Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lorenzo Bianconi | 5615 | 41.44% | 103 | 51.50% |
Ryder Lee | 4699 | 34.68% | 24 | 12.00% |
Felix Fietkau | 2672 | 19.72% | 63 | 31.50% |
Xing Song | 504 | 3.72% | 3 | 1.50% |
Sean Wang | 29 | 0.21% | 1 | 0.50% |
Shayne Chen | 18 | 0.13% | 2 | 1.00% |
Gustavo A. R. Silva | 6 | 0.04% | 1 | 0.50% |
Sujuan Chen | 4 | 0.03% | 1 | 0.50% |
Pablo Greco | 3 | 0.02% | 1 | 0.50% |
Li Yang | 1 | 0.01% | 1 | 0.50% |
Total | 13551 | 200 |
// SPDX-License-Identifier: ISC /* Copyright (C) 2019 MediaTek Inc. * * Author: Ryder Lee <ryder.lee@mediatek.com> * Roy Luo <royluo@google.com> * Felix Fietkau <nbd@nbd.name> * Lorenzo Bianconi <lorenzo@kernel.org> */ #include <linux/devcoredump.h> #include <linux/etherdevice.h> #include <linux/timekeeping.h> #include "mt7615.h" #include "../trace.h" #include "../dma.h" #include "mt7615_trace.h" #include "mac.h" #include "mcu.h" #define to_rssi(field, rxv) ((FIELD_GET(field, rxv) - 220) / 2) static const struct mt7615_dfs_radar_spec etsi_radar_specs = { .pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 }, .radar_pattern = { [5] = { 1, 0, 6, 32, 28, 0, 17, 990, 5010, 1, 1 }, [6] = { 1, 0, 9, 32, 28, 0, 27, 615, 5010, 1, 1 }, [7] = { 1, 0, 15, 32, 28, 0, 27, 240, 445, 1, 1 }, [8] = { 1, 0, 12, 32, 28, 0, 42, 240, 510, 1, 1 }, [9] = { 1, 1, 0, 0, 0, 0, 14, 2490, 3343, 0, 0, 12, 32, 28 }, [10] = { 1, 1, 0, 0, 0, 0, 14, 2490, 3343, 0, 0, 15, 32, 24 }, [11] = { 1, 1, 0, 0, 0, 0, 14, 823, 2510, 0, 0, 18, 32, 28 }, [12] = { 1, 1, 0, 0, 0, 0, 14, 823, 2510, 0, 0, 27, 32, 24 }, }, }; static const struct mt7615_dfs_radar_spec fcc_radar_specs = { .pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 }, .radar_pattern = { [0] = { 1, 0, 9, 32, 28, 0, 13, 508, 3076, 1, 1 }, [1] = { 1, 0, 12, 32, 28, 0, 17, 140, 240, 1, 1 }, [2] = { 1, 0, 8, 32, 28, 0, 22, 190, 510, 1, 1 }, [3] = { 1, 0, 6, 32, 28, 0, 32, 190, 510, 1, 1 }, [4] = { 1, 0, 9, 255, 28, 0, 13, 323, 343, 1, 32 }, }, }; static const struct mt7615_dfs_radar_spec jp_radar_specs = { .pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 }, .radar_pattern = { [0] = { 1, 0, 8, 32, 28, 0, 13, 508, 3076, 1, 1 }, [1] = { 1, 0, 12, 32, 28, 0, 17, 140, 240, 1, 1 }, [2] = { 1, 0, 8, 32, 28, 0, 22, 190, 510, 1, 1 }, [3] = { 1, 0, 6, 32, 28, 0, 32, 190, 510, 1, 1 }, [4] = { 1, 0, 9, 32, 28, 0, 13, 323, 343, 1, 32 }, [13] = { 1, 0, 8, 32, 28, 0, 14, 3836, 3856, 1, 1 }, [14] = { 1, 0, 8, 32, 28, 0, 14, 3990, 4010, 1, 1 }, }, }; static enum mt76_cipher_type mt7615_mac_get_cipher(int cipher) { switch (cipher) { case WLAN_CIPHER_SUITE_WEP40: return MT_CIPHER_WEP40; case WLAN_CIPHER_SUITE_WEP104: return MT_CIPHER_WEP104; case WLAN_CIPHER_SUITE_TKIP: return MT_CIPHER_TKIP; case WLAN_CIPHER_SUITE_AES_CMAC: return MT_CIPHER_BIP_CMAC_128; case WLAN_CIPHER_SUITE_CCMP: return MT_CIPHER_AES_CCMP; case WLAN_CIPHER_SUITE_CCMP_256: return MT_CIPHER_CCMP_256; case WLAN_CIPHER_SUITE_GCMP: return MT_CIPHER_GCMP; case WLAN_CIPHER_SUITE_GCMP_256: return MT_CIPHER_GCMP_256; case WLAN_CIPHER_SUITE_SMS4: return MT_CIPHER_WAPI; default: return MT_CIPHER_NONE; } } static struct mt76_wcid *mt7615_rx_get_wcid(struct mt7615_dev *dev, u8 idx, bool unicast) { struct mt7615_sta *sta; struct mt76_wcid *wcid; if (idx >= MT7615_WTBL_SIZE) return NULL; wcid = rcu_dereference(dev->mt76.wcid[idx]); if (unicast || !wcid) return wcid; if (!wcid->sta) return NULL; sta = container_of(wcid, struct mt7615_sta, wcid); if (!sta->vif) return NULL; return &sta->vif->sta.wcid; } void mt7615_mac_reset_counters(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; int i; for (i = 0; i < 4; i++) { mt76_rr(dev, MT_TX_AGG_CNT(0, i)); mt76_rr(dev, MT_TX_AGG_CNT(1, i)); } memset(phy->mt76->aggr_stats, 0, sizeof(phy->mt76->aggr_stats)); phy->mt76->survey_time = ktime_get_boottime(); /* reset airtime counters */ mt76_rr(dev, MT_MIB_SDR9(0)); mt76_rr(dev, MT_MIB_SDR9(1)); mt76_rr(dev, MT_MIB_SDR36(0)); mt76_rr(dev, MT_MIB_SDR36(1)); mt76_rr(dev, MT_MIB_SDR37(0)); mt76_rr(dev, MT_MIB_SDR37(1)); mt76_set(dev, MT_WF_RMAC_MIB_TIME0, MT_WF_RMAC_MIB_RXTIME_CLR); mt76_set(dev, MT_WF_RMAC_MIB_AIRTIME0, MT_WF_RMAC_MIB_RXTIME_CLR); } void mt7615_mac_set_timing(struct mt7615_phy *phy) { s16 coverage_class = phy->coverage_class; struct mt7615_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; u32 val, reg_offset; u32 cck = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 231) | FIELD_PREP(MT_TIMEOUT_VAL_CCA, 48); u32 ofdm = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 60) | FIELD_PREP(MT_TIMEOUT_VAL_CCA, 28); int sifs, offset; bool is_5ghz = phy->mt76->chandef.chan->band == NL80211_BAND_5GHZ; if (!test_bit(MT76_STATE_RUNNING, &phy->mt76->state)) return; if (is_5ghz) sifs = 16; else sifs = 10; if (ext_phy) { coverage_class = max_t(s16, dev->phy.coverage_class, coverage_class); mt76_set(dev, MT_ARB_SCR, MT_ARB_SCR_TX1_DISABLE | MT_ARB_SCR_RX1_DISABLE); } else { struct mt7615_phy *phy_ext = mt7615_ext_phy(dev); if (phy_ext) coverage_class = max_t(s16, phy_ext->coverage_class, coverage_class); mt76_set(dev, MT_ARB_SCR, MT_ARB_SCR_TX0_DISABLE | MT_ARB_SCR_RX0_DISABLE); } udelay(1); offset = 3 * coverage_class; reg_offset = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, offset) | FIELD_PREP(MT_TIMEOUT_VAL_CCA, offset); mt76_wr(dev, MT_TMAC_CDTR, cck + reg_offset); mt76_wr(dev, MT_TMAC_ODTR, ofdm + reg_offset); mt76_wr(dev, MT_TMAC_ICR(ext_phy), FIELD_PREP(MT_IFS_EIFS, 360) | FIELD_PREP(MT_IFS_RIFS, 2) | FIELD_PREP(MT_IFS_SIFS, sifs) | FIELD_PREP(MT_IFS_SLOT, phy->slottime)); if (phy->slottime < 20 || is_5ghz) val = MT7615_CFEND_RATE_DEFAULT; else val = MT7615_CFEND_RATE_11B; mt76_rmw_field(dev, MT_AGG_ACR(ext_phy), MT_AGG_ACR_CFEND_RATE, val); if (ext_phy) mt76_clear(dev, MT_ARB_SCR, MT_ARB_SCR_TX1_DISABLE | MT_ARB_SCR_RX1_DISABLE); else mt76_clear(dev, MT_ARB_SCR, MT_ARB_SCR_TX0_DISABLE | MT_ARB_SCR_RX0_DISABLE); } static void mt7615_get_status_freq_info(struct mt7615_dev *dev, struct mt76_phy *mphy, struct mt76_rx_status *status, u8 chfreq) { if (!test_bit(MT76_HW_SCANNING, &mphy->state) && !test_bit(MT76_HW_SCHED_SCANNING, &mphy->state) && !test_bit(MT76_STATE_ROC, &mphy->state)) { status->freq = mphy->chandef.chan->center_freq; status->band = mphy->chandef.chan->band; return; } status->band = chfreq <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; status->freq = ieee80211_channel_to_frequency(chfreq, status->band); } static void mt7615_mac_fill_tm_rx(struct mt7615_phy *phy, __le32 *rxv) { #ifdef CONFIG_NL80211_TESTMODE u32 rxv1 = le32_to_cpu(rxv[0]); u32 rxv3 = le32_to_cpu(rxv[2]); u32 rxv4 = le32_to_cpu(rxv[3]); u32 rxv5 = le32_to_cpu(rxv[4]); u8 cbw = FIELD_GET(MT_RXV1_FRAME_MODE, rxv1); u8 mode = FIELD_GET(MT_RXV1_TX_MODE, rxv1); s16 foe = FIELD_GET(MT_RXV5_FOE, rxv5); u32 foe_const = (BIT(cbw + 1) & 0xf) * 10000; if (!mode) { /* CCK */ foe &= ~BIT(11); foe *= 1000; foe >>= 11; } else { if (foe > 2048) foe -= 4096; foe = (foe * foe_const) >> 15; } phy->test.last_freq_offset = foe; phy->test.last_rcpi[0] = FIELD_GET(MT_RXV4_RCPI0, rxv4); phy->test.last_rcpi[1] = FIELD_GET(MT_RXV4_RCPI1, rxv4); phy->test.last_rcpi[2] = FIELD_GET(MT_RXV4_RCPI2, rxv4); phy->test.last_rcpi[3] = FIELD_GET(MT_RXV4_RCPI3, rxv4); phy->test.last_ib_rssi[0] = FIELD_GET(MT_RXV3_IB_RSSI, rxv3); phy->test.last_wb_rssi[0] = FIELD_GET(MT_RXV3_WB_RSSI, rxv3); #endif } /* The HW does not translate the mac header to 802.3 for mesh point */ static int mt7615_reverse_frag0_hdr_trans(struct sk_buff *skb, u16 hdr_gap) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; struct ethhdr *eth_hdr = (struct ethhdr *)(skb->data + hdr_gap); struct mt7615_sta *msta = (struct mt7615_sta *)status->wcid; __le32 *rxd = (__le32 *)skb->data; struct ieee80211_sta *sta; struct ieee80211_vif *vif; struct ieee80211_hdr hdr; u16 frame_control; if (le32_get_bits(rxd[1], MT_RXD1_NORMAL_ADDR_TYPE) != MT_RXD1_NORMAL_U2M) return -EINVAL; if (!