Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jes Sorensen | 36550 | 85.72% | 145 | 65.61% |
Bitterblue Smith | 2948 | 6.91% | 29 | 13.12% |
Chris Chiu | 2748 | 6.45% | 12 | 5.43% |
Bruno Randolf | 131 | 0.31% | 2 | 0.90% |
Johannes Berg | 45 | 0.11% | 6 | 2.71% |
Sriram R | 42 | 0.10% | 1 | 0.45% |
Íñigo Huguet | 33 | 0.08% | 1 | 0.45% |
Dan Carpenter | 30 | 0.07% | 1 | 0.45% |
Sara Sharon | 19 | 0.04% | 1 | 0.45% |
Zheyu Ma | 15 | 0.04% | 1 | 0.45% |
Axel Köllhofer | 14 | 0.03% | 2 | 0.90% |
Andrzej Zaborowski | 9 | 0.02% | 1 | 0.45% |
Gustavo A. R. Silva | 9 | 0.02% | 2 | 0.90% |
Colin Ian King | 7 | 0.02% | 2 | 0.90% |
Larry Finger | 6 | 0.01% | 1 | 0.45% |
Hans de Goede | 5 | 0.01% | 1 | 0.45% |
Alexander Wetzel | 5 | 0.01% | 1 | 0.45% |
Kalle Valo | 4 | 0.01% | 1 | 0.45% |
Jakub Sitnicki | 3 | 0.01% | 1 | 0.45% |
Ping-Ke Shih | 3 | 0.01% | 1 | 0.45% |
Thomas Gleixner | 2 | 0.00% | 1 | 0.45% |
Christophe Jaillet | 2 | 0.00% | 1 | 0.45% |
Arvind Yadav | 1 | 0.00% | 1 | 0.45% |
Aleksei Mamlin | 1 | 0.00% | 1 | 0.45% |
Joe Perches | 1 | 0.00% | 1 | 0.45% |
Johan Hovold | 1 | 0.00% | 1 | 0.45% |
Masanari Iida | 1 | 0.00% | 1 | 0.45% |
Wei Yongjun | 1 | 0.00% | 1 | 0.45% |
Yang Yingliang | 1 | 0.00% | 1 | 0.45% |
Total | 42637 | 221 |
// SPDX-License-Identifier: GPL-2.0-only /* * RTL8XXXU mac80211 USB driver * * Copyright (c) 2014 - 2017 Jes Sorensen <Jes.Sorensen@gmail.com> * * Portions, notably calibration code: * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This driver was written as a replacement for the vendor provided * rtl8723au driver. As the Realtek 8xxx chips are very similar in * their programming interface, I have started adding support for * additional 8xxx chips like the 8192cu, 8188cus, etc. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/list.h> #include <linux/usb.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/wireless.h> #include <linux/firmware.h> #include <linux/moduleparam.h> #include <net/mac80211.h> #include "rtl8xxxu.h" #include "rtl8xxxu_regs.h" #define DRIVER_NAME "rtl8xxxu" int rtl8xxxu_debug; static bool rtl8xxxu_ht40_2g; static bool rtl8xxxu_dma_aggregation; static int rtl8xxxu_dma_agg_timeout = -1; static int rtl8xxxu_dma_agg_pages = -1; MODULE_AUTHOR("Jes Sorensen <Jes.Sorensen@gmail.com>"); MODULE_DESCRIPTION("RTL8XXXu USB mac80211 Wireless LAN Driver"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE("rtlwifi/rtl8723aufw_A.bin"); MODULE_FIRMWARE("rtlwifi/rtl8723aufw_B.bin"); MODULE_FIRMWARE("rtlwifi/rtl8723aufw_B_NoBT.bin"); MODULE_FIRMWARE("rtlwifi/rtl8188eufw.bin"); MODULE_FIRMWARE("rtlwifi/rtl8192cufw_A.bin"); MODULE_FIRMWARE("rtlwifi/rtl8192cufw_B.bin"); MODULE_FIRMWARE("rtlwifi/rtl8192cufw_TMSC.bin"); MODULE_FIRMWARE("rtlwifi/rtl8192eu_nic.bin"); MODULE_FIRMWARE("rtlwifi/rtl8723bu_nic.bin"); MODULE_FIRMWARE("rtlwifi/rtl8723bu_bt.bin"); MODULE_FIRMWARE("rtlwifi/rtl8188fufw.bin"); module_param_named(debug, rtl8xxxu_debug, int, 0600); MODULE_PARM_DESC(debug, "Set debug mask"); module_param_named(ht40_2g, rtl8xxxu_ht40_2g, bool, 0600); MODULE_PARM_DESC(ht40_2g, "Enable HT40 support on the 2.4GHz band"); module_param_named(dma_aggregation, rtl8xxxu_dma_aggregation, bool, 0600); MODULE_PARM_DESC(dma_aggregation, "Enable DMA packet aggregation"); module_param_named(dma_agg_timeout, rtl8xxxu_dma_agg_timeout, int, 0600); MODULE_PARM_DESC(dma_agg_timeout, "Set DMA aggregation timeout (range 1-127)"); module_param_named(dma_agg_pages, rtl8xxxu_dma_agg_pages, int, 0600); MODULE_PARM_DESC(dma_agg_pages, "Set DMA aggregation pages (range 1-127, 0 to disable)"); #define USB_VENDOR_ID_REALTEK 0x0bda #define RTL8XXXU_RX_URBS 32 #define RTL8XXXU_RX_URB_PENDING_WATER 8 #define RTL8XXXU_TX_URBS 64 #define RTL8XXXU_TX_URB_LOW_WATER 25 #define RTL8XXXU_TX_URB_HIGH_WATER 32 static int rtl8xxxu_submit_rx_urb(struct rtl8xxxu_priv *priv, struct rtl8xxxu_rx_urb *rx_urb); static struct ieee80211_rate rtl8xxxu_rates[] = { { .bitrate = 10, .hw_value = DESC_RATE_1M, .flags = 0 }, { .bitrate = 20, .hw_value = DESC_RATE_2M, .flags = 0 }, { .bitrate = 55, .hw_value = DESC_RATE_5_5M, .flags = 0 }, { .bitrate = 110, .hw_value = DESC_RATE_11M, .flags = 0 }, { .bitrate = 60, .hw_value = DESC_RATE_6M, .flags = 0 }, { .bitrate = 90, .hw_value = DESC_RATE_9M, .flags = 0 }, { .bitrate = 120, .hw_value = DESC_RATE_12M, .flags = 0 }, { .bitrate = 180, .hw_value = DESC_RATE_18M, .flags = 0 }, { .bitrate = 240, .hw_value = DESC_RATE_24M, .flags = 0 }, { .bitrate = 360, .hw_value = DESC_RATE_36M, .flags = 0 }, { .bitrate = 480, .hw_value = DESC_RATE_48M, .flags = 0 }, { .bitrate = 540, .hw_value = DESC_RATE_54M, .flags = 0 }, }; static struct ieee80211_channel rtl8xxxu_channels_2g[] = { { .band = NL80211_BAND_2GHZ, .center_freq = 2412, .hw_value = 1, .max_power = 30 }, { .band = NL80211_BAND_2GHZ, .center_freq = 2417, .hw_value = 2, .max_power = 30 }, { .band = NL80211_BAND_2GHZ, .center_freq = 2422, .hw_value = 3, .max_power = 30 }, { .band = NL80211_BAND_2GHZ, .center_freq = 2427, .hw_value = 4, .max_power = 30 }, { .band = NL80211_BAND_2GHZ, .center_freq = 2432, .hw_value = 5, .max_power = 30 }, { .band = NL80211_BAND_2GHZ, .center_freq = 2437, .hw_value = 6, .max_power = 30 }, { .band = NL80211_BAND_2GHZ, .center_freq = 2442, .hw_value = 7, .max_power = 30 }, { .band = NL80211_BAND_2GHZ, .center_freq = 2447, .hw_value = 8, .max_power = 30 }, { .band = NL80211_BAND_2GHZ, .center_freq = 2452, .hw_value = 9, .max_power = 30 }, { .band = NL80211_BAND_2GHZ, .center_freq = 2457, .hw_value = 10, .max_power = 30 }, { .band = NL80211_BAND_2GHZ, .center_freq = 2462, .hw_value = 11, .max_power = 30 }, { .band = NL80211_BAND_2GHZ, .center_freq = 2467, .hw_value = 12, .max_power = 30 }, { .band = NL80211_BAND_2GHZ, .center_freq = 2472, .hw_value = 13, .max_power = 30 }, { .band = NL80211_BAND_2GHZ, .center_freq = 2484, .hw_value = 14, .max_power = 30 } }; static struct ieee80211_supported_band rtl8xxxu_supported_band = { .channels = rtl8xxxu_channels_2g, .n_channels = ARRAY_SIZE(rtl8xxxu_channels_2g), .bitrates = rtl8xxxu_rates, .n_bitrates = ARRAY_SIZE(rtl8xxxu_rates), }; const struct rtl8xxxu_reg8val rtl8xxxu_gen1_mac_init_table[] = { {0x420, 0x80}, {0x423, 0x00}, {0x430, 0x00}, {0x431, 0x00}, {0x432, 0x00}, {0x433, 0x01}, {0x434, 0x04}, {0x435, 0x05}, {0x436, 0x06}, {0x437, 0x07}, {0x438, 0x00}, {0x439, 0x00}, {0x43a, 0x00}, {0x43b, 0x01}, {0x43c, 0x04}, {0x43d, 0x05}, {0x43e, 0x06}, {0x43f, 0x07}, {0x440, 0x5d}, {0x441, 0x01}, {0x442, 0x00}, {0x444, 0x15}, {0x445, 0xf0}, {0x446, 0x0f}, {0x447, 0x00}, {0x458, 0x41}, {0x459, 0xa8}, {0x45a, 0x72}, {0x45b, 0xb9}, {0x460, 0x66}, {0x461, 0x66}, {0x462, 0x08}, {0x463, 0x03}, {0x4c8, 0xff}, {0x4c9, 0x08}, {0x4cc, 0xff}, {0x4cd, 0xff}, {0x4ce, 0x01}, {0x500, 0x26}, {0x501, 0xa2}, {0x502, 0x2f}, {0x503, 0x00}, {0x504, 0x28}, {0x505, 0xa3}, {0x506, 0x5e}, {0x507, 0x00}, {0x508, 0x2b}, {0x509, 0xa4}, {0x50a, 0x5e}, {0x50b, 0x00}, {0x50c, 0x4f}, {0x50d, 0xa4}, {0x50e, 0x00}, {0x50f, 0x00}, {0x512, 0x1c}, {0x514, 0x0a}, {0x515, 0x10}, {0x516, 0x0a}, {0x517, 0x10}, {0x51a, 0x16}, {0x524, 0x0f}, {0x525, 0x4f}, {0x546, 0x40}, {0x547, 0x00}, {0x550, 0x10}, {0x551, 0x10}, {0x559, 0x02}, {0x55a, 0x02}, {0x55d, 0xff}, {0x605, 0x30}, {0x608, 0x0e}, {0x609, 0x2a}, {0x652, 0x20}, {0x63c, 0x0a}, {0x63d, 0x0a}, {0x63e, 0x0e}, {0x63f, 0x0e}, {0x66e, 0x05}, {0x700, 0x21}, {0x701, 0x43}, {0x702, 0x65}, {0x703, 0x87}, {0x708, 0x21}, {0x709, 0x43}, {0x70a, 0x65}, {0x70b, 0x87}, {0xffff, 0xff}, }; static const struct rtl8xxxu_reg32val rtl8723a_phy_1t_init_table[] = { {0x800, 0x80040000}, {0x804, 0x00000003}, {0x808, 0x0000fc00}, {0x80c, 0x0000000a}, {0x810, 0x10001331}, {0x814, 0x020c3d10}, {0x818, 0x02200385}, {0x81c, 0x00000000}, {0x820, 0x01000100}, {0x824, 0x00390004}, {0x828, 0x00000000}, {0x82c, 0x00000000}, {0x830, 0x00000000}, {0x834, 0x00000000}, {0x838, 0x00000000}, {0x83c, 0x00000000}, {0x840, 0x00010000}, {0x844, 0x00000000}, {0x848, 