingl | 223 | 2.97% | 5 | 7.58% |
Luis R. Rodriguez | 200 | 2.66% | 7 | 10.61% |
Felix Fietkau | 167 | 2.22% | 11 | 16.67% |
Lorenzo Bianconi | 61 | 0.81% | 1 | 1.52% |
Oleksij Rempel | 22 | 0.29% | 1 | 1.52% |
Pavel Roskin | 17 | 0.23% | 1 | 1.52% |
Joe Perches | 16 | 0.21% | 3 | 4.55% |
Wenli Looi | 15 | 0.20% | 1 | 1.52% |
Adrian Chadd | 14 | 0.19% | 1 | 1.52% |
Gabor Juhos | 8 | 0.11% | 3 | 4.55% |
Zefir Kurtisi | 3 | 0.04% | 1 | 1.52% |
Christian Lamparter | 3 | 0.04% | 1 | 1.52% |
Vasanthakumar Thiagarajan | 3 | 0.04% | 2 | 3.03% |
Gustavo A. R. Silva | 2 | 0.03% | 1 | 1.52% |
Mohammed Shafi Shajakhan | 2 | 0.03% | 1 | 1.52% |
Hannes Eder | 1 | 0.01% | 1 | 1.52% |
Rusty Russell | 1 | 0.01% | 1 | 1.52% |
Total | 7506 | 66 |
/* * Copyright (c) 2008-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <asm/unaligned.h> #include "hw.h" #include "ar9002_phy.h" static void ath9k_get_txgain_index(struct ath_hw *ah, struct ath9k_channel *chan, struct calDataPerFreqOpLoop *rawDatasetOpLoop, u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx) { u8 pcdac, i = 0; u16 idxL = 0, idxR = 0, numPiers; bool match; struct chan_centers centers; ath9k_hw_get_channel_centers(ah, chan, ¢ers); for (numPiers = 0; numPiers < availPiers; numPiers++) if (calChans[numPiers] == AR5416_BCHAN_UNUSED) break; match = ath9k_hw_get_lower_upper_index( (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)), calChans, numPiers, &idxL, &idxR); if (match) { pcdac = rawDatasetOpLoop[idxL].pcdac[0][0]; *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0]; } else { pcdac = rawDatasetOpLoop[idxR].pcdac[0][0]; *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] + rawDatasetOpLoop[idxR].pwrPdg[0][0])/2; } while (pcdac > ah->originalGain[i] && i < (AR9280_TX_GAIN_TABLE_SIZE - 1)) i++; *pcdacIdx = i; } static void ath9k_olc_get_pdadcs(struct ath_hw *ah, u32 initTxGain, int txPower, u8 *pPDADCValues) { u32 i; u32 offset; REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7, AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain); offset = txPower; for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++) if (i < offset) pPDADCValues[i] = 0x0; else pPDADCValues[i] = 0xFF; } static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah) { u16 version = le16_to_cpu(ah->eeprom.def.baseEepHeader.version); return (version & AR5416_EEP_VER_MAJOR_MASK) >> AR5416_EEP_VER_MAJOR_SHIFT; } static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah) { u16 version = le16_to_cpu(ah->eeprom.def.baseEepHeader.version); return version & AR5416_EEP_VER_MINOR_MASK; } #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16)) static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah) { u16 *eep_data = (u16 *)&ah->eeprom.def; int addr, ar5416_eep_start_loc = 0x100; for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) { if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc, eep_data)) return false; eep_data++; } return true; } static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah) { u16 *eep_data = (u16 *)&ah->eeprom.def; ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 0x100, SIZE_EEPROM_DEF); return true; } static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); if (!ath9k_hw_use_flash(ah)) { ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n"); } if (common->bus_ops->ath_bus_type == ATH_USB) return __ath9k_hw_usb_def_fill_eeprom(ah); else return __ath9k_hw_def_fill_eeprom(ah); } #ifdef CONFIG_ATH9K_COMMON_DEBUG static u32 ath9k_def_dump_modal_eeprom(char *buf, u32 len, u32 size, struct modal_eep_header *modal_hdr) { PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0])); PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1])); PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2])); PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon)); PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]); PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]); PR_EEP("Chain2 Ant. Gain", modal_hdr->antennaGainCh[2]); PR_EEP("Switch Settle", modal_hdr->switchSettling); PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]); PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]); PR_EEP("Chain2 TxRxAtten", modal_hdr->txRxAttenCh[2]); PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]); PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]); PR_EEP("Chain2 