(le32_to_cpu(rxd[0]) & MT_RXD0_NORMAL_GROUP_4)) return -EINVAL; if (!msta || !msta->vif) return -EINVAL; sta = container_of((void *)msta, struct ieee80211_sta, drv_priv); vif = container_of((void *)msta->vif, struct ieee80211_vif, drv_priv); /* store the info from RXD and ethhdr to avoid being overridden */ frame_control = le32_get_bits(rxd[4], MT_RXD4_FRAME_CONTROL); hdr.frame_control = cpu_to_le16(frame_control); hdr.seq_ctrl = cpu_to_le16(le32_get_bits(rxd[6], MT_RXD6_SEQ_CTRL)); hdr.duration_id = 0; ether_addr_copy(hdr.addr1, vif->addr); ether_addr_copy(hdr.addr2, sta->addr); switch (frame_control & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { case 0: ether_addr_copy(hdr.addr3, vif->bss_conf.bssid); break; case IEEE80211_FCTL_FROMDS: ether_addr_copy(hdr.addr3, eth_hdr->h_source); break; case IEEE80211_FCTL_TODS: ether_addr_copy(hdr.addr3, eth_hdr->h_dest); break; case IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS: ether_addr_copy(hdr.addr3, eth_hdr->h_dest); ether_addr_copy(hdr.addr4, eth_hdr->h_source); break; default: break; } skb_pull(skb, hdr_gap + sizeof(struct ethhdr) - 2); if (eth_hdr->h_proto == cpu_to_be16(ETH_P_AARP) || eth_hdr->h_proto == cpu_to_be16(ETH_P_IPX)) ether_addr_copy(skb_push(skb, ETH_ALEN), bridge_tunnel_header); else if (be16_to_cpu(eth_hdr->h_proto) >= ETH_P_802_3_MIN) ether_addr_copy(skb_push(skb, ETH_ALEN), rfc1042_header); else skb_pull(skb, 2); if (ieee80211_has_order(hdr.frame_control)) memcpy(skb_push(skb, IEEE80211_HT_CTL_LEN), &rxd[7], IEEE80211_HT_CTL_LEN); if (ieee80211_is_data_qos(hdr.frame_control)) { __le16 qos_ctrl; qos_ctrl = cpu_to_le16(le32_get_bits(rxd[6], MT_RXD6_QOS_CTL)); memcpy(skb_push(skb, IEEE80211_QOS_CTL_LEN), &qos_ctrl, IEEE80211_QOS_CTL_LEN); } if (ieee80211_has_a4(hdr.frame_control)) memcpy(skb_push(skb, sizeof(hdr)), &hdr, sizeof(hdr)); else memcpy(skb_push(skb, sizeof(hdr) - 6), &hdr, sizeof(hdr) - 6); status->flag &= ~(RX_FLAG_RADIOTAP_HE | RX_FLAG_RADIOTAP_HE_MU); return 0; } static int mt7615_mac_fill_rx(struct mt7615_dev *dev, struct sk_buff *skb) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; struct mt76_phy *mphy = &dev->mt76.phy; struct mt7615_phy *phy = &dev->phy; struct ieee80211_supported_band *sband; struct ieee80211_hdr *hdr; struct mt7615_phy *phy2; __le32 *rxd = (__le32 *)skb->data; u32 rxd0 = le32_to_cpu(rxd[0]); u32 rxd1 = le32_to_cpu(rxd[1]); u32 rxd2 = le32_to_cpu(rxd[2]); u32 csum_mask = MT_RXD0_NORMAL_IP_SUM | MT_RXD0_NORMAL_UDP_TCP_SUM; u32 csum_status = *(u32 *)skb->cb; bool unicast, hdr_trans, remove_pad, insert_ccmp_hdr = false; u16 hdr_gap; int phy_idx; int i, idx; u8 chfreq, amsdu_info, qos_ctl = 0; u16 seq_ctrl = 0; __le16 fc = 0; memset(status, 0, sizeof(*status)); chfreq = FIELD_GET(MT_RXD1_NORMAL_CH_FREQ, rxd1); phy2 = dev->mt76.phys[MT_BAND1] ? dev->mt76.phys[MT_BAND1]->priv : NULL; if (!phy2) phy_idx = 0; else if (phy2->chfreq == phy->chfreq) phy_idx = -1; else if (phy->chfreq == chfreq) phy_idx = 0; else if (phy2->chfreq == chfreq) phy_idx = 1; else phy_idx = -1; if (rxd2 & MT_RXD2_NORMAL_AMSDU_ERR) return -EINVAL; hdr_trans = rxd1 & MT_RXD1_NORMAL_HDR_TRANS; if (hdr_trans && (rxd2 & MT_RXD2_NORMAL_CM)) return -EINVAL; /* ICV error or CCMP/BIP/WPI MIC error */ if (rxd2 & MT_RXD2_NORMAL_ICV_ERR) status->flag |= RX_FLAG_ONLY_MONITOR; unicast = (rxd1 & MT_RXD1_NORMAL_ADDR_TYPE) == MT_RXD1_NORMAL_U2M; idx = FIELD_GET(MT_RXD2_NORMAL_WLAN_IDX, rxd2); status->wcid = mt7615_rx_get_wcid(dev, idx, unicast); if (status->wcid) { struct mt7615_sta *msta; msta = container_of(status->wcid, struct mt7615_sta, wcid); spin_lock_bh(&dev->sta_poll_lock); if (list_empty(&msta->poll_list)) list_add_tail(&msta->poll_list, &dev->sta_poll_list); spin_unlock_bh(&dev->sta_poll_lock); } if (mt76_is_mmio(&dev->mt76) && (rxd0 & csum_mask) == csum_mask && !(csum_status & (BIT(0) | BIT(2) | BIT(3)))) skb->ip_summed = CHECKSUM_UNNECESSARY; if (rxd2 & MT_RXD2_NORMAL_FCS_ERR) status->flag |= RX_FLAG_FAILED_FCS_CRC; if (rxd2 & MT_RXD2_NORMAL_TKIP_MIC_ERR) status->flag |= RX_FLAG_MMIC_ERROR; if (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2) != 0 && !(rxd2 & (MT_RXD2_NORMAL_CLM | MT_RXD2_NORMAL_CM))) { status->flag |= RX_FLAG_DECRYPTED; status->flag |= RX_FLAG_IV_STRIPPED; status->flag |= RX_FLAG_MMIC_STRIPPED | RX_FLAG_MIC_STRIPPED; } remove_pad = rxd1 & MT_RXD1_NORMAL_HDR_OFFSET; if (rxd2 & MT_RXD2_NORMAL_MAX_LEN_ERROR) return -EINVAL; rxd += 4; if (rxd0 & MT_RXD0_NORMAL_GROUP_4) { u32 v0 = le32_to_cpu(rxd[0]); u32 v2 = le32_to_cpu(rxd[2]); fc = cpu_to_le16(FIELD_GET(MT_RXD4_FRAME_CONTROL, v0)); qos_ctl = FIELD_GET(MT_RXD6_QOS_CTL, v2); seq_ctrl = FIELD_GET(MT_RXD6_SEQ_CTRL, v2); rxd += 4; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (rxd0 & MT_RXD0_NORMAL_GROUP_1) { u8 *data = (u8 *)rxd; if (status->flag & RX_FLAG_DECRYPTED) { switch (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2)) { case MT_CIPHER_AES_CCMP: case MT_CIPHER_CCMP_CCX: case MT_CIPHER_CCMP_256: insert_ccmp_hdr = FIELD_GET(MT_RXD2_NORMAL_FRAG, rxd2); fallthrough; case MT_CIPHER_TKIP: case MT_CIPHER_TKIP_NO_MIC: case MT_CIPHER_GCMP: case MT_CIPHER_GCMP_256: status->iv[0] = data[5]; status->iv[1] = data[4]; status->iv[2] = data[3]; status->iv[3] = data[2]; status->iv[4] = data[1]; status->iv[5] = data[0]; break; default: break; } } rxd += 4; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (rxd0 & MT_RXD0_NORMAL_GROUP_2) { status->timestamp = le32_to_cpu(rxd[0]); status->flag |= RX_FLAG_MACTIME_START; if (!(rxd2 & (MT_RXD2_NORMAL_NON_AMPDU_SUB | MT_RXD2_NORMAL_NON_AMPDU))) { status->flag |= RX_FLAG_AMPDU_DETAILS; /* all subframes of an A-MPDU have the same timestamp */ if (phy->rx_ampdu_ts != status->timestamp) { if (!