0x00000000}, {0x84c, 0x00000000}, {0x850, 0x00000000}, {0x854, 0x00000000}, {0x858, 0x569a569a}, {0x85c, 0x001b25a4}, {0x860, 0x66f60110}, {0x864, 0x061f0130}, {0x868, 0x00000000}, {0x86c, 0x32323200}, {0x870, 0x07000760}, {0x874, 0x22004000}, {0x878, 0x00000808}, {0x87c, 0x00000000}, {0x880, 0xc0083070}, {0x884, 0x000004d5}, {0x888, 0x00000000}, {0x88c, 0xccc000c0}, {0x890, 0x00000800}, {0x894, 0xfffffffe}, {0x898, 0x40302010}, {0x89c, 0x00706050}, {0x900, 0x00000000}, {0x904, 0x00000023}, {0x908, 0x00000000}, {0x90c, 0x81121111}, {0xa00, 0x00d047c8}, {0xa04, 0x80ff000c}, {0xa08, 0x8c838300}, {0xa0c, 0x2e68120f}, {0xa10, 0x9500bb78}, {0xa14, 0x11144028}, {0xa18, 0x00881117}, {0xa1c, 0x89140f00}, {0xa20, 0x1a1b0000}, {0xa24, 0x090e1317}, {0xa28, 0x00000204}, {0xa2c, 0x00d30000}, {0xa70, 0x101fbf00}, {0xa74, 0x00000007}, {0xa78, 0x00000900}, {0xc00, 0x48071d40}, {0xc04, 0x03a05611}, {0xc08, 0x000000e4}, {0xc0c, 0x6c6c6c6c}, {0xc10, 0x08800000}, {0xc14, 0x40000100}, {0xc18, 0x08800000}, {0xc1c, 0x40000100}, {0xc20, 0x00000000}, {0xc24, 0x00000000}, {0xc28, 0x00000000}, {0xc2c, 0x00000000}, {0xc30, 0x69e9ac44}, {0xc34, 0x469652af}, {0xc38, 0x49795994}, {0xc3c, 0x0a97971c}, {0xc40, 0x1f7c403f}, {0xc44, 0x000100b7}, {0xc48, 0xec020107}, {0xc4c, 0x007f037f}, {0xc50, 0x69543420}, {0xc54, 0x43bc0094}, {0xc58, 0x69543420}, {0xc5c, 0x433c0094}, {0xc60, 0x00000000}, {0xc64, 0x7112848b}, {0xc68, 0x47c00bff}, {0xc6c, 0x00000036}, {0xc70, 0x2c7f000d}, {0xc74, 0x018610db}, {0xc78, 0x0000001f}, {0xc7c, 0x00b91612}, {0xc80, 0x40000100}, {0xc84, 0x20f60000}, {0xc88, 0x40000100}, {0xc8c, 0x20200000}, {0xc90, 0x00121820}, {0xc94, 0x00000000}, {0xc98, 0x00121820}, {0xc9c, 0x00007f7f}, {0xca0, 0x00000000}, {0xca4, 0x00000080}, {0xca8, 0x00000000}, {0xcac, 0x00000000}, {0xcb0, 0x00000000}, {0xcb4, 0x00000000}, {0xcb8, 0x00000000}, {0xcbc, 0x28000000}, {0xcc0, 0x00000000}, {0xcc4, 0x00000000}, {0xcc8, 0x00000000}, {0xccc, 0x00000000}, {0xcd0, 0x00000000}, {0xcd4, 0x00000000}, {0xcd8, 0x64b22427}, {0xcdc, 0x00766932}, {0xce0, 0x00222222}, {0xce4, 0x00000000}, {0xce8, 0x37644302}, {0xcec, 0x2f97d40c}, {0xd00, 0x00080740}, {0xd04, 0x00020401}, {0xd08, 0x0000907f}, {0xd0c, 0x20010201}, {0xd10, 0xa0633333}, {0xd14, 0x3333bc43}, {0xd18, 0x7a8f5b6b}, {0xd2c, 0xcc979975}, {0xd30, 0x00000000}, {0xd34, 0x80608000}, {0xd38, 0x00000000}, {0xd3c, 0x00027293}, {0xd40, 0x00000000}, {0xd44, 0x00000000}, {0xd48, 0x00000000}, {0xd4c, 0x00000000}, {0xd50, 0x6437140a}, {0xd54, 0x00000000}, {0xd58, 0x00000000}, {0xd5c, 0x30032064}, {0xd60, 0x4653de68}, {0xd64, 0x04518a3c}, {0xd68, 0x00002101}, {0xd6c, 0x2a201c16}, {0xd70, 0x1812362e}, {0xd74, 0x322c2220}, {0xd78, 0x000e3c24}, {0xe00, 0x2a2a2a2a}, {0xe04, 0x2a2a2a2a}, {0xe08, 0x03902a2a}, {0xe10, 0x2a2a2a2a}, {0xe14, 0x2a2a2a2a}, {0xe18, 0x2a2a2a2a}, {0xe1c, 0x2a2a2a2a}, {0xe28, 0x00000000}, {0xe30, 0x1000dc1f}, {0xe34, 0x10008c1f}, {0xe38, 0x02140102}, {0xe3c, 0x681604c2}, {0xe40, 0x01007c00}, {0xe44, 0x01004800}, {0xe48, 0xfb000000}, {0xe4c, 0x000028d1}, {0xe50, 0x1000dc1f}, {0xe54, 0x10008c1f}, {0xe58, 0x02140102}, {0xe5c, 0x28160d05}, {0xe60, 0x00000008}, {0xe68, 0x001b25a4}, {0xe6c, 0x631b25a0}, {0xe70, 0x631b25a0}, {0xe74, 0x081b25a0}, {0xe78, 0x081b25a0}, {0xe7c, 0x081b25a0}, {0xe80, 0x081b25a0}, {0xe84, 0x631b25a0}, {0xe88, 0x081b25a0}, {0xe8c, 0x631b25a0}, {0xed0, 0x631b25a0}, {0xed4, 0x631b25a0}, {0xed8, 0x631b25a0}, {0xedc, 0x001b25a0}, {0xee0, 0x001b25a0}, {0xeec, 0x6b1b25a0}, {0xf14, 0x00000003}, {0xf4c, 0x00000000}, {0xf00, 0x00000300}, {0xffff, 0xffffffff}, }; static const struct rtl8xxxu_reg32val rtl8192cu_phy_2t_init_table[] = { {0x024, 0x0011800f}, {0x028, 0x00ffdb83}, {0x800, 0x80040002}, {0x804, 0x00000003}, {0x808, 0x0000fc00}, {0x80c, 0x0000000a}, {0x810, 0x10000330}, {0x814, 0x020c3d10}, {0x818, 0x02200385}, {0x81c, 0x00000000}, {0x820, 0x01000100}, {0x824, 0x00390004}, {0x828, 0x01000100}, {0x82c, 0x00390004}, {0x830, 0x27272727}, {0x834, 0x27272727}, {0x838, 0x27272727}, {0x83c, 0x27272727}, {0x840, 0x00010000}, {0x844, 0x00010000}, {0x848, 0x27272727}, {0x84c, 0x27272727}, {0x850, 0x00000000}, {0x854, 0x00000000}, {0x858, 0x569a569a}, {0x85c, 0x0c1b25a4}, {0x860, 0x66e60230}, {0x864, 0x061f0130}, {0x868, 0x27272727}, {0x86c, 0x2b2b2b27}, {0x870, 0x07000700}, {0x874, 0x22184000}, {0x878, 0x08080808}, {0x87c, 0x00000000}, {0x880, 0xc0083070}, {0x884, 0x000004d5}, {0x888, 0x00000000}, {0x88c, 0xcc0000c0}, {0x890, 0x00000800}, {0x894, 0xfffffffe}, {0x898, 0x40302010}, {0x89c, 0x00706050}, {0x900, 0x00000000}, {0x904, 0x00000023}, {0x908, 0x00000000}, {0x90c, 0x81121313}, {0xa00, 0x00d047c8}, {0xa04, 0x80ff000c}, {0xa08, 0x8c838300}, {0xa0c, 0x2e68120f}, {0xa10, 0x9500bb78}, {0xa14, 0x11144028}, {0xa18, 0x00881117}, {0xa1c, 0x89140f00}, {0xa20, 0x1a1b0000}, {0xa24, 0x090e1317}, {0xa28, 0x00000204}, {0xa2c, 0x00d30000}, {0xa70, 0x101fbf00}, {0xa74, 0x00000007}, {0xc00, 0x48071d40}, {0xc04, 0x03a05633}, {0xc08, 0x000000e4}, {0xc0c, 0x6c6c6c6c}, {0xc10, 0x08800000}, {0xc14, 0x40000100}, {0xc18, 0x08800000}, {0xc1c, 0x40000100}, {0xc20, 0x00000000}, {0xc24, 0x00000000}, {0xc28, 0x00000000}, {0xc2c, 0x00000000}, {0xc30, 0x69e9ac44}, {0xc34, 0x469652cf}, {0xc38, 0x49795994}, {0xc3c, 0x0a97971c}, {0xc40, 0x1f7c403f}, {0xc44, 0x000100b7}, {0xc48, 0xec020107}, {0xc4c, 0x007f037f}, {0xc50, 0x69543420}, {0xc54, 0x43bc0094}, {0xc58, 0x69543420}, {0xc5c, 0x433c0094}, {0xc60, 0x00000000}, {0xc64, 0x5116848b}, {0xc68, 0x47c00bff}, {0xc6c, 0x00000036}, {0xc70, 0x2c7f000d}, {0xc74, 0x2186115b}, {0xc78, 0x0000001f}, {0xc7c, 0x00b99612}, {0xc80, 0x40000100}, {0xc84, 0x20f60000}, {0xc88, 0x40000100}, {0xc8c, 0xa0e40000}, {0xc90, 0x00121820}, {0xc94, 0x00000000}, {0xc98, 0x00121820}, {0xc9c, 0x00007f7f}, {0xca0, 0x00000000}, {0xca4, 0x00000080}, {0xca8, 0x00000000}, {0xcac, 0x00000000}, {0xcb0, 0x00000000}, {0xcb4, 0x00000000}, {0xcb8, 0x00000000}, {0xcbc, 0x28000000}, {0xcc0, 0x00000000}, {0xcc4, 0x00000000}, {0xcc8, 0x00000000}, {0xccc, 0x00000000}, {0xcd0, 0x00000000}, {0xcd4, 0x00000000}, {0xcd8, 0x64b22427}, {0xcdc, 0x00766932}, {0xce0, 0x00222222}, {0xce4, 0x00000000}, {0xce8, 0x37644302}, {0xcec, 0x2f97d40c}, {0xd00, 0x00080740}, {0xd04, 0x00020403}, {0xd08, 0x0000907f}, {0xd0c, 0x20010201}, {0xd10, 0xa0633333}, {0xd14, 0x3333bc43}, {0xd18, 0x7a8f5b6b}, {0xd2c, 0xcc979975}, {0xd30, 0x00000000}, {0xd34, 0x80608000}, {0xd38, 0x00000000}, {0xd3c, 0x00027293}, {0xd40, 0x00000000}, {0xd44, 0x00000000}, {0xd48, 0x00000000}, {0xd4c, 0x00000000}, {0xd50, 0x6437140a}, {0xd54, 0x00000000}, {0xd58, 0x00000000}, {0xd5c, 0x30032064}, {0xd60, 0x4653de68}, {0xd64, 0x04518a3c}, {0xd68, 0x00002101}, {0xd6c, 0x2a201c16}, {0xd70, 0x1812362e}, {0xd74, 0x322c2220}, {0xd78, 0x000e3c24}, {0xe00, 0x2a2a2a2a}, {0xe04, 0x2a2a2a2a}, {0xe08, 0x03902a2a}, {0xe10, 0x2a2a2a2a}, {0xe14, 0x2a2a2a2a}, {0xe18, 0x2a2a2a2a}, {0xe1c, 0x2a2a2a2a}, {0xe28, 0x00000000}, {0xe30, 0x1000dc1f}, {0xe34, 0x10008c1f}, {0xe38, 0x02140102}, {0xe3c, 0x681604c2}, {0xe40, 0x01007c00}, {0xe44, 0x01004800}, {0xe48, 0xfb000000}, {0xe4c, 0x000028d1}, {0xe50, 0x1000dc1f}, {0xe54, 0x10008c1f}, {0xe58, 0x02140102}, {0xe5c, 0x28160d05}, {0xe60, 0x00000010}, {0xe68, 0x001b25a4}, {0xe6c, 0x63db25a4}, {0xe70, 0x63db25a4}, {0xe74, 0x0c1b25a4}, {0xe78, 0x0c1b25a4}, {0xe7c, 0x0c1b25a4}, {0xe80, 0x0c1b25a4}, {0xe84, 0x63db25a4}, {0xe88, 0x0c1b25a4}, {0xe8c, 0x63db25a4}, {0xed0, 0x63db25a4}, {0xed4, 0x63db25a4}, {0xed8, 0x63db25a4}, {0xedc, 0x001b25a4}, {0xee0, 0x001b25a4}, {0xeec, 0x6fdb25a4}, {0xf14, 0x00000003}, {0xf4c, 0x00000000}, {0xf00, 0x00000300}, {0xffff, 0xffffffff}, }; static const struct rtl8xxxu_reg32val rtl8188ru_phy_1t_highpa_table[] = { {0x024, 0x0011800f}, {0x028, 0x00ffdb83}, {0x040, 0x000c0004}, {0x800, 0x80040000}, {0x804, 0x00000001}, {0x808, 0x0000fc00}, {0x80c, 0x0000000a}, {0x810, 0x10005388}, {0x814, 0x020c3d10}, {0x818, 0x02200385}, {0x81c, 0x00000000}, {0x820, 0x01000100}, {0x824, 0x00390204}, {0x828, 0x00000000}, {0x82c, 