Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Emmanuel Grumbach | 1010 | 37.52% | 55 | 29.41% |
Johannes Berg | 391 | 14.52% | 55 | 29.41% |
Sara Sharon | 333 | 12.37% | 12 | 6.42% |
Golan Ben-Ami | 274 | 10.18% | 11 | 5.88% |
Haim Dreyfuss | 268 | 9.96% | 6 | 3.21% |
Wey-Yi Guy | 64 | 2.38% | 5 | 2.67% |
Yi Zhu | 56 | 2.08% | 2 | 1.07% |
Lior Cohen | 44 | 1.63% | 1 | 0.53% |
Mukesh Sisodiya | 41 | 1.52% | 1 | 0.53% |
Lilach Edelstein | 38 | 1.41% | 2 | 1.07% |
Stanislaw Gruszka | 29 | 1.08% | 1 | 0.53% |
Luciano Coelho | 25 | 0.93% | 7 | 3.74% |
Tomas Winkler | 21 | 0.78% | 5 | 2.67% |
Mordechai Goodstein | 16 | 0.59% | 2 | 1.07% |
Christoph Hellwig | 15 | 0.56% | 1 | 0.53% |
Liad Kaufman | 11 | 0.41% | 2 | 1.07% |
Mohamed Abbas | 10 | 0.37% | 2 | 1.07% |
striebit | 7 | 0.26% | 1 | 0.53% |
Shahar S Matityahu | 7 | 0.26% | 3 | 1.60% |
Abhijeet Kolekar | 6 | 0.22% | 2 | 1.07% |
Alexander Bondar | 5 | 0.19% | 1 | 0.53% |
Matti Gottlieb | 5 | 0.19% | 1 | 0.53% |
Rajat Jain | 3 | 0.11% | 1 | 0.53% |
Greg Kroah-Hartman | 2 | 0.07% | 1 | 0.53% |
Samuel Ortiz | 2 | 0.07% | 1 | 0.53% |
Ron Rindjunsky | 2 | 0.07% | 1 | 0.53% |
Assaf Krauss | 2 | 0.07% | 1 | 0.53% |
Arik Nemtsov | 2 | 0.07% | 1 | 0.53% |
Meenakshi Venkataraman | 1 | 0.04% | 1 | 0.53% |
Ben M Cahill | 1 | 0.04% | 1 | 0.53% |
Ilan Peer | 1 | 0.04% | 1 | 0.53% |
Total | 2692 | 187 |
/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ /* * Copyright (C) 2003-2015, 2018-2022 Intel Corporation * Copyright (C) 2013-2015 Intel Mobile Communications GmbH * Copyright (C) 2016-2017 Intel Deutschland GmbH */ #ifndef __iwl_trans_int_pcie_h__ #define __iwl_trans_int_pcie_h__ #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/skbuff.h> #include <linux/wait.h> #include <linux/pci.h> #include <linux/timer.h> #include <linux/cpu.h> #include "iwl-fh.h" #include "iwl-csr.h" #include "iwl-trans.h" #include "iwl-debug.h" #include "iwl-io.h" #include "iwl-op-mode.h" #include "iwl-drv.h" #include "queue/tx.h" /* * RX related structures and functions */ #define RX_NUM_QUEUES 1 #define RX_POST_REQ_ALLOC 2 #define RX_CLAIM_REQ_ALLOC 8 #define RX_PENDING_WATERMARK 16 #define FIRST_RX_QUEUE 512 struct iwl_host_cmd; /*This file includes the declaration that are internal to the * trans_pcie layer */ /** * struct iwl_rx_mem_buffer * @page_dma: bus address of rxb page * @page: driver's pointer to the rxb page * @list: list entry for the membuffer * @invalid: rxb is in driver ownership - not owned by HW * @vid: index of this rxb in the global table * @offset: indicates which offset of the page (in bytes) * this buffer uses (if multiple RBs fit into one page) */ struct iwl_rx_mem_buffer { dma_addr_t page_dma; struct page *page; struct list_head list; u32 offset; u16 vid; bool invalid; }; /** * struct isr_statistics - interrupt statistics * */ struct isr_statistics { u32 hw; u32 sw; u32 err_code; u32 sch; u32 alive; u32 rfkill; u32 ctkill; u32 wakeup; u32 rx; u32 tx; u32 unhandled; }; /** * struct iwl_rx_transfer_desc - transfer descriptor * @addr: ptr to free buffer start address * @rbid: unique tag of the buffer * @reserved: reserved */ struct iwl_rx_transfer_desc { __le16 rbid; __le16 reserved[3]; __le64 addr; } __packed; #define IWL_RX_CD_FLAGS_FRAGMENTED BIT(0) /** * struct iwl_rx_completion_desc - completion descriptor * @reserved1: reserved * @rbid: unique tag of the received buffer * @flags: flags (0: fragmented, all others: reserved) * @reserved2: reserved */ struct iwl_rx_completion_desc { __le32 reserved1; __le16 rbid; u8 flags; u8 reserved2[25]; } __packed; /** * struct iwl_rx_completion_desc_bz - Bz completion descriptor * @rbid: unique tag of the received buffer * @flags: flags (0: fragmented, all others: reserved) * @reserved: reserved */ struct iwl_rx_completion_desc_bz { __le16 rbid; u8 flags; u8 reserved[1]; } __packed; /** * struct iwl_rxq - Rx queue * @id: queue index * @bd: driver's pointer to buffer of receive buffer descriptors (rbd). * Address size is 32 bit in pre-9000 devices and 64 bit in 9000 devices. * In AX210 devices it is a pointer to a list of iwl_rx_transfer_desc's * @bd_dma: bus address of buffer of receive buffer descriptors (rbd) * @used_bd: driver's pointer to buffer of used receive buffer descriptors (rbd) * @used_bd_dma: physical address of buffer of used receive buffer descriptors (rbd) * @read: Shared index to newest available Rx buffer * @write: Shared index to oldest written Rx packet * @free_count: Number of pre-allocated buffers in rx_free * @used_count: Number of RBDs handled to allocator to use for allocation * @write_actual: * @rx_free: list of RBDs with allocated RB ready for use * @rx_used: list of RBDs with no RB attached * @need_update: flag to indicate we need to update read/write index * @rb_stts: driver's pointer to receive buffer status * @rb_stts_dma: bus address of receive buffer status * @lock: * @queue: actual rx queue. Not used for multi-rx queue. * @next_rb_is_fragment: indicates that the previous RB that we handled set * the fragmented flag, so the next one is still another fragment * * NOTE: rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers */ struct iwl_rxq { int id; void *bd; dma_addr_t bd_dma; void *used_bd; dma_addr_t used_bd_dma; u32 read; u32 write; u32 free_count; u32 used_count; u32 write_actual; u32 queue_size; struct list_head rx_free; struct list_head rx_used; bool need_update, next_rb_is_fragment; void *rb_stts; dma_addr_t rb_stts_dma; spinlock_t lock; struct napi_struct napi; struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE]; }; /** * struct iwl_rb_allocator - Rx allocator * @req_pending: number of requests the allcator had not processed yet * @req_ready: number of requests honored and ready for claiming * @rbd_allocated: RBDs with pages allocated and ready to be handled to * the queue. This is a list of &struct iwl_rx_mem_buffer * @rbd_empty: RBDs with no page attached for allocator use. This is a list * of &struct iwl_rx_mem_buffer * @lock: protects the rbd_allocated and rbd_empty lists * @alloc_wq: work queue for background calls * @rx_alloc: work struct for background calls */ struct iwl_rb_allocator { atomic_t req_pending; atomic_t req_ready; struct list_head rbd_allocated; struct list_head rbd_empty; spinlock_t lock; struct workqueue_struct *alloc_wq; struct work_struct rx_alloc; }; /** * iwl_get_closed_rb_stts - get closed rb stts from different structs * @rxq - the rxq to get the rb stts from */ static inline __le16 iwl_get_closed_rb_stts(struct iwl_trans *trans, struct iwl_rxq *rxq) { if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { __le16 *rb_stts = rxq->rb_stts; return READ_ONCE(*rb_stts); } else { struct iwl_rb_status *rb_stts = rxq->rb_stts; return READ_ONCE(rb_stts->closed_rb_num); } } #ifdef CONFIG_IWLWIFI_DEBUGFS /** * enum iwl_fw_mon_dbgfs_state - the different states of the monitor_data * debugfs file * * @IWL_FW_MON_DBGFS_STATE_CLOSED: the file is closed. * @IWL_FW_MON_DBGFS_STATE_OPEN: the file is open. * @IWL_FW_MON_DBGFS_STATE_DISABLED: the file is disabled, once this state is * set the file can no longer be used. */ enum iwl_fw_mon_dbgfs_state { IWL_FW_MON_DBGFS_STATE_CLOSED, IWL_FW_MON_DBGFS_STATE_OPEN, IWL_FW_MON_DBGFS_STATE_DISABLED, }; #endif /** * enum iwl_shared_irq_flags - level of sharing for irq * @IWL_SHARED_IRQ_NON_RX: interrupt vector serves non rx causes. * @IWL_SHARED_IRQ_FIRST_RSS: interrupt vector serves first RSS queue. */ enum iwl_shared_irq_flags { IWL_SHARED_IRQ_NON_RX = BIT(0), IWL_SHARED_IRQ_FIRST_RSS = BIT(1), }; /** * enum iwl_image_response_code - image response values * @IWL_IMAGE_RESP_DEF: the default value of the register * @IWL_IMAGE_RESP_SUCCESS: iml was read successfully * @IWL_IMAGE_RESP_FAIL: iml reading failed */ enum iwl_image_response_code { IWL_IMAGE_RESP_DEF = 0, IWL_IMAGE_RESP_SUCCESS = 1, IWL_IMAGE_RESP_FAIL = 2, }; /** * struct cont_rec: continuous recording data structure * @prev_wr_ptr: the last address that was read in monitor_data * debugfs file * @prev_wrap_cnt: the wrap count that was used during the last read in * monitor_data debugfs file * @state: the state of monitor_data debugfs file as described * in &iwl_fw_mon_dbgfs_state enum * @mutex: locked while reading from monitor_data debugfs file */ #ifdef CONFIG_IWLWIFI_DEBUGFS struct cont_rec { u32 prev_wr_ptr; u32 prev_wrap_cnt; u8 state; /* Used to sync monitor_data debugfs file with driver unload flow */ struct mutex mutex; }; #endif enum iwl_pcie_fw_reset_state { FW_RESET_IDLE, FW_RESET_REQUESTED, FW_RESET_OK, FW_RESET_ERROR, }; /** * enum wl_pcie_imr_status - imr dma transfer state * @IMR_D2S_IDLE: default value of the dma transfer * @IMR_D2S_REQUESTED: dma transfer requested * @IMR_D2S_COMPLETED: dma transfer completed * @IMR_D2S_ERROR: dma transfer error */ enum iwl_pcie_imr_status { IMR_D2S_IDLE, IMR_D2S_REQUESTED, IMR_D2S_COMPLETED, IMR_D2S_ERROR, }; /** * struct iwl_trans_pcie - PCIe transport specific data * @rxq: all the RX queue data * @rx_pool: initial pool of iwl_rx_mem_buffer for all the queues * @global_table: table mapping received VID from hw to rxb * @rba: allocator for RX replenishing * @ctxt_info: context information for FW self init * @ctxt_info_gen3: context information for gen3 devices * @prph_info: prph info for self init * @prph_scratch: prph scratch for self init * @ctxt_info_dma_addr: dma addr of context information * @prph_info_dma_addr: dma addr of prph info * @prph_scratch_dma_addr: dma addr of prph scratch * @ctxt_info_dma_addr: dma addr of context information * @init_dram: DRAM data of firmware image (including paging). * Context information addresses will be taken from here. * This is driver's local copy for keeping track of size and * count for allocating and freeing the memory. * @iml: image loader image virtual address * @iml_dma_addr: image loader image DMA address * @trans: pointer to the generic transport area * @scd_base_addr: scheduler sram base address in SRAM * @kw: keep warm address * @pnvm_dram: DRAM area that contains the PNVM data * @pci_dev: basic pci-network driver stuff * @hw_base: pci hardware address support * @ucode_write_complete: indicates that the ucode has been copied. * @ucode_write_waitq: wait queue for uCode load * @cmd_queue - command queue number * @def_rx_queue - default rx queue number * @rx_buf_size: Rx buffer size * @scd_set_active: should the transport configure the SCD for HCMD queue * @rx_page_order: page order for receive buffer size * @rx_buf_bytes: RX buffer (RB) size in bytes * @reg_lock: protect hw register access * @mutex: to protect stop_device / start_fw / start_hw * @cmd_in_flight: true when we have a host command in flight #ifdef CONFIG_IWLWIFI_DEBUGFS * @fw_mon_data: fw continuous recording data #endif * @msix_entries: array of MSI-X entries * @msix_enabled: true if managed to enable MSI-X * @shared_vec_mask: the type of causes the shared vector handles * (see iwl_shared_irq_flags). * @alloc_vecs: the number of interrupt vectors allocated by the OS * @def_irq: default irq for non rx causes * @fh_init_mask: initial unmasked fh causes * @hw_init_mask: initial unmasked hw causes * @fh_mask: current unmasked fh causes * @hw_mask: current unmasked hw causes * @in_rescan: true if we have triggered a device rescan * @base_rb_stts: base virtual address of receive buffer status for all queues * @base_rb_stts_dma: base physical address of receive buffer status * @supported_dma_mask: DMA mask to validate the actual address against, * will be DMA_BIT_MASK(11) or DMA_BIT_MASK(12) depending on the device * @alloc_page_lock: spinlock for the page allocator * @alloc_page: allocated page to still use parts of * @alloc_page_used: how much of the allocated page was already used (bytes) * @imr_status: imr dma state machine * @wait_queue_head_t: imr wait queue for dma completion * @rf_name: name/version of the CRF, if any */ struct iwl_trans_pcie { struct iwl_rxq *rxq; struct iwl_rx_mem_buffer *rx_pool; struct iwl_rx_mem_buffer **global_table; struct iwl_rb_allocator rba; union { struct iwl_context_info *ctxt_info; struct iwl_context_info_gen3 *ctxt_info_gen3; }; struct iwl_prph_info *prph_info; struct iwl_prph_scratch *prph_scratch; void *iml; dma_addr_t ctxt_info_dma_addr; dma_addr_t prph_info_dma_addr; dma_addr_t prph_scratch_dma_addr; dma_addr_t iml_dma_addr; struct iwl_trans *trans; struct net_device napi_dev; /* INT ICT Table */ __le32 *ict_tbl; dma_addr_t ict_tbl_dma; int ict_index; bool use_ict; bool is_down, opmode_down; s8 debug_rfkill; struct isr_statistics isr_stats; spinlock_t irq_lock; struct mutex mutex; u32 inta_mask; u32 scd_base_addr; struct iwl_dma_ptr kw; struct iwl_dram_data pnvm_dram; struct iwl_dram_data reduce_power_dram; struct iwl_txq *txq_memory; /* PCI bus related data */ struct pci_dev *pci_dev; u8 __iomem *hw_base; bool ucode_write_complete; bool sx_complete; wait_queue_head_t ucode_write_waitq; wait_queue_head_t sx_waitq; u8 def_rx_queue; u8 n_no_reclaim_cmds; u8 no_reclaim_cmds[MAX_NO_RECLAIM_CMDS]; u16 num_rx_bufs; enum iwl_amsdu_size rx_buf_size; bool scd_set_active; bool pcie_dbg_dumped_once; u32 rx_page_order; u32 rx_buf_bytes; u32 supported_dma_mask; /* allocator lock for the two values below */ spinlock_t alloc_page_lock; struct page *alloc_page; u32 alloc_page_used; /*protect hw register */ spinlock_t reg_lock; bool cmd_hold_nic_awake; #ifdef CONFIG_IWLWIFI_DEBUGFS struct cont_rec fw_mon_data; #endif struct msix_entry msix_entries[IWL_MAX_RX_HW_QUEUES]; bool msix_enabled; u8 shared_vec_mask; u32 alloc_vecs; u32 def_irq; u32 fh_init_mask; u32 hw_init_mask; u32 fh_mask; u32 hw_mask; cpumask_t affinity_mask[IWL_MAX_RX_HW_QUEUES]; u16 tx_cmd_queue_size; bool in_rescan; void *base_rb_stts; dma_addr_t base_rb_stts_dma; bool fw_reset_handshake; enum iwl_pcie_fw_reset_state fw_reset_state; wait_queue_head_t fw_reset_waitq; enum iwl_pcie_imr_status imr_status; wait_queue_head_t imr_waitq; char rf_name[32]; }; static inline struct iwl_trans_pcie * IWL_TRANS_GET_PCIE_TRANS(struct iwl_trans *trans) { return (void *)trans->trans_specific; } static inline void iwl_pcie_clear_irq(struct iwl_trans *trans, int queue) { /* * Before sending the interrupt the HW disables it to prevent * a nested interrupt. This is done by writing 1 to the corresponding * bit in the mask register. After handling the interrupt, it should be * re-enabled by clearing this bit. This register is defined as * write 1 clear (W1C) register, meaning that it's being clear * by writing 1 to the bit. */ iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(queue)); } static inline struct iwl_trans * iwl_trans_pcie_get_trans(struct iwl_trans_pcie *trans_pcie) { return container_of((void *)trans_pcie, struct iwl_trans, trans_specific); } /* * Convention: trans API functions: iwl_trans_pcie_XXX * Other functions: iwl_pcie_XXX */ struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev, const struct pci_device_id *ent, const struct iwl_cfg_trans_params *cfg_trans); void iwl_trans_pcie_free(struct iwl_trans *trans); bool __iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans); #define _iwl_trans_pcie_grab_nic_access(trans) \ __cond_lock(nic_access_nobh, \ likely(__iwl_trans_pcie_grab_nic_access(trans))) /***************************************************** * RX ******************************************************/ int iwl_pcie_rx_init(struct iwl_trans *trans); int iwl_pcie_gen2_rx_init(struct iwl_trans *trans); irqreturn_t iwl_pcie_msix_isr(int irq, void *data); irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id); irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id); irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id); int iwl_pcie_rx_stop(struct iwl_trans *trans); void iwl_pcie_rx_free(struct iwl_trans *trans); void iwl_pcie_free_rbs_pool(struct iwl_trans *trans); void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq); void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, struct iwl_rxq *rxq); /***************************************************** * ICT - interrupt handling ******************************************************/ irqreturn_t iwl_pcie_isr(int irq, void *data); int iwl_pcie_alloc_ict(struct iwl_trans *trans); void iwl_pcie_free_ict(struct iwl_trans *trans); void iwl_pcie_reset_ict(struct iwl_trans *trans); void iwl_pcie_disable_ict(struct iwl_trans *trans); /***************************************************** * TX / HCMD ******************************************************/ int iwl_pcie_tx_init(struct iwl_trans *trans); void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr); int iwl_pcie_tx_stop(struct iwl_trans *trans); void iwl_pcie_tx_free(struct iwl_trans *trans); bool iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int queue, u16 ssn, const struct iwl_trans_txq_scd_cfg *cfg, unsigned int wdg_timeout); void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int queue, bool configure_scd); void iwl_trans_pcie_txq_set_shared_mode(struct iwl_trans *trans, u32 txq_id, bool shared_mode); int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_device_tx_cmd *dev_cmd, int txq_id); void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans); int iwl_trans_pcie_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); void iwl_pcie_hcmd_complete(struct iwl_trans *trans, struct iwl_rx_cmd_buffer *rxb); void iwl_trans_pcie_tx_reset(struct iwl_trans *trans); /***************************************************** * Error handling ******************************************************/ void iwl_pcie_dump_csr(struct iwl_trans *trans); /***************************************************** * Helpers ******************************************************/ static inline void _iwl_disable_interrupts(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); clear_bit(STATUS_INT_ENABLED, &trans->status); if (!trans_pcie->msix_enabled) { /* disable interrupts from uCode/NIC to host */ iwl_write32(trans, CSR_INT_MASK, 0x00000000); /* acknowledge/clear/reset any interrupts still pending * from uCode or flow handler (Rx/Tx DMA) */ iwl_write32(trans, CSR_INT, 0xffffffff); iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff); } else { /* disable all the interrupt we might use */ iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, trans_pcie->fh_init_mask); iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, trans_pcie->hw_init_mask); } IWL_DEBUG_ISR(trans, "Disabled interrupts\n"); } static inline int iwl_pcie_get_num_sections(const struct fw_img *fw, int start) { int i = 0; while (start < fw->num_sec && fw->sec[start].offset != CPU1_CPU2_SEPARATOR_SECTION && fw->sec[start].offset != PAGING_SEPARATOR_SECTION) { start++; i++; } return i; } static inline