++phy->ampdu_ref) phy->ampdu_ref++; } phy->rx_ampdu_ts = status->timestamp; status->ampdu_ref = phy->ampdu_ref; } rxd += 2; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } if (rxd0 & MT_RXD0_NORMAL_GROUP_3) { u32 rxdg5 = le32_to_cpu(rxd[5]); /* * If both PHYs are on the same channel and we don't have a WCID, * we need to figure out which PHY this packet was received on. * On the primary PHY, the noise value for the chains belonging to the * second PHY will be set to the noise value of the last packet from * that PHY. */ if (phy_idx < 0) { int first_chain = ffs(phy2->mt76->chainmask) - 1; phy_idx = ((rxdg5 >> (first_chain * 8)) & 0xff) == 0; } } if (phy_idx == 1 && phy2) { mphy = dev->mt76.phys[MT_BAND1]; phy = phy2; status->phy_idx = phy_idx; } if (!mt7615_firmware_offload(dev) && chfreq != phy->chfreq) return -EINVAL; mt7615_get_status_freq_info(dev, mphy, status, chfreq); if (status->band == NL80211_BAND_5GHZ) sband = &mphy->sband_5g.sband; else sband = &mphy->sband_2g.sband; if (!test_bit(MT76_STATE_RUNNING, &mphy->state)) return -EINVAL; if (!sband->channels) return -EINVAL; if (rxd0 & MT_RXD0_NORMAL_GROUP_3) { u32 rxdg0 = le32_to_cpu(rxd[0]); u32 rxdg1 = le32_to_cpu(rxd[1]); u32 rxdg3 = le32_to_cpu(rxd[3]); u8 stbc = FIELD_GET(MT_RXV1_HT_STBC, rxdg0); bool cck = false; i = FIELD_GET(MT_RXV1_TX_RATE, rxdg0); switch (FIELD_GET(MT_RXV1_TX_MODE, rxdg0)) { case MT_PHY_TYPE_CCK: cck = true; fallthrough; case MT_PHY_TYPE_OFDM: i = mt76_get_rate(&dev->mt76, sband, i, cck); break; case MT_PHY_TYPE_HT_GF: case MT_PHY_TYPE_HT: status->encoding = RX_ENC_HT; if (i > 31) return -EINVAL; break; case MT_PHY_TYPE_VHT: status->nss = FIELD_GET(MT_RXV2_NSTS, rxdg1) + 1; status->encoding = RX_ENC_VHT; break; default: return -EINVAL; } status->rate_idx = i; switch (FIELD_GET(MT_RXV1_FRAME_MODE, rxdg0)) { case MT_PHY_BW_20: break; case MT_PHY_BW_40: status->bw = RATE_INFO_BW_40; break; case MT_PHY_BW_80: status->bw = RATE_INFO_BW_80; break; case MT_PHY_BW_160: status->bw = RATE_INFO_BW_160; break; default: return -EINVAL; } if (rxdg0 & MT_RXV1_HT_SHORT_GI) status->enc_flags |= RX_ENC_FLAG_SHORT_GI; if (rxdg0 & MT_RXV1_HT_AD_CODE) status->enc_flags |= RX_ENC_FLAG_LDPC; status->enc_flags |= RX_ENC_FLAG_STBC_MASK * stbc; status->chains = mphy->antenna_mask; status->chain_signal[0] = to_rssi(MT_RXV4_RCPI0, rxdg3); status->chain_signal[1] = to_rssi(MT_RXV4_RCPI1, rxdg3); status->chain_signal[2] = to_rssi(MT_RXV4_RCPI2, rxdg3); status->chain_signal[3] = to_rssi(MT_RXV4_RCPI3, rxdg3); mt7615_mac_fill_tm_rx(mphy->priv, rxd); rxd += 6; if ((u8 *)rxd - skb->data >= skb->len) return -EINVAL; } amsdu_info = FIELD_GET(MT_RXD1_NORMAL_PAYLOAD_FORMAT, rxd1); status->amsdu = !!amsdu_info; if (status->amsdu) { status->first_amsdu = amsdu_info == MT_RXD1_FIRST_AMSDU_FRAME; status->last_amsdu = amsdu_info == MT_RXD1_LAST_AMSDU_FRAME; } hdr_gap = (u8 *)rxd - skb->data + 2 * remove_pad; if (hdr_trans && ieee80211_has_morefrags(fc)) { if (mt7615_reverse_frag0_hdr_trans(skb, hdr_gap)) return -EINVAL; hdr_trans = false; } else { int pad_start = 0; skb_pull(skb, hdr_gap); if (!hdr_trans && status->amsdu) { pad_start = ieee80211_get_hdrlen_from_skb(skb); } else if (hdr_trans && (rxd2 & MT_RXD2_NORMAL_HDR_TRANS_ERROR)) { /* * When header translation failure is indicated, * the hardware will insert an extra 2-byte field * containing the data length after the protocol * type field. This happens either when the LLC-SNAP * pattern did not match, or if a VLAN header was * detected. */ pad_start = 12; if (get_unaligned_be16(skb->data + pad_start) == ETH_P_8021Q) pad_start += 4; else pad_start = 0; } if (pad_start) { memmove(skb->data + 2, skb->data, pad_start); skb_pull(skb, 2); } } if (insert_ccmp_hdr && !hdr_trans) { u8 key_id = FIELD_GET(MT_RXD1_NORMAL_KEY_ID, rxd1); mt76_insert_ccmp_hdr(skb, key_id); } if (!hdr_trans) { hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; if (ieee80211_is_data_qos(fc)) { seq_ctrl = le16_to_cpu(hdr->seq_ctrl); qos_ctl = *ieee80211_get_qos_ctl(hdr); } } else { status->flag |= RX_FLAG_8023; } if (!status->wcid || !ieee80211_is_data_qos(fc)) return 0; status->aggr = unicast && !ieee80211_is_qos_nullfunc(fc); status->qos_ctl = qos_ctl; status->seqno = IEEE80211_SEQ_TO_SN(seq_ctrl); return 0; } void mt7615_sta_ps(struct mt76_dev *mdev, struct ieee80211_sta *sta, bool ps) { } EXPORT_SYMBOL_GPL(mt7615_sta_ps); static u16 mt7615_mac_tx_rate_val(struct mt7615_dev *dev, struct mt76_phy *mphy, const struct ieee80211_tx_rate *rate, bool stbc, u8 *bw) { u8 phy, nss, rate_idx; u16 rateval = 0; *bw = 0; if (rate->flags & IEEE80211_TX_RC_VHT_MCS) { rate_idx = ieee80211_rate_get_vht_mcs(rate); nss = ieee80211_rate_get_vht_nss(rate); phy = MT_PHY_TYPE_VHT; if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) *bw = 1; else if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH) *bw = 2; else if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH) *bw = 3; } else if (rate->flags & IEEE80211_TX_RC_MCS) { rate_idx = rate->idx; nss = 1 + (rate->idx >> 3); phy = MT_PHY_TYPE_HT; if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD) phy = MT_PHY_TYPE_HT_GF; if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) *bw = 1; } else { const struct ieee80211_rate *r; int band = mphy->chandef.chan->band; u16 val; nss = 1; r = &mphy->hw->wiphy->bands[band]->bitrates[rate->idx]; if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) val = r->hw_value_short; else val = r->hw_value; phy = val >> 8; rate_idx = val & 0xff; } if (stbc && nss == 1) { nss++; rateval |= MT_TX_RATE_STBC; } rateval |= (FIELD_PREP(MT_TX_RATE_IDX, rate_idx) | FIELD_PREP(MT_TX_RATE_MODE, phy) | FIELD_PREP(MT_TX_RATE_NSS, nss - 1)); return rateval; } int mt7615_mac_write_txwi(struct mt7615_dev *dev, __le32 *txwi, struct sk_buff *skb, struct mt76_wcid *wcid, struct ieee80211_sta *sta, int pid, struct ieee80211_key_conf *key, enum mt76_txq_id qid, bool beacon) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; u8 fc_type, fc_stype, p_fmt, q_idx, omac_idx = 0, wmm_idx = 0; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_tx_rate *rate = &info->control.rates[0]; u8 phy_idx = (info->hw_queue & MT_TX_HW_QUEUE_PHY) >> 2; bool multicast = is_multicast_ether_addr(hdr->addr1); struct ieee80211_vif *vif = info->control.vif; bool is_mmio = mt76_is_mmio(&dev->mt76); u32 val, sz_txd = is_mmio ? MT_TXD_SIZE : MT_USB_TXD_SIZE; struct mt76_phy *mphy = &dev->mphy; __le16 fc = hdr->frame_control; int tx_count = 8; u16 seqno = 0; if (vif) { struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv; omac_idx = mvif->omac_idx; wmm_idx = mvif->wmm_idx; } if (sta) { struct mt7615_sta *msta = (struct mt7615_sta *)sta->drv_priv; tx_count = msta->rate_count; } if (phy_idx && dev->mt76.phys[MT_BAND1]) mphy = dev->mt76.phys[MT_BAND1]; fc_type = (le16_to_cpu(fc) & IEEE80211_FCTL_FTYPE) >> 2; fc_stype = (le16_to_cpu(fc) & IEEE80211_FCTL_STYPE) >> 4; if (beacon) { p_fmt = MT_TX_TYPE_FW; q_idx = phy_idx ? MT_LMAC_BCN1 : MT_LMAC_BCN0; } else if (qid >= MT_TXQ_PSD) { p_fmt = is_mmio ? MT_TX_TYPE_CT : MT_TX_TYPE_SF; q_idx = phy_idx ? MT_LMAC_ALTX1 : MT_LMAC_ALTX0; } else { p_fmt = is_mmio ? MT_TX_TYPE_CT : MT_TX_TYPE_SF; q_idx = wmm_idx * MT7615_MAX_WMM_SETS + mt7615_lmac_mapping(dev, skb_get_queue_mapping(skb)); } val = FIELD_PREP(MT_TXD0_TX_BYTES, skb->len + sz_txd) | FIELD_PREP(MT_TXD0_P_IDX, MT_TX_PORT_IDX_LMAC) | FIELD_PREP(MT_TXD0_Q_IDX, q_idx); txwi[0] = cpu_to_le32(val); val = MT_TXD1_LONG_FORMAT | FIELD_PREP(MT_TXD1_WLAN_IDX, wcid->idx) | FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_802_11) | FIELD_PREP(MT_TXD1_HDR_INFO, ieee80211_get_hdrlen_from_skb(skb) / 2) | FIELD_PREP(MT_TXD1_TID, skb->priority & IEEE80211_QOS_CTL_TID_MASK) | FIELD_PREP(MT_TXD1_PKT_FMT, p_fmt) | FIELD_PREP(MT_TXD1_OWN_MAC, omac_idx); txwi[1] = cpu_to_le32(val); val = FIELD_PREP(MT_TXD2_FRAME_TYPE, fc_type) | FIELD_PREP(MT_TXD2_SUB_TYPE, fc_stype) | FIELD_PREP(MT_TXD2_MULTICAST, multicast); if (key) { if (multicast && ieee80211_is_robust_mgmt_frame(skb) && key->cipher == WLAN_CIPHER_SUITE_AES_CMAC) { val |= MT_TXD2_BIP; txwi[3] = 0; } else { txwi[3] = cpu_to_le32(MT_TXD3_PROTECT_FRAME); } } else { txwi[3] = 0; } txwi[2] = cpu_to_le32(val); if (!