0x00000000}, {0x830, 0x00000000}, {0x834, 0x00000000}, {0x838, 0x00000000}, {0x83c, 0x00000000}, {0x840, 0x00010000}, {0x844, 0x00000000}, {0x848, 0x00000000}, {0x84c, 0x00000000}, {0x850, 0x00000000}, {0x854, 0x00000000}, {0x858, 0x569a569a}, {0x85c, 0x001b25a4}, {0x860, 0x66e60230}, {0x864, 0x061f0130}, {0x868, 0x00000000}, {0x86c, 0x20202000}, {0x870, 0x03000300}, {0x874, 0x22004000}, {0x878, 0x00000808}, {0x87c, 0x00ffc3f1}, {0x880, 0xc0083070}, {0x884, 0x000004d5}, {0x888, 0x00000000}, {0x88c, 0xccc000c0}, {0x890, 0x00000800}, {0x894, 0xfffffffe}, {0x898, 0x40302010}, {0x89c, 0x00706050}, {0x900, 0x00000000}, {0x904, 0x00000023}, {0x908, 0x00000000}, {0x90c, 0x81121111}, {0xa00, 0x00d047c8}, {0xa04, 0x80ff000c}, {0xa08, 0x8c838300}, {0xa0c, 0x2e68120f}, {0xa10, 0x9500bb78}, {0xa14, 0x11144028}, {0xa18, 0x00881117}, {0xa1c, 0x89140f00}, {0xa20, 0x15160000}, {0xa24, 0x070b0f12}, {0xa28, 0x00000104}, {0xa2c, 0x00d30000}, {0xa70, 0x101fbf00}, {0xa74, 0x00000007}, {0xc00, 0x48071d40}, {0xc04, 0x03a05611}, {0xc08, 0x000000e4}, {0xc0c, 0x6c6c6c6c}, {0xc10, 0x08800000}, {0xc14, 0x40000100}, {0xc18, 0x08800000}, {0xc1c, 0x40000100}, {0xc20, 0x00000000}, {0xc24, 0x00000000}, {0xc28, 0x00000000}, {0xc2c, 0x00000000}, {0xc30, 0x69e9ac44}, {0xc34, 0x469652cf}, {0xc38, 0x49795994}, {0xc3c, 0x0a97971c}, {0xc40, 0x1f7c403f}, {0xc44, 0x000100b7}, {0xc48, 0xec020107}, {0xc4c, 0x007f037f}, {0xc50, 0x6954342e}, {0xc54, 0x43bc0094}, {0xc58, 0x6954342f}, {0xc5c, 0x433c0094}, {0xc60, 0x00000000}, {0xc64, 0x5116848b}, {0xc68, 0x47c00bff}, {0xc6c, 0x00000036}, {0xc70, 0x2c46000d}, {0xc74, 0x018610db}, {0xc78, 0x0000001f}, {0xc7c, 0x00b91612}, {0xc80, 0x24000090}, {0xc84, 0x20f60000}, {0xc88, 0x24000090}, {0xc8c, 0x20200000}, {0xc90, 0x00121820}, {0xc94, 0x00000000}, {0xc98, 0x00121820}, {0xc9c, 0x00007f7f}, {0xca0, 0x00000000}, {0xca4, 0x00000080}, {0xca8, 0x00000000}, {0xcac, 0x00000000}, {0xcb0, 0x00000000}, {0xcb4, 0x00000000}, {0xcb8, 0x00000000}, {0xcbc, 0x28000000}, {0xcc0, 0x00000000}, {0xcc4, 0x00000000}, {0xcc8, 0x00000000}, {0xccc, 0x00000000}, {0xcd0, 0x00000000}, {0xcd4, 0x00000000}, {0xcd8, 0x64b22427}, {0xcdc, 0x00766932}, {0xce0, 0x00222222}, {0xce4, 0x00000000}, {0xce8, 0x37644302}, {0xcec, 0x2f97d40c}, {0xd00, 0x00080740}, {0xd04, 0x00020401}, {0xd08, 0x0000907f}, {0xd0c, 0x20010201}, {0xd10, 0xa0633333}, {0xd14, 0x3333bc43}, {0xd18, 0x7a8f5b6b}, {0xd2c, 0xcc979975}, {0xd30, 0x00000000}, {0xd34, 0x80608000}, {0xd38, 0x00000000}, {0xd3c, 0x00027293}, {0xd40, 0x00000000}, {0xd44, 0x00000000}, {0xd48, 0x00000000}, {0xd4c, 0x00000000}, {0xd50, 0x6437140a}, {0xd54, 0x00000000}, {0xd58, 0x00000000}, {0xd5c, 0x30032064}, {0xd60, 0x4653de68}, {0xd64, 0x04518a3c}, {0xd68, 0x00002101}, {0xd6c, 0x2a201c16}, {0xd70, 0x1812362e}, {0xd74, 0x322c2220}, {0xd78, 0x000e3c24}, {0xe00, 0x24242424}, {0xe04, 0x24242424}, {0xe08, 0x03902024}, {0xe10, 0x24242424}, {0xe14, 0x24242424}, {0xe18, 0x24242424}, {0xe1c, 0x24242424}, {0xe28, 0x00000000}, {0xe30, 0x1000dc1f}, {0xe34, 0x10008c1f}, {0xe38, 0x02140102}, {0xe3c, 0x681604c2}, {0xe40, 0x01007c00}, {0xe44, 0x01004800}, {0xe48, 0xfb000000}, {0xe4c, 0x000028d1}, {0xe50, 0x1000dc1f}, {0xe54, 0x10008c1f}, {0xe58, 0x02140102}, {0xe5c, 0x28160d05}, {0xe60, 0x00000008}, {0xe68, 0x001b25a4}, {0xe6c, 0x631b25a0}, {0xe70, 0x631b25a0}, {0xe74, 0x081b25a0}, {0xe78, 0x081b25a0}, {0xe7c, 0x081b25a0}, {0xe80, 0x081b25a0}, {0xe84, 0x631b25a0}, {0xe88, 0x081b25a0}, {0xe8c, 0x631b25a0}, {0xed0, 0x631b25a0}, {0xed4, 0x631b25a0}, {0xed8, 0x631b25a0}, {0xedc, 0x001b25a0}, {0xee0, 0x001b25a0}, {0xeec, 0x6b1b25a0}, {0xee8, 0x31555448}, {0xf14, 0x00000003}, {0xf4c, 0x00000000}, {0xf00, 0x00000300}, {0xffff, 0xffffffff}, }; static const struct rtl8xxxu_reg32val rtl8xxx_agc_standard_table[] = { {0xc78, 0x7b000001}, {0xc78, 0x7b010001}, {0xc78, 0x7b020001}, {0xc78, 0x7b030001}, {0xc78, 0x7b040001}, {0xc78, 0x7b050001}, {0xc78, 0x7a060001}, {0xc78, 0x79070001}, {0xc78, 0x78080001}, {0xc78, 0x77090001}, {0xc78, 0x760a0001}, {0xc78, 0x750b0001}, {0xc78, 0x740c0001}, {0xc78, 0x730d0001}, {0xc78, 0x720e0001}, {0xc78, 0x710f0001}, {0xc78, 0x70100001}, {0xc78, 0x6f110001}, {0xc78, 0x6e120001}, {0xc78, 0x6d130001}, {0xc78, 0x6c140001}, {0xc78, 0x6b150001}, {0xc78, 0x6a160001}, {0xc78, 0x69170001}, {0xc78, 0x68180001}, {0xc78, 0x67190001}, {0xc78, 0x661a0001}, {0xc78, 0x651b0001}, {0xc78, 0x641c0001}, {0xc78, 0x631d0001}, {0xc78, 0x621e0001}, {0xc78, 0x611f0001}, {0xc78, 0x60200001}, {0xc78, 0x49210001}, {0xc78, 0x48220001}, {0xc78, 0x47230001}, {0xc78, 0x46240001}, {0xc78, 0x45250001}, {0xc78, 0x44260001}, {0xc78, 0x43270001}, {0xc78, 0x42280001}, {0xc78, 0x41290001}, {0xc78, 0x402a0001}, {0xc78, 0x262b0001}, {0xc78, 0x252c0001}, {0xc78, 0x242d0001}, {0xc78, 0x232e0001}, {0xc78, 0x222f0001}, {0xc78, 0x21300001}, {0xc78, 0x20310001}, {0xc78, 0x06320001}, {0xc78, 0x05330001}, {0xc78, 0x04340001}, {0xc78, 0x03350001}, {0xc78, 0x02360001}, {0xc78, 0x01370001}, {0xc78, 0x00380001}, {0xc78, 0x00390001}, {0xc78, 0x003a0001}, {0xc78, 0x003b0001}, {0xc78, 0x003c0001}, {0xc78, 0x003d0001}, {0xc78, 0x003e0001}, {0xc78, 0x003f0001}, {0xc78, 0x7b400001}, {0xc78, 0x7b410001}, {0xc78, 0x7b420001}, {0xc78, 0x7b430001}, {0xc78, 0x7b440001}, {0xc78, 0x7b450001}, {0xc78, 0x7a460001}, {0xc78, 0x79470001}, {0xc78, 0x78480001}, {0xc78, 0x77490001}, {0xc78, 0x764a0001}, {0xc78, 0x754b0001}, {0xc78, 0x744c0001}, {0xc78, 0x734d0001}, {0xc78, 0x724e0001}, {0xc78, 0x714f0001}, {0xc78, 0x70500001}, {0xc78, 0x6f510001}, {0xc78, 0x6e520001}, {0xc78, 0x6d530001}, {0xc78, 0x6c540001}, {0xc78, 0x6b550001}, {0xc78, 0x6a560001}, {0xc78, 0x69570001}, {0xc78, 0x68580001}, {0xc78, 0x67590001}, {0xc78, 0x665a0001}, {0xc78, 0x655b0001}, {0xc78, 0x645c0001}, {0xc78, 0x635d0001}, {0xc78, 0x625e0001}, {0xc78, 0x615f0001}, {0xc78, 0x60600001}, {0xc78, 0x49610001}, {0xc78, 0x48620001}, {0xc78, 0x47630001}, {0xc78, 0x46640001}, {0xc78, 0x45650001}, {0xc78, 0x44660001}, {0xc78, 0x43670001}, {0xc78, 0x42680001}, {0xc78, 0x41690001}, {0xc78, 0x406a0001}, {0xc78, 0x266b0001}, {0xc78, 0x256c0001}, {0xc78, 0x246d0001}, {0xc78, 0x236e0001}, {0xc78, 0x226f0001}, {0xc78, 0x21700001}, {0xc78, 0x20710001}, {0xc78, 0x06720001}, {0xc78, 0x05730001}, {0xc78, 0x04740001}, {0xc78, 0x03750001}, {0xc78, 0x02760001}, {0xc78, 0x01770001}, {0xc78, 0x00780001}, {0xc78, 0x00790001}, {0xc78, 0x007a0001}, {0xc78, 0x007b0001}, {0xc78, 0x007c0001}, {0xc78, 0x007d0001}, {0xc78, 0x007e0001}, {0xc78, 0x007f0001}, {0xc78, 0x3800001e}, {0xc78, 0x3801001e}, {0xc78, 0x3802001e}, {0xc78, 0x3803001e}, {0xc78, 0x3804001e}, {0xc78, 0x3805001e}, {0xc78, 0x3806001e}, {0xc78, 0x3807001e}, {0xc78, 0x3808001e}, {0xc78, 0x3c09001e}, {0xc78, 0x3e0a001e}, {0xc78, 0x400b001e}, {0xc78, 0x440c001e}, {0xc78, 0x480d001e}, {0xc78, 0x4c0e001e}, {0xc78, 0x500f001e}, {0xc78, 0x5210001e}, {0xc78, 0x5611001e}, {0xc78, 0x5a12001e}, {0xc78, 0x5e13001e}, {0xc78, 0x6014001e}, {0xc78, 0x6015001e}, {0xc78, 0x6016001e}, {0xc78, 0x6217001e}, {0xc78, 0x6218001e}, {0xc78, 0x6219001e}, {0xc78, 0x621a001e}, {0xc78, 0x621b001e}, {0xc78, 0x621c001e}, {0xc78, 0x621d001e}, {0xc78, 0x621e001e}, {0xc78, 0x621f001e}, {0xffff, 0xffffffff} }; static const struct rtl8xxxu_reg32val rtl8xxx_agc_highpa_table[] = { {0xc78, 0x7b000001}, {0xc78, 0x7b010001}, {0xc78, 0x7b020001}, {0xc78, 0x7b030001}, {0xc78, 0x7b040001}, {0xc78, 0x7b050001}, {0xc78, 0x7b060001}, {0xc78, 0x7b070001}, {0xc78, 0x7b080001}, {0xc78, 0x7a090001}, {0xc78, 0x790a0001}, {0xc78, 0x780b0001}, {0xc78, 0x770c0001}, {0xc78, 0x760d0001}, {0xc78, 0x750e0001}, {0xc78, 0x740f0001}, {0xc78, 0x73100001}, {0xc78, 0x72110001}, {0xc78, 0x71120001}, {0xc78, 0x70130001}, {0xc78, 0x6f140001}, {0xc78, 0x6e150001}, {0xc78, 0x6d160001}, {0xc78, 0x6c170001}, {0xc78, 0x6b180001}, {0xc78, 0x6a190001}, {0xc78, 0x691a0001}, {0xc78, 0x681b0001}, {0xc78, 0x671c0001}, {0xc78, 0x661d0001}, {0xc78, 0x651e0001}, {0xc78, 0x641f0001}, {0xc78, 0x63200001}, {0xc78, 0x62210001}, {0xc78, 