void iwl_pcie_ctxt_info_free_fw_img(struct iwl_trans *trans) { struct iwl_self_init_dram *dram = &trans->init_dram; int i; if (!dram->fw) { WARN_ON(dram->fw_cnt); return; } for (i = 0; i < dram->fw_cnt; i++) dma_free_coherent(trans->dev, dram->fw[i].size, dram->fw[i].block, dram->fw[i].physical); kfree(dram->fw); dram->fw_cnt = 0; dram->fw = NULL; } static inline void iwl_disable_interrupts(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); spin_lock_bh(&trans_pcie->irq_lock); _iwl_disable_interrupts(trans); spin_unlock_bh(&trans_pcie->irq_lock); } static inline void _iwl_enable_interrupts(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); IWL_DEBUG_ISR(trans, "Enabling interrupts\n"); set_bit(STATUS_INT_ENABLED, &trans->status); if (!trans_pcie->msix_enabled) { trans_pcie->inta_mask = CSR_INI_SET_MASK; iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); } else { /* * fh/hw_mask keeps all the unmasked causes. * Unlike msi, in msix cause is enabled when it is unset. */ trans_pcie->hw_mask = trans_pcie->hw_init_mask; trans_pcie->fh_mask = trans_pcie->fh_init_mask; iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~trans_pcie->fh_mask); iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~trans_pcie->hw_mask); } } static inline void iwl_enable_interrupts(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); spin_lock_bh(&trans_pcie->irq_lock); _iwl_enable_interrupts(trans); spin_unlock_bh(&trans_pcie->irq_lock); } static inline void iwl_enable_hw_int_msk_msix(struct iwl_trans *trans, u32 msk) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~msk); trans_pcie->hw_mask = msk; } static inline void iwl_enable_fh_int_msk_msix(struct iwl_trans *trans, u32 msk) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~msk); trans_pcie->fh_mask = msk; } static inline void iwl_enable_fw_load_int(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); IWL_DEBUG_ISR(trans, "Enabling FW load interrupt\n"); if (!trans_pcie->msix_enabled) { trans_pcie->inta_mask = CSR_INT_BIT_FH_TX; iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); } else { iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, trans_pcie->hw_init_mask); iwl_enable_fh_int_msk_msix(trans, MSIX_FH_INT_CAUSES_D2S_CH0_NUM); } } static inline void iwl_enable_fw_load_int_ctx_info(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); IWL_DEBUG_ISR(trans, "Enabling ALIVE interrupt only\n"); if (!trans_pcie->msix_enabled) { /* * When we'll receive the ALIVE interrupt, the ISR will call * iwl_enable_fw_load_int_ctx_info again to set the ALIVE * interrupt (which is not really needed anymore) but also the * RX interrupt which will allow us to receive the ALIVE * notification (which is Rx) and continue the flow. */ trans_pcie->inta_mask = CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX; iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); } else { iwl_enable_hw_int_msk_msix(trans, MSIX_HW_INT_CAUSES_REG_ALIVE); /* * Leave all the FH causes enabled to get the ALIVE * notification. */ iwl_enable_fh_int_msk_msix(trans, trans_pcie->fh_init_mask); } } static inline const char *queue_name(struct device *dev, struct iwl_trans_pcie *trans_p, int i) { if (trans_p->shared_vec_mask) { int vec = trans_p->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0; if (i == 0) return DRV_NAME ":shared_IRQ"; return devm_kasprintf(dev, GFP_KERNEL, DRV_NAME ":queue_%d", i + vec); } if (i == 0) return DRV_NAME ":default_queue"; if (i == trans_p->alloc_vecs - 1) return DRV_NAME ":exception"; return devm_kasprintf(dev, GFP_KERNEL, DRV_NAME ":queue_%d", i); } static inline void iwl_enable_rfkill_int(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n"); if (!trans_pcie->msix_enabled) { trans_pcie->inta_mask = CSR_INT_BIT_RF_KILL; iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); } else { iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, trans_pcie->fh_init_mask); iwl_enable_hw_int_msk_msix(trans, MSIX_HW_INT_CAUSES_REG_RF_KILL); } if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_9000) { /* * On 9000-series devices this bit isn't enabled by default, so * when we power down the device we need set the bit to allow it * to wake up the PCI-E bus for RF-kill interrupts. */ iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN); } } void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans); static inline bool iwl_is_rfkill_set(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); lockdep_assert_held(&trans_pcie->mutex); if (trans_pcie->debug_rfkill == 1) return true; return !(iwl_read32(trans, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW); } static inline void __iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) { u32 v; #ifdef CONFIG_IWLWIFI_DEBUG WARN_ON_ONCE(value & ~mask); #endif v = iwl_read32(trans, reg); v &= ~mask; v |= value; iwl_write32(trans, reg, v); } static inline void __iwl_trans_pcie_clear_bit(struct iwl_trans *trans, u32 reg, u32 mask) { __iwl_trans_pcie_set_bits_mask(trans, reg, mask, 0); } static inline void __iwl_trans_pcie_set_bit(struct iwl_trans *trans, u32 reg, u32 mask) { __iwl_trans_pcie_set_bits_mask(trans, reg, mask, mask); } static inline bool iwl_pcie_dbg_on(struct iwl_trans *trans) { return (trans->dbg.dest_tlv || iwl_trans_dbg_ini_valid(trans)); } void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state); void iwl_trans_pcie_dump_regs(struct iwl_trans *trans); #ifdef CONFIG_IWLWIFI_DEBUGFS void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans); #else static inline void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans) { } #endif void iwl_pcie_rx_allocator_work(struct work_struct *data); /* common functions that are used by gen2 transport */ int iwl_pcie_gen2_apm_init(struct iwl_trans *trans); void iwl_pcie_apm_config(struct iwl_trans *trans); int iwl_pcie_prepare_card_hw(struct iwl_trans *trans); void iwl_pcie_synchronize_irqs(struct iwl_trans *trans); bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans); void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans, bool was_in_rfkill); void iwl_pcie_apm_stop_master(struct iwl_trans *trans); void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie); int iwl_pcie_alloc_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr, size_t size); void iwl_pcie_free_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr); void iwl_pcie_apply_destination(struct iwl_trans *trans); /* common functions that are used by gen3 transport */ void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power); /* transport gen 2 exported functions */ int iwl_trans_pcie_gen2_start_fw(struct iwl_trans *trans, const struct fw_img *fw, bool run_in_rfkill); void iwl_trans_pcie_gen2_fw_alive(struct iwl_trans *trans, u32 scd_addr); int iwl_trans_pcie_gen2_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); void iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans); void _iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans); void iwl_pcie_d3_complete_suspend(struct iwl_trans *trans, bool test, bool reset); int iwl_pcie_gen2_enqueue_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); int iwl_pcie_enqueue_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); void iwl_trans_pcie_copy_imr_fh(struct iwl_trans *trans, u32 dst_addr, u64 src_addr, u32 byte_cnt); int iwl_trans_pcie_copy_imr(struct iwl_trans *trans, u32 dst_addr, u64 src_addr, u32 byte_cnt); #endif /* __iwl_trans_int_pcie_h__ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1