(info->flags & IEEE80211_TX_CTL_AMPDU)) txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE); txwi[4] = 0; txwi[6] = 0; if (rate->idx >= 0 && rate->count && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) { bool stbc = info->flags & IEEE80211_TX_CTL_STBC; u8 bw; u16 rateval = mt7615_mac_tx_rate_val(dev, mphy, rate, stbc, &bw); txwi[2] |= cpu_to_le32(MT_TXD2_FIX_RATE); val = MT_TXD6_FIXED_BW | FIELD_PREP(MT_TXD6_BW, bw) | FIELD_PREP(MT_TXD6_TX_RATE, rateval); txwi[6] |= cpu_to_le32(val); if (rate->flags & IEEE80211_TX_RC_SHORT_GI) txwi[6] |= cpu_to_le32(MT_TXD6_SGI); if (info->flags & IEEE80211_TX_CTL_LDPC) txwi[6] |= cpu_to_le32(MT_TXD6_LDPC); if (!(rate->flags & (IEEE80211_TX_RC_MCS | IEEE80211_TX_RC_VHT_MCS))) txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE); tx_count = rate->count; } if (!ieee80211_is_beacon(fc)) { struct ieee80211_hw *hw = mt76_hw(dev); val = MT_TXD5_TX_STATUS_HOST | FIELD_PREP(MT_TXD5_PID, pid); if (!ieee80211_hw_check(hw, SUPPORTS_PS)) val |= MT_TXD5_SW_POWER_MGMT; txwi[5] = cpu_to_le32(val); } else { txwi[5] = 0; /* use maximum tx count for beacons */ tx_count = 0x1f; } val = FIELD_PREP(MT_TXD3_REM_TX_COUNT, tx_count); if (info->flags & IEEE80211_TX_CTL_INJECTED) { seqno = le16_to_cpu(hdr->seq_ctrl); if (ieee80211_is_back_req(hdr->frame_control)) { struct ieee80211_bar *bar; bar = (struct ieee80211_bar *)skb->data; seqno = le16_to_cpu(bar->start_seq_num); } val |= MT_TXD3_SN_VALID | FIELD_PREP(MT_TXD3_SEQ, IEEE80211_SEQ_TO_SN(seqno)); } txwi[3] |= cpu_to_le32(val); if (info->flags & IEEE80211_TX_CTL_NO_ACK) txwi[3] |= cpu_to_le32(MT_TXD3_NO_ACK); val = FIELD_PREP(MT_TXD7_TYPE, fc_type) | FIELD_PREP(MT_TXD7_SUB_TYPE, fc_stype) | FIELD_PREP(MT_TXD7_SPE_IDX, 0x18); txwi[7] = cpu_to_le32(val); if (!is_mmio) { val = FIELD_PREP(MT_TXD8_L_TYPE, fc_type) | FIELD_PREP(MT_TXD8_L_SUB_TYPE, fc_stype); txwi[8] = cpu_to_le32(val); } return 0; } EXPORT_SYMBOL_GPL(mt7615_mac_write_txwi); bool mt7615_mac_wtbl_update(struct mt7615_dev *dev, int idx, u32 mask) { mt76_rmw(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_WLAN_IDX, FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, idx) | mask); return mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); } void mt7615_mac_sta_poll(struct mt7615_dev *dev) { static const u8 ac_to_tid[4] = { [IEEE80211_AC_BE] = 0, [IEEE80211_AC_BK] = 1, [IEEE80211_AC_VI] = 4, [IEEE80211_AC_VO] = 6 }; static const u8 hw_queue_map[] = { [IEEE80211_AC_BK] = 0, [IEEE80211_AC_BE] = 1, [IEEE80211_AC_VI] = 2, [IEEE80211_AC_VO] = 3, }; struct ieee80211_sta *sta; struct mt7615_sta *msta; u32 addr, tx_time[4], rx_time[4]; struct list_head sta_poll_list; int i; INIT_LIST_HEAD(&sta_poll_list); spin_lock_bh(&dev->sta_poll_lock); list_splice_init(&dev->sta_poll_list, &sta_poll_list); spin_unlock_bh(&dev->sta_poll_lock); while (!list_empty(&sta_poll_list)) { bool clear = false; msta = list_first_entry(&sta_poll_list, struct mt7615_sta, poll_list); list_del_init(&msta->poll_list); addr = mt7615_mac_wtbl_addr(dev, msta->wcid.idx) + 19 * 4; for (i = 0; i < 4; i++, addr += 8) { u32 tx_last = msta->airtime_ac[i]; u32 rx_last = msta->airtime_ac[i + 4]; msta->airtime_ac[i] = mt76_rr(dev, addr); msta->airtime_ac[i + 4] = mt76_rr(dev, addr + 4); tx_time[i] = msta->airtime_ac[i] - tx_last; rx_time[i] = msta->airtime_ac[i + 4] - rx_last; if ((tx_last | rx_last) & BIT(30)) clear = true; } if (clear) { mt7615_mac_wtbl_update(dev, msta->wcid.idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); memset(msta->airtime_ac, 0, sizeof(msta->airtime_ac)); } if (!msta->wcid.sta) continue; sta = container_of((void *)msta, struct ieee80211_sta, drv_priv); for (i = 0; i < 4; i++) { u32 tx_cur = tx_time[i]; u32 rx_cur = rx_time[hw_queue_map[i]]; u8 tid = ac_to_tid[i]; if (!tx_cur && !rx_cur) continue; ieee80211_sta_register_airtime(sta, tid, tx_cur, rx_cur); } } } EXPORT_SYMBOL_GPL(mt7615_mac_sta_poll); static void mt7615_mac_update_rate_desc(struct mt7615_phy *phy, struct mt7615_sta *sta, struct ieee80211_tx_rate *probe_rate, struct ieee80211_tx_rate *rates, struct mt7615_rate_desc *rd) { struct mt7615_dev *dev = phy->dev; struct mt76_phy *mphy = phy->mt76; struct ieee80211_tx_rate *ref; bool rateset, stbc = false; int n_rates = sta->n_rates; u8 bw, bw_prev; int i, j; for (i = n_rates; i < 4; i++) rates[i] = rates[n_rates - 1]; rateset = !(sta->rate_set_tsf & BIT(0)); memcpy(sta->rateset[rateset].rates, rates, sizeof(sta->rateset[rateset].rates)); if (probe_rate) { sta->rateset[rateset].probe_rate = *probe_rate; ref = &sta->rateset[rateset].probe_rate; } else { sta->rateset[rateset].probe_rate.idx = -1; ref = &sta->rateset[rateset].rates[0]; } rates = sta->rateset[rateset].rates; for (i = 0; i < ARRAY_SIZE(sta->rateset[rateset].rates); i++) { /* * We don't support switching between short and long GI * within the rate set. For accurate tx status reporting, we * need to make sure that flags match. * For improved performance, avoid duplicate entries by * decrementing the MCS index if necessary */ if ((ref->flags ^ rates[i].flags) & IEEE80211_TX_RC_SHORT_GI) rates[i].flags ^= IEEE80211_TX_RC_SHORT_GI; for (j = 0; j < i; j++) { if (rates[i].idx != rates[j].idx) continue; if ((rates[i].flags ^ rates[j].flags) & (IEEE80211_TX_RC_40_MHZ_WIDTH | IEEE80211_TX_RC_80_MHZ_WIDTH | IEEE80211_TX_RC_160_MHZ_WIDTH)) continue; if (!rates[i].idx) continue; rates[i].idx--; } } rd->val[0] = mt7615_mac_tx_rate_val(dev, mphy, &rates[0], stbc, &bw); bw_prev = bw; if (probe_rate) { rd->probe_val = mt7615_mac_tx_rate_val(dev, mphy, probe_rate, stbc, &bw); if (bw) rd->bw_idx = 1; else bw_prev = 0; } else { rd->probe_val = rd->val[0]; } rd->val[1] = mt7615_mac_tx_rate_val(dev, mphy, &rates[1], stbc, &bw); if (bw_prev) { rd->bw_idx = 3; bw_prev = bw; } rd->val[2] = mt7615_mac_tx_rate_val(dev, mphy, &rates[2], stbc, &bw); if (bw_prev) { rd->bw_idx = 5; bw_prev = bw; } rd->val[3] = mt7615_mac_tx_rate_val(dev, mphy, &rates[3], stbc, &bw); if (bw_prev) rd->bw_idx = 7; rd->rateset = rateset; rd->bw = bw; } static int mt7615_mac_queue_rate_update(struct mt7615_phy *phy, struct mt7615_sta *sta, struct ieee80211_tx_rate *probe_rate, struct ieee80211_tx_rate *rates) { struct mt7615_dev *dev = phy->dev; struct mt7615_wtbl_rate_desc *wrd; if (work_pending(&dev->rate_work)) return -EBUSY; wrd = kzalloc(sizeof(*wrd), GFP_ATOMIC); if (!wrd) return -ENOMEM; wrd->sta = sta; mt7615_mac_update_rate_desc(phy, sta, probe_rate, rates, &wrd->rate); list_add_tail(&wrd->node, &dev->wrd_head); queue_work(dev->mt76.wq, &dev->rate_work); return 0; } u32 mt7615_mac_get_sta_tid_sn(struct mt7615_dev *dev, int wcid, u8 tid) { u32 addr, val, val2; u8 offset; addr = mt7615_mac_wtbl_addr(dev, wcid) + 11 * 4; offset = tid * 12; addr += 4 * (offset / 32); offset %= 32; val = mt76_rr(dev, addr); val >>= offset; if (offset > 20) { addr += 4; val2 = mt76_rr(dev, addr); val |= val2 << (32 - offset); } return val & GENMASK(11, 0); } void mt7615_mac_set_rates(struct mt7615_phy *phy, struct mt7615_sta *sta, struct ieee80211_tx_rate *probe_rate, struct ieee80211_tx_rate *rates) { int wcid = sta->wcid.idx, n_rates = sta->n_rates; struct mt7615_dev *dev = phy->dev; struct mt7615_rate_desc rd; u32 w5, w27, addr; u16 idx = sta->vif->mt76.omac_idx; if (!mt76_is_mmio(&dev->mt76)) { mt7615_mac_queue_rate_update(phy, sta, probe_rate, rates); return; } if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000)) return; memset(&rd, 