0x61220001}, {0xc78, 0x60230001}, {0xc78, 0x46240001}, {0xc78, 0x45250001}, {0xc78, 0x44260001}, {0xc78, 0x43270001}, {0xc78, 0x42280001}, {0xc78, 0x41290001}, {0xc78, 0x402a0001}, {0xc78, 0x262b0001}, {0xc78, 0x252c0001}, {0xc78, 0x242d0001}, {0xc78, 0x232e0001}, {0xc78, 0x222f0001}, {0xc78, 0x21300001}, {0xc78, 0x20310001}, {0xc78, 0x06320001}, {0xc78, 0x05330001}, {0xc78, 0x04340001}, {0xc78, 0x03350001}, {0xc78, 0x02360001}, {0xc78, 0x01370001}, {0xc78, 0x00380001}, {0xc78, 0x00390001}, {0xc78, 0x003a0001}, {0xc78, 0x003b0001}, {0xc78, 0x003c0001}, {0xc78, 0x003d0001}, {0xc78, 0x003e0001}, {0xc78, 0x003f0001}, {0xc78, 0x7b400001}, {0xc78, 0x7b410001}, {0xc78, 0x7b420001}, {0xc78, 0x7b430001}, {0xc78, 0x7b440001}, {0xc78, 0x7b450001}, {0xc78, 0x7b460001}, {0xc78, 0x7b470001}, {0xc78, 0x7b480001}, {0xc78, 0x7a490001}, {0xc78, 0x794a0001}, {0xc78, 0x784b0001}, {0xc78, 0x774c0001}, {0xc78, 0x764d0001}, {0xc78, 0x754e0001}, {0xc78, 0x744f0001}, {0xc78, 0x73500001}, {0xc78, 0x72510001}, {0xc78, 0x71520001}, {0xc78, 0x70530001}, {0xc78, 0x6f540001}, {0xc78, 0x6e550001}, {0xc78, 0x6d560001}, {0xc78, 0x6c570001}, {0xc78, 0x6b580001}, {0xc78, 0x6a590001}, {0xc78, 0x695a0001}, {0xc78, 0x685b0001}, {0xc78, 0x675c0001}, {0xc78, 0x665d0001}, {0xc78, 0x655e0001}, {0xc78, 0x645f0001}, {0xc78, 0x63600001}, {0xc78, 0x62610001}, {0xc78, 0x61620001}, {0xc78, 0x60630001}, {0xc78, 0x46640001}, {0xc78, 0x45650001}, {0xc78, 0x44660001}, {0xc78, 0x43670001}, {0xc78, 0x42680001}, {0xc78, 0x41690001}, {0xc78, 0x406a0001}, {0xc78, 0x266b0001}, {0xc78, 0x256c0001}, {0xc78, 0x246d0001}, {0xc78, 0x236e0001}, {0xc78, 0x226f0001}, {0xc78, 0x21700001}, {0xc78, 0x20710001}, {0xc78, 0x06720001}, {0xc78, 0x05730001}, {0xc78, 0x04740001}, {0xc78, 0x03750001}, {0xc78, 0x02760001}, {0xc78, 0x01770001}, {0xc78, 0x00780001}, {0xc78, 0x00790001}, {0xc78, 0x007a0001}, {0xc78, 0x007b0001}, {0xc78, 0x007c0001}, {0xc78, 0x007d0001}, {0xc78, 0x007e0001}, {0xc78, 0x007f0001}, {0xc78, 0x3800001e}, {0xc78, 0x3801001e}, {0xc78, 0x3802001e}, {0xc78, 0x3803001e}, {0xc78, 0x3804001e}, {0xc78, 0x3805001e}, {0xc78, 0x3806001e}, {0xc78, 0x3807001e}, {0xc78, 0x3808001e}, {0xc78, 0x3c09001e}, {0xc78, 0x3e0a001e}, {0xc78, 0x400b001e}, {0xc78, 0x440c001e}, {0xc78, 0x480d001e}, {0xc78, 0x4c0e001e}, {0xc78, 0x500f001e}, {0xc78, 0x5210001e}, {0xc78, 0x5611001e}, {0xc78, 0x5a12001e}, {0xc78, 0x5e13001e}, {0xc78, 0x6014001e}, {0xc78, 0x6015001e}, {0xc78, 0x6016001e}, {0xc78, 0x6217001e}, {0xc78, 0x6218001e}, {0xc78, 0x6219001e}, {0xc78, 0x621a001e}, {0xc78, 0x621b001e}, {0xc78, 0x621c001e}, {0xc78, 0x621d001e}, {0xc78, 0x621e001e}, {0xc78, 0x621f001e}, {0xffff, 0xffffffff} }; static const struct rtl8xxxu_rfregs rtl8xxxu_rfregs[] = { { /* RF_A */ .hssiparm1 = REG_FPGA0_XA_HSSI_PARM1, .hssiparm2 = REG_FPGA0_XA_HSSI_PARM2, .lssiparm = REG_FPGA0_XA_LSSI_PARM, .hspiread = REG_HSPI_XA_READBACK, .lssiread = REG_FPGA0_XA_LSSI_READBACK, .rf_sw_ctrl = REG_FPGA0_XA_RF_SW_CTRL, }, { /* RF_B */ .hssiparm1 = REG_FPGA0_XB_HSSI_PARM1, .hssiparm2 = REG_FPGA0_XB_HSSI_PARM2, .lssiparm = REG_FPGA0_XB_LSSI_PARM, .hspiread = REG_HSPI_XB_READBACK, .lssiread = REG_FPGA0_XB_LSSI_READBACK, .rf_sw_ctrl = REG_FPGA0_XB_RF_SW_CTRL, }, }; const u32 rtl8xxxu_iqk_phy_iq_bb_reg[RTL8XXXU_BB_REGS] = { REG_OFDM0_XA_RX_IQ_IMBALANCE, REG_OFDM0_XB_RX_IQ_IMBALANCE, REG_OFDM0_ENERGY_CCA_THRES, REG_OFDM0_AGCR_SSI_TABLE, REG_OFDM0_XA_TX_IQ_IMBALANCE, REG_OFDM0_XB_TX_IQ_IMBALANCE, REG_OFDM0_XC_TX_AFE, REG_OFDM0_XD_TX_AFE, REG_OFDM0_RX_IQ_EXT_ANTA }; u8 rtl8xxxu_read8(struct rtl8xxxu_priv *priv, u16 addr) { struct usb_device *udev = priv->udev; int len; u8 data; mutex_lock(&priv->usb_buf_mutex); len = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), REALTEK_USB_CMD_REQ, REALTEK_USB_READ, addr, 0, &priv->usb_buf.val8, sizeof(u8), RTW_USB_CONTROL_MSG_TIMEOUT); data = priv->usb_buf.val8; mutex_unlock(&priv->usb_buf_mutex); if (rtl8xxxu_debug & RTL8XXXU_DEBUG_REG_READ) dev_info(&udev->dev, "%s(%04x) = 0x%02x, len %i\n", __func__, addr, data, len); return data; } u16 rtl8xxxu_read16(struct rtl8xxxu_priv *priv, u16 addr) { struct usb_device *udev = priv->udev; int len; u16 data; mutex_lock(&priv->usb_buf_mutex); len = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), REALTEK_USB_CMD_REQ, REALTEK_USB_READ, addr, 0, &priv->usb_buf.val16, sizeof(u16), RTW_USB_CONTROL_MSG_TIMEOUT); data = le16_to_cpu(priv->usb_buf.val16); mutex_unlock(&priv->usb_buf_mutex); if (rtl8xxxu_debug & RTL8XXXU_DEBUG_REG_READ) dev_info(&udev->dev, "%s(%04x) = 0x%04x, len %i\n", __func__, addr, data, len); return data; } u32 rtl8xxxu_read32(struct rtl8xxxu_priv *priv, u16 addr) { struct usb_device *udev = priv->udev; int len; u32 data; mutex_lock(&priv->usb_buf_mutex); len = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), REALTEK_USB_CMD_REQ, REALTEK_USB_READ, addr, 0, &priv->usb_buf.val32, sizeof(u32), RTW_USB_CONTROL_MSG_TIMEOUT); data = le32_to_cpu(priv->usb_buf.val32); mutex_unlock(&priv->usb_buf_mutex); if (rtl8xxxu_debug & RTL8XXXU_DEBUG_REG_READ) dev_info(&udev->dev, "%s(%04x) = 0x%08x, len %i\n", __func__, addr, data, len); return data; } int rtl8xxxu_write8(struct rtl8xxxu_priv *priv, u16 addr, u8 val) { struct usb_device *udev = priv->udev; int ret; mutex_lock(&priv->usb_buf_mutex); priv->usb_buf.val8 = val; ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), REALTEK_USB_CMD_REQ, REALTEK_USB_WRITE, addr, 0, &priv->usb_buf.val8, sizeof(u8), RTW_USB_CONTROL_MSG_TIMEOUT); mutex_unlock(&priv->usb_buf_mutex); if (rtl8xxxu_debug & RTL8XXXU_DEBUG_REG_WRITE) dev_info(&udev->dev, "%s(%04x) = 0x%02x\n", __func__, addr, val); return ret; } int rtl8xxxu_write16(struct rtl8xxxu_priv *priv, u16 addr, u16 val) { struct usb_device *udev = priv->udev; int ret; mutex_lock(&priv->usb_buf_mutex); priv->usb_buf.val16 = cpu_to_le16(val); ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), REALTEK_USB_CMD_REQ, REALTEK_USB_WRITE, addr, 0, &priv->usb_buf.val16, sizeof(u16), RTW_USB_CONTROL_MSG_TIMEOUT); mutex_unlock(&priv->usb_buf_mutex); if (rtl8xxxu_debug & RTL8XXXU_DEBUG_REG_WRITE) dev_info(&udev->dev, "%s(%04x) = 0x%04x\n", __func__, addr, val); return ret; } int rtl8xxxu_write32(struct rtl8xxxu_priv *priv, u16 addr, u32 val) { struct usb_device *udev = priv->udev; int ret; mutex_lock(&priv->usb_buf_mutex); priv->usb_buf.val32 = cpu_to_le32(val); ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), REALTEK_USB_CMD_REQ, REALTEK_USB_WRITE, addr, 0, &priv->usb_buf.val32, sizeof(u32), RTW_USB_CONTROL_MSG_TIMEOUT); mutex_unlock(&priv->usb_buf_mutex); if (rtl8xxxu_debug & RTL8XXXU_DEBUG_REG_WRITE) dev_info(&udev->dev, "%s(%04x) = 0x%08x\n", __func__, addr, val); return ret; } static int rtl8xxxu_writeN(struct rtl8xxxu_priv *priv, u16 addr, u8 *buf, u16 len) { struct usb_device *udev = priv->udev; int blocksize = priv->fops->writeN_block_size; int ret, i, count, remainder; count = len / blocksize; remainder = len % blocksize; for (i = 0; i < count; i++) { ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), REALTEK_USB_CMD_REQ, REALTEK_USB_WRITE, addr, 0, buf, blocksize, RTW_USB_CONTROL_MSG_TIMEOUT); if (ret != blocksize) goto write_error; addr += blocksize; buf += blocksize; } if (remainder) { ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), REALTEK_USB_CMD_REQ, REALTEK_USB_WRITE, addr, 0, buf, remainder, RTW_USB_CONTROL_MSG_TIMEOUT); if (ret != remainder) goto write_error; } return len; write_error: dev_info(&udev->dev, "%s: Failed to write block at addr: %04x size: %04x\n", __func__, addr, blocksize); return -EAGAIN; } u32 rtl8xxxu_read_rfreg(struct rtl8xxxu_priv *priv, enum rtl8xxxu_rfpath path, u8 reg) { u32 hssia, val32, retval; hssia = rtl8xxxu_read32(priv, REG_FPGA0_XA_HSSI_PARM2); if (path != RF_A) val32 = rtl8xxxu_read32(priv, rtl8xxxu_rfregs[path].hssiparm2); else val32 = hssia; val32 &= ~FPGA0_HSSI_PARM2_ADDR_MASK; val32 |= (reg << FPGA0_HSSI_PARM2_ADDR_SHIFT); val32 |= FPGA0_HSSI_PARM2_EDGE_READ; hssia &= ~FPGA0_HSSI_PARM2_EDGE_READ; rtl8xxxu_write32(priv, REG_FPGA0_XA_HSSI_PARM2, hssia); udelay(10); rtl8xxxu_write32(priv, rtl8xxxu_rfregs[path].hssiparm2, val32); udelay(100); hssia |= FPGA0_HSSI_PARM2_EDGE_READ; rtl8xxxu_write32(priv, REG_FPGA0_XA_HSSI_PARM2, hssia); udelay(10); val32 = rtl8xxxu_read32(priv, rtl8xxxu_rfregs[path].hssiparm1); if (val32 & FPGA0_HSSI_PARM1_PI) retval = rtl8xxxu_read32(priv, rtl8xxxu_rfregs[path].hspiread); else retval = rtl8xxxu_read32(priv, rtl8xxxu_rfregs[path].lssiread); retval &= 0xfffff; if (rtl8xxxu_debug & RTL8XXXU_DEBUG_RFREG_READ) dev_info(&priv->udev->dev, "%s(%02x) = 0x%06x\n", __func__, reg, retval); return retval; } /* * The RTL8723BU driver indicates that registers 0xb2 and 0xb6 can * have write issues in high temperature conditions. We may have to * retry writing them. */ int rtl8xxxu_write_rfreg(struct rtl8xxxu_priv *priv, enum rtl8xxxu_rfpath path, u8 reg, u32 data) { int ret, retval; u32 dataaddr, val32; if (rtl8xxxu_debug & RTL8XXXU_DEBUG_RFREG_WRITE) dev_info(&priv->udev->dev, "%s(%02x) = 0x%06x\n", __func__, reg, data); data &= FPGA0_LSSI_PARM_DATA_MASK; dataaddr = (reg << FPGA0_LSSI_PARM_ADDR_SHIFT) | data; if (priv->rtl_chip == RTL8192E) { val32 = rtl8xxxu_read32(priv, REG_FPGA0_POWER_SAVE); val32 &= ~0x20000; rtl8xxxu_write32(priv, REG_FPGA0_POWER_SAVE, val32); } /* Use XB for path B */ ret = rtl8xxxu_write32(priv, rtl8xxxu_rfregs[path].lssiparm, dataaddr); if (ret != sizeof(dataaddr)) retval = -EIO; else retval = 0; udelay(1); if (priv->rtl_chip == RTL8192E) { val32 = rtl8xxxu_read32(priv, REG_FPGA0_POWER_SAVE); val32 |= 0x20000; rtl8xxxu_write32(priv, REG_FPGA0_POWER_SAVE, val32); } return retval; } static int rtl8xxxu_gen1_h2c_cmd(struct rtl8xxxu_priv *priv, struct h2c_cmd *h2c, int len) { struct device *dev = &priv->udev->dev; int mbox_nr, retry, retval = 0; int mbox_reg, mbox_ext_reg; u8 val8; mutex_lock(&priv->h2c_mutex); mbox_nr = priv->next_mbox; mbox_reg = REG_HMBOX_0 + (mbox_nr * 4); mbox_ext_reg = REG_HMBOX_EXT_0 + (mbox_nr * 2); /* * MBOX ready? */ retry = 100; do { val8 = rtl8xxxu_read8(priv, REG_HMTFR); if (!(val8 & BIT(mbox_nr))) break; } while (retry--); if (!retry) { dev_info(dev, "%s: Mailbox busy\n", __func__); retval = -EBUSY; goto error; } /* * Need to swap as it's being swapped again by rtl8xxxu_write16/32() */ if (len > sizeof(u32)) { rtl8xxxu_write16(priv, mbox_ext_reg, le16_to_cpu(h2c->raw.ext)); if (rtl8xxxu_debug & RTL8XXXU_DEBUG_H2C) dev_info(dev, "H2C_EXT %04x\n", le16_to_cpu(h2c->raw.ext)); } rtl8xxxu_write32(priv, mbox_reg, le32_to_cpu(h2c->raw.data)); if (rtl8xxxu_debug & RTL8XXXU_DEBUG_H2C) dev_info(dev, "H2C %08x\n", le32_to_cpu(h2c->raw.data)); priv->next_mbox = (mbox_nr + 1) % H2C_MAX_MBOX; error: mutex_unlock(&priv->h2c_mutex); return retval; } int rtl8xxxu_gen2_h2c_cmd(struct rtl8xxxu_priv *priv, struct h2c_cmd *h2c, int len) { struct device *dev = &priv->udev->dev; int mbox_nr, retry, retval = 0; int mbox_reg, mbox_ext_reg; u8 val8; mutex_lock(&priv->h2c_mutex); mbox_nr = priv->next_mbox; mbox_reg = REG_HMBOX_0 + (mbox_nr * 4); mbox_ext_reg = REG_HMBOX_EXT0_8723B + (mbox_nr * 4); /* * MBOX ready? */ retry = 100; do { val8 = rtl8xxxu_read8(priv, REG_HMTFR); if (!(val8 & BIT(mbox_nr))) break; } while (retry--); if (!retry) { dev_info(dev, "%s: Mailbox busy\n", __func__); retval = -EBUSY; goto error; } /* * Need to swap as it's being swapped again by rtl8xxxu_write16/32() */ if (len > sizeof(u32)) { rtl8xxxu_write32(priv, mbox_ext_reg, le32_to_cpu(h2c->raw_wide.ext)); if (rtl8xxxu_debug & RTL8XXXU_DEBUG_H2C) dev_info(dev, "H2C_EXT %08x\n", le32_to_cpu(h2c->raw_wide.ext)); } rtl8xxxu_write32(priv, mbox_reg, le32_to_cpu(h2c->raw.data)); if (rtl8xxxu_debug & RTL8XXXU_DEBUG_H2C) dev_info(dev, "H2C %08x\n", le32_to_cpu(h2c->raw.data)); priv->next_mbox = (mbox_nr + 1) % H2C_MAX_MBOX; error: mutex_unlock(&priv->h2c_mutex); return retval; } void rtl8xxxu_gen1_enable_rf(struct rtl8xxxu_priv *priv) { u8 val8; u32 val32; val8 = rtl8xxxu_read8(priv, REG_SPS0_CTRL); val8 |= BIT(0) | BIT(3); rtl8xxxu_write8(priv, REG_SPS0_CTRL, val8); val32 = rtl8xxxu_read32(priv, REG_FPGA0_XAB_RF_PARM); val32 &= ~(BIT(4) | BIT(5)); val32 |= BIT(3); if (priv->rf_paths == 2) { val32 &= ~(BIT(20) | BIT(21)); val32 |= BIT(19); } rtl8xxxu_write32(priv, REG_FPGA0_XAB_RF_PARM, val32); val32 = rtl8xxxu_read32(priv, REG_OFDM0_TRX_PATH_ENABLE); val32 &= ~OFDM_RF_PATH_TX_MASK; if (priv->tx_paths == 2) val32 |= OFDM_RF_PATH_TX_A | OFDM_RF_PATH_TX_B; else if (priv->rtl_chip == RTL8192C || priv->rtl_chip == RTL8191C) val32 |= OFDM_RF_PATH_TX_B; else val32 |= OFDM_RF_PATH_TX_A; rtl8xxxu_write32(priv, REG_OFDM0_TRX_PATH_ENABLE, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE); val32 &= ~FPGA_RF_MODE_JAPAN; rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32); if (priv->rf_paths == 2) rtl8xxxu_write32(priv, REG_RX_WAIT_CCA, 0x63db25a0); else rtl8xxxu_write32(priv, REG_RX_WAIT_CCA, 0x631b25a0); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_AC, 0x32d95); if (priv->rf_paths == 2) rtl8xxxu_write_rfreg(priv, RF_B, RF6052_REG_AC, 0x32d95); rtl8xxxu_write8(priv, REG_TXPAUSE, 0x00); } void rtl8xxxu_gen1_disable_rf(struct rtl8xxxu_priv *priv) { u8 sps0; u32 val32; sps0 = rtl8xxxu_read8(priv, REG_SPS0_CTRL); /* RF RX code for preamble power saving */ val32 = rtl8xxxu_read32(priv, REG_FPGA0_XAB_RF_PARM); val32 &= ~(BIT(3) | BIT(4) | BIT(5)); if (priv->rf_paths == 2) val32 &= ~(BIT(19) | BIT(20) | BIT(21)); rtl8xxxu_write32(priv, REG_FPGA0_XAB_RF_PARM, val32); /* Disable TX for four paths */ val32 = rtl8xxxu_read32(priv, REG_OFDM0_TRX_PATH_ENABLE); val32 &= ~OFDM_RF_PATH_TX_MASK; rtl8xxxu_write32(priv, REG_OFDM0_TRX_PATH_ENABLE, val32); /* Enable power saving */ val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE); val32 |= FPGA_RF_MODE_JAPAN; rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32); /* AFE control register to power down bits [30:22] */ if (priv->rf_paths == 2) rtl8xxxu_write32(priv, REG_RX_WAIT_CCA, 0x00db25a0); else rtl8xxxu_write32(priv, REG_RX_WAIT_CCA, 0x001b25a0); /* Power down RF module */ rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_AC, 0); if (priv->rf_paths == 2) rtl8xxxu_write_rfreg(priv, RF_B, RF6052_REG_AC, 0); sps0 &= ~(BIT(0) | BIT(3)); rtl8xxxu_write8(priv, REG_SPS0_CTRL, sps0); } static void rtl8xxxu_stop_tx_beacon(struct rtl8xxxu_priv *priv) { u8 val8; val8 = rtl8xxxu_read8(priv, REG_FWHW_TXQ_CTRL + 2); val8 &= ~BIT(6); rtl8xxxu_write8(priv, REG_FWHW_TXQ_CTRL + 2, val8); rtl8xxxu_write8(priv, REG_TBTT_PROHIBIT + 1, 0x64); val8 = rtl8xxxu_read8(priv, REG_TBTT_PROHIBIT + 2); val8 &= ~BIT(0); rtl8xxxu_write8(priv, REG_TBTT_PROHIBIT + 2, val8); } /* * The rtl8723a has 3 channel groups for it's efuse settings. It only * supports the 2.4GHz band, so channels 1 - 14: * group 0: channels 1 - 3 * group 1: channels 4 - 9 * group 2: channels 10 - 14 * * Note: We index from 0 in the code */ static int rtl8xxxu_gen1_channel_to_group(int channel) { int group; if (channel < 4) group = 0; else if (channel < 10) group = 1; else group = 2; return group; } /* * Valid for rtl8723bu and rtl8192eu */ int rtl8xxxu_gen2_channel_to_group(int channel) { int group; if (channel < 3) group = 0; else if (channel < 6) group = 1; else if (channel < 9) group = 2; else if (channel < 12) group = 3; else group = 4; return group; } void rtl8xxxu_gen1_config_channel(struct ieee80211_hw *hw) { struct rtl8xxxu_priv *priv = hw->priv; u32 val32, rsr; u8 val8, opmode; bool ht = true; int sec_ch_above, channel; int i; opmode = rtl8xxxu_read8(priv, REG_BW_OPMODE); rsr = rtl8xxxu_read32(priv, REG_RESPONSE_RATE_SET); channel = hw->conf.chandef.chan->hw_value; switch (hw->conf.chandef.width) { case NL80211_CHAN_WIDTH_20_NOHT: ht = false; fallthrough; case NL80211_CHAN_WIDTH_20: opmode |= BW_OPMODE_20MHZ; rtl8xxxu_write8(priv, REG_BW_OPMODE, opmode); val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE); val32 &= ~FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA1_RF_MODE); val32 &= ~FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA1_RF_MODE, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA0_ANALOG2); val32 |= FPGA0_ANALOG2_20MHZ; rtl8xxxu_write32(priv, REG_FPGA0_ANALOG2, val32); break; case NL80211_CHAN_WIDTH_40: if (hw->conf.chandef.center_freq1 > hw->conf.chandef.chan->center_freq) { sec_ch_above = 1; channel += 2; } else { sec_ch_above = 0; channel -= 2; } opmode &= ~BW_OPMODE_20MHZ; rtl8xxxu_write8(priv, REG_BW_OPMODE, opmode); rsr &= ~RSR_RSC_BANDWIDTH_40M; if (sec_ch_above) rsr |= RSR_RSC_UPPER_SUB_CHANNEL; else rsr |= RSR_RSC_LOWER_SUB_CHANNEL; rtl8xxxu_write32(priv, REG_RESPONSE_RATE_SET, rsr); val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE); val32 |= FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA1_RF_MODE); val32 |= FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA1_RF_MODE, val32); /* * Set Control channel to upper or lower. These settings * are required only for 40MHz */ val32 = rtl8xxxu_read32(priv, REG_CCK0_SYSTEM); val32 &= ~CCK0_SIDEBAND; if (!sec_ch_above) val32 |= CCK0_SIDEBAND; rtl8xxxu_write32(priv, REG_CCK0_SYSTEM, val32); val32 = rtl8xxxu_read32(priv, REG_OFDM1_LSTF); val32 &= ~OFDM_LSTF_PRIME_CH_MASK; /* 0xc00 */ if (sec_ch_above) val32 |= OFDM_LSTF_PRIME_CH_LOW; else val32 |= OFDM_LSTF_PRIME_CH_HIGH; rtl8xxxu_write32(priv, REG_OFDM1_LSTF, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA0_ANALOG2); val32 &= ~FPGA0_ANALOG2_20MHZ; rtl8xxxu_write32(priv, REG_FPGA0_ANALOG2, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA0_POWER_SAVE); val32 &= ~(FPGA0_PS_LOWER_CHANNEL | FPGA0_PS_UPPER_CHANNEL); if (sec_ch_above) val32 |= FPGA0_PS_UPPER_CHANNEL; else val32 |= FPGA0_PS_LOWER_CHANNEL; rtl8xxxu_write32(priv, REG_FPGA0_POWER_SAVE, val32); break; default: break; } for (i = RF_A; i < priv->rf_paths; i++) { val32 = rtl8xxxu_read_rfreg(priv, i, RF6052_REG_MODE_AG); val32 &= ~MODE_AG_CHANNEL_MASK; val32 |= channel; rtl8xxxu_write_rfreg(priv, i, RF6052_REG_MODE_AG, val32); } if (ht) val8 = 0x0e; else val8 = 0x0a; rtl8xxxu_write8(priv, REG_SIFS_CCK + 1, val8); rtl8xxxu_write8(priv, REG_SIFS_OFDM + 1, val8); rtl8xxxu_write16(priv, REG_R2T_SIFS, 0x0808); rtl8xxxu_write16(priv, REG_T2T_SIFS, 0x0a0a); for (i = RF_A; i < priv->rf_paths; i++) { val32 = rtl8xxxu_read_rfreg(priv, i, RF6052_REG_MODE_AG); if (hw->conf.chandef.width == NL80211_CHAN_WIDTH_40) val32 &= ~MODE_AG_CHANNEL_20MHZ; else val32 |= MODE_AG_CHANNEL_20MHZ; rtl8xxxu_write_rfreg(priv, i, RF6052_REG_MODE_AG, val32); } } void rtl8xxxu_gen2_config_channel(struct ieee80211_hw *hw) { struct rtl8xxxu_priv *priv = hw->priv; u32 val32; u8 val8, subchannel; u16 rf_mode_bw; bool ht = true; int sec_ch_above, channel; int i; rf_mode_bw = rtl8xxxu_read16(priv, REG_WMAC_TRXPTCL_CTL); rf_mode_bw &= ~WMAC_TRXPTCL_CTL_BW_MASK; channel = hw->conf.chandef.chan->hw_value; /* Hack */ subchannel = 0; switch (hw->conf.chandef.width) { case NL80211_CHAN_WIDTH_20_NOHT: ht = false; fallthrough; case NL80211_CHAN_WIDTH_20: rf_mode_bw |= WMAC_TRXPTCL_CTL_BW_20; subchannel = 0; val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE); val32 &= ~FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA1_RF_MODE); val32 &= ~FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA1_RF_MODE, val32); val32 = rtl8xxxu_read32(priv, REG_OFDM0_TX_PSDO_NOISE_WEIGHT); val32 &= ~(BIT(30) | BIT(31)); rtl8xxxu_write32(priv, REG_OFDM0_TX_PSDO_NOISE_WEIGHT, val32); break; case NL80211_CHAN_WIDTH_40: rf_mode_bw |= WMAC_TRXPTCL_CTL_BW_40; if (hw->conf.chandef.center_freq1 > hw->conf.chandef.chan->center_freq) { sec_ch_above = 1; channel += 2; } else { sec_ch_above = 0; channel -= 2; } val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE); val32 |= FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA1_RF_MODE); val32 |= FPGA_RF_MODE; rtl8xxxu_write32(priv, REG_FPGA1_RF_MODE, val32); /* * Set Control channel to upper or lower. These settings * are required only for 40MHz */ val32 = rtl8xxxu_read32(priv, REG_CCK0_SYSTEM); val32 &= ~CCK0_SIDEBAND; if (!sec_ch_above) val32 |= CCK0_SIDEBAND; rtl8xxxu_write32(priv, REG_CCK0_SYSTEM, val32); val32 = rtl8xxxu_read32(priv, REG_OFDM1_LSTF); val32 &= ~OFDM_LSTF_PRIME_CH_MASK; /* 0xc00 */ if (sec_ch_above) val32 |= OFDM_LSTF_PRIME_CH_LOW; else val32 |= OFDM_LSTF_PRIME_CH_HIGH; rtl8xxxu_write32(priv, REG_OFDM1_LSTF, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA0_POWER_SAVE); val32 &= ~(FPGA0_PS_LOWER_CHANNEL | FPGA0_PS_UPPER_CHANNEL); if (sec_ch_above) val32 |= FPGA0_PS_UPPER_CHANNEL; else val32 |= FPGA0_PS_LOWER_CHANNEL; rtl8xxxu_write32(priv, REG_FPGA0_POWER_SAVE, val32); break; case NL80211_CHAN_WIDTH_80: rf_mode_bw |= WMAC_TRXPTCL_CTL_BW_80; break; default: break; } for (i = RF_A; i < priv->rf_paths; i++) { val32 = rtl8xxxu_read_rfreg(priv, i, RF6052_REG_MODE_AG); val32 &= ~MODE_AG_CHANNEL_MASK; val32 |= channel; rtl8xxxu_write_rfreg(priv, i, RF6052_REG_MODE_AG, val32); } rtl8xxxu_write16(priv, REG_WMAC_TRXPTCL_CTL, rf_mode_bw); rtl8xxxu_write8(priv, REG_DATA_SUBCHANNEL, subchannel); if (ht) val8 = 0x0e; else val8 = 0x0a; rtl8xxxu_write8(priv, REG_SIFS_CCK + 1, val8); rtl8xxxu_write8(priv, REG_SIFS_OFDM + 1, val8); rtl8xxxu_write16(priv, REG_R2T_SIFS, 0x0808); rtl8xxxu_write16(priv, REG_T2T_SIFS, 0x0a0a); for (i = RF_A; i < priv->rf_paths; i++) { val32 = rtl8xxxu_read_rfreg(priv, i, RF6052_REG_MODE_AG); val32 &= ~MODE_AG_BW_MASK; switch(hw->conf.chandef.width) { case NL80211_CHAN_WIDTH_80: val32 |= MODE_AG_BW_80MHZ_8723B; break; case NL80211_CHAN_WIDTH_40: val32 |= MODE_AG_BW_40MHZ_8723B; break; default: val32 |= MODE_AG_BW_20MHZ_8723B; break; } rtl8xxxu_write_rfreg(priv, i, RF6052_REG_MODE_AG, val32); } } void rtl8xxxu_gen1_set_tx_power(struct rtl8xxxu_priv *priv, int channel, bool ht40) { struct rtl8xxxu_power_base *power_base = priv->power_base; u8 cck[RTL8723A_MAX_RF_PATHS], ofdm[RTL8723A_MAX_RF_PATHS]; u8 ofdmbase[RTL8723A_MAX_RF_PATHS], mcsbase[RTL8723A_MAX_RF_PATHS]; u32 val32, ofdm_a, ofdm_b, mcs_a, mcs_b; u8 val8; int group, i; group = rtl8xxxu_gen1_channel_to_group(channel); cck[0] = priv->cck_tx_power_index_A[group] - 1; cck[1] = priv->cck_tx_power_index_B[group] - 1; if (priv->hi_pa) { if (cck[0] > 0x20) cck[0] = 0x20; if (cck[1] > 0x20) cck[1] = 0x20; } ofdm[0] = priv->ht40_1s_tx_power_index_A[group]; ofdm[1] = priv->ht40_1s_tx_power_index_B[group]; if (ofdm[0]) ofdm[0] -= 1; if (ofdm[1]) ofdm[1] -= 1; ofdmbase[0] = ofdm[0] + priv->ofdm_tx_power_index_diff[group].a; ofdmbase[1] = ofdm[1] + priv->ofdm_tx_power_index_diff[group].b; mcsbase[0] = ofdm[0]; mcsbase[1] = ofdm[1]; if (!ht40) { mcsbase[0] += priv->ht20_tx_power_index_diff[group].a; mcsbase[1] += priv->ht20_tx_power_index_diff[group].b; } if (priv->tx_paths > 1) { if (ofdm[0] > priv->ht40_2s_tx_power_index_diff[group].a) ofdm[0] -= priv->ht40_2s_tx_power_index_diff[group].a; if (ofdm[1] > priv->ht40_2s_tx_power_index_diff[group].b) ofdm[1] -= priv->ht40_2s_tx_power_index_diff[group].b; } if (rtl8xxxu_debug & RTL8XXXU_DEBUG_CHANNEL) dev_info(&priv->udev->dev, "%s: Setting TX power CCK A: %02x, " "CCK B: %02x, OFDM A: %02x, OFDM B: %02x\n", __func__, cck[0], cck[1], ofdm[0], ofdm[1]); for (i = 0; i < RTL8723A_MAX_RF_PATHS; i++) { if (cck[i] > RF6052_MAX_TX_PWR) cck[i] = RF6052_MAX_TX_PWR; if (ofdm[i] > RF6052_MAX_TX_PWR) ofdm[i] = RF6052_MAX_TX_PWR; } val32 = rtl8xxxu_read32(priv, REG_TX_AGC_A_CCK1_MCS32); val32 &= 0xffff00ff; val32 |= (cck[0] << 8); rtl8xxxu_write32(priv, REG_TX_AGC_A_CCK1_MCS32, val32); val32 = rtl8xxxu_read32(priv, REG_TX_AGC_B_CCK11_A_CCK2_11); val32 &= 0xff; val32 |= ((cck[0] << 8) | (cck[0] << 16) | (cck[0] << 24)); rtl8xxxu_write32(priv, REG_TX_AGC_B_CCK11_A_CCK2_11, val32); val32 = rtl8xxxu_read32(priv, REG_TX_AGC_B_CCK11_A_CCK2_11); val32 &= 0xffffff00; val32 |= cck[1]; rtl8xxxu_write32(priv, REG_TX_AGC_B_CCK11_A_CCK2_11, val32); val32 = rtl8xxxu_read32(priv, REG_TX_AGC_B_CCK1_55_MCS32); val32 &= 0xff; val32 |= ((cck[1] << 8) | (cck[1] << 16) | (cck[1] << 24)); rtl8xxxu_write32(priv, REG_TX_AGC_B_CCK1_55_MCS32, val32); ofdm_a = ofdmbase[0] | ofdmbase[0] << 8 | ofdmbase[0] << 16 | ofdmbase[0] << 24; ofdm_b = ofdmbase[1] | ofdmbase[1] << 8 | ofdmbase[1] << 16 | ofdmbase[1] << 24; rtl8xxxu_write32(priv, REG_TX_AGC_A_RATE18_06, ofdm_a + power_base->reg_0e00); rtl8xxxu_write32(priv, REG_TX_AGC_B_RATE18_06, ofdm_b + power_base->reg_0830); rtl8xxxu_write32(priv, REG_TX_AGC_A_RATE54_24, ofdm_a + power_base->reg_0e04); rtl8xxxu_write32(priv, REG_TX_AGC_B_RATE54_24, ofdm_b + power_base->reg_0834); mcs_a = mcsbase[0] | mcsbase[0] << 8 | mcsbase[0] << 16 | mcsbase[0] << 24; mcs_b = mcsbase[1] | mcsbase[1] << 8 | mcsbase[1] << 16 | mcsbase[1] << 24; rtl8xxxu_write32(priv, REG_TX_AGC_A_MCS03_MCS00, mcs_a + power_base->reg_0e10); rtl8xxxu_write32(priv, REG_TX_AGC_B_MCS03_MCS00, mcs_b + power_base->reg_083c); rtl8xxxu_write32(priv, REG_TX_AGC_A_MCS07_MCS04, mcs_a + power_base->reg_0e14); rtl8xxxu_write32(priv, REG_TX_AGC_B_MCS07_MCS04, mcs_b + power_base->reg_0848); rtl8xxxu_write32(priv, REG_TX_AGC_A_MCS11_MCS08, mcs_a + power_base->reg_0e18); rtl8xxxu_write32(priv, REG_TX_AGC_B_MCS11_MCS08, mcs_b + power_base->reg_084c); rtl8xxxu_write32(priv, REG_TX_AGC_A_MCS15_MCS12, mcs_a + power_base->reg_0e1c); for (i = 0; i < 3; i++) { if (i != 2) val8 = (mcsbase[0] > 8) ? (mcsbase[0] - 8) : 0; else val8 = (mcsbase[0] > 6) ? (mcsbase[0] - 6) : 0; rtl8xxxu_write8(priv, REG_OFDM0_XC_TX_IQ_IMBALANCE + i, val8); } rtl8xxxu_write32(priv, REG_TX_AGC_B_MCS15_MCS12, mcs_b + power_base->reg_0868); for (i = 0; i < 3; i++) { if (i != 2) val8 = (mcsbase[1] > 8) ? (mcsbase[1] - 8) : 0; else val8 = (mcsbase[1] > 6) ? (mcsbase[1] - 6) : 0; rtl8xxxu_write8(priv, REG_OFDM0_XD_TX_IQ_IMBALANCE + i, val8); } } static void rtl8xxxu_set_linktype(struct rtl8xxxu_priv *priv, enum nl80211_iftype linktype) { u8 val8; val8 = rtl8xxxu_read8(priv, REG_MSR); val8 &= ~MSR_LINKTYPE_MASK; switch (linktype) { case NL80211_IFTYPE_UNSPECIFIED: val8 |= MSR_LINKTYPE_NONE; break; case NL80211_IFTYPE_ADHOC: val8 |= MSR_LINKTYPE_ADHOC; break; case NL80211_IFTYPE_STATION: val8 |= MSR_LINKTYPE_STATION; break; case NL80211_IFTYPE_AP: val8 |= MSR_LINKTYPE_AP; break; default: goto out; } rtl8xxxu_write8(priv, REG_MSR, val8); out: return; } static void rtl8xxxu_set_retry(struct rtl8xxxu_priv *priv, u16 short_retry, u16 long_retry) { u16 val16; val16 = ((short_retry << RETRY_LIMIT_SHORT_SHIFT) & RETRY_LIMIT_SHORT_MASK) | ((long_retry << RETRY_LIMIT_LONG_SHIFT) & RETRY_LIMIT_LONG_MASK); rtl8xxxu_write16(priv, REG_RETRY_LIMIT, val16); } static void rtl8xxxu_set_spec_sifs(struct rtl8xxxu_priv *priv, u16 cck, u16 ofdm) { u16 val16; val16 = ((cck << SPEC_SIFS_CCK_SHIFT) & SPEC_SIFS_CCK_MASK) | ((ofdm << SPEC_SIFS_OFDM_SHIFT) & SPEC_SIFS_OFDM_MASK); rtl8xxxu_write16(priv, REG_SPEC_SIFS, val16); } static void rtl8xxxu_print_chipinfo(struct rtl8xxxu_priv *priv) { struct device *dev = &priv->udev->dev; char cut = '?'; /* Currently always true: chip_cut is 4 bits. */ if (priv->chip_cut <= 15) cut = 'A' + priv->chip_cut; dev_info(dev, "RTL%s rev %c (%s) romver %d, %iT%iR, TX queues %i, WiFi=%i, BT=%i, GPS=%i, HI PA=%i\n", priv->chip_name, cut, priv->chip_vendor, priv->rom_rev, priv->tx_paths, priv->rx_paths, priv->ep_tx_count, priv->has_wifi, priv->has_bluetooth, priv->has_gps, priv->hi_pa); dev_info(dev, "RTL%s MAC: %pM\n", priv->chip_name, priv->mac_addr); } void rtl8xxxu_identify_vendor_1bit(struct rtl8xxxu_priv *priv, u32 vendor) { if (vendor) { strscpy(priv->chip_vendor, "UMC", sizeof(priv->chip_vendor)); priv->vendor_umc = 1; } else { strscpy(priv->chip_vendor, "TSMC", sizeof(priv->chip_vendor)); } } void rtl8xxxu_identify_vendor_2bits(struct rtl8xxxu_priv *priv, u32 vendor) { switch (vendor) { case SYS_CFG_VENDOR_ID_TSMC: strscpy(priv->chip_vendor, "TSMC", sizeof(priv->chip_vendor)); break; case SYS_CFG_VENDOR_ID_SMIC: strscpy(priv->chip_vendor, "SMIC", sizeof(priv->chip_vendor)); priv->vendor_smic = 1; break; case SYS_CFG_VENDOR_ID_UMC: strscpy(priv->chip_vendor, "UMC", sizeof(priv->chip_vendor)); priv->vendor_umc = 1; break; default: strscpy(priv->chip_vendor, "unknown", sizeof(priv->chip_vendor)); } } void rtl8xxxu_config_endpoints_sie(struct rtl8xxxu_priv *priv) { u16 val16; val16 = rtl8xxxu_read16(priv, REG_NORMAL_SIE_EP_TX); if (val16 & NORMAL_SIE_EP_TX_HIGH_MASK) { priv->ep_tx_high_queue = 1; priv->ep_tx_count++; } if (val16 & NORMAL_SIE_EP_TX_NORMAL_MASK) { priv->ep_tx_normal_queue = 1; priv->ep_tx_count++; } if (val16 & NORMAL_SIE_EP_TX_LOW_MASK) { priv->ep_tx_low_queue = 1; priv->ep_tx_count++; } } int rtl8xxxu_config_endpoints_no_sie(struct rtl8xxxu_priv *priv) { struct device *dev = &priv->udev->dev; switch (priv->nr_out_eps) { case 4: case 3: priv->ep_tx_low_queue = 1; priv->ep_tx_count++; fallthrough; case 2: priv->ep_tx_normal_queue = 1; priv->ep_tx_count++; fallthrough; case 1: priv->ep_tx_high_queue = 1; priv->ep_tx_count++; break; default: dev_info(dev, "Unsupported USB TX end-points\n"); return -ENOTSUPP; } return 0; } int rtl8xxxu_read_efuse8(struct rtl8xxxu_priv *priv, u16 offset, u8 *data) { int i; u8 val8; u32 val32; /* Write Address */ rtl8xxxu_write8(priv, REG_EFUSE_CTRL + 1, offset & 0xff); val8 = rtl8xxxu_read8(priv, REG_EFUSE_CTRL + 2); val8 &= 0xfc; val8 |= (offset >> 8) & 0x03; rtl8xxxu_write8(priv, REG_EFUSE_CTRL + 2, val8); val8 = rtl8xxxu_read8(priv, REG_EFUSE_CTRL + 3); rtl8xxxu_write8(priv, REG_EFUSE_CTRL + 3, val8 & 0x7f); /* Poll for data read */ val32 = rtl8xxxu_read32(priv, REG_EFUSE_CTRL); for (i = 0; i < RTL8XXXU_MAX_REG_POLL; i++) { val32 = rtl8xxxu_read32(priv, REG_EFUSE_CTRL); if (val32 & BIT(31)) break; } if (i == RTL8XXXU_MAX_REG_POLL) return -EIO; udelay(50); val32 = rtl8xxxu_read32(priv, REG_EFUSE_CTRL); *data = val32 & 0xff; return 0; } static int rtl8xxxu_read_efuse(struct rtl8xxxu_priv *priv) { struct device *dev = &priv->udev->dev; int i, ret = 0; u8 val8, word_mask, header, extheader; u16 val16, efuse_addr, offset; u32 val32; val16 = rtl8xxxu_read16(priv, REG_9346CR); if (val16 & EEPROM_ENABLE) priv->has_eeprom = 1; if (val16 & EEPROM_BOOT) priv->boot_eeprom = 1; if (priv->is_multi_func) { val32 = rtl8xxxu_read32(priv, REG_EFUSE_TEST); val32 = (val32 & ~EFUSE_SELECT_MASK) | EFUSE_WIFI_SELECT; rtl8xxxu_write32(priv, REG_EFUSE_TEST, val32); } dev_dbg(dev, "Booting from %s\n", priv->boot_eeprom ? "EEPROM" : "EFUSE"); rtl8xxxu_write8(priv, REG_EFUSE_ACCESS, EFUSE_ACCESS_ENABLE); /* 1.2V Power: From VDDON with Power Cut(0x0000[15]), default valid */ val16 = rtl8xxxu_read16(priv, REG_SYS_ISO_CTRL); if (!(val16 & SYS_ISO_PWC_EV12V)) { val16 |= SYS_ISO_PWC_EV12V; rtl8xxxu_write16(priv, REG_SYS_ISO_CTRL, val16); } /* Reset: 0x0000[28], default valid */ val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC); if (!(val16 & SYS_FUNC_ELDR)) { val16 |= SYS_FUNC_ELDR; rtl8xxxu_write16(priv, REG_SYS_FUNC, val16); } /* * Clock: Gated(0x0008[5]) 8M(0x0008[1]) clock from ANA, default valid */ val16 = rtl8xxxu_read16(priv, REG_SYS_CLKR); if (!(val16 & SYS_CLK_LOADER_ENABLE) || !(val16 & SYS_CLK_ANA8M)) { val16 |= (SYS_CLK_LOADER_ENABLE | SYS_CLK_ANA8M); rtl8xxxu_write16(priv, REG_SYS_CLKR, val16); } /* Default value is 0xff */ memset(priv->efuse_wifi.raw, 0xff, EFUSE_MAP_LEN); efuse_addr = 0; while (efuse_addr < EFUSE_REAL_CONTENT_LEN_8723A) { u16 map_addr; ret = rtl8xxxu_read_efuse8(priv, efuse_addr++, &header); if (ret || header == 0xff) goto exit; if ((header & 0x1f) == 0x0f) { /* extended header */ offset = (header & 0xe0) >> 5; ret = rtl8xxxu_read_efuse8(priv, efuse_addr++, &extheader); if (ret) goto exit; /* All words disabled */ if ((extheader & 0x0f) == 0x0f) continue; offset |= ((extheader & 0xf0) >> 1); word_mask = extheader & 0x0f; } else { offset = (header >> 4) & 0x0f; word_mask = header & 0x0f; } /* Get word enable value from PG header */ /* We have 8 bits to indicate validity */ map_addr = offset * 8; for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (word_mask & BIT(i)) { map_addr += 2; continue; } ret = rtl8xxxu_read_efuse8(priv, efuse_addr++, &val8); if (ret) goto exit; if (map_addr >= EFUSE_MAP_LEN - 1) { dev_warn(dev, "%s: Illegal map_addr (%04x), " "efuse corrupt!