RxTxMargin", modal_hdr->rxTxMarginCh[2]); PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize); PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize); PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]); PR_EEP("Chain1 xlna Gain", modal_hdr->xlnaGainCh[1]); PR_EEP("Chain2 xlna Gain", modal_hdr->xlnaGainCh[2]); PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff); PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn); PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn); PR_EEP("CCA Threshold)", modal_hdr->thresh62); PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]); PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]); PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]); PR_EEP("xpdGain", modal_hdr->xpdGain); PR_EEP("External PD", modal_hdr->xpd); PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]); PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]); PR_EEP("Chain2 I Coefficient", modal_hdr->iqCalICh[2]); PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]); PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]); PR_EEP("Chain2 Q Coefficient", modal_hdr->iqCalQCh[2]); PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap); PR_EEP("Chain0 OutputBias", modal_hdr->ob); PR_EEP("Chain0 DriverBias", modal_hdr->db); PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl); PR_EEP("2chain pwr decrease", modal_hdr->pwrDecreaseFor2Chain); PR_EEP("3chain pwr decrease", modal_hdr->pwrDecreaseFor3Chain); PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart); PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn); PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc); PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]); PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]); PR_EEP("Chain2 bswAtten", modal_hdr->bswAtten[2]); PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]); PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]); PR_EEP("Chain2 bswMargin", modal_hdr->bswMargin[2]); PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40); PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]); PR_EEP("Chain1 xatten2Db", modal_hdr->xatten2Db[1]); PR_EEP("Chain2 xatten2Db", modal_hdr->xatten2Db[2]); PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]); PR_EEP("Chain1 xatten2Margin", modal_hdr->xatten2Margin[1]); PR_EEP("Chain2 xatten2Margin", modal_hdr->xatten2Margin[2]); PR_EEP("Chain1 OutputBias", modal_hdr->ob_ch1); PR_EEP("Chain1 DriverBias", modal_hdr->db_ch1); PR_EEP("LNA Control", modal_hdr->lna_ctl); PR_EEP("XPA Bias Freq0", le16_to_cpu(modal_hdr->xpaBiasLvlFreq[0])); PR_EEP("XPA Bias Freq1", le16_to_cpu(modal_hdr->xpaBiasLvlFreq[1])); PR_EEP("XPA Bias Freq2", le16_to_cpu(modal_hdr->xpaBiasLvlFreq[2])); return len; } static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr, u8 *buf, u32 len, u32 size) { struct ar5416_eeprom_def *eep = &ah->eeprom.def; struct base_eep_header *pBase = &eep->baseEepHeader; u32 binBuildNumber = le32_to_cpu(pBase->binBuildNumber); if (!dump_base_hdr) { len += scnprintf(buf + len, size - len, "%20s :\n", "2GHz modal Header"); len = ath9k_def_dump_modal_eeprom(buf, len, size, &eep->modalHeader[0]); len += scnprintf(buf + len, size - len, "%20s :\n", "5GHz modal Header"); len = ath9k_def_dump_modal_eeprom(buf, len, size, &eep->modalHeader[1]); goto out; } PR_EEP("Major Version", ath9k_hw_def_get_eeprom_ver(ah)); PR_EEP("Minor Version", ath9k_hw_def_get_eeprom_rev(ah)); PR_EEP("Checksum", le16_to_cpu(pBase->checksum)); PR_EEP("Length", le16_to_cpu(pBase->length)); PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0])); PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1])); PR_EEP("TX Mask", pBase->txMask); PR_EEP("RX Mask", pBase->rxMask); PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A)); PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G)); PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags & AR5416_OPFLAGS_N_2G_HT20)); PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags & AR5416_OPFLAGS_N_2G_HT40)); PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags & AR5416_OPFLAGS_N_5G_HT20)); PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags & AR5416_OPFLAGS_N_5G_HT40)); PR_EEP("Big Endian", !!