0, sizeof(struct mt7615_rate_desc)); mt7615_mac_update_rate_desc(phy, sta, probe_rate, rates, &rd); addr = mt7615_mac_wtbl_addr(dev, wcid); w27 = mt76_rr(dev, addr + 27 * 4); w27 &= ~MT_WTBL_W27_CC_BW_SEL; w27 |= FIELD_PREP(MT_WTBL_W27_CC_BW_SEL, rd.bw); w5 = mt76_rr(dev, addr + 5 * 4); w5 &= ~(MT_WTBL_W5_BW_CAP | MT_WTBL_W5_CHANGE_BW_RATE | MT_WTBL_W5_MPDU_OK_COUNT | MT_WTBL_W5_MPDU_FAIL_COUNT | MT_WTBL_W5_RATE_IDX); w5 |= FIELD_PREP(MT_WTBL_W5_BW_CAP, rd.bw) | FIELD_PREP(MT_WTBL_W5_CHANGE_BW_RATE, rd.bw_idx ? rd.bw_idx - 1 : 7); mt76_wr(dev, MT_WTBL_RIUCR0, w5); mt76_wr(dev, MT_WTBL_RIUCR1, FIELD_PREP(MT_WTBL_RIUCR1_RATE0, rd.probe_val) | FIELD_PREP(MT_WTBL_RIUCR1_RATE1, rd.val[0]) | FIELD_PREP(MT_WTBL_RIUCR1_RATE2_LO, rd.val[1])); mt76_wr(dev, MT_WTBL_RIUCR2, FIELD_PREP(MT_WTBL_RIUCR2_RATE2_HI, rd.val[1] >> 8) | FIELD_PREP(MT_WTBL_RIUCR2_RATE3, rd.val[1]) | FIELD_PREP(MT_WTBL_RIUCR2_RATE4, rd.val[2]) | FIELD_PREP(MT_WTBL_RIUCR2_RATE5_LO, rd.val[2])); mt76_wr(dev, MT_WTBL_RIUCR3, FIELD_PREP(MT_WTBL_RIUCR3_RATE5_HI, rd.val[2] >> 4) | FIELD_PREP(MT_WTBL_RIUCR3_RATE6, rd.val[3]) | FIELD_PREP(MT_WTBL_RIUCR3_RATE7, rd.val[3])); mt76_wr(dev, MT_WTBL_UPDATE, FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, wcid) | MT_WTBL_UPDATE_RATE_UPDATE | MT_WTBL_UPDATE_TX_COUNT_CLEAR); mt76_wr(dev, addr + 27 * 4, w27); idx = idx > HW_BSSID_MAX ? HW_BSSID_0 : idx; addr = idx > 1 ? MT_LPON_TCR2(idx): MT_LPON_TCR0(idx); mt76_rmw(dev, addr, MT_LPON_TCR_MODE, MT_LPON_TCR_READ); /* TSF read */ sta->rate_set_tsf = mt76_rr(dev, MT_LPON_UTTR0) & ~BIT(0); sta->rate_set_tsf |= rd.rateset; if (!(sta->wcid.tx_info & MT_WCID_TX_INFO_SET)) mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); sta->rate_count = 2 * MT7615_RATE_RETRY * n_rates; sta->wcid.tx_info |= MT_WCID_TX_INFO_SET; sta->rate_probe = !!probe_rate; } EXPORT_SYMBOL_GPL(mt7615_mac_set_rates); void mt7615_mac_enable_rtscts(struct mt7615_dev *dev, struct ieee80211_vif *vif, bool enable) { struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv; u32 addr; addr = mt7615_mac_wtbl_addr(dev, mvif->sta.wcid.idx) + 3 * 4; if (enable) mt76_set(dev, addr, MT_WTBL_W3_RTS); else mt76_clear(dev, addr, MT_WTBL_W3_RTS); } EXPORT_SYMBOL_GPL(mt7615_mac_enable_rtscts); static int mt7615_mac_wtbl_update_key(struct mt7615_dev *dev, struct mt76_wcid *wcid, struct ieee80211_key_conf *key, enum mt76_cipher_type cipher, u16 cipher_mask) { u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx) + 30 * 4; u8 data[32] = {}; if (key->keylen > sizeof(data)) return -EINVAL; mt76_rr_copy(dev, addr, data, sizeof(data)); if (cipher == MT_CIPHER_TKIP) { /* Rx/Tx MIC keys are swapped */ memcpy(data, key->key, 16); memcpy(data + 16, key->key + 24, 8); memcpy(data + 24, key->key + 16, 8); } else { if (cipher_mask == BIT(cipher)) memcpy(data, key->key, key->keylen); else if (cipher != MT_CIPHER_BIP_CMAC_128) memcpy(data, key->key, 16); if (cipher == MT_CIPHER_BIP_CMAC_128) memcpy(data + 16, key->key, 16); } mt76_wr_copy(dev, addr, data, sizeof(data)); return 0; } static int mt7615_mac_wtbl_update_pk(struct mt7615_dev *dev, struct mt76_wcid *wcid, enum mt76_cipher_type cipher, u16 cipher_mask, int keyidx) { u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx), w0, w1; if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000)) return -ETIMEDOUT; w0 = mt76_rr(dev, addr); w1 = mt76_rr(dev, addr + 4); if (cipher_mask) w0 |= MT_WTBL_W0_RX_KEY_VALID; else w0 &= ~(MT_WTBL_W0_RX_KEY_VALID | MT_WTBL_W0_KEY_IDX); if (cipher_mask & BIT(MT_CIPHER_BIP_CMAC_128)) w0 |= MT_WTBL_W0_RX_IK_VALID; else w0 &= ~MT_WTBL_W0_RX_IK_VALID; if (cipher != MT_CIPHER_BIP_CMAC_128 || cipher_mask == BIT(cipher)) { w0 &= ~MT_WTBL_W0_KEY_IDX; w0 |= FIELD_PREP(MT_WTBL_W0_KEY_IDX, keyidx); } mt76_wr(dev, MT_WTBL_RICR0, w0); mt76_wr(dev, MT_WTBL_RICR1, w1); if (!mt7615_mac_wtbl_update(dev, wcid->idx, MT_WTBL_UPDATE_RXINFO_UPDATE)) return -ETIMEDOUT; return 0; } static void mt7615_mac_wtbl_update_cipher(struct mt7615_dev *dev, struct mt76_wcid *wcid, enum mt76_cipher_type cipher, u16 cipher_mask) { u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx); if (cipher == MT_CIPHER_BIP_CMAC_128 && cipher_mask & ~BIT(MT_CIPHER_BIP_CMAC_128)) return; mt76_rmw(dev, addr + 2 * 4, MT_WTBL_W2_KEY_TYPE, FIELD_PREP(MT_WTBL_W2_KEY_TYPE, cipher)); } int __mt7615_mac_wtbl_set_key(struct mt7615_dev *dev, struct mt76_wcid *wcid, struct ieee80211_key_conf *key) { enum mt76_cipher_type cipher; u16 cipher_mask = wcid->cipher; int err; cipher = mt7615_mac_get_cipher(key->cipher); if (cipher == MT_CIPHER_NONE) return -EOPNOTSUPP; cipher_mask |= BIT(cipher); mt7615_mac_wtbl_update_cipher(dev, wcid, cipher, cipher_mask); err = mt7615_mac_wtbl_update_key(dev, wcid, key, cipher, cipher_mask); if (err < 0) return err; err = mt7615_mac_wtbl_update_pk(dev, wcid, cipher, cipher_mask, key->keyidx); if (err < 0) return err; wcid->cipher = cipher_mask; return 0; } int mt7615_mac_wtbl_set_key(struct mt7615_dev *dev, struct mt76_wcid *wcid, struct ieee80211_key_conf *key) { int err; spin_lock_bh(&dev->mt76.lock); err = __mt7615_mac_wtbl_set_key(dev, wcid, key); spin_unlock_bh(&dev->mt76.lock); return err; } static bool mt7615_fill_txs(struct mt7615_dev *dev, struct mt7615_sta *sta, struct ieee80211_tx_info *info, __le32 *txs_data) { struct ieee80211_supported_band *sband; struct mt7615_rate_set *rs; struct mt76_phy *mphy; int first_idx = 0, last_idx; int i, idx, count; bool fixed_rate, ack_timeout; bool ampdu, cck = false; bool rs_idx; u32 rate_set_tsf; u32 final_rate, final_rate_flags, final_nss, txs; txs = le32_to_cpu(txs_data[1]); ampdu = txs & MT_TXS1_AMPDU; txs = le32_to_cpu(txs_data[3]); count = FIELD_GET(MT_TXS3_TX_COUNT, txs); last_idx = FIELD_GET(MT_TXS3_LAST_TX_RATE, txs); txs = le32_to_cpu(txs_data[0]); fixed_rate = txs & MT_TXS0_FIXED_RATE; final_rate = FIELD_GET(MT_TXS0_TX_RATE, txs); ack_timeout = txs & MT_TXS0_ACK_TIMEOUT; if (!ampdu && (txs & MT_TXS0_RTS_TIMEOUT)) return false; if (txs & MT_TXS0_QUEUE_TIMEOUT) return false; if (!ack_timeout) info->flags |= IEEE80211_TX_STAT_ACK; info->status.ampdu_len = 1; info->status.ampdu_ack_len = !!(info->flags & IEEE80211_TX_STAT_ACK); if (ampdu || (info->flags & IEEE80211_TX_CTL_AMPDU)) info->flags |= IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_CTL_AMPDU; first_idx = max_t(int, 0, last_idx - (count - 1) / MT7615_RATE_RETRY); if (fixed_rate) { info->status.rates[0].count = count; i = 0; goto out; } rate_set_tsf = READ_ONCE(sta->rate_set_tsf); rs_idx = !