Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jes Sorensen | 6190 | 52.96% | 16 | 55.17% |
Bitterblue Smith | 5495 | 47.01% | 11 | 37.93% |
Chris Chiu | 3 | 0.03% | 1 | 3.45% |
Thomas Gleixner | 1 | 0.01% | 1 | 3.45% |
Total | 11689 | 29 |
// SPDX-License-Identifier: GPL-2.0-only /* * RTL8XXXU mac80211 USB driver - 8188e specific subdriver * * Copyright (c) 2014 - 2016 Jes Sorensen <Jes.Sorensen@gmail.com> * * Portions, notably calibration code: * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This driver was written as a replacement for the vendor provided * rtl8723au driver. As the Realtek 8xxx chips are very similar in * their programming interface, I have started adding support for * additional 8xxx chips like the 8192cu, 8188cus, etc. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/list.h> #include <linux/usb.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/wireless.h> #include <linux/firmware.h> #include <linux/moduleparam.h> #include <net/mac80211.h> #include "rtl8xxxu.h" #include "rtl8xxxu_regs.h" static const struct rtl8xxxu_reg8val rtl8188e_mac_init_table[] = { {0x026, 0x41}, {0x027, 0x35}, {0x040, 0x00}, {0x421, 0x0f}, {0x428, 0x0a}, {0x429, 0x10}, {0x430, 0x00}, {0x431, 0x01}, {0x432, 0x02}, {0x433, 0x04}, {0x434, 0x05}, {0x435, 0x06}, {0x436, 0x07}, {0x437, 0x08}, {0x438, 0x00}, {0x439, 0x00}, {0x43a, 0x01}, {0x43b, 0x02}, {0x43c, 0x04}, {0x43d, 0x05}, {0x43e, 0x06}, {0x43f, 0x07}, {0x440, 0x5d}, {0x441, 0x01}, {0x442, 0x00}, {0x444, 0x15}, {0x445, 0xf0}, {0x446, 0x0f}, {0x447, 0x00}, {0x458, 0x41}, {0x459, 0xa8}, {0x45a, 0x72}, {0x45b, 0xb9}, {0x460, 0x66}, {0x461, 0x66}, {0x480, 0x08}, {0x4c8, 0xff}, {0x4c9, 0x08}, {0x4cc, 0xff}, {0x4cd, 0xff}, {0x4ce, 0x01}, {0x4d3, 0x01}, {0x500, 0x26}, {0x501, 0xa2}, {0x502, 0x2f}, {0x503, 0x00}, {0x504, 0x28}, {0x505, 0xa3}, {0x506, 0x5e}, {0x507, 0x00}, {0x508, 0x2b}, {0x509, 0xa4}, {0x50a, 0x5e}, {0x50b, 0x00}, {0x50c, 0x4f}, {0x50d, 0xa4}, {0x50e, 0x00}, {0x50f, 0x00}, {0x512, 0x1c}, {0x514, 0x0a}, {0x516, 0x0a}, {0x525, 0x4f}, {0x550, 0x10}, {0x551, 0x10}, {0x559, 0x02}, {0x55d, 0xff}, {0x605, 0x30}, {0x608, 0x0e}, {0x609, 0x2a}, {0x620, 0xff}, {0x621, 0xff}, {0x622, 0xff}, {0x623, 0xff}, {0x624, 0xff}, {0x625, 0xff}, {0x626, 0xff}, {0x627, 0xff}, {0x63c, 0x08}, {0x63d, 0x08}, {0x63e, 0x0c}, {0x63f, 0x0c}, {0x640, 0x40}, {0x652, 0x20}, {0x66e, 0x05}, {0x700, 0x21}, {0x701, 0x43}, {0x702, 0x65}, {0x703, 0x87}, {0x708, 0x21}, {0x709, 0x43}, {0x70a, 0x65}, {0x70b, 0x87}, {0xffff, 0xff}, }; static const struct rtl8xxxu_reg32val rtl8188eu_phy_init_table[] = { {0x800, 0x80040000}, {0x804, 0x00000003}, {0x808, 0x0000fc00}, {0x80c, 0x0000000a}, {0x810, 0x10001331}, {0x814, 0x020c3d10}, {0x818, 0x02200385}, {0x81c, 0x00000000}, {0x820, 0x01000100}, {0x824, 0x00390204}, {0x828, 0x00000000}, {0x82c, 0x00000000}, {0x830, 0x00000000}, {0x834, 0x00000000}, {0x838, 0x00000000}, {0x83c, 0x00000000}, {0x840, 0x00010000}, {0x844, 0x00000000}, {0x848, 0x00000000}, {0x84c, 0x00000000}, {0x850, 0x00000000}, {0x854, 0x00000000}, {0x858, 0x569a11a9}, {0x85c, 0x01000014}, {0x860, 0x66f60110}, {0x864, 0x061f0649}, {0x868, 0x00000000}, {0x86c, 0x27272700}, {0x870, 0x07000760}, {0x874, 0x25004000}, {0x878, 0x00000808}, {0x87c, 0x00000000}, {0x880, 0xb0000c1c}, {0x884, 0x00000001}, {0x888, 0x00000000}, {0x88c, 0xccc000c0}, {0x890, 0x00000800}, {0x894, 0xfffffffe}, {0x898, 0x40302010}, {0x89c, 0x00706050}, {0x900, 0x00000000}, {0x904, 0x00000023}, {0x908, 0x00000000}, {0x90c, 0x81121111}, {0x910, 0x00000002}, {0x914, 0x00000201}, {0xa00, 0x00d047c8}, {0xa04, 0x80ff800c}, {0xa08, 0x8c838300}, {0xa0c, 0x2e7f120f}, {0xa10, 0x9500bb7e}, {0xa14, 0x1114d028}, {0xa18, 0x00881117}, {0xa1c, 0x89140f00}, {0xa20, 0x1a1b0000}, {0xa24, 0x090e1317}, {0xa28, 0x00000204}, {0xa2c, 0x00d30000}, {0xa70, 0x101fbf00}, {0xa74, 0x00000007}, {0xa78, 0x00000900}, {0xa7c, 0x225b0606}, {0xa80, 0x218075b1}, {0xb2c, 0x80000000}, {0xc00, 0x48071d40}, {0xc04, 0x03a05611}, {0xc08, 0x000000e4}, {0xc0c, 0x6c6c6c6c}, {0xc10, 0x08800000}, {0xc14, 0x40000100}, {0xc18, 0x08800000}, {0xc1c, 0x40000100}, {0xc20, 0x00000000}, {0xc24, 0x00000000}, {0xc28, 0x00000000}, {0xc2c, 0x00000000}, {0xc30, 0x69e9ac47}, {0xc34, 0x469652af}, {0xc38, 0x49795994}, {0xc3c, 0x0a97971c}, {0xc40, 0x1f7c403f}, {0xc44, 0x000100b7}, {0xc48, 0xec020107}, {0xc4c, 0x007f037f}, {0xc50, 0x69553420}, {0xc54, 0x43bc0094}, {0xc58, 0x00013169}, {0xc5c, 0x00250492}, {0xc60, 0x00000000}, {0xc64, 0x7112848b}, {0xc68, 0x47c00bff}, {0xc6c, 0x00000036}, {0xc70, 0x2c7f000d}, {0xc74, 0x020610db}, {0xc78, 0x0000001f}, {0xc7c, 0x00b91612}, {0xc80, 0x390000e4}, {0xc84, 0x21f60000}, {0xc88, 0x40000100}, {0xc8c, 0x20200000}, {0xc90, 0x00091521}, {0xc94, 0x00000000}, {0xc98, 0x00121820}, {0xc9c, 0x00007f7f}, {0xca0, 0x00000000}, {0xca4, 0x000300a0}, {0xca8, 0x00000000}, {0xcac, 0x00000000}, {0xcb0, 0x00000000}, {0xcb4, 0x00000000}, {0xcb8, 0x00000000}, {0xcbc, 0x28000000}, {0xcc0, 0x00000000}, {0xcc4, 0x00000000}, {0xcc8, 0x00000000}, {0xccc, 0x00000000}, {0xcd0, 0x00000000}, {0xcd4, 0x00000000}, {0xcd8, 0x64b22427}, {0xcdc, 0x00766932}, {0xce0, 0x00222222}, {0xce4, 0x00000000}, {0xce8, 0x37644302}, {0xcec, 0x2f97d40c}, {0xd00, 0x00000740}, {0xd04, 0x00020401}, {0xd08, 0x0000907f}, {0xd0c, 0x20010201}, {0xd10, 0xa0633333}, {0xd14, 0x3333bc43}, {0xd18, 0x7a8f5b6f}, {0xd2c, 0xcc979975}, {0xd30, 0x00000000}, {0xd34, 0x80608000}, {0xd38, 0x00000000}, {0xd3c, 0x00127353}, {0xd40, 0x00000000}, {0xd44, 0x00000000}, {0xd48, 0x00000000}, {0xd4c, 0x00000000}, {0xd50, 0x6437140a}, {0xd54, 0x00000000}, {0xd58, 0x00000282}, {0xd5c, 0x30032064}, {0xd60, 0x4653de68}, {0xd64, 0x04518a3c}, {0xd68, 0x00002101}, {0xd6c, 0x2a201c16}, {0xd70, 0x1812362e}, {0xd74, 0x322c2220}, {0xd78, 0x000e3c24}, {0xe00, 0x2d2d2d2d}, {0xe04, 0x2d2d2d2d}, {0xe08, 0x0390272d}, {0xe10, 0x2d2d2d2d}, {0xe14, 0x2d2d2d2d}, {0xe18, 0x2d2d2d2d}, {0xe1c, 0x2d2d2d2d}, {0xe28, 0x00000000}, {0xe30, 0x1000dc1f}, {0xe34, 0x10008c1f}, {0xe38, 0x02140102}, {0xe3c, 0x681604c2}, {0xe40, 0x01007c00}, {0xe44, 0x01004800}, {0xe48, 0xfb000000}, {0xe4c, 0x000028d1}, {0xe50, 0x1000dc1f}, {0xe54, 0x10008c1f}, {0xe58, 0x02140102}, {0xe5c, 0x28160d05}, {0xe60, 0x00000048}, {0xe68, 0x001b25a4}, {0xe6c, 0x00c00014}, {0xe70, 0x00c00014}, {0xe74, 0x01000014}, {0xe78, 0x01000014}, {0xe7c, 0x01000014}, {0xe80, 0x01000014}, {0xe84, 0x00c00014}, {0xe88, 0x01000014}, {0xe8c, 0x00c00014}, {0xed0, 0x00c00014}, {0xed4, 0x00c00014}, {0xed8, 0x00c00014}, {0xedc, 0x00000014}, {0xee0, 0x00000014}, {0xee8, 0x21555448}, {0xeec, 0x01c00014}, {0xf14, 0x00000003}, {0xf4c, 0x00000000}, {0xf00, 0x00000300}, {0xffff, 