(pBase->eepMisc & AR5416_EEPMISC_BIG_ENDIAN)); PR_EEP("Cal Bin Major Ver", (binBuildNumber >> 24) & 0xFF); PR_EEP("Cal Bin Minor Ver", (binBuildNumber >> 16) & 0xFF); PR_EEP("Cal Bin Build", (binBuildNumber >> 8) & 0xFF); PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl); len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress", pBase->macAddr); out: if (len > size) len = size; return len; } #else static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr, u8 *buf, u32 len, u32 size) { return 0; } #endif static int ath9k_hw_def_check_eeprom(struct ath_hw *ah) { struct ar5416_eeprom_def *eep = &ah->eeprom.def; struct ath_common *common = ath9k_hw_common(ah); u32 el; bool need_swap; int i, err; err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_DEF); if (err) return err; if (need_swap) el = swab16((__force u16)eep->baseEepHeader.length); else el = le16_to_cpu(eep->baseEepHeader.length); el = min(el / sizeof(u16), SIZE_EEPROM_DEF); if (!ath9k_hw_nvram_validate_checksum(ah, el)) return -EINVAL; if (need_swap) { u32 j; EEPROM_FIELD_SWAB16(eep->baseEepHeader.length); EEPROM_FIELD_SWAB16(eep->baseEepHeader.checksum); EEPROM_FIELD_SWAB16(eep->baseEepHeader.version); EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[0]); EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[1]); EEPROM_FIELD_SWAB16(eep->baseEepHeader.rfSilent); EEPROM_FIELD_SWAB16(eep->baseEepHeader.blueToothOptions); EEPROM_FIELD_SWAB16(eep->baseEepHeader.deviceCap); for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) { struct modal_eep_header *pModal = &eep->modalHeader[j]; EEPROM_FIELD_SWAB32(pModal->antCtrlCommon); for (i = 0; i < AR5416_MAX_CHAINS; i++) EEPROM_FIELD_SWAB32(pModal->antCtrlChain[i]); for (i = 0; i < 3; i++) EEPROM_FIELD_SWAB16(pModal->xpaBiasLvlFreq[i]); for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) EEPROM_FIELD_SWAB16( pModal->spurChans[i].spurChan); } } if (!ath9k_hw_nvram_check_version(ah, AR5416_EEP_VER, AR5416_EEP_NO_BACK_VER)) return -EINVAL; /* Enable fixup for AR_AN_TOP2 if necessary */ if ((ah->hw_version.devid == AR9280_DEVID_PCI) && ((le16_to_cpu(eep->baseEepHeader.version) & 0xff) > 0x0a) && (eep->baseEepHeader.pwdclkind == 0)) ah->need_an_top2_fixup = true; if ((common->bus_ops->ath_bus_type == ATH_USB) && (AR_SREV_9280(ah))) eep->modalHeader[0].xpaBiasLvl = 0; return 0; } #undef SIZE_EEPROM_DEF static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah, enum eeprom_param param) { struct ar5416_eeprom_def *eep = &ah->eeprom.def; struct modal_eep_header *pModal = eep->modalHeader; struct base_eep_header *pBase = &eep->baseEepHeader; int band = 0; switch (param) { case EEP_NFTHRESH_5: return pModal[0].noiseFloorThreshCh[0]; case EEP_NFTHRESH_2: return pModal[1].noiseFloorThreshCh[0]; case EEP_MAC_LSW: return get_unaligned_be16(pBase->macAddr); case EEP_MAC_MID: return get_unaligned_be16(pBase->macAddr + 2); case EEP_MAC_MSW: return get_unaligned_be16(pBase->macAddr + 4); case EEP_REG_0: return le16_to_cpu(pBase->regDmn[0]); case EEP_OP_CAP: return le16_to_cpu(pBase->deviceCap); case EEP_OP_MODE: return pBase->opCapFlags; case EEP_RF_SILENT: return le16_to_cpu(pBase->rfSilent); case EEP_OB_5: return pModal[0].ob; case EEP_DB_5: return pModal[0].db; case EEP_OB_2: return pModal[1].ob; case EEP_DB_2: return pModal[1].db; case EEP_TX_MASK: return pBase->txMask; case EEP_RX_MASK: return pBase->rxMask; case EEP_FSTCLK_5G: return pBase->fastClk5g; case EEP_RXGAIN_TYPE: return pBase->rxGainType; case EEP_TXGAIN_TYPE: return pBase->txGainType; case EEP_OL_PWRCTRL: if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_19) return pBase->openLoopPwrCntl ? true : false; else return false; case EEP_RC_CHAIN_MASK: if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_19) return pBase->rcChainMask; else return 0; case EEP_DAC_HPWR_5G: if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_20) return pBase->dacHiPwrMode_5G; else return 0; case EEP_FRAC_N_5G: if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_22) return pBase->frac_n_5g; else return 0; case EEP_PWR_TABLE_OFFSET: if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_21) return pBase->pwr_table_offset; else return AR5416_PWR_TABLE_OFFSET_DB; case EEP_ANTENNA_GAIN_2G: band = 1; fallthrough; case EEP_ANTENNA_GAIN_5G: return max_t(u8, max_t(u8, pModal[band].antennaGainCh[0], pModal[band].antennaGainCh[1]), pModal[band].antennaGainCh[2]); default: return 0; } } static void ath9k_hw_def_set_gain(struct ath_hw *ah, struct modal_eep_header *pModal, struct ar5416_eeprom_def *eep, u8 txRxAttenLocal, int regChainOffset, int i) { ENABLE_REG_RMW_BUFFER(ah); if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_3) { txRxAttenLocal = pModal->txRxAttenCh[i]; if (AR_SREV_9280_20_OR_LATER(ah)) { REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[i]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[i]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[i]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[i]); } else { REG_RMW(ah, AR_PHY_GAIN_2GHZ + regChainOffset, SM(pModal-> bswMargin[i], AR_PHY_GAIN_2GHZ_BSW_MARGIN), AR_PHY_GAIN_2GHZ_BSW_MARGIN); REG_RMW(ah, AR_PHY_GAIN_2GHZ + regChainOffset, SM(pModal->bswAtten[i], AR_PHY_GAIN_2GHZ_BSW_ATTEN), AR_PHY_GAIN_2GHZ_BSW_ATTEN); } } if (AR_SREV_9280_20_OR_LATER(ah)) { REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]); } else { REG_RMW(ah, AR_PHY_RXGAIN + regChainOffset, SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN), AR_PHY_RXGAIN_TXRX_ATTEN); REG_RMW(ah, AR_PHY_GAIN_2GHZ + regChainOffset, SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN), AR_PHY_GAIN_2GHZ_RXTX_MARGIN); } REG_RMW_BUFFER_FLUSH(ah); } static void ath9k_hw_def_set_board_values(struct ath_hw *ah, struct ath9k_channel *chan) { struct modal_eep_header *pModal; struct ar5416_eeprom_def *eep = &ah->eeprom.def; int i, regChainOffset; u8 txRxAttenLocal; u32 antCtrlCommon; pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44; antCtrlCommon = le32_to_cpu(pModal->antCtrlCommon); REG_WRITE(ah, AR_PHY_SWITCH_COM, antCtrlCommon & 0xffff); for (i = 0; i < AR5416_MAX_CHAINS; i++) { if (AR_SREV_9280(ah)) { if (i >= 2) break; } if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0)) regChainOffset = (i == 1) ? 0x2000 : 0x1000; else regChainOffset = i * 0x1000; REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, le32_to_cpu(pModal->antCtrlChain[i])); REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset, (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal, regChainOffset, i); } if (AR_SREV_9280_20_OR_LATER(ah)) { if (IS_CHAN_2GHZ(chan)) { ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, AR_AN_RF2G1_CH0_OB_S, pModal->ob); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, AR_AN_RF2G1_CH0_DB_S, pModal->db); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, AR_AN_RF2G1_CH1_OB_S, pModal->ob_ch1); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, AR_AN_RF2G1_CH1_DB_S, pModal->db_ch1); } else { ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, AR_AN_RF5G1_CH0_OB5_S, pModal->ob); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, AR_AN_RF5G1_CH0_DB5_S, pModal->db); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, AR_AN_RF5G1_CH1_OB5_S, pModal->ob_ch1); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, AR_AN_RF5G1_CH1_DB5_S, pModal->db_ch1); } ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, AR_AN_TOP2_XPABIAS_LVL_S, pModal->xpaBiasLvl); ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS, AR_AN_TOP2_LOCALBIAS_S, !!(pModal->lna_ctl & LNA_CTL_LOCAL_BIAS)); REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG, !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA)); } REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling); REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize); if (!AR_SREV_9280_20_OR_LATER(ah)) REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize); REG_WRITE(ah, AR_PHY_RF_CTL4, SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn); if (AR_SREV_9280_20_OR_LATER(ah)) { REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, pModal->thresh62); REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62); } else { REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62, pModal->thresh62); REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62, pModal->thresh62); } if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_2) { REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart); REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn); } if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_3) { if (IS_CHAN_HT40(chan)) REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40); } if (AR_SREV_9280_20_OR_LATER(ah) && ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_19) REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits); if (AR_SREV_9280_20(ah) && ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_20) { if (IS_CHAN_2GHZ(chan)) REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, eep->baseEepHeader.dacLpMode); else if (eep->baseEepHeader.dacHiPwrMode_5G) REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0); else REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, eep->baseEepHeader.dacLpMode); udelay(100); REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP, pModal->miscBits >> 2); REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK, eep->baseEepHeader.desiredScaleCCK); } } static void ath9k_hw_def_set_addac(struct ath_hw *ah, struct ath9k_channel *chan) { #define XPA_LVL_FREQ(cnt) (le16_to_cpu(pModal->xpaBiasLvlFreq[cnt])) struct modal_eep_header *pModal; struct ar5416_eeprom_def *eep = &ah->eeprom.def; u8 biaslevel; if (ah->hw_version.macVersion != AR_SREV_VERSION_9160) return; if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7) return; pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); if (pModal->xpaBiasLvl != 0xff) { biaslevel = pModal->xpaBiasLvl; } else { u16 resetFreqBin, freqBin, freqCount = 0; struct chan_centers centers; ath9k_hw_get_channel_centers(ah, chan, ¢ers); resetFreqBin = FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)); freqBin = XPA_LVL_FREQ(0) & 0xff; biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14); freqCount++; while (freqCount < 3) { if (XPA_LVL_FREQ(freqCount) == 0x0) break; freqBin = XPA_LVL_FREQ(freqCount) & 0xff; if (resetFreqBin >= freqBin) biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14); else break; freqCount++; } } if (IS_CHAN_2GHZ(chan)) { INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3; } else { INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac, 6, 1) & (~0xc0)) | biaslevel << 6; } #undef XPA_LVL_FREQ } static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah, u16 *gb, u16 numXpdGain, u16 pdGainOverlap_t2, int8_t pwr_table_offset, int16_t *diff) { u16 k; /* Prior to writing the boundaries or the pdadc vs. power table * into the chip registers the default starting point on the pdadc * vs. power table needs to be checked and the curve boundaries * adjusted accordingly */ if (AR_SREV_9280_20_OR_LATER(ah)) { u16 gb_limit; if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) { /* get the difference in dB */ *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB); /* get the number of half dB steps */ *diff *= 2; /* change the original gain boundary settings * by the number of half dB steps */ for (k = 0; k < numXpdGain; k++) gb[k] = (u16)(gb[k] - *diff); } /* Because of a hardware limitation, ensure the gain boundary * is not larger than (63 - overlap) */ gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2); for (k = 0; k < numXpdGain; k++) gb[k] = (u16)min(gb_limit, gb[k]); } return *diff; } static void ath9k_adjust_pdadc_values(struct ath_hw *ah, int8_t pwr_table_offset, int16_t diff, u8 *pdadcValues) { #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff) u16 k; /* If this is a board that has a pwrTableOffset that differs from * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the * pdadc vs pwr table needs to be adjusted prior to writing to the * chip. */ if (AR_SREV_9280_20_OR_LATER(ah)) { if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) { /* shift the table to start at the new offset */ for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) { pdadcValues[k] = pdadcValues[k + diff]; } /* fill the back of the table */ for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) { pdadcValues[k] = pdadcValues[NUM_PDADC(diff)]; } } } #undef NUM_PDADC } static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah, struct ath9k_channel *chan) { #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x) #define SM_PDGAIN_B(x, y) \ SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y) struct ath_common *common = ath9k_hw_common(ah); struct ar5416_eeprom_def *pEepData = &ah->eeprom.def; struct cal_data_per_freq *pRawDataset; u8 *pCalBChans = NULL; u16 pdGainOverlap_t2; static u8 pdadcValues[AR5416_NUM_PDADC_VALUES]; u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK]; u16 numPiers, i, j; int16_t diff = 0; u16 numXpdGain, xpdMask; u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 }; u32 reg32, regOffset, regChainOffset; int16_t modalIdx; int8_t pwr_table_offset; modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0; xpdMask = pEepData->modalHeader[modalIdx].xpdGain; pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET); if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_2) { pdGainOverlap_t2 = pEepData->modalHeader[modalIdx].pdGainOverlap; } else { pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); } if (IS_CHAN_2GHZ(chan)) { pCalBChans = pEepData->calFreqPier2G; numPiers = AR5416_NUM_2G_CAL_PIERS; } else { pCalBChans = pEepData->calFreqPier5G; numPiers = AR5416_NUM_5G_CAL_PIERS; } if (OLC_FOR_AR9280_20_LATER(ah) && IS_CHAN_2GHZ(chan)) { pRawDataset = pEepData->calPierData2G[0]; ah->initPDADC = ((struct calDataPerFreqOpLoop *) pRawDataset)->vpdPdg[0][0]; } numXpdGain = 0; for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { if (numXpdGain >= AR5416_NUM_PD_GAINS) break; xpdGainValues[numXpdGain] = (u16)(AR5416_PD_GAINS_IN_MASK - i); numXpdGain++; } } REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, (numXpdGain - 1) & 0x3); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1, xpdGainValues[0]); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2, xpdGainValues[1]); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, xpdGainValues[2]); for (i = 0; i < AR5416_MAX_CHAINS; i++) { if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0)) { regChainOffset = (i == 1) ? 0x2000 : 0x1000; } else regChainOffset = i * 0x1000; if (pEepData->baseEepHeader.txMask & (1 << i)) { if (IS_CHAN_2GHZ(chan)) pRawDataset = pEepData->calPierData2G[i]; else pRawDataset = pEepData->calPierData5G[i]; if (OLC_FOR_AR9280_20_LATER(ah)) { u8 pcdacIdx; u8 txPower; ath9k_get_txgain_index(ah, chan, (struct calDataPerFreqOpLoop *)pRawDataset, pCalBChans, numPiers, &txPower, &pcdacIdx); ath9k_olc_get_pdadcs(ah, pcdacIdx, txPower/2, pdadcValues); } else { ath9k_hw_get_gain_boundaries_pdadcs(ah, chan, pRawDataset, pCalBChans, numPiers, pdGainOverlap_t2, gainBoundaries, pdadcValues, numXpdGain); } diff = ath9k_change_gain_boundary_setting(ah, gainBoundaries, numXpdGain, pdGainOverlap_t2, pwr_table_offset, &diff); ENABLE_REGWRITE_BUFFER(ah); if (OLC_FOR_AR9280_20_LATER(ah)) { REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, SM(0x6, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | SM_PD_GAIN(1) | SM_PD_GAIN(2) | SM_PD_GAIN(3) | SM_PD_GAIN(4)); } else { REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP)| SM_PDGAIN_B(0, 1) | SM_PDGAIN_B(1, 2) | SM_PDGAIN_B(2, 3) | SM_PDGAIN_B(3, 4)); } ath9k_adjust_pdadc_values(ah, pwr_table_offset, diff, pdadcValues); regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; for (j = 0; j < 32; j++) { reg32 = get_unaligned_le32(&pdadcValues[4 * j]); REG_WRITE(ah, regOffset, reg32); ath_dbg(common, EEPROM, "PDADC (%d,%4x): %4.4x %8.8x\n", i, regChainOffset, regOffset, reg32); ath_dbg(common, EEPROM, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n", i, 4 * j, pdadcValues[4 * j], 4 * j + 1, pdadcValues[4 * j + 1], 4 * j + 2, pdadcValues[4 * j + 2], 4 * j + 3, pdadcValues[4 * j + 3]); regOffset += 4; } REGWRITE_BUFFER_FLUSH(ah); } } #undef SM_PD_GAIN #undef SM_PDGAIN_B } static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah, struct ath9k_channel *chan, int16_t *ratesArray, u16 cfgCtl, u16 antenna_reduction, u16 powerLimit) { struct ar5416_eeprom_def *pEepData = &ah->eeprom.def; u16 twiceMaxEdgePower; int i; struct cal_ctl_data *rep; struct cal_target_power_leg targetPowerOfdm, targetPowerCck = { 0, { 0, 0, 0, 0} }; struct cal_target_power_leg targetPowerOfdmExt = { 0, { 0, 0, 0, 0} }, targetPowerCckExt = { 0, { 0, 0, 0, 0 } }; struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = { 0, {0, 0, 0, 0} }; u16 scaledPower = 0, minCtlPower; static const u16 ctlModesFor11a[] = { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 }; static const u16 ctlModesFor11g[] = { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 }; u16 numCtlModes; const u16 *pCtlMode; u16 ctlMode, freq; struct chan_centers centers; int tx_chainmask; u16 twiceMinEdgePower; tx_chainmask = ah->txchainmask; ath9k_hw_get_channel_centers(ah, chan, ¢ers); scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit, antenna_reduction); if (IS_CHAN_2GHZ(chan)) { numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; pCtlMode = ctlModesFor11g; ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPowerCck, AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, false); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPower2G, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, false); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower2GHT20, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, false); if (IS_CHAN_HT40(chan)) { numCtlModes = ARRAY_SIZE(ctlModesFor11g); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower2GHT40, AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, true); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPowerCck, AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, true); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPower2G, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, true); } } else { numCtlModes = ARRAY_SIZE(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; pCtlMode = ctlModesFor11a; ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPower5G, AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, false); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower5GHT20, AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, false); if (IS_CHAN_HT40(chan)) { numCtlModes = ARRAY_SIZE(ctlModesFor11a); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower5GHT40, AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, true); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPower5G, AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, true); } } for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || (pCtlMode[ctlMode] == CTL_2GHT40); if (isHt40CtlMode) freq = centers.synth_center; else if (pCtlMode[ctlMode] & EXT_ADDITIVE) freq = centers.ext_center; else freq = centers.ctl_center; twiceMaxEdgePower = MAX_RATE_POWER; for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) { rep = &(pEepData->ctlData[i]); twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq, rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1], IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES); if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { twiceMaxEdgePower = min(twiceMaxEdgePower, twiceMinEdgePower); } else { twiceMaxEdgePower = twiceMinEdgePower; break; } } } minCtlPower = min(twiceMaxEdgePower, scaledPower); switch (pCtlMode[ctlMode]) { case CTL_11B: for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) { targetPowerCck.tPow2x[i] = min((u16)targetPowerCck.tPow2x[i], minCtlPower); } break; case CTL_11A: case CTL_11G: for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) { targetPowerOfdm.tPow2x[i] = min((u16)targetPowerOfdm.tPow2x[i], minCtlPower); } break; case CTL_5GHT20: case CTL_2GHT20: for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) { targetPowerHt20.tPow2x[i] = min((u16)targetPowerHt20.tPow2x[i], minCtlPower); } break; case CTL_11B_EXT: targetPowerCckExt.tPow2x[0] = min((u16) targetPowerCckExt.tPow2x[0], minCtlPower); break; case CTL_11A_EXT: case CTL_11G_EXT: targetPowerOfdmExt.tPow2x[0] = min((u16) targetPowerOfdmExt.tPow2x[0], minCtlPower); break; case CTL_5GHT40: case CTL_2GHT40: for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { targetPowerHt40.tPow2x[i] = min((u16)targetPowerHt40.tPow2x[i], minCtlPower); } break; default: break; } } ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0]; ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1]; ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2]; ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3]; ratesArray[rateXr] = targetPowerOfdm.tPow2x[0]; for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i]; if (IS_CHAN_2GHZ(chan)) { ratesArray[rate1l] = targetPowerCck.tPow2x[0]; ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1]; ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2]; ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3]; } if (IS_CHAN_HT40(chan)) { for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i]; } ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0]; ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0]; ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0]; if (IS_CHAN_2GHZ(chan)) { ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0]; } } } static void ath9k_hw_def_set_txpower(struct ath_hw *ah, struct ath9k_channel *chan, u16 cfgCtl, u8 twiceAntennaReduction, u8 powerLimit, bool test) { #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta) struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); struct ar5416_eeprom_def *pEepData = &ah->eeprom.def; struct modal_eep_header *pModal = &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]); int16_t ratesArray[Ar5416RateSize]; u8 ht40PowerIncForPdadc = 2; int i, cck_ofdm_delta = 0; memset(ratesArray, 0, sizeof(ratesArray)); if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_2) ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; ath9k_hw_set_def_power_per_rate_table(ah, chan, &ratesArray[0], cfgCtl, twiceAntennaReduction, powerLimit); ath9k_hw_set_def_power_cal_table(ah, chan); regulatory->max_power_level = 0; for (i = 0; i < ARRAY_SIZE(ratesArray); i++) { if (ratesArray[i] > MAX_RATE_POWER) ratesArray[i] = MAX_RATE_POWER; if (ratesArray[i] > regulatory->max_power_level) regulatory->max_power_level = ratesArray[i]; } ath9k_hw_update_regulatory_maxpower(ah); if (test) return; if (AR_SREV_9280_20_OR_LATER(ah)) { for (i = 0; i < Ar5416RateSize; i++) { int8_t pwr_table_offset; pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET); ratesArray[i] -= pwr_table_offset * 2; } } ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, ATH9K_POW_SM(ratesArray[rate18mb], 24) | ATH9K_POW_SM(ratesArray[rate12mb], 16) | ATH9K_POW_SM(ratesArray[rate9mb], 8) | ATH9K_POW_SM(ratesArray[rate6mb], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, ATH9K_POW_SM(ratesArray[rate54mb], 24) | ATH9K_POW_SM(ratesArray[rate48mb], 16) | ATH9K_POW_SM(ratesArray[rate36mb], 8) | ATH9K_POW_SM(ratesArray[rate24mb], 0)); if (IS_CHAN_2GHZ(chan)) { if (OLC_FOR_AR9280_20_LATER(ah)) { cck_ofdm_delta = 2; REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24) | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16) | ATH9K_POW_SM(ratesArray[rateXr], 8) | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24) | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16) | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8) | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0)); } else { REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, ATH9K_POW_SM(ratesArray[rate2s], 24) | ATH9K_POW_SM(ratesArray[rate2l], 16) | ATH9K_POW_SM(ratesArray[rateXr], 8) | ATH9K_POW_SM(ratesArray[rate1l], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, ATH9K_POW_SM(ratesArray[rate11s], 24) | ATH9K_POW_SM(ratesArray[rate11l], 16) | ATH9K_POW_SM(ratesArray[rate5_5s], 8) | ATH9K_POW_SM(ratesArray[rate5_5l], 0)); } } REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, ATH9K_POW_SM(ratesArray[rateHt20_3], 24) | ATH9K_POW_SM(ratesArray[rateHt20_2], 16) | ATH9K_POW_SM(ratesArray[rateHt20_1], 8) | ATH9K_POW_SM(ratesArray[rateHt20_0], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, ATH9K_POW_SM(ratesArray[rateHt20_7], 24) | ATH9K_POW_SM(ratesArray[rateHt20_6], 16) | ATH9K_POW_SM(ratesArray[rateHt20_5], 8) | ATH9K_POW_SM(ratesArray[rateHt20_4], 0)); if (IS_CHAN_HT40(chan)) { REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, ATH9K_POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24) | ATH9K_POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16) | ATH9K_POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8) | ATH9K_POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, ATH9K_POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24) | ATH9K_POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16) | ATH9K_POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8) | ATH9K_POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)); if (OLC_FOR_AR9280_20_LATER(ah)) { REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16) | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0)); } else { REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) | ATH9K_POW_SM(ratesArray[rateExtCck], 16) | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) | ATH9K_POW_SM(ratesArray[rateDupCck], 0)); } } REG_WRITE(ah, AR_PHY_POWER_TX_SUB, ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6) | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0)); /* TPC initializations */ if (ah->tpc_enabled) { int ht40_delta; ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0; ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta); /* Enable TPC */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE); } else { /* Disable TPC */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER); } REGWRITE_BUFFER_FLUSH(ah); } static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz) { __le16 spch = ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan; return le16_to_cpu(spch); } static u8 ath9k_hw_def_get_eepmisc(struct ath_hw *ah) { return ah->eeprom.def.baseEepHeader.eepMisc; } const struct eeprom_ops eep_def_ops = { .check_eeprom = ath9k_hw_def_check_eeprom, .get_eeprom = ath9k_hw_def_get_eeprom, .fill_eeprom = ath9k_hw_def_fill_eeprom, .dump_eeprom = ath9k_hw_def_dump_eeprom, .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver, .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev, .set_board_values = ath9k_hw_def_set_board_values, .set_addac = ath9k_hw_def_set_addac, .set_txpower = ath9k_hw_def_set_txpower, .get_spur_channel = ath9k_hw_def_get_spur_channel, .get_eepmisc = ath9k_hw_def_get_eepmisc };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1