((u32)(le32_get_bits(txs_data[4], MT_TXS4_F0_TIMESTAMP) - rate_set_tsf) < 1000000); rs_idx ^= rate_set_tsf & BIT(0); rs = &sta->rateset[rs_idx]; if (!first_idx && rs->probe_rate.idx >= 0) { info->status.rates[0] = rs->probe_rate; spin_lock_bh(&dev->mt76.lock); if (sta->rate_probe) { struct mt7615_phy *phy = &dev->phy; if (sta->wcid.phy_idx && dev->mt76.phys[MT_BAND1]) phy = dev->mt76.phys[MT_BAND1]->priv; mt7615_mac_set_rates(phy, sta, NULL, sta->rates); } spin_unlock_bh(&dev->mt76.lock); } else { info->status.rates[0] = rs->rates[first_idx / 2]; } info->status.rates[0].count = 0; for (i = 0, idx = first_idx; count && idx <= last_idx; idx++) { struct ieee80211_tx_rate *cur_rate; int cur_count; cur_rate = &rs->rates[idx / 2]; cur_count = min_t(int, MT7615_RATE_RETRY, count); count -= cur_count; if (idx && (cur_rate->idx != info->status.rates[i].idx || cur_rate->flags != info->status.rates[i].flags)) { i++; if (i == ARRAY_SIZE(info->status.rates)) { i--; break; } info->status.rates[i] = *cur_rate; info->status.rates[i].count = 0; } info->status.rates[i].count += cur_count; } out: final_rate_flags = info->status.rates[i].flags; switch (FIELD_GET(MT_TX_RATE_MODE, final_rate)) { case MT_PHY_TYPE_CCK: cck = true; fallthrough; case MT_PHY_TYPE_OFDM: mphy = &dev->mphy; if (sta->wcid.phy_idx && dev->mt76.phys[MT_BAND1]) mphy = dev->mt76.phys[MT_BAND1]; if (mphy->chandef.chan->band == NL80211_BAND_5GHZ) sband = &mphy->sband_5g.sband; else sband = &mphy->sband_2g.sband; final_rate &= MT_TX_RATE_IDX; final_rate = mt76_get_rate(&dev->mt76, sband, final_rate, cck); final_rate_flags = 0; break; case MT_PHY_TYPE_HT_GF: case MT_PHY_TYPE_HT: final_rate_flags |= IEEE80211_TX_RC_MCS; final_rate &= MT_TX_RATE_IDX; if (final_rate > 31) return false; break; case MT_PHY_TYPE_VHT: final_nss = FIELD_GET(MT_TX_RATE_NSS, final_rate); if ((final_rate & MT_TX_RATE_STBC) && final_nss) final_nss--; final_rate_flags |= IEEE80211_TX_RC_VHT_MCS; final_rate = (final_rate & MT_TX_RATE_IDX) | (final_nss << 4); break; default: return false; } info->status.rates[i].idx = final_rate; info->status.rates[i].flags = final_rate_flags; return true; } static bool mt7615_mac_add_txs_skb(struct mt7615_dev *dev, struct mt7615_sta *sta, int pid, __le32 *txs_data) { struct mt76_dev *mdev = &dev->mt76; struct sk_buff_head list; struct sk_buff *skb; if (pid < MT_PACKET_ID_FIRST) return false; trace_mac_txdone(mdev, sta->wcid.idx, pid); mt76_tx_status_lock(mdev, &list); skb = mt76_tx_status_skb_get(mdev, &sta->wcid, pid, &list); if (skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); if (!mt7615_fill_txs(dev, sta, info, txs_data)) { info->status.rates[0].count = 0; info->status.rates[0].idx = -1; } mt76_tx_status_skb_done(mdev, skb, &list); } mt76_tx_status_unlock(mdev, &list); return !!skb; } static void mt7615_mac_add_txs(struct mt7615_dev *dev, void *data) { struct ieee80211_tx_info info = {}; struct ieee80211_sta *sta = NULL; struct mt7615_sta *msta = NULL; struct mt76_wcid *wcid; struct mt76_phy *mphy = &dev->mt76.phy; __le32 *txs_data = data; u8 wcidx; u8 pid; pid = le32_get_bits(txs_data[0], MT_TXS0_PID); wcidx = le32_get_bits(txs_data[2], MT_TXS2_WCID); if (pid == MT_PACKET_ID_NO_ACK) return; if (wcidx >= MT7615_WTBL_SIZE) return; rcu_read_lock(); wcid = rcu_dereference(dev->mt76.wcid[wcidx]); if (!wcid) goto out; msta = container_of(wcid, struct mt7615_sta, wcid); sta = wcid_to_sta(wcid); spin_lock_bh(&dev->sta_poll_lock); if (list_empty(&msta->poll_list)) list_add_tail(&msta->poll_list, &dev->sta_poll_list); spin_unlock_bh(&dev->sta_poll_lock); if (mt7615_mac_add_txs_skb(dev, msta, pid, txs_data)) goto out; if (wcidx >= MT7615_WTBL_STA || !sta) goto out; if (wcid->phy_idx && dev->mt76.phys[MT_BAND1]) mphy = dev->mt76.phys[MT_BAND1]; if (mt7615_fill_txs(dev, msta, &info, txs_data)) ieee80211_tx_status_noskb(mphy->hw, sta, &info); out: rcu_read_unlock(); } static void mt7615_txwi_free(struct mt7615_dev *dev, struct mt76_txwi_cache *txwi) { struct mt76_dev *mdev = &dev->mt76; __le32 *txwi_data; u32 val; u8 wcid; mt76_connac_txp_skb_unmap(mdev, txwi); if (!txwi->skb) goto out; txwi_data = (__le32 *)mt76_get_txwi_ptr(mdev, txwi); val = le32_to_cpu(txwi_data[1]); wcid = FIELD_GET(MT_TXD1_WLAN_IDX, val); mt76_tx_complete_skb(mdev, wcid, txwi->skb); out: txwi->skb = NULL; mt76_put_txwi(mdev, txwi); } static void mt7615_mac_tx_free_token(struct mt7615_dev *dev, u16 token) { struct mt76_dev *mdev = &dev->mt76; struct mt76_txwi_cache *txwi; trace_mac_tx_free(dev, token); txwi = mt76_token_put(mdev, token); if (!txwi) return; mt7615_txwi_free(dev, txwi); } static void mt7615_mac_tx_free(struct mt7615_dev *dev, void *data, int len) { struct mt76_connac_tx_free *free = data; void *tx_token = data + sizeof(*free); void *end = data + len; u8 i, count; mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_PSD], false); if (is_mt7615(&dev->mt76)) { mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_BE], false); } else { for (i = 0; i < IEEE80211_NUM_ACS; i++) mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], false); } count = le16_get_bits(free->ctrl, MT_TX_FREE_MSDU_ID_CNT); if (is_mt7615(&dev->mt76)) { __le16 *token = tx_token; if (WARN_ON_ONCE((void *)&token[count] > end)) return; for (i = 0; i < count; i++) mt7615_mac_tx_free_token(dev, le16_to_cpu(token[i])); } else { __le32 *token = tx_token; if (WARN_ON_ONCE((void *)&token[count] > end)) return; for (i = 0; i < count; i++) mt7615_mac_tx_free_token(dev, le32_to_cpu(token[i])); } rcu_read_lock(); mt7615_mac_sta_poll(dev); rcu_read_unlock(); mt76_worker_schedule(&dev->mt76.tx_worker); } bool mt7615_rx_check(struct mt76_dev *mdev, void *data, int len) { struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); __le32 *rxd = (__le32 *)data; __le32 *end = (__le32 *)&rxd[len / 4]; enum rx_pkt_type type; type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE); switch (type) { case PKT_TYPE_TXRX_NOTIFY: mt7615_mac_tx_free(dev, data, len); return false; case PKT_TYPE_TXS: for (rxd++; rxd + 7 <= end; rxd += 7) mt7615_mac_add_txs(dev, rxd); return false; default: return true; } } EXPORT_SYMBOL_GPL(mt7615_rx_check); void mt7615_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q, struct sk_buff *skb, u32 *info) { struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76); __le32 *rxd = (__le32 *)skb->data; __le32 *end = (__le32 *)&skb->data[skb->len]; enum rx_pkt_type type; u16 flag; type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE); flag = le32_get_bits(rxd[0], MT_RXD0_PKT_FLAG); if (type == PKT_TYPE_RX_EVENT && flag == 0x1) type = PKT_TYPE_NORMAL_MCU; switch (type) { case PKT_TYPE_TXS: for (rxd++; rxd + 7 <= end; rxd += 7) mt7615_mac_add_txs(dev, rxd); dev_kfree_skb(skb); break; case PKT_TYPE_TXRX_NOTIFY: mt7615_mac_tx_free(dev, skb->data, skb->len); dev_kfree_skb(skb); break; case PKT_TYPE_RX_EVENT: mt7615_mcu_rx_event(dev, skb); break; case PKT_TYPE_NORMAL_MCU: case PKT_TYPE_NORMAL: if (!mt7615_mac_fill_rx(dev, skb)) { mt76_rx(&dev->mt76, q, skb); return; } fallthrough; default: dev_kfree_skb(skb); break; } } EXPORT_SYMBOL_GPL(mt7615_queue_rx_skb); static void mt7615_mac_set_sensitivity(struct mt7615_phy *phy, int val, bool ofdm) { struct mt7615_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; if (is_mt7663(&dev->mt76)) { if (ofdm) mt76_rmw(dev, MT7663_WF_PHY_MIN_PRI_PWR(ext_phy), MT_WF_PHY_PD_OFDM_MASK(0), MT_WF_PHY_PD_OFDM(0, val)); else mt76_rmw(dev, MT7663_WF_PHY_RXTD_CCK_PD(ext_phy), MT_WF_PHY_PD_CCK_MASK(ext_phy), MT_WF_PHY_PD_CCK(ext_phy, val)); return; } if (ofdm) mt76_rmw(dev, MT_WF_PHY_MIN_PRI_PWR(ext_phy), MT_WF_PHY_PD_OFDM_MASK(ext_phy), MT_WF_PHY_PD_OFDM(ext_phy, val)); else mt76_rmw(dev, MT_WF_PHY_RXTD_CCK_PD(ext_phy), MT_WF_PHY_PD_CCK_MASK(ext_phy), MT_WF_PHY_PD_CCK(ext_phy, val)); } static void mt7615_mac_set_default_sensitivity(struct mt7615_phy *phy) { /* ofdm */ mt7615_mac_set_sensitivity(phy, 0x13c, true); /* cck */ mt7615_mac_set_sensitivity(phy, 0x92, false); phy->ofdm_sensitivity = -98; phy->cck_sensitivity = -110; phy->last_cca_adj = jiffies; } void