0xffffffff}, }; static const struct rtl8xxxu_reg32val rtl8188e_agc_table[] = { {0xc78, 0xfb000001}, {0xc78, 0xfb010001}, {0xc78, 0xfb020001}, {0xc78, 0xfb030001}, {0xc78, 0xfb040001}, {0xc78, 0xfb050001}, {0xc78, 0xfa060001}, {0xc78, 0xf9070001}, {0xc78, 0xf8080001}, {0xc78, 0xf7090001}, {0xc78, 0xf60a0001}, {0xc78, 0xf50b0001}, {0xc78, 0xf40c0001}, {0xc78, 0xf30d0001}, {0xc78, 0xf20e0001}, {0xc78, 0xf10f0001}, {0xc78, 0xf0100001}, {0xc78, 0xef110001}, {0xc78, 0xee120001}, {0xc78, 0xed130001}, {0xc78, 0xec140001}, {0xc78, 0xeb150001}, {0xc78, 0xea160001}, {0xc78, 0xe9170001}, {0xc78, 0xe8180001}, {0xc78, 0xe7190001}, {0xc78, 0xe61a0001}, {0xc78, 0xe51b0001}, {0xc78, 0xe41c0001}, {0xc78, 0xe31d0001}, {0xc78, 0xe21e0001}, {0xc78, 0xe11f0001}, {0xc78, 0x8a200001}, {0xc78, 0x89210001}, {0xc78, 0x88220001}, {0xc78, 0x87230001}, {0xc78, 0x86240001}, {0xc78, 0x85250001}, {0xc78, 0x84260001}, {0xc78, 0x83270001}, {0xc78, 0x82280001}, {0xc78, 0x6b290001}, {0xc78, 0x6a2a0001}, {0xc78, 0x692b0001}, {0xc78, 0x682c0001}, {0xc78, 0x672d0001}, {0xc78, 0x662e0001}, {0xc78, 0x652f0001}, {0xc78, 0x64300001}, {0xc78, 0x63310001}, {0xc78, 0x62320001}, {0xc78, 0x61330001}, {0xc78, 0x46340001}, {0xc78, 0x45350001}, {0xc78, 0x44360001}, {0xc78, 0x43370001}, {0xc78, 0x42380001}, {0xc78, 0x41390001}, {0xc78, 0x403a0001}, {0xc78, 0x403b0001}, {0xc78, 0x403c0001}, {0xc78, 0x403d0001}, {0xc78, 0x403e0001}, {0xc78, 0x403f0001}, {0xc78, 0xfb400001}, {0xc78, 0xfb410001}, {0xc78, 0xfb420001}, {0xc78, 0xfb430001}, {0xc78, 0xfb440001}, {0xc78, 0xfb450001}, {0xc78, 0xfb460001}, {0xc78, 0xfb470001}, {0xc78, 0xfb480001}, {0xc78, 0xfa490001}, {0xc78, 0xf94a0001}, {0xc78, 0xf84b0001}, {0xc78, 0xf74c0001}, {0xc78, 0xf64d0001}, {0xc78, 0xf54e0001}, {0xc78, 0xf44f0001}, {0xc78, 0xf3500001}, {0xc78, 0xf2510001}, {0xc78, 0xf1520001}, {0xc78, 0xf0530001}, {0xc78, 0xef540001}, {0xc78, 0xee550001}, {0xc78, 0xed560001}, {0xc78, 0xec570001}, {0xc78, 0xeb580001}, {0xc78, 0xea590001}, {0xc78, 0xe95a0001}, {0xc78, 0xe85b0001}, {0xc78, 0xe75c0001}, {0xc78, 0xe65d0001}, {0xc78, 0xe55e0001}, {0xc78, 0xe45f0001}, {0xc78, 0xe3600001}, {0xc78, 0xe2610001}, {0xc78, 0xc3620001}, {0xc78, 0xc2630001}, {0xc78, 0xc1640001}, {0xc78, 0x8b650001}, {0xc78, 0x8a660001}, {0xc78, 0x89670001}, {0xc78, 0x88680001}, {0xc78, 0x87690001}, {0xc78, 0x866a0001}, {0xc78, 0x856b0001}, {0xc78, 0x846c0001}, {0xc78, 0x676d0001}, {0xc78, 0x666e0001}, {0xc78, 0x656f0001}, {0xc78, 0x64700001}, {0xc78, 0x63710001}, {0xc78, 0x62720001}, {0xc78, 0x61730001}, {0xc78, 0x60740001}, {0xc78, 0x46750001}, {0xc78, 0x45760001}, {0xc78, 0x44770001}, {0xc78, 0x43780001}, {0xc78, 0x42790001}, {0xc78, 0x417a0001}, {0xc78, 0x407b0001}, {0xc78, 0x407c0001}, {0xc78, 0x407d0001}, {0xc78, 0x407e0001}, {0xc78, 0x407f0001}, {0xc50, 0x69553422}, {0xc50, 0x69553420}, {0xffff, 0xffffffff} }; static const struct rtl8xxxu_rfregval rtl8188eu_radioa_init_table[] = { {0x00, 0x00030000}, {0x08, 0x00084000}, {0x18, 0x00000407}, {0x19, 0x00000012}, {0x1e, 0x00080009}, {0x1f, 0x00000880}, {0x2f, 0x0001a060}, {0x3f, 0x00000000}, {0x42, 0x000060c0}, {0x57, 0x000d0000}, {0x58, 0x000be180}, {0x67, 0x00001552}, {0x83, 0x00000000}, {0xb0, 0x000ff8fc}, {0xb1, 0x00054400}, {0xb2, 0x000ccc19}, {0xb4, 0x00043003}, {0xb6, 0x0004953e}, {0xb7, 0x0001c718}, {0xb8, 0x000060ff}, {0xb9, 0x00080001}, {0xba, 0x00040000}, {0xbb, 0x00000400}, {0xbf, 0x000c0000}, {0xc2, 0x00002400}, {0xc3, 0x00000009}, {0xc4, 0x00040c91}, {0xc5, 0x00099999}, {0xc6, 0x000000a3}, {0xc7, 0x00088820}, {0xc8, 0x00076c06}, {0xc9, 0x00000000}, {0xca, 0x00080000}, {0xdf, 0x00000180}, {0xef, 0x000001a0}, {0x51, 0x0006b27d}, {0x52, 0x0007e49d}, /* Set to 0x0007e4dd for SDIO */ {0x53, 0x00000073}, {0x56, 0x00051ff3}, {0x35, 0x00000086}, {0x35, 0x00000186}, {0x35, 0x00000286}, {0x36, 0x00001c25}, {0x36, 0x00009c25}, {0x36, 0x00011c25}, {0x36, 0x00019c25}, {0xb6, 0x00048538}, {0x18, 0x00000c07}, {0x5a, 0x0004bd00}, {0x19, 0x000739d0}, {0x34, 0x0000adf3}, {0x34, 0x00009df0}, {0x34, 0x00008ded}, {0x34, 0x00007dea}, {0x34, 0x00006de7}, {0x34, 0x000054ee}, {0x34, 0x000044eb}, {0x34, 0x000034e8}, {0x34, 0x0000246b}, {0x34, 0x00001468}, {0x34, 0x0000006d}, {0x00, 0x00030159}, {0x84, 0x00068200}, {0x86, 0x000000ce}, {0x87, 0x00048a00}, {0x8e, 0x00065540}, {0x8f, 0x00088000}, {0xef, 0x000020a0}, {0x3b, 0x000f02b0}, {0x3b, 0x000ef7b0}, {0x3b, 0x000d4fb0}, {0x3b, 0x000cf060}, {0x3b, 0x000b0090}, {0x3b, 0x000a0080}, {0x3b, 0x00090080}, {0x3b, 0x0008f780}, {0x3b, 0x000722b0}, {0x3b, 0x0006f7b0}, {0x3b, 0x00054fb0}, {0x3b, 0x0004f060}, {0x3b, 0x00030090}, {0x3b, 0x00020080}, {0x3b, 0x00010080}, {0x3b, 0x0000f780}, {0xef, 0x000000a0}, {0x00, 0x00010159}, {0x18, 0x0000f407}, {0xFE, 0x00000000}, {0xFE, 0x00000000}, {0x1F, 0x00080003}, {0xFE, 0x00000000}, {0xFE, 0x00000000}, {0x1E, 0x00000001}, {0x1F, 0x00080000}, {0x00, 0x00033e60}, {0xff, 0xffffffff} }; #define PERENTRY 23 #define RETRYSIZE 5 #define RATESIZE 28 #define TX_RPT2_ITEM_SIZE 8 static const u8 retry_penalty[PERENTRY][RETRYSIZE + 1] = { {5, 4, 3, 2, 0, 3}, /* 92 , idx=0 */ {6, 5, 4, 3, 0, 4}, /* 86 , idx=1 */ {6, 5, 4, 2, 0, 4}, /* 81 , idx=2 */ {8, 7, 6, 4, 0, 6}, /* 75 , idx=3 */ {10, 9, 8, 6, 0, 8}, /* 71 , idx=4 */ {10, 9, 8, 4, 0, 8}, /* 66 , idx=5 */ {10, 9, 8, 2, 0, 8}, /* 62 , idx=6 */ {10, 9, 8, 0, 0, 8}, /* 59 , idx=7 */ {18, 17, 16, 8, 0, 16}, /* 53 , idx=8 */ {26, 25, 24, 16, 0, 24}, /* 50 , idx=9 */ {34, 33, 32, 24, 0, 32}, /* 47 , idx=0x0a */ {34, 31, 28, 20, 0, 32}, /* 43 , idx=0x0b */ {34, 31, 27, 18, 0, 32}, /* 40 , idx=0x0c */ {34, 31, 26, 16, 0, 32}, /* 37 , idx=0x0d */ {34, 30, 22, 16, 0, 32}, /* 32 , idx=0x0e */ {34, 30, 24, 16, 0, 32}, /* 26 , idx=0x0f */ {49, 46, 40, 16, 0, 48}, /* 20 , idx=0x10 */ {49, 45, 32, 0, 0, 48}, /* 17 , idx=0x11 */ {49, 45, 22, 18, 0, 48}, /* 15 , idx=0x12 */ {49, 40, 24, 16, 0, 48}, /* 12 , idx=0x13 */ {49, 32, 18, 12, 0, 48}, /* 9 , idx=0x14 */ {49, 22, 18, 14, 0, 48}, /* 6 , idx=0x15 */ {49, 16, 16, 0, 0, 48} /* 3, idx=0x16 */ }; static const u8 pt_penalty[RETRYSIZE + 1] = {34, 31, 30, 24, 0, 32}; static const u8 retry_penalty_idx_normal[2][RATESIZE] = { { /* RSSI>TH */ 4, 4, 4, 5, 4, 4, 5, 7, 7, 7, 8, 0x0a, 4, 4, 4, 4, 6, 0x0a, 0x0b, 0x0d, 5, 5, 7, 7, 8, 0x0b, 0x0d, 0x0f }, { /* RSSI<TH */ 0x0a, 0x0a, 0x0b, 0x0c, 0x0a, 0x0a, 0x0b, 0x0c, 0x0d, 0x10, 0x13, 0x13, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x11, 0x13, 0x13, 9, 9, 9, 9, 0x0c, 0x0e, 0x11, 0x13 } }; static const u8 retry_penalty_idx_cut_i[2][RATESIZE] = { { /* RSSI>TH */ 4, 4, 4, 5, 4, 4, 5, 7, 7, 7, 8, 0x0a, 4, 4, 4, 4, 6, 0x0a, 0x0b, 0x0d, 5, 5, 7, 7, 8, 0x0b, 0x0d, 0x0f }, { /* RSSI<TH */ 0x0a, 0x0a, 0x0b, 0x0c, 0x0a, 0x0a, 0x0b, 0x0c, 0x0d, 0x10, 0x13, 0x13, 0x06, 0x07, 0x08, 0x0d, 0x0e, 0x11, 0x11, 0x11, 9, 9, 9, 9, 0x0c, 0x0e, 0x11, 0x13 } }; static const u8 retry_penalty_up_idx_normal[RATESIZE] = { 0x0c, 0x0d, 0x0d, 0x0f, 0x0d, 0x0e, 0x0f, 0x0f, 0x10, 0x12, 0x13, 0x14, 0x0f, 0x10, 0x10, 0x12, 0x12, 0x13, 0x14, 0x15, 0x11, 0x11, 0x12, 0x13, 0x13, 0x13, 0x14, 0x15 }; static const u8 retry_penalty_up_idx_cut_i[RATESIZE] = { 0x0c, 0x0d, 0x0d, 0x0f, 0x0d, 0x0e, 0x0f, 0x0f, 0x10, 0x12, 0x13, 0x14, 0x0b, 0x0b, 0x11, 0x11, 0x12, 0x12, 0x12, 0x12, 0x11, 0x11, 0x12, 0x13, 0x13, 0x13, 0x14, 0x15 }; static const u8 rssi_threshold[RATESIZE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x24, 0x26, 0x2a, 0x18, 0x1a, 0x1d, 0x1f, 0x21, 0x27, 0x29, 0x2a, 0, 0, 0, 0x1f, 0x23, 0x28, 0x2a, 0x2c }; static const u16 n_threshold_high[RATESIZE] = { 4, 4, 8, 16, 24, 36, 48, 72, 96, 144, 192, 216, 60, 80, 100, 160, 240, 400, 600, 800, 300, 320, 480, 720, 1000, 1200, 1600, 2000 }; static const u16 n_threshold_low[RATESIZE] = { 2, 2, 4, 8, 12, 18, 24, 36, 48, 72, 96, 108, 30, 40, 50, 80, 120, 200, 300, 400, 150, 160, 240, 360, 500, 600, 800, 1000 }; static const u8 dropping_necessary[RATESIZE] = { 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 10, 11, 12 }; static const u8 pending_for_rate_up_fail[5] = {2, 10, 24, 40, 60}; static const u16 dynamic_tx_rpt_timing[6] = { 0x186a, 0x30d4, 0x493e, 0x61a8, 0x7a12, 0x927c /* 200ms-1200ms */ }; enum rtl8188e_tx_rpt_timing { DEFAULT_TIMING = 0, INCREASE_TIMING, DECREASE_TIMING }; static int rtl8188eu_identify_chip(struct rtl8xxxu_priv *priv) { struct device *dev = &priv->udev->dev; u32 sys_cfg, vendor; int ret = 0; strscpy(priv->chip_name, "8188EU", sizeof(priv->chip_name)); priv->rtl_chip = RTL8188E; priv->rf_paths = 1; priv->rx_paths = 1; priv->tx_paths = 1; priv->has_wifi = 1; sys_cfg = rtl8xxxu_read32(priv, REG_SYS_CFG); priv->chip_cut = u32_get_bits(sys_cfg, SYS_CFG_CHIP_VERSION_MASK); if (sys_cfg & SYS_CFG_TRP_VAUX_EN) { dev_info(dev, "Unsupported test chip\n"); return -EOPNOTSUPP; } /* * TODO: At a glance, I cut requires a different firmware, * different initialisation tables, and no software rate * control. The vendor driver is not configured to handle * I cut chips by default. Are there any in the wild? */ if (priv->chip_cut == 8) { dev_info(dev, "RTL8188EU cut I is not supported. Please complain about it at linux-wireless@vger.kernel.org.\n"); return -EOPNOTSUPP; } vendor = sys_cfg & SYS_CFG_VENDOR_ID; rtl8xxxu_identify_vendor_1bit(priv, vendor); ret = rtl8xxxu_config_endpoints_no_sie(priv); return ret; } static void rtl8188eu_config_channel(struct ieee80211_hw *hw) { struct rtl8xxxu_priv *priv = hw->priv; u32 val32, rsr; u8 opmode; int sec_ch_above, channel; int i; opmode = rtl8xxxu_read8(priv, REG_BW_OPMODE); rsr = rtl8xxxu_read32(priv, REG_RESPONSE_RATE_SET); channel = hw->conf.chandef.chan->hw_value; switch (hw->conf.chandef.width) { case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: opmode |= BW_OPMODE_20MHZ; rtl8xxxu_write8(priv, REG_BW_OPMODE, opmode); val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE); val32 &= ~FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA1_RF_MODE); val32 &= ~FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA1_RF_MODE, val32); break; case NL80211_CHAN_WIDTH_40: if (hw->conf.chandef.center_freq1 > hw->conf.chandef.chan->center_freq) { sec_ch_above = 1; channel += 2; } else { sec_ch_above = 0; channel -= 2; } opmode &= ~BW_OPMODE_20MHZ; rtl8xxxu_write8(priv, REG_BW_OPMODE, opmode); rsr &= ~RSR_RSC_BANDWIDTH_40M; if (sec_ch_above) rsr |= RSR_RSC_LOWER_SUB_CHANNEL; else rsr |= RSR_RSC_UPPER_SUB_CHANNEL; rtl8xxxu_write32(priv, REG_RESPONSE_RATE_SET, rsr); val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE); val32 |= FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA1_RF_MODE); val32 |= FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA1_RF_MODE, val32); /* * Set Control channel to upper or lower. These settings * are required only for 40MHz */ val32 = rtl8xxxu_read32(priv, REG_CCK0_SYSTEM); val32 &= ~CCK0_SIDEBAND; if (!sec_ch_above) val32 |= CCK0_SIDEBAND; rtl8xxxu_write32(priv, REG_CCK0_SYSTEM, val32); val32 = rtl8xxxu_read32(priv, REG_OFDM1_LSTF); val32 &= ~OFDM_LSTF_PRIME_CH_MASK; /* 0xc00 */ if (sec_ch_above) val32 |= OFDM_LSTF_PRIME_CH_LOW; else val32 |= OFDM_LSTF_PRIME_CH_HIGH; rtl8xxxu_write32(priv, REG_OFDM1_LSTF, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA0_POWER_SAVE); val32 &= ~(FPGA0_PS_LOWER_CHANNEL | FPGA0_PS_UPPER_CHANNEL); if (sec_ch_above) val32 |= FPGA0_PS_UPPER_CHANNEL; else val32 |= FPGA0_PS_LOWER_CHANNEL; rtl8xxxu_write32(priv, REG_FPGA0_POWER_SAVE, val32); break; default: break; } for (i = RF_A; i < priv->rf_paths; i++) { val32 = rtl8xxxu_read_rfreg(priv, i, RF6052_REG_MODE_AG); u32p_replace_bits(&val32, channel, MODE_AG_CHANNEL_MASK); rtl8xxxu_write_rfreg(priv, i, RF6052_REG_MODE_AG, val32); } for (i = RF_A; i < priv->rf_paths; i++) { val32 = rtl8xxxu_read_rfreg(priv, i, RF6052_REG_MODE_AG); val32 &= ~MODE_AG_BW_MASK; if (hw->conf.chandef.width == NL80211_CHAN_WIDTH_40) val32 |= MODE_AG_BW_40MHZ_8723B; else val32 |= MODE_AG_BW_20MHZ_8723B; rtl8xxxu_write_rfreg(priv, i, RF6052_REG_MODE_AG, val32); } } static void rtl8188eu_init_aggregation(struct rtl8xxxu_priv *priv) { u8 agg_ctrl, usb_spec; usb_spec = rtl8xxxu_read8(priv, REG_USB_SPECIAL_OPTION); usb_spec &= ~USB_SPEC_USB_AGG_ENABLE; rtl8xxxu_write8(priv, REG_USB_SPECIAL_OPTION, usb_spec); agg_ctrl = rtl8xxxu_read8(priv, REG_TRXDMA_CTRL); agg_ctrl &= ~TRXDMA_CTRL_RXDMA_AGG_EN; rtl8xxxu_write8(priv, REG_TRXDMA_CTRL, agg_ctrl); } static int rtl8188eu_parse_efuse(struct rtl8xxxu_priv *priv) { struct rtl8188eu_efuse *efuse = &priv->efuse_wifi.efuse8188eu; if (efuse->rtl_id != cpu_to_le16(0x8129)) return -EINVAL; ether_addr_copy(priv->mac_addr, efuse->mac_addr); memcpy(priv->cck_tx_power_index_A, efuse->tx_power_index_A.cck_base, sizeof(efuse->tx_power_index_A.cck_base)); memcpy(priv->ht40_1s_tx_power_index_A, efuse->tx_power_index_A.ht40_base, sizeof(efuse->tx_power_index_A.ht40_base)); priv->default_crystal_cap = efuse->xtal_k & 0x3f; dev_info(&priv->udev->dev, "Vendor: %.7s\n", efuse->vendor_name); dev_info(&priv->udev->dev, "Product: %.11s\n", efuse->device_name); dev_info(&priv->udev->dev, "Serial: %.11s\n", efuse->serial); return 0; } static void rtl8188eu_reset_8051(struct rtl8xxxu_priv *priv) { u16 sys_func; sys_func = rtl8xxxu_read16(priv, REG_SYS_FUNC); sys_func &= ~SYS_FUNC_CPU_ENABLE; rtl8xxxu_write16(priv, REG_SYS_FUNC, sys_func); sys_func |= SYS_FUNC_CPU_ENABLE; rtl8xxxu_write16(priv, REG_SYS_FUNC, sys_func); } static int rtl8188eu_load_firmware(struct rtl8xxxu_priv *priv) { const char *fw_name; int ret; fw_name = "rtlwifi/rtl8188eufw.bin"; ret = rtl8xxxu_load_firmware(priv, fw_name); return ret; } static void rtl8188eu_init_phy_bb(struct rtl8xxxu_priv *priv) { u8 val8; u16 val16; val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC); val16 |= SYS_FUNC_BB_GLB_RSTN | SYS_FUNC_BBRSTB | SYS_FUNC_DIO_RF; rtl8xxxu_write16(priv, REG_SYS_FUNC, val16); /* * Per vendor driver, run power sequence before init of RF */ val8 = RF_ENABLE | RF_RSTB | RF_SDMRSTB; rtl8xxxu_write8(priv, REG_RF_CTRL, val8); val8 = SYS_FUNC_USBA | SYS_FUNC_USBD | SYS_FUNC_BB_GLB_RSTN | SYS_FUNC_BBRSTB; rtl8xxxu_write8(priv, REG_SYS_FUNC, val8); rtl8xxxu_init_phy_regs(priv, rtl8188eu_phy_init_table); rtl8xxxu_init_phy_regs(priv, rtl8188e_agc_table); } static int rtl8188eu_init_phy_rf(struct rtl8xxxu_priv *priv) { return rtl8xxxu_init_phy_rf(priv, rtl8188eu_radioa_init_table, RF_A); } static int rtl8188eu_iqk_path_a(struct rtl8xxxu_priv *priv) { u32 reg_eac, reg_e94, reg_e9c; int result = 0; /* Path A IQK setting */ rtl8xxxu_write32(priv, REG_TX_IQK_TONE_A, 0x10008c1c); rtl8xxxu_write32(priv, REG_RX_IQK_TONE_A, 0x30008c1c); rtl8xxxu_write32(priv, REG_TX_IQK_PI_A, 0x8214032a); rtl8xxxu_write32(priv, REG_RX_IQK_PI_A, 0x28160000); /* LO calibration setting */ rtl8xxxu_write32(priv, REG_IQK_AGC_RSP, 0x00462911); /* One shot, path A LOK & IQK */ rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf9000000); rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf8000000); mdelay(10); /* Check failed */ reg_eac = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_A_2); reg_e94 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_A); reg_e9c = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_A); if (!(reg_eac & BIT(28)) && ((reg_e94 & 0x03ff0000) != 0x01420000) && ((reg_e9c & 0x03ff0000) != 0x00420000)) result |= 0x01; return result; } static int rtl8188eu_rx_iqk_path_a(struct rtl8xxxu_priv *priv) { u32 reg_ea4, reg_eac, reg_e94, reg_e9c, val32; int result = 0; /* Leave IQK mode */ val32 = rtl8xxxu_read32(priv, REG_FPGA0_IQK); u32p_replace_bits(&val32, 0, 0xffffff00); rtl8xxxu_write32(priv, REG_FPGA0_IQK, val32); /* Enable path A PA in TX IQK mode */ rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_WE_LUT, 0x800a0); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_RCK_OS, 0x30000); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_TXPA_G1, 0x0000f); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_TXPA_G2, 0xf117b); /* Enter IQK mode */ val32 = rtl8xxxu_read32(priv, REG_FPGA0_IQK); u32p_replace_bits(&val32, 0x808000, 0xffffff00); rtl8xxxu_write32(priv, REG_FPGA0_IQK, val32); /* TX IQK setting */ rtl8xxxu_write32(priv, REG_TX_IQK, 0x01007c00); rtl8xxxu_write32(priv, REG_RX_IQK, 0x81004800); /* path-A IQK setting */ rtl8xxxu_write32(priv, REG_TX_IQK_TONE_A, 0x10008c1c); rtl8xxxu_write32(priv, REG_RX_IQK_TONE_A, 0x30008c1c); rtl8xxxu_write32(priv, REG_TX_IQK_PI_A, 0x82160804); rtl8xxxu_write32(priv, REG_RX_IQK_PI_A, 0x28160000); /* LO calibration setting */ rtl8xxxu_write32(priv, REG_IQK_AGC_RSP, 0x0046a911); /* One shot, path A LOK & IQK */ rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf9000000); rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf8000000); mdelay(10); /* Check failed */ reg_eac = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_A_2); reg_e94 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_A); reg_e9c = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_A); if (!(reg_eac & BIT(28)) && ((reg_e94 & 0x03ff0000) != 0x01420000) && ((reg_e9c & 0x03ff0000) != 0x00420000)) result |= 0x01; else goto out; val32 = 0x80007c00 | (reg_e94 & 0x03ff0000) | ((reg_e9c >> 16) & 0x03ff); rtl8xxxu_write32(priv, REG_TX_IQK, val32); /* Modify RX IQK mode table */ val32 = rtl8xxxu_read32(priv, REG_FPGA0_IQK); u32p_replace_bits(&val32, 0, 0xffffff00); rtl8xxxu_write32(priv, REG_FPGA0_IQK, val32); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_WE_LUT, 0x800a0); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_RCK_OS, 0x30000); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_TXPA_G1, 0x0000f); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_TXPA_G2, 0xf7ffa); /* Enter IQK mode */ val32 = rtl8xxxu_read32(priv, REG_FPGA0_IQK); u32p_replace_bits(&val32, 0x808000, 0xffffff00); rtl8xxxu_write32(priv, REG_FPGA0_IQK, val32); /* IQK setting */ rtl8xxxu_write32(priv, REG_RX_IQK, 0x01004800); /* Path A IQK setting */ rtl8xxxu_write32(priv, REG_TX_IQK_TONE_A, 0x30008c1c); rtl8xxxu_write32(priv, REG_RX_IQK_TONE_A, 0x10008c1c); rtl8xxxu_write32(priv, REG_TX_IQK_PI_A, 0x82160c05); rtl8xxxu_write32(priv, REG_RX_IQK_PI_A, 0x28160c05); /* LO calibration setting */ rtl8xxxu_write32(priv, REG_IQK_AGC_RSP, 0x0046a911); /* One shot, path A LOK & IQK */ rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf9000000); rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf8000000); mdelay(10); reg_eac = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_A_2); reg_ea4 = rtl8xxxu_read32(priv, REG_RX_POWER_BEFORE_IQK_A_2); if (!(reg_eac & BIT(27)) && ((reg_ea4 & 0x03ff0000) != 0x01320000) && ((reg_eac & 0x03ff0000) != 0x00360000)) result |= 0x02; else dev_warn(&priv->udev->dev, "%s: Path A RX IQK failed!\n", __func__); out: return result; } static void rtl8188eu_phy_iqcalibrate(struct rtl8xxxu_priv *priv, int result[][8], int t) { struct device *dev = &priv->udev->dev; u32 i, val32; int path_a_ok; int retry = 2; static const u32 adda_regs[RTL8XXXU_ADDA_REGS] = { REG_FPGA0_XCD_SWITCH_CTRL, REG_BLUETOOTH, REG_RX_WAIT_CCA, REG_TX_CCK_RFON, REG_TX_CCK_BBON, REG_TX_OFDM_RFON, REG_TX_OFDM_BBON, REG_TX_TO_RX, REG_TX_TO_TX, REG_RX_CCK, REG_RX_OFDM, REG_RX_WAIT_RIFS, REG_RX_TO_RX, REG_STANDBY, REG_SLEEP, REG_PMPD_ANAEN }; static const u32 iqk_mac_regs[RTL8XXXU_MAC_REGS] = { REG_TXPAUSE, REG_BEACON_CTRL, REG_BEACON_CTRL_1, REG_GPIO_MUXCFG }; static const u32 iqk_bb_regs[RTL8XXXU_BB_REGS] = { REG_OFDM0_TRX_PATH_ENABLE, REG_OFDM0_TR_MUX_PAR, REG_FPGA0_XCD_RF_SW_CTRL, REG_CONFIG_ANT_A, REG_CONFIG_ANT_B, REG_FPGA0_XAB_RF_SW_CTRL, REG_FPGA0_XA_RF_INT_OE, REG_FPGA0_XB_RF_INT_OE, REG_CCK0_AFE_SETTING }; /* * Note: IQ calibration must be performed after loading * PHY_REG.txt , and radio_a, radio_b.txt */ if (t == 0) { /* Save ADDA parameters, turn Path A ADDA on */ rtl8xxxu_save_regs(priv, adda_regs, priv->adda_backup, RTL8XXXU_ADDA_REGS); rtl8xxxu_save_mac_regs(priv, iqk_mac_regs, priv->mac_backup); rtl8xxxu_save_regs(priv, iqk_bb_regs, priv->bb_backup, RTL8XXXU_BB_REGS); } rtl8xxxu_path_adda_on(priv, adda_regs, true); if (t == 0) { val32 = rtl8xxxu_read32(priv, REG_FPGA0_XA_HSSI_PARM1); priv->pi_enabled = u32_get_bits(val32, FPGA0_HSSI_PARM1_PI); } if (!priv->pi_enabled) { /* Switch BB to PI mode to do IQ Calibration. */ rtl8xxxu_write32(priv, REG_FPGA0_XA_HSSI_PARM1, 0x01000100); rtl8xxxu_write32(priv, REG_FPGA0_XB_HSSI_PARM1, 0x01000100); } /* MAC settings */ rtl8xxxu_mac_calibration(priv, iqk_mac_regs, priv->mac_backup); val32 = rtl8xxxu_read32(priv, REG_CCK0_AFE_SETTING); u32p_replace_bits(&val32, 0xf, 0x0f000000); rtl8xxxu_write32(priv, REG_CCK0_AFE_SETTING, val32); rtl8xxxu_write32(priv, REG_OFDM0_TRX_PATH_ENABLE, 0x03a05600); rtl8xxxu_write32(priv, REG_OFDM0_TR_MUX_PAR, 0x000800e4); rtl8xxxu_write32(priv, REG_FPGA0_XCD_RF_SW_CTRL, 0x22204000); if (!priv->no_pape) { val32 = rtl8xxxu_read32(priv, REG_FPGA0_XAB_RF_SW_CTRL); val32 |= (FPGA0_RF_PAPE | (FPGA0_RF_PAPE << FPGA0_RF_BD_CTRL_SHIFT)); rtl8xxxu_write32(priv, REG_FPGA0_XAB_RF_SW_CTRL, val32); } val32 = rtl8xxxu_read32(priv, REG_FPGA0_XA_RF_INT_OE); val32 &= ~BIT(10); rtl8xxxu_write32(priv, REG_FPGA0_XA_RF_INT_OE, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA0_XB_RF_INT_OE); val32 &= ~BIT(10); rtl8xxxu_write32(priv, REG_FPGA0_XB_RF_INT_OE, val32); /* Page B init */ rtl8xxxu_write32(priv, REG_CONFIG_ANT_A, 0x0f600000); /* IQ calibration setting */ val32 = rtl8xxxu_read32(priv, REG_FPGA0_IQK); u32p_replace_bits(&val32, 0x808000, 0xffffff00); rtl8xxxu_write32(priv, REG_FPGA0_IQK, val32); rtl8xxxu_write32(priv, REG_TX_IQK, 0x01007c00); rtl8xxxu_write32(priv, REG_RX_IQK, 0x81004800); for (i = 0; i < retry; i++) { path_a_ok = rtl8188eu_iqk_path_a(priv); if (path_a_ok == 0x01) { val32 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_A); result[t][0] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_A); result[t][1] = (val32 >> 16) & 0x3ff; break; } } if (!path_a_ok) dev_dbg(dev, "%s: Path A TX IQK failed!\n", __func__); for (i = 0; i < retry; i++) { path_a_ok = rtl8188eu_rx_iqk_path_a(priv); if (path_a_ok == 0x03) { val32 = rtl8xxxu_read32(priv, REG_RX_POWER_BEFORE_IQK_A_2); result[t][2] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_A_2); result[t][3] = (val32 >> 16) & 0x3ff; break; } } if (!path_a_ok) dev_dbg(dev, "%s: Path A RX IQK failed!\n", __func__); /* Back to BB mode, load original value */ val32 = rtl8xxxu_read32(priv, REG_FPGA0_IQK); u32p_replace_bits(&val32, 0, 0xffffff00); rtl8xxxu_write32(priv, REG_FPGA0_IQK, val32); if (t == 0) return; if (!priv->pi_enabled) { /* Switch back BB to SI mode after finishing IQ Calibration */ rtl8xxxu_write32(priv, REG_FPGA0_XA_HSSI_PARM1, 0x01000000); rtl8xxxu_write32(priv, REG_FPGA0_XB_HSSI_PARM1, 0x01000000); } /* Reload ADDA power saving parameters */ rtl8xxxu_restore_regs(priv, adda_regs, priv->adda_backup, RTL8XXXU_ADDA_REGS); /* Reload MAC parameters */ rtl8xxxu_restore_mac_regs(priv, iqk_mac_regs, priv->mac_backup); /* Reload BB parameters */ rtl8xxxu_restore_regs(priv, iqk_bb_regs, priv->bb_backup, RTL8XXXU_BB_REGS); /* Restore RX initial gain */ rtl8xxxu_write32(priv, REG_FPGA0_XA_LSSI_PARM, 0x00032ed3); /* Load 0xe30 IQC default value */ rtl8xxxu_write32(priv, REG_TX_IQK_TONE_A, 0x01008c00); rtl8xxxu_write32(priv, REG_RX_IQK_TONE_A, 0x01008c00); } static void rtl8188eu_phy_iq_calibrate(struct rtl8xxxu_priv *priv) { struct device *dev = &priv->udev->dev; int result[4][8]; /* last is final result */ int i, candidate; bool path_a_ok; u32 reg_e94, reg_e9c, reg_ea4, reg_eac; u32 reg_eb4, reg_ebc, reg_ec4, reg_ecc; bool simu; memset(result, 0, sizeof(result)); result[3][0] = 0x100; result[3][2] = 0x100; result[3][4] = 0x100; result[3][6] = 0x100; candidate = -1; path_a_ok = false; for (i = 0; i < 3; i++) { rtl8188eu_phy_iqcalibrate(priv, result, i); if (i == 1) { simu = rtl8xxxu_simularity_compare(priv, result, 0, 1); if (simu) { candidate = 0; break; } } if (i == 2) { simu = rtl8xxxu_simularity_compare(priv, result, 0, 2); if (simu) { candidate = 0; break; } simu = rtl8xxxu_simularity_compare(priv, result, 1, 2); if (simu) candidate = 1; else candidate = 3; } } if (candidate >= 0) { reg_e94 = result[candidate][0]; priv->rege94 = reg_e94; reg_e9c = result[candidate][1]; priv->rege9c = reg_e9c; reg_ea4 = result[candidate][2]; reg_eac = result[candidate][3]; reg_eb4 = result[candidate][4]; priv->regeb4 = reg_eb4; reg_ebc = result[candidate][5]; priv->regebc = reg_ebc; reg_ec4 = result[candidate][6]; reg_ecc = result[candidate][7]; dev_dbg(dev, "%s: candidate is %x\n", __func__, candidate); dev_dbg(dev, "%s: e94=%x e9c=%x ea4=%x eac=%x eb4=%x ebc=%x ec4=%x ecc=%x\n", __func__, reg_e94, reg_e9c, reg_ea4, reg_eac, reg_eb4, reg_ebc, reg_ec4, reg_ecc); path_a_ok = true; } else { reg_e94 = 0x100; reg_eb4 = 0x100; priv->rege94 = 0x100; priv->regeb4 = 0x100; reg_e9c = 0x0; reg_ebc = 0x0; priv->rege9c = 0x0; priv->regebc = 0x0; } if (reg_e94 && candidate >= 0) rtl8xxxu_fill_iqk_matrix_a(priv, path_a_ok, result, candidate, (reg_ea4 == 0)); rtl8xxxu_save_regs(priv, rtl8xxxu_iqk_phy_iq_bb_reg, priv->bb_recovery_backup, RTL8XXXU_BB_REGS); } static void rtl8188e_disabled_to_emu(struct rtl8xxxu_priv *priv) { u16 val16; val16 = rtl8xxxu_read16(priv, REG_APS_FSMCO); val16 &= ~(APS_FSMCO_HW_SUSPEND | APS_FSMCO_PCIE); rtl8xxxu_write16(priv, REG_APS_FSMCO, val16); } static int rtl8188e_emu_to_active(struct rtl8xxxu_priv *priv) { u8 val8; u32 val32; u16 val16; int count, ret = 0; /* wait till 0x04[17] = 1 power ready*/ for (count = RTL8XXXU_MAX_REG_POLL; count; count--) { val32 = rtl8xxxu_read32(priv, REG_APS_FSMCO); if (val32 & BIT(17)) break; udelay(10); } if (!count) { ret = -EBUSY; goto exit; } /* reset baseband */ val8 = rtl8xxxu_read8(priv, REG_SYS_FUNC); val8 &= ~(SYS_FUNC_BBRSTB | SYS_FUNC_BB_GLB_RSTN); rtl8xxxu_write8(priv, REG_SYS_FUNC, val8); /*0x24[23] = 2b'01 schmit trigger */ val32 = rtl8xxxu_read32(priv, REG_AFE_XTAL_CTRL); val32 |= BIT(23); rtl8xxxu_write32(priv, REG_AFE_XTAL_CTRL, val32); /* 0x04[15] = 0 disable HWPDN (control by DRV)*/ val16 = rtl8xxxu_read16(priv, REG_APS_FSMCO); val16 &= ~APS_FSMCO_HW_POWERDOWN; rtl8xxxu_write16(priv, REG_APS_FSMCO, val16); /*0x04[12:11] = 2b'00 disable WL suspend*/ val16 = rtl8xxxu_read16(priv, REG_APS_FSMCO); val16 &= ~(APS_FSMCO_HW_SUSPEND | APS_FSMCO_PCIE); rtl8xxxu_write16(priv, REG_APS_FSMCO, val16); /* set, then poll until 0 */ val32 = rtl8xxxu_read32(priv, REG_APS_FSMCO); val32 |= APS_FSMCO_MAC_ENABLE; rtl8xxxu_write32(priv, REG_APS_FSMCO, val32); for (count = RTL8XXXU_MAX_REG_POLL; count; count--) { val32 = rtl8xxxu_read32(priv, REG_APS_FSMCO); if ((val32 & APS_FSMCO_MAC_ENABLE) == 0) { ret = 0; break; } udelay(10); } if (!count) { ret = -EBUSY; goto exit; } /* LDO normal mode*/ val8 = rtl8xxxu_read8(priv, REG_LPLDO_CTRL); val8 &= ~BIT(4); rtl8xxxu_write8(priv, REG_LPLDO_CTRL, val8); exit: return ret; } static int rtl8188eu_active_to_emu(struct rtl8xxxu_priv *priv) { u8 val8; /* Turn off RF */ val8 = rtl8xxxu_read8(priv, REG_RF_CTRL); val8 &= ~RF_ENABLE; rtl8xxxu_write8(priv, REG_RF_CTRL, val8); /* LDO Sleep mode */ val8 = rtl8xxxu_read8(priv, REG_LPLDO_CTRL); val8 |= BIT(4); rtl8xxxu_write8(priv, REG_LPLDO_CTRL, val8); return 0; } static int rtl8188eu_emu_to_disabled(struct rtl8xxxu_priv *priv) { u32 val32; u16 val16; u8 val8; val32 = rtl8xxxu_read32(priv, REG_AFE_XTAL_CTRL); val32 |= BIT(23); rtl8xxxu_write32(priv, REG_AFE_XTAL_CTRL, val32); val16 = rtl8xxxu_read16(priv, REG_APS_FSMCO); val16 &= ~APS_FSMCO_PCIE; val16 |= APS_FSMCO_HW_SUSPEND; rtl8xxxu_write16(priv, REG_APS_FSMCO, val16); rtl8xxxu_write8(priv, REG_APS_FSMCO + 3, 0x00); val8 = rtl8xxxu_read8(priv, REG_GPIO_MUXCFG + 1); val8 &= ~BIT(4); rtl8xxxu_write8(priv, REG_GPIO_MUXCFG + 1, val8); /* Set USB suspend enable local register 0xfe10[4]=1 */ val8 = rtl8xxxu_read8(priv, 0xfe10); val8 |= BIT(4); rtl8xxxu_write8(priv, 0xfe10, val8); return 0; } static int rtl8188eu_active_to_lps(struct rtl8xxxu_priv *priv) { struct device *dev = &priv->udev->dev; u8 val8; u16 val16; u32 val32; int retry, retval; rtl8xxxu_write8(priv, REG_TXPAUSE, 0x7f); retry = 100; retval = -EBUSY; /* Poll 32 bit wide REG_SCH_TX_CMD for 0 to ensure no TX is pending. */ do { val32 = rtl8xxxu_read32(priv, REG_SCH_TX_CMD); if (!val32) { retval = 0; break; } } while (retry--); if (!retry) { dev_warn(dev, "Failed to flush TX queue\n"); retval = -EBUSY; goto out; } /* Disable CCK and OFDM, clock gated */ val8 = rtl8xxxu_read8(priv, REG_SYS_FUNC); val8 &= ~SYS_FUNC_BBRSTB; rtl8xxxu_write8(priv, REG_SYS_FUNC, val8); udelay(2); /* Reset MAC TRX */ val16 = rtl8xxxu_read16(priv, REG_CR); val16 |= 0xff; val16 &= ~(CR_MAC_TX_ENABLE | CR_MAC_RX_ENABLE | CR_SECURITY_ENABLE); rtl8xxxu_write16(priv, REG_CR, val16); val8 = rtl8xxxu_read8(priv, REG_DUAL_TSF_RST); val8 |= DUAL_TSF_TX_OK; rtl8xxxu_write8(priv, REG_DUAL_TSF_RST, val8); out: return retval; } static int rtl8188eu_power_on(struct rtl8xxxu_priv *priv) { u16 val16; int ret; rtl8188e_disabled_to_emu(priv); ret = rtl8188e_emu_to_active(priv); if (ret) goto exit; /* * Enable MAC DMA/WMAC/SCHEDULE/SEC block * Set CR bit10 to enable 32k calibration. * We do not set CR_MAC_TX_ENABLE | CR_MAC_RX_ENABLE here * due to a hardware bug in the 88E, requiring those to be * set after REG_TRXFF_BNDY is set. If not the RXFF bundary * will get set to a larger buffer size than the real buffer * size. */ val16 = (CR_HCI_TXDMA_ENABLE | CR_HCI_RXDMA_ENABLE | CR_TXDMA_ENABLE | CR_RXDMA_ENABLE | CR_PROTOCOL_ENABLE | CR_SCHEDULE_ENABLE | CR_SECURITY_ENABLE | CR_CALTIMER_ENABLE); rtl8xxxu_write16(priv, REG_CR, val16); exit: return ret; } static void rtl8188eu_power_off(struct rtl8xxxu_priv *priv) { u8 val8; u16 val16; rtl8xxxu_flush_fifo(priv); val8 = rtl8xxxu_read8(priv, REG_TX_REPORT_CTRL); val8 &= ~TX_REPORT_CTRL_TIMER_ENABLE; rtl8xxxu_write8(priv, REG_TX_REPORT_CTRL, val8); /* Turn off RF */ rtl8xxxu_write8(priv, REG_RF_CTRL, 0x00); rtl8188eu_active_to_lps(priv); /* Reset Firmware if running in RAM */ if (rtl8xxxu_read8(priv, REG_MCU_FW_DL) & MCU_FW_RAM_SEL) rtl8xxxu_firmware_self_reset(priv); /* Reset MCU */ val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC); val16 &= ~SYS_FUNC_CPU_ENABLE; rtl8xxxu_write16(priv, REG_SYS_FUNC, val16); /* Reset MCU ready status */ rtl8xxxu_write8(priv, REG_MCU_FW_DL, 0x00); /* 32K_CTRL looks to be very 8188e specific */ val8 = rtl8xxxu_read8(priv, REG_32K_CTRL); val8 &= ~BIT(0); rtl8xxxu_write8(priv, REG_32K_CTRL, val8); rtl8188eu_active_to_emu(priv); rtl8188eu_emu_to_disabled(priv); /* Reset MCU IO Wrapper */ val8 = rtl8xxxu_read8(priv, REG_RSV_CTRL + 1); val8 &= ~BIT(3); rtl8xxxu_write8(priv, REG_RSV_CTRL + 1, val8); val8 = rtl8xxxu_read8(priv, REG_RSV_CTRL + 1); val8 |= BIT(3); rtl8xxxu_write8(priv, REG_RSV_CTRL + 1, val8); /* Vendor driver refers to GPIO_IN */ val8 = rtl8xxxu_read8(priv, REG_GPIO_PIN_CTRL); /* Vendor driver refers to GPIO_OUT */ rtl8xxxu_write8(priv, REG_GPIO_PIN_CTRL + 1, val8); rtl8xxxu_write8(priv, REG_GPIO_PIN_CTRL + 2, 0xff); val8 = rtl8xxxu_read8(priv, REG_GPIO_IO_SEL); rtl8xxxu_write8(priv, REG_GPIO_IO_SEL, val8 << 4); val8 = rtl8xxxu_read8(priv, REG_GPIO_IO_SEL + 1); rtl8xxxu_write8(priv, REG_GPIO_IO_SEL + 1, val8 | 0x0f); /* * Set LNA, TRSW, EX_PA Pin to output mode * Referred to as REG_BB_PAD_CTRL in 8188eu vendor driver */ rtl8xxxu_write32(priv, REG_PAD_CTRL1, 0x00080808); rtl8xxxu_write8(priv, REG_RSV_CTRL, 0x00); rtl8xxxu_write32(priv, REG_GPIO_MUXCFG, 0x00000000); } static void rtl8188e_enable_rf(struct rtl8xxxu_priv *priv) { u32 val32; rtl8xxxu_write8(priv, REG_RF_CTRL, RF_ENABLE | RF_RSTB | RF_SDMRSTB); val32 = rtl8xxxu_read32(priv, REG_OFDM0_TRX_PATH_ENABLE); val32 &= ~(OFDM_RF_PATH_RX_MASK | OFDM_RF_PATH_TX_MASK); val32 |= OFDM_RF_PATH_RX_A | OFDM_RF_PATH_TX_A; rtl8xxxu_write32(priv, REG_OFDM0_TRX_PATH_ENABLE, val32); rtl8xxxu_write8(priv, REG_TXPAUSE, 0x00); } static void rtl8188e_disable_rf(struct rtl8xxxu_priv *priv) { u32 val32; val32 = rtl8xxxu_read32(priv, REG_OFDM0_TRX_PATH_ENABLE); val32 &= ~OFDM_RF_PATH_TX_MASK; rtl8xxxu_write32(priv, REG_OFDM0_TRX_PATH_ENABLE, val32); /* Power down RF module */ rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_AC, 0); rtl8188eu_active_to_emu(priv); } static void rtl8188e_usb_quirks(struct rtl8xxxu_priv *priv) { u16 val16; /* * Technically this is not a USB quirk, but a chip quirk. * This has to be done after REG_TRXFF_BNDY is set, see * rtl8188eu_power_on() for details. */ val16 = rtl8xxxu_read16(priv, REG_CR); val16 |= (CR_MAC_TX_ENABLE | CR_MAC_RX_ENABLE); rtl8xxxu_write16(priv, REG_CR, val16); rtl8xxxu_gen2_usb_quirks(priv); /* Pre-TX enable WEP/TKIP security */ rtl8xxxu_write8(priv, REG_EARLY_MODE_CONTROL_8188E + 3, 0x01); } static s8 rtl8188e_cck_rssi(struct rtl8xxxu_priv *priv, u8 cck_agc_rpt) { /* only use lna 0/1/2/3/7 */ static const s8 lna_gain_table_0[8] = {17, -1, -13, -29, -32, -35, -38, -41}; /* only use lna 3/7 */ static const s8 lna_gain_table_1[8] = {29, 20, 12, 3, -6, -15, -24, -33}; s8 rx_pwr_all = 0x00; u8 vga_idx, lna_idx; s8 lna_gain = 0; lna_idx = u8_get_bits(cck_agc_rpt, CCK_AGC_RPT_LNA_IDX_MASK); vga_idx = u8_get_bits(cck_agc_rpt, CCK_AGC_RPT_VGA_IDX_MASK); if (priv->chip_cut >= 8) /* cut I */ /* SMIC */ lna_gain = lna_gain_table_0[lna_idx]; else /* TSMC */ lna_gain = lna_gain_table_1[lna_idx]; rx_pwr_all = lna_gain - (2 * vga_idx); return rx_pwr_all; } static int rtl8188eu_led_brightness_set(struct led_classdev *led_cdev, enum led_brightness brightness) { struct rtl8xxxu_priv *priv = container_of(led_cdev, struct rtl8xxxu_priv, led_cdev); u8 ledcfg = rtl8xxxu_read8(priv, REG_LEDCFG2); if (brightness == LED_OFF) { ledcfg &= ~LEDCFG2_HW_LED_CONTROL; ledcfg |= LEDCFG2_SW_LED_CONTROL | LEDCFG2_SW_LED_DISABLE; } else if (brightness == LED_ON) { ledcfg &= ~(LEDCFG2_HW_LED_CONTROL | LEDCFG2_SW_LED_DISABLE); ledcfg |= LEDCFG2_SW_LED_CONTROL; } else if (brightness == RTL8XXXU_HW_LED_CONTROL) { ledcfg &= ~LEDCFG2_SW_LED_DISABLE; ledcfg |= LEDCFG2_HW_LED_CONTROL | LEDCFG2_HW_LED_ENABLE; } rtl8xxxu_write8(priv, REG_LEDCFG2, ledcfg); return 0; } static void rtl8188e_set_tx_rpt_timing(struct rtl8xxxu_ra_info *ra, u8 timing) { u8 idx; for (idx = 0; idx < 5; idx++) if (dynamic_tx_rpt_timing[idx] == ra->rpt_time) break; if (timing == DEFAULT_TIMING) { idx = 0; /* 200ms */ } else if (timing == INCREASE_TIMING) { if (idx < 5) idx++; } else if (timing == DECREASE_TIMING) { if (idx > 0) idx--; } ra->rpt_time = dynamic_tx_rpt_timing[idx]; } static void rtl8188e_rate_down(struct rtl8xxxu_ra_info *ra) { u8 rate_id = ra->pre_rate; u8 lowest_rate = ra->lowest_rate; u8 highest_rate = ra->highest_rate; s8 i; if (rate_id > highest_rate) { rate_id = highest_rate; } else if (ra->rate_sgi) { ra->rate_sgi = 0; } else if (rate_id > lowest_rate) { if (rate_id > 0) { for (i = rate_id - 1; i >= lowest_rate; i--) { if (ra->ra_use_rate & BIT(i)) { rate_id = i; goto rate_down_finish; } } } } else if (rate_id <= lowest_rate) { rate_id = lowest_rate; } rate_down_finish: if (ra->ra_waiting_counter == 1) { ra->ra_waiting_counter++; ra->ra_pending_counter++; } else if (ra->ra_waiting_counter > 1) { ra->ra_waiting_counter = 0; ra->ra_pending_counter = 0; } if (ra->ra_pending_counter >= 4) ra->ra_pending_counter = 4; ra->ra_drop_after_down = 1; ra->decision_rate = rate_id; rtl8188e_set_tx_rpt_timing(ra, DECREASE_TIMING); } static void rtl8188e_rate_up(struct rtl8xxxu_ra_info *ra) { u8 rate_id = ra->pre_rate; u8 highest_rate = ra->highest_rate; u8 i; if (ra->ra_waiting_counter == 1) { ra->ra_waiting_counter = 0; ra->ra_pending_counter = 0; } else if (ra->ra_waiting_counter > 1) { ra->pre_rssi_sta_ra = ra->rssi_sta_ra; goto rate_up_finish; } rtl8188e_set_tx_rpt_timing(ra, DEFAULT_TIMING); if (rate_id < highest_rate) { for (i = rate_id + 1; i <= highest_rate; i++) { if (ra->ra_use_rate & BIT(i)) { rate_id = i; goto rate_up_finish; } } } else if (rate_id == highest_rate) { if (ra->sgi_enable && !ra->rate_sgi) ra->rate_sgi = 1; else if (!ra->sgi_enable) ra->rate_sgi = 0; } else { /* rate_id > ra->highest_rate */ rate_id = highest_rate; } rate_up_finish: if (ra->ra_waiting_counter == (4 + pending_for_rate_up_fail[ra->ra_pending_counter])) ra->ra_waiting_counter = 0; else ra->ra_waiting_counter++; ra->decision_rate = rate_id; } static void rtl8188e_reset_ra_counter(struct rtl8xxxu_ra_info *ra) { u8 rate_id = ra->decision_rate; ra->nsc_up = (n_threshold_high[rate_id] + n_threshold_low[rate_id]) >> 1; ra->nsc_down = (n_threshold_high[rate_id] + n_threshold_low[rate_id]) >> 1; } static void rtl8188e_rate_decision(struct rtl8xxxu_ra_info *ra) { struct rtl8xxxu_priv *priv = container_of(ra, struct rtl8xxxu_priv, ra_info); const u8 *retry_penalty_idx_0; const u8 *retry_penalty_idx_1; const u8 *retry_penalty_up_idx; u8 rate_id, penalty_id1, penalty_id2; int i; if (ra->total == 0) return; if (ra->ra_drop_after_down) { ra->ra_drop_after_down--; rtl8188e_reset_ra_counter(ra); return; } if (priv->chip_cut == 8) { /* cut I */ retry_penalty_idx_0 = retry_penalty_idx_cut_i[0]; retry_penalty_idx_1 = retry_penalty_idx_cut_i[1]; retry_penalty_up_idx = retry_penalty_up_idx_cut_i; } else { retry_penalty_idx_0 = retry_penalty_idx_normal[0]; retry_penalty_idx_1 = retry_penalty_idx_normal[1]; retry_penalty_up_idx = retry_penalty_up_idx_normal; } if (ra->rssi_sta_ra < (ra->pre_rssi_sta_ra - 3) || ra->rssi_sta_ra > (ra->pre_rssi_sta_ra + 3)) { ra->pre_rssi_sta_ra = ra->rssi_sta_ra; ra->ra_waiting_counter = 0; ra->ra_pending_counter = 0; } /* Start RA decision */ if (ra->pre_rate > ra->highest_rate) rate_id = ra->highest_rate; else rate_id = ra->pre_rate; /* rate down */ if (ra->rssi_sta_ra > rssi_threshold[rate_id]) penalty_id1 = retry_penalty_idx_0[rate_id]; else penalty_id1 = retry_penalty_idx_1[rate_id]; for (i = 0; i < 5; i++) ra->nsc_down += ra->retry[i] * retry_penalty[penalty_id1][i]; if (ra->nsc_down > (ra->total * retry_penalty[penalty_id1][5])) ra->nsc_down -= ra->total * retry_penalty[penalty_id1][5]; else ra->nsc_down = 0; /* rate up */ penalty_id2 = retry_penalty_up_idx[rate_id]; for (i = 0; i < 5; i++) ra->nsc_up += ra->retry[i] * retry_penalty[penalty_id2][i]; if (ra->nsc_up > (ra->total * retry_penalty[penalty_id2][5])) ra->nsc_up -= ra->total * retry_penalty[penalty_id2][5]; else ra->nsc_up = 0; if (ra->nsc_down < n_threshold_low[rate_id] || ra->drop > dropping_necessary[rate_id]) { rtl8188e_rate_down(ra); rtl8xxxu_update_ra_report(&priv->ra_report, ra->decision_rate, ra->rate_sgi, priv->ra_report.txrate.bw); } else if (ra->nsc_up > n_threshold_high[rate_id]) { rtl8188e_rate_up(ra); rtl8xxxu_update_ra_report(&priv->ra_report, ra->decision_rate, ra->rate_sgi, priv->ra_report.txrate.bw); } if (ra->decision_rate == ra->pre_rate) ra->dynamic_tx_rpt_timing_counter++; else ra->dynamic_tx_rpt_timing_counter = 0; if (ra->dynamic_tx_rpt_timing_counter >= 4) { /* Rate didn't change 4 times, extend RPT timing */ rtl8188e_set_tx_rpt_timing(ra, INCREASE_TIMING); ra->dynamic_tx_rpt_timing_counter = 0; } ra->pre_rate = ra->decision_rate; rtl8188e_reset_ra_counter(ra); } static void rtl8188e_power_training_try_state(struct rtl8xxxu_ra_info *ra) { ra->pt_try_state = 0; switch (ra->pt_mode_ss) { case 3: if (ra->decision_rate >= DESC_RATE_MCS13) ra->pt_try_state = 1; break; case 2: if (ra->decision_rate >= DESC_RATE_MCS5) ra->pt_try_state = 1; break; case 1: if (ra->decision_rate >= DESC_RATE_48M) ra->pt_try_state = 1; break; case 0: if (ra->decision_rate >= DESC_RATE_11M) ra->pt_try_state = 1; break; default: break; } if (ra->rssi_sta_ra < 48) { ra->pt_stage = 0; } else if (ra->pt_try_state == 1) { if ((ra->pt_stop_count >= 10) || (ra->pt_pre_rssi > ra->rssi_sta_ra + 5) || (ra->pt_pre_rssi < ra->rssi_sta_ra - 5) || (ra->decision_rate != ra->pt_pre_rate)) { if (ra->pt_stage == 0) ra->pt_stage = 1; else if (ra->pt_stage == 1) ra->pt_stage = 3; else ra->pt_stage = 5; ra->pt_pre_rssi = ra->rssi_sta_ra; ra->pt_stop_count = 0; } else { ra->ra_stage = 