mt7615_mac_set_scs(struct mt7615_phy *phy, bool enable) { struct mt7615_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; u32 reg, mask; mt7615_mutex_acquire(dev); if (phy->scs_en == enable) goto out; if (is_mt7663(&dev->mt76)) { reg = MT7663_WF_PHY_MIN_PRI_PWR(ext_phy); mask = MT_WF_PHY_PD_BLK(0); } else { reg = MT_WF_PHY_MIN_PRI_PWR(ext_phy); mask = MT_WF_PHY_PD_BLK(ext_phy); } if (enable) { mt76_set(dev, reg, mask); if (is_mt7622(&dev->mt76)) { mt76_set(dev, MT_MIB_M0_MISC_CR(0), 0x7 << 8); mt76_set(dev, MT_MIB_M0_MISC_CR(0), 0x7); } } else { mt76_clear(dev, reg, mask); } mt7615_mac_set_default_sensitivity(phy); phy->scs_en = enable; out: mt7615_mutex_release(dev); } void mt7615_mac_enable_nf(struct mt7615_dev *dev, bool ext_phy) { u32 rxtd, reg; if (is_mt7663(&dev->mt76)) reg = MT7663_WF_PHY_R0_PHYMUX_5; else reg = MT_WF_PHY_R0_PHYMUX_5(ext_phy); if (ext_phy) rxtd = MT_WF_PHY_RXTD2(10); else rxtd = MT_WF_PHY_RXTD(12); mt76_set(dev, rxtd, BIT(18) | BIT(29)); mt76_set(dev, reg, 0x5 << 12); } void mt7615_mac_cca_stats_reset(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; u32 reg; if (is_mt7663(&dev->mt76)) reg = MT7663_WF_PHY_R0_PHYMUX_5; else reg = MT_WF_PHY_R0_PHYMUX_5(ext_phy); /* reset PD and MDRDY counters */ mt76_clear(dev, reg, GENMASK(22, 20)); mt76_set(dev, reg, BIT(22) | BIT(20)); } static void mt7615_mac_adjust_sensitivity(struct mt7615_phy *phy, u32 rts_err_rate, bool ofdm) { struct mt7615_dev *dev = phy->dev; int false_cca = ofdm ? phy->false_cca_ofdm : phy->false_cca_cck; bool ext_phy = phy != &dev->phy; s16 def_th = ofdm ? -98 : -110; bool update = false; s8 *sensitivity; int signal; sensitivity = ofdm ? &phy->ofdm_sensitivity : &phy->cck_sensitivity; signal = mt76_get_min_avg_rssi(&dev->mt76, ext_phy); if (!signal) { mt7615_mac_set_default_sensitivity(phy); return; } signal = min(signal, -72); if (false_cca > 500) { if (rts_err_rate > MT_FRAC(40, 100)) return; /* decrease coverage */ if (*sensitivity == def_th && signal > -90) { *sensitivity = -90; update = true; } else if (*sensitivity + 2 < signal) { *sensitivity += 2; update = true; } } else if ((false_cca > 0 && false_cca < 50) || rts_err_rate > MT_FRAC(60, 100)) { /* increase coverage */ if (*sensitivity - 2 >= def_th) { *sensitivity -= 2; update = true; } } if (*sensitivity > signal) { *sensitivity = signal; update = true; } if (update) { u16 val = ofdm ? *sensitivity * 2 + 512 : *sensitivity + 256; mt7615_mac_set_sensitivity(phy, val, ofdm); phy->last_cca_adj = jiffies; } } static void mt7615_mac_scs_check(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; struct mib_stats *mib = &phy->mib; u32 val, rts_err_rate = 0; u32 mdrdy_cck, mdrdy_ofdm, pd_cck, pd_ofdm; bool ext_phy = phy != &dev->phy; if (!phy->scs_en) return; if (is_mt7663(&dev->mt76)) val = mt76_rr(dev, MT7663_WF_PHY_R0_PHYCTRL_STS0(ext_phy)); else val = mt76_rr(dev, MT_WF_PHY_R0_PHYCTRL_STS0(ext_phy)); pd_cck = FIELD_GET(MT_WF_PHYCTRL_STAT_PD_CCK, val); pd_ofdm = FIELD_GET(MT_WF_PHYCTRL_STAT_PD_OFDM, val); if (is_mt7663(&dev->mt76)) val = mt76_rr(dev, MT7663_WF_PHY_R0_PHYCTRL_STS5(ext_phy)); else val = mt76_rr(dev, MT_WF_PHY_R0_PHYCTRL_STS5(ext_phy)); mdrdy_cck = FIELD_GET(MT_WF_PHYCTRL_STAT_MDRDY_CCK, val); mdrdy_ofdm = FIELD_GET(MT_WF_PHYCTRL_STAT_MDRDY_OFDM, val); phy->false_cca_ofdm = pd_ofdm - mdrdy_ofdm; phy->false_cca_cck = pd_cck - mdrdy_cck; mt7615_mac_cca_stats_reset(phy); if (mib->rts_cnt + mib->rts_retries_cnt) rts_err_rate = MT_FRAC(mib->rts_retries_cnt, mib->rts_cnt + mib->rts_retries_cnt); /* cck */ mt7615_mac_adjust_sensitivity(phy, rts_err_rate, false); /* ofdm */ mt7615_mac_adjust_sensitivity(phy, rts_err_rate, true); if (time_after(jiffies, phy->last_cca_adj + 10 * HZ)) mt7615_mac_set_default_sensitivity(phy); } static u8 mt7615_phy_get_nf(struct mt7615_dev *dev, int idx) { static const u8 nf_power[] = { 92, 89, 86, 83, 80, 75, 70, 65, 60, 55, 52 }; u32 reg, val, sum = 0, n = 0; int i; if (is_mt7663(&dev->mt76)) reg = MT7663_WF_PHY_RXTD(20); else reg = idx ? MT_WF_PHY_RXTD2(17) : MT_WF_PHY_RXTD(20); for (i = 0; i < ARRAY_SIZE(nf_power); i++, reg += 4) { val = mt76_rr(dev, reg); sum += val * nf_power[i]; n += val; } if (!n) return 0; return sum / n; } static void mt7615_phy_update_channel(struct mt76_phy *mphy, int idx) { struct mt7615_dev *dev = container_of(mphy->dev, struct mt7615_dev, mt76); struct mt7615_phy *phy = mphy->priv; struct mt76_channel_state *state; u64 busy_time, tx_time, rx_time, obss_time; u32 obss_reg = idx ? MT_WF_RMAC_MIB_TIME6 : MT_WF_RMAC_MIB_TIME5; int nf; busy_time = mt76_get_field(dev, MT_MIB_SDR9(idx), MT_MIB_SDR9_BUSY_MASK); tx_time = mt76_get_field(dev, MT_MIB_SDR36(idx), MT_MIB_SDR36_TXTIME_MASK); rx_time = mt76_get_field(dev, MT_MIB_SDR37(idx), MT_MIB_SDR37_RXTIME_MASK); obss_time = mt76_get_field(dev, obss_reg, MT_MIB_OBSSTIME_MASK); nf = mt7615_phy_get_nf(dev, idx); if (!phy->noise) phy->noise = nf << 4; else if (nf) phy->noise += nf - (phy->noise >> 4); state = mphy->chan_state; state->cc_busy += busy_time; state->cc_tx += tx_time; state->cc_rx += rx_time + obss_time; state->cc_bss_rx += rx_time; state->noise = -(phy->noise >> 4); } static void mt7615_update_survey(struct mt7615_dev *dev) { struct mt76_dev *mdev = &dev->mt76; struct mt76_phy *mphy_ext = mdev->phys[MT_BAND1]; ktime_t cur_time; /* MT7615 can only update both phys simultaneously * since some reisters are shared across bands. */ mt7615_phy_update_channel(&mdev->phy, 0); if (mphy_ext) mt7615_phy_update_channel(mphy_ext, 1); cur_time = ktime_get_boottime(); mt76_update_survey_active_time(&mdev->phy, cur_time); if (mphy_ext) mt76_update_survey_active_time(mphy_ext, cur_time); /* reset obss airtime */ mt76_set(dev, MT_WF_RMAC_MIB_TIME0, MT_WF_RMAC_MIB_RXTIME_CLR); } void mt7615_update_channel(struct mt76_phy *mphy) { struct mt7615_dev *dev = container_of(mphy->dev, struct mt7615_dev, mt76); if (mt76_connac_pm_wake(&dev->mphy, &dev->pm)) return; mt7615_update_survey(dev); mt76_connac_power_save_sched(&dev->mphy, &dev->pm); } EXPORT_SYMBOL_GPL(mt7615_update_channel); static void mt7615_mac_update_mib_stats(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; struct mib_stats *mib = &phy->mib; bool ext_phy = phy != &dev->phy; int i, aggr = 0; u32 val, val2; mib->fcs_err_cnt += mt76_get_field(dev, MT_MIB_SDR3(ext_phy), MT_MIB_SDR3_FCS_ERR_MASK); val = mt76_get_field(dev, MT_MIB_SDR14(ext_phy), MT_MIB_AMPDU_MPDU_COUNT); if (val) { val2 = mt76_get_field(dev, MT_MIB_SDR15(ext_phy), MT_MIB_AMPDU_ACK_COUNT); mib->aggr_per = 1000 * (val - val2) / val; } for (i = 0; i < 4; i++) { val = mt76_rr(dev, MT_MIB_MB_SDR1(ext_phy, i)); mib->ba_miss_cnt += FIELD_GET(MT_MIB_BA_MISS_COUNT_MASK, val); mib->ack_fail_cnt += FIELD_GET(MT_MIB_ACK_FAIL_COUNT_MASK, val); val = mt76_rr(dev, MT_MIB_MB_SDR0(ext_phy, i)); mib->rts_cnt += FIELD_GET(MT_MIB_RTS_COUNT_MASK, val); mib->rts_retries_cnt += FIELD_GET(MT_MIB_RTS_RETRIES_COUNT_MASK, val); val = mt76_rr(dev, MT_TX_AGG_CNT(ext_phy, i)); phy->mt76->aggr_stats[aggr++] += val & 0xffff; phy->mt76->aggr_stats[aggr++] += val >> 16; } } void mt7615_pm_wake_work(struct work_struct *work) { struct mt7615_dev *dev; struct mt76_phy *mphy; dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev, pm.wake_work); mphy = dev->phy.mt76; if (!mt7615_mcu_set_drv_ctrl(dev)) { struct mt76_dev *mdev = &dev->mt76; int i; if (mt76_is_sdio(mdev)) { mt76_connac_pm_dequeue_skbs(mphy, &dev->pm); mt76_worker_schedule(&mdev->sdio.txrx_worker); } else { local_bh_disable(); mt76_for_each_q_rx(mdev, i) napi_schedule(&mdev->napi[i]); local_bh_enable(); mt76_connac_pm_dequeue_skbs(mphy, &dev->pm); mt76_queue_tx_cleanup(dev, mdev->q_mcu[MT_MCUQ_WM], false); } if (test_bit(MT76_STATE_RUNNING, &mphy->state)) { unsigned long timeout; timeout = mt7615_get_macwork_timeout(dev); ieee80211_queue_delayed_work(mphy->hw, &mphy->mac_work, timeout); } } ieee80211_wake_queues(mphy->hw); wake_up(&dev->pm.wait); } void mt7615_pm_power_save_work(struct work_struct *work) { struct mt7615_dev *dev; unsigned long delta; dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev, pm.ps_work.work); delta = dev->pm.idle_timeout; if (test_bit(MT76_HW_SCANNING, &dev->mphy.state) || test_bit(MT76_HW_SCHED_SCANNING, &dev->mphy.state)) goto out; if (mutex_is_locked(&dev->mt76.mutex)) /* if mt76 mutex is held we should not put the device * to sleep since we are currently accessing device * register map. We need to wait for the next power_save * trigger. */ goto out; if (time_is_after_jiffies(dev->pm.last_activity + delta)) { delta = dev->pm.last_activity + delta - jiffies; goto out; } if (!mt7615_mcu_set_fw_ctrl(dev)) return; out: queue_delayed_work(dev->mt76.wq, &dev->pm.ps_work, delta); } void mt7615_mac_work(struct work_struct *work) { struct mt7615_phy *phy; struct mt76_phy *mphy; unsigned long timeout; mphy = (struct mt76_phy *)container_of(work, struct mt76_phy, mac_work.work); phy = mphy->priv; mt7615_mutex_acquire(phy->dev); mt7615_update_survey(phy->dev); if (++mphy->mac_work_count == 5) { mphy->mac_work_count = 0; mt7615_mac_update_mib_stats(phy); mt7615_mac_scs_check(phy); } mt7615_mutex_release(phy->dev); mt76_tx_status_check(mphy->dev, false); timeout = mt7615_get_macwork_timeout(phy->dev); ieee80211_queue_delayed_work(mphy->hw, &mphy->mac_work, timeout); } void mt7615_tx_token_put(struct mt7615_dev *dev) { struct mt76_txwi_cache *txwi; int id; spin_lock_bh(&dev->mt76.token_lock); idr_for_each_entry(&dev->mt76.token, txwi, id) mt7615_txwi_free(dev, txwi); spin_unlock_bh(&dev->mt76.token_lock); idr_destroy(&dev->mt76.token); } EXPORT_SYMBOL_GPL(mt7615_tx_token_put); static void mt7615_dfs_stop_radar_detector(struct mt7615_phy *phy) { struct mt7615_dev *dev = phy->dev; if (phy->rdd_state & BIT(0)) mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_STOP, 0, MT_RX_SEL0, 0); if (phy->rdd_state & BIT(1)) mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_STOP, 1, MT_RX_SEL0, 0); } static int mt7615_dfs_start_rdd(struct mt7615_dev *dev, int chain) { int err; err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_START, chain, MT_RX_SEL0, 0); if (err < 0) return err; return mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_DET_MODE, chain, MT_RX_SEL0, 1); } static int mt7615_dfs_start_radar_detector(struct mt7615_phy *phy) { struct cfg80211_chan_def *chandef = &phy->mt76->chandef; struct mt7615_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; int err; /* start CAC */ err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_CAC_START, ext_phy, MT_RX_SEL0, 0); if (err < 0) return err; err = mt7615_dfs_start_rdd(dev, ext_phy); if (err < 0) return err; phy->rdd_state |= BIT(ext_phy); if (chandef->width == NL80211_CHAN_WIDTH_160 || chandef->width == NL80211_CHAN_WIDTH_80P80) { err = mt7615_dfs_start_rdd(dev, 1); if (err < 0) return err; phy->rdd_state |= BIT(1); } return 0; } static int mt7615_dfs_init_radar_specs(struct mt7615_phy *phy) { const struct mt7615_dfs_radar_spec *radar_specs; struct mt7615_dev *dev = phy->dev; int err, i, lpn = 500; switch (dev->mt76.region) { case NL80211_DFS_FCC: radar_specs = &fcc_radar_specs; lpn = 8; break; case NL80211_DFS_ETSI: radar_specs = &etsi_radar_specs; break; case NL80211_DFS_JP: radar_specs = &jp_radar_specs; break; default: return -EINVAL; } /* avoid FCC radar detection in non-FCC region */ err = mt7615_mcu_set_fcc5_lpn(dev, lpn); if (err < 0) return err; for (i = 0; i < ARRAY_SIZE(radar_specs->radar_pattern); i++) { err = mt7615_mcu_set_radar_th(dev, i, &radar_specs->radar_pattern[i]); if (err < 0) return err; } return mt7615_mcu_set_pulse_th(dev, &radar_specs->pulse_th); } int mt7615_dfs_init_radar_detector(struct mt7615_phy *phy) { struct cfg80211_chan_def *chandef = &phy->mt76->chandef; struct mt7615_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; enum mt76_dfs_state dfs_state, prev_state; int err; if (is_mt7663(&dev->mt76)) return 0; prev_state = phy->mt76->dfs_state; dfs_state = mt76_phy_dfs_state(phy->mt76); if ((chandef->chan->flags & IEEE80211_CHAN_RADAR) && dfs_state < MT_DFS_STATE_CAC) dfs_state = MT_DFS_STATE_ACTIVE; if (prev_state == dfs_state) return 0; if (dfs_state == MT_DFS_STATE_DISABLED) goto stop; if (prev_state <= MT_DFS_STATE_DISABLED) { err = mt7615_dfs_init_radar_specs(phy); if (err < 0) return err; err = mt7615_dfs_start_radar_detector(phy); if (err < 0) return err; phy->mt76->dfs_state = MT_DFS_STATE_CAC; } if (dfs_state == MT_DFS_STATE_CAC) return 0; err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_CAC_END, ext_phy, MT_RX_SEL0, 0); if (err < 0) { phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN; return err; } phy->mt76->dfs_state = MT_DFS_STATE_ACTIVE; return 0; stop: err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_NORMAL_START, ext_phy, MT_RX_SEL0, 0); if (err < 0) return err; mt7615_dfs_stop_radar_detector(phy); phy->mt76->dfs_state = MT_DFS_STATE_DISABLED; return 0; } int mt7615_mac_set_beacon_filter(struct mt7615_phy *phy, struct ieee80211_vif *vif, bool enable) { struct mt7615_dev *dev = phy->dev; bool ext_phy = phy != &dev->phy; int err; if (!mt7615_firmware_offload(dev)) return -EOPNOTSUPP; switch (vif->type) { case NL80211_IFTYPE_MONITOR: return 0; case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_AP: if (enable) phy->n_beacon_vif++; else phy->n_beacon_vif--; fallthrough; default: break; } err = mt7615_mcu_set_bss_pm(dev, vif, !phy->n_beacon_vif); if (err) return err; if (phy->n_beacon_vif) { vif->driver_flags &= ~IEEE80211_VIF_BEACON_FILTER; mt76_clear(dev, MT_WF_RFCR(ext_phy), MT_WF_RFCR_DROP_OTHER_BEACON); } else { vif->driver_flags |= IEEE80211_VIF_BEACON_FILTER; mt76_set(dev, MT_WF_RFCR(ext_phy), MT_WF_RFCR_DROP_OTHER_BEACON); } return 0; } void mt7615_coredump_work(struct work_struct *work) { struct mt7615_dev *dev; char *dump, *data; dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev, coredump.work.work); if (time_is_after_jiffies(dev->coredump.last_activity + 4 * MT76_CONNAC_COREDUMP_TIMEOUT)) { queue_delayed_work(dev->mt76.wq, &dev->coredump.work, MT76_CONNAC_COREDUMP_TIMEOUT); return; } dump = vzalloc(MT76_CONNAC_COREDUMP_SZ); data = dump; while (true) { struct sk_buff *skb; spin_lock_bh(&dev->mt76.lock); skb = __skb_dequeue(&dev->coredump.msg_list); spin_unlock_bh(&dev->mt76.lock); if (!skb) break; skb_pull(skb, sizeof(struct mt7615_mcu_rxd)); if (data + skb->len - dump > MT76_CONNAC_COREDUMP_SZ) { dev_kfree_skb(skb); continue; } memcpy(data, skb->data, skb->len); data += skb->len; dev_kfree_skb(skb); } dev_coredumpv(dev->mt76.dev, dump, MT76_CONNAC_COREDUMP_SZ, GFP_KERNEL); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1