0; ra->pt_stop_count++; } } else { ra->pt_stage = 0; ra->ra_stage = 0; } ra->pt_pre_rate = ra->decision_rate; /* TODO: implement the "false alarm" statistics for this */ /* Disable power training when noisy environment */ /* if (p_dm_odm->is_disable_power_training) { */ if (1) { ra->pt_stage = 0; ra->ra_stage = 0; ra->pt_stop_count = 0; } } static void rtl8188e_power_training_decision(struct rtl8xxxu_ra_info *ra) { u8 temp_stage; u32 numsc; u32 num_total; u8 stage_id; u8 j; numsc = 0; num_total = ra->total * pt_penalty[5]; for (j = 0; j <= 4; j++) { numsc += ra->retry[j] * pt_penalty[j]; if (numsc > num_total) break; } j >>= 1; temp_stage = (ra->pt_stage + 1) >> 1; if (temp_stage > j) stage_id = temp_stage - j; else stage_id = 0; ra->pt_smooth_factor = (ra->pt_smooth_factor >> 1) + (ra->pt_smooth_factor >> 2) + stage_id * 16 + 2; if (ra->pt_smooth_factor > 192) ra->pt_smooth_factor = 192; stage_id = ra->pt_smooth_factor >> 6; temp_stage = stage_id * 2; if (temp_stage != 0) temp_stage--; if (ra->drop > 3) temp_stage = 0; ra->pt_stage = temp_stage; } void rtl8188e_handle_ra_tx_report2(struct rtl8xxxu_priv *priv, struct sk_buff *skb) { u32 *_rx_desc = (u32 *)(skb->data - sizeof(struct rtl8xxxu_rxdesc16)); struct rtl8xxxu_rxdesc16 *rx_desc = (struct rtl8xxxu_rxdesc16 *)_rx_desc; struct device *dev = &priv->udev->dev; struct rtl8xxxu_ra_info *ra = &priv->ra_info; u32 tx_rpt_len = rx_desc->pktlen & 0x3ff; u32 items = tx_rpt_len / TX_RPT2_ITEM_SIZE; u64 macid_valid = ((u64)_rx_desc[5] << 32) | _rx_desc[4]; u32 macid; u8 *rpt = skb->data; bool valid; u16 min_rpt_time = 0x927c; dev_dbg(dev, "%s: len: %d items: %d\n", __func__, tx_rpt_len, items); for (macid = 0; macid < items; macid++) { valid = false; if (macid < 64) valid = macid_valid & BIT(macid); if (valid) { ra->retry[0] = le16_to_cpu(*(__le16 *)rpt); ra->retry[1] = rpt[2]; ra->retry[2] = rpt[3]; ra->retry[3] = rpt[4]; ra->retry[4] = rpt[5]; ra->drop = rpt[6]; ra->total = ra->retry[0] + ra->retry[1] + ra->retry[2] + ra->retry[3] + ra->retry[4] + ra->drop; if (ra->total > 0) { if (ra->ra_stage < 5) rtl8188e_rate_decision(ra); else if (ra->ra_stage == 5) rtl8188e_power_training_try_state(ra); else /* ra->ra_stage == 6 */ rtl8188e_power_training_decision(ra); if (ra->ra_stage <= 5) ra->ra_stage++; else ra->ra_stage = 0; } } else if (macid == 0) { dev_warn(dev, "%s: TX report item 0 not valid\n", __func__); } dev_dbg(dev, "%s: valid: %d retry: %d %d %d %d %d drop: %d\n", __func__, valid, ra->retry[0], ra->retry[1], ra->retry[2], ra->retry[3], ra->retry[4], ra->drop); if (min_rpt_time > ra->rpt_time) min_rpt_time = ra->rpt_time; rpt += TX_RPT2_ITEM_SIZE; /* * We only use macid 0, so only the first item is relevant. * AP mode will use more of them if it's ever implemented. */ break; } if (min_rpt_time != ra->pre_min_rpt_time) { rtl8xxxu_write16(priv, REG_TX_REPORT_TIME, min_rpt_time); ra->pre_min_rpt_time = min_rpt_time; } } static void rtl8188e_arfb_refresh(struct rtl8xxxu_ra_info *ra) { s8 i; ra->ra_use_rate = ra->rate_mask; /* Highest rate */ if (ra->ra_use_rate) { for (i = RATESIZE; i >= 0; i--) { if (ra->ra_use_rate & BIT(i)) { ra->highest_rate = i; break; } } } else { ra->highest_rate = 0; } /* Lowest rate */ if (ra->ra_use_rate) { for (i = 0; i < RATESIZE; i++) { if (ra->ra_use_rate & BIT(i)) { ra->lowest_rate = i; break; } } } else { ra->lowest_rate = 0; } if (ra->highest_rate > DESC_RATE_MCS7) ra->pt_mode_ss = 3; else if (ra->highest_rate > DESC_RATE_54M) ra->pt_mode_ss = 2; else if (ra->highest_rate > DESC_RATE_11M) ra->pt_mode_ss = 1; else ra->pt_mode_ss = 0; } static void rtl8188e_update_rate_mask(struct rtl8xxxu_priv *priv, u32 ramask, u8 rateid, int sgi, int txbw_40mhz) { struct rtl8xxxu_ra_info *ra = &priv->ra_info; ra->rate_id = rateid; ra->rate_mask = ramask; ra->sgi_enable = sgi; rtl8188e_arfb_refresh(ra); } static void rtl8188e_ra_set_rssi(struct rtl8xxxu_priv *priv, u8 macid, u8 rssi) { priv->ra_info.rssi_sta_ra = rssi; } void rtl8188e_ra_info_init_all(struct rtl8xxxu_ra_info *ra) { ra->decision_rate = DESC_RATE_MCS7; ra->pre_rate = DESC_RATE_MCS7; ra->highest_rate = DESC_RATE_MCS7; ra->lowest_rate = 0; ra->rate_id = 0; ra->rate_mask = 0xfffff; ra->rssi_sta_ra = 0; ra->pre_rssi_sta_ra = 0; ra->sgi_enable = 0; ra->ra_use_rate = 0xfffff; ra->nsc_down = (n_threshold_high[DESC_RATE_MCS7] + n_threshold_low[DESC_RATE_MCS7]) / 2; ra->nsc_up = (n_threshold_high[DESC_RATE_MCS7] + n_threshold_low[DESC_RATE_MCS7]) / 2; ra->rate_sgi = 0; ra->rpt_time = 0x927c; ra->drop = 0; ra->retry[0] = 0; ra->retry[1] = 0; ra->retry[2] = 0; ra->retry[3] = 0; ra->retry[4] = 0; ra->total = 0; ra->ra_waiting_counter = 0; ra->ra_pending_counter = 0; ra->ra_drop_after_down = 0; ra->pt_try_state = 0; ra->pt_stage = 5; ra->pt_smooth_factor = 192; ra->pt_stop_count = 0; ra->pt_pre_rate = 0; ra->pt_pre_rssi = 0; ra->pt_mode_ss = 0; ra->ra_stage = 0; } struct rtl8xxxu_fileops rtl8188eu_fops = { .identify_chip = rtl8188eu_identify_chip, .parse_efuse = rtl8188eu_parse_efuse, .load_firmware = rtl8188eu_load_firmware, .power_on = rtl8188eu_power_on, .power_off = rtl8188eu_power_off, .reset_8051 = rtl8188eu_reset_8051, .llt_init = rtl8xxxu_init_llt_table, .init_phy_bb = rtl8188eu_init_phy_bb, .init_phy_rf = rtl8188eu_init_phy_rf, .phy_lc_calibrate = rtl8723a_phy_lc_calibrate, .phy_iq_calibrate = rtl8188eu_phy_iq_calibrate, .config_channel = rtl8188eu_config_channel, .parse_rx_desc = rtl8xxxu_parse_rxdesc16, .init_aggregation = rtl8188eu_init_aggregation, .enable_rf = rtl8188e_enable_rf, .disable_rf = rtl8188e_disable_rf, .usb_quirks = rtl8188e_usb_quirks, .set_tx_power = rtl8188f_set_tx_power, .update_rate_mask = rtl8188e_update_rate_mask, .report_connect = rtl8xxxu_gen2_report_connect, .report_rssi = rtl8188e_ra_set_rssi, .fill_txdesc = rtl8xxxu_fill_txdesc_v3, .set_crystal_cap = rtl8188f_set_crystal_cap, .cck_rssi = rtl8188e_cck_rssi, .led_classdev_brightness_set = rtl8188eu_led_brightness_set, .writeN_block_size = 128, .rx_desc_size = sizeof(struct rtl8xxxu_rxdesc16), .tx_desc_size = sizeof(struct rtl8xxxu_txdesc32), .has_tx_report = 1, .gen2_thermal_meter = 1, .adda_1t_init = 0x0b1b25a0, .adda_1t_path_on = 0x0bdb25a0, /* * Use 9K for 8188e normal chip * Max RX buffer = 10K - max(TxReportSize(64*8), WOLPattern(16*24)) */ .trxff_boundary = 0x25ff, .pbp_rx = PBP_PAGE_SIZE_128, .pbp_tx = PBP_PAGE_SIZE_128, .mactable = rtl8188e_mac_init_table, .total_page_num = TX_TOTAL_PAGE_NUM_8188E, .page_num_hi = TX_PAGE_NUM_HI_PQ_8188E, .page_num_lo = TX_PAGE_NUM_LO_PQ_8188E, .page_num_norm = TX_PAGE_NUM_NORM_PQ_8188E, .last_llt_entry = 175, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1