\n", __func__, map_addr); ret = -EINVAL; goto exit; } priv->efuse_wifi.raw[map_addr++] = val8; ret = rtl8xxxu_read_efuse8(priv, efuse_addr++, &val8); if (ret) goto exit; priv->efuse_wifi.raw[map_addr++] = val8; } } exit: rtl8xxxu_write8(priv, REG_EFUSE_ACCESS, EFUSE_ACCESS_DISABLE); return ret; } static void rtl8xxxu_dump_efuse(struct rtl8xxxu_priv *priv) { dev_info(&priv->udev->dev, "Dumping efuse for RTL%s (0x%02x bytes):\n", priv->chip_name, EFUSE_MAP_LEN); print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1, priv->efuse_wifi.raw, EFUSE_MAP_LEN, true); } void rtl8xxxu_reset_8051(struct rtl8xxxu_priv *priv) { u8 val8; u16 sys_func; val8 = rtl8xxxu_read8(priv, REG_RSV_CTRL + 1); val8 &= ~BIT(0); rtl8xxxu_write8(priv, REG_RSV_CTRL + 1, val8); sys_func = rtl8xxxu_read16(priv, REG_SYS_FUNC); sys_func &= ~SYS_FUNC_CPU_ENABLE; rtl8xxxu_write16(priv, REG_SYS_FUNC, sys_func); val8 = rtl8xxxu_read8(priv, REG_RSV_CTRL + 1); val8 |= BIT(0); rtl8xxxu_write8(priv, REG_RSV_CTRL + 1, val8); sys_func |= SYS_FUNC_CPU_ENABLE; rtl8xxxu_write16(priv, REG_SYS_FUNC, sys_func); } static int rtl8xxxu_start_firmware(struct rtl8xxxu_priv *priv) { struct device *dev = &priv->udev->dev; int ret = 0, i; u32 val32; /* Poll checksum report */ for (i = 0; i < RTL8XXXU_FIRMWARE_POLL_MAX; i++) { val32 = rtl8xxxu_read32(priv, REG_MCU_FW_DL); if (val32 & MCU_FW_DL_CSUM_REPORT) break; } if (i == RTL8XXXU_FIRMWARE_POLL_MAX) { dev_warn(dev, "Firmware checksum poll timed out\n"); ret = -EAGAIN; goto exit; } val32 = rtl8xxxu_read32(priv, REG_MCU_FW_DL); val32 |= MCU_FW_DL_READY; val32 &= ~MCU_WINT_INIT_READY; rtl8xxxu_write32(priv, REG_MCU_FW_DL, val32); /* * Reset the 8051 in order for the firmware to start running, * otherwise it won't come up on the 8192eu */ priv->fops->reset_8051(priv); /* Wait for firmware to become ready */ for (i = 0; i < RTL8XXXU_FIRMWARE_POLL_MAX; i++) { val32 = rtl8xxxu_read32(priv, REG_MCU_FW_DL); if (val32 & MCU_WINT_INIT_READY) break; udelay(100); } if (i == RTL8XXXU_FIRMWARE_POLL_MAX) { dev_warn(dev, "Firmware failed to start\n"); ret = -EAGAIN; goto exit; } /* * Init H2C command */ if (priv->rtl_chip == RTL8723B || priv->rtl_chip == RTL8188F) rtl8xxxu_write8(priv, REG_HMTFR, 0x0f); exit: return ret; } static int rtl8xxxu_download_firmware(struct rtl8xxxu_priv *priv) { int pages, remainder, i, ret; u8 val8; u16 val16; u32 val32; u8 *fwptr; val8 = rtl8xxxu_read8(priv, REG_SYS_FUNC + 1); val8 |= 4; rtl8xxxu_write8(priv, REG_SYS_FUNC + 1, val8); /* 8051 enable */ val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC); val16 |= SYS_FUNC_CPU_ENABLE; rtl8xxxu_write16(priv, REG_SYS_FUNC, val16); val8 = rtl8xxxu_read8(priv, REG_MCU_FW_DL); if (val8 & MCU_FW_RAM_SEL) { dev_info(&priv->udev->dev, "Firmware is already running, resetting the MCU.\n"); rtl8xxxu_write8(priv, REG_MCU_FW_DL, 0x00); priv->fops->reset_8051(priv); } /* MCU firmware download enable */ val8 = rtl8xxxu_read8(priv, REG_MCU_FW_DL); val8 |= MCU_FW_DL_ENABLE; rtl8xxxu_write8(priv, REG_MCU_FW_DL, val8); /* 8051 reset */ val32 = rtl8xxxu_read32(priv, REG_MCU_FW_DL); val32 &= ~BIT(19); rtl8xxxu_write32(priv, REG_MCU_FW_DL, val32); /* Reset firmware download checksum */ val8 = rtl8xxxu_read8(priv, REG_MCU_FW_DL); val8 |= MCU_FW_DL_CSUM_REPORT; rtl8xxxu_write8(priv, REG_MCU_FW_DL, val8); pages = priv->fw_size / RTL_FW_PAGE_SIZE; remainder = priv->fw_size % RTL_FW_PAGE_SIZE; fwptr = priv->fw_data->data; for (i = 0; i < pages; i++) { val8 = rtl8xxxu_read8(priv, REG_MCU_FW_DL + 2) & 0xF8; val8 |= i; rtl8xxxu_write8(priv, REG_MCU_FW_DL + 2, val8); ret = rtl8xxxu_writeN(priv, REG_FW_START_ADDRESS, fwptr, RTL_FW_PAGE_SIZE); if (ret != RTL_FW_PAGE_SIZE) { ret = -EAGAIN; goto fw_abort; } fwptr += RTL_FW_PAGE_SIZE; } if (remainder) { val8 = rtl8xxxu_read8(priv, REG_MCU_FW_DL + 2) & 0xF8; val8 |= i; rtl8xxxu_write8(priv, REG_MCU_FW_DL + 2, val8); ret = rtl8xxxu_writeN(priv, REG_FW_START_ADDRESS, fwptr, remainder); if (ret != remainder) { ret = -EAGAIN; goto fw_abort; } } ret = 0; fw_abort: /* MCU firmware download disable */ val16 = rtl8xxxu_read16(priv, REG_MCU_FW_DL); val16 &= ~MCU_FW_DL_ENABLE; rtl8xxxu_write16(priv, REG_MCU_FW_DL, val16); return ret; } int rtl8xxxu_load_firmware(struct rtl8xxxu_priv *priv, const char *fw_name) { struct device *dev = &priv->udev->dev; const struct firmware *fw; int ret = 0; u16 signature; dev_info(dev, "%s: Loading firmware %s\n", DRIVER_NAME, fw_name); if (request_firmware(&fw, fw_name, &priv->udev->dev)) { dev_warn(dev, "request_firmware(%s) failed\n", fw_name); ret = -EAGAIN; goto exit; } if (!fw) { dev_warn(dev, "Firmware data not available\n"); ret = -EINVAL; goto exit; } priv->fw_data = kmemdup(fw->data, fw->size, GFP_KERNEL); if (!priv->fw_data) { ret = -ENOMEM; goto exit; } priv->fw_size = fw->size - sizeof(struct rtl8xxxu_firmware_header); signature = le16_to_cpu(priv->fw_data->signature); switch (signature & 0xfff0) { case 0x92e0: case 0x92c0: case 0x88e0: case 0x88c0: case 0x5300: case 0x2300: case 0x88f0: break; default: ret = -EINVAL; dev_warn(dev, "%s: Invalid firmware signature: 0x%04x\n", __func__, signature); } dev_info(dev, "Firmware revision %i.%i (signature 0x%04x)\n", le16_to_cpu(priv->fw_data->major_version), priv->fw_data->minor_version, signature); exit: release_firmware(fw); return ret; } void rtl8xxxu_firmware_self_reset(struct rtl8xxxu_priv *priv) { u16 val16; int i = 100; /* Inform 8051 to perform reset */ rtl8xxxu_write8(priv, REG_HMTFR + 3, 0x20); for (i = 100; i > 0; i--) { val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC); if (!(val16 & SYS_FUNC_CPU_ENABLE)) { dev_dbg(&priv->udev->dev, "%s: Firmware self reset success!\n", __func__); break; } udelay(50); } if (!i) { /* Force firmware reset */ val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC); val16 &= ~SYS_FUNC_CPU_ENABLE; rtl8xxxu_write16(priv, REG_SYS_FUNC, val16); } } static int rtl8xxxu_init_mac(struct rtl8xxxu_priv *priv) { const struct rtl8xxxu_reg8val *array = priv->fops->mactable; int i, ret; u16 reg; u8 val; for (i = 0; ; i++) { reg = array[i].reg; val = array[i].val; if (reg == 0xffff && val == 0xff) break; ret = rtl8xxxu_write8(priv, reg, val); if (ret != 1) { dev_warn(&priv->udev->dev, "Failed to initialize MAC " "(reg: %04x, val %02x)\n", reg, val); return -EAGAIN; } } switch (priv->rtl_chip) { case RTL8188C: case RTL8188R: case RTL8191C: case RTL8192C: case RTL8723A: rtl8xxxu_write8(priv, REG_MAX_AGGR_NUM, 0x0a); break; case RTL8188E: rtl8xxxu_write16(priv, REG_MAX_AGGR_NUM, 0x0707); break; default: break; } return 0; } int rtl8xxxu_init_phy_regs(struct rtl8xxxu_priv *priv, const struct rtl8xxxu_reg32val *array) { int i, ret; u16 reg; u32 val; for (i = 0; ; i++) { reg = array[i].reg; val = array[i].val; if (reg == 0xffff && val == 0xffffffff) break; ret = rtl8xxxu_write32(priv, reg, val); if (ret != sizeof(val)) { dev_warn(&priv->udev->dev, "Failed to initialize PHY\n"); return -EAGAIN; } udelay(1); } return 0; } void rtl8xxxu_gen1_init_phy_bb(struct rtl8xxxu_priv *priv) { u8 val8, ldoa15, ldov12d, lpldo, ldohci12; u16 val16; u32 val32; val8 = rtl8xxxu_read8(priv, REG_AFE_PLL_CTRL); udelay(2); val8 |= AFE_PLL_320_ENABLE; rtl8xxxu_write8(priv, REG_AFE_PLL_CTRL, val8); udelay(2); rtl8xxxu_write8(priv, REG_AFE_PLL_CTRL + 1, 0xff); udelay(2); val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC); val16 |= SYS_FUNC_BB_GLB_RSTN | SYS_FUNC_BBRSTB; rtl8xxxu_write16(priv, REG_SYS_FUNC, val16); val32 = rtl8xxxu_read32(priv, REG_AFE_XTAL_CTRL); val32 &= ~AFE_XTAL_RF_GATE; if (priv->has_bluetooth) val32 &= ~AFE_XTAL_BT_GATE; rtl8xxxu_write32(priv, REG_AFE_XTAL_CTRL, val32); /* 6. 0x1f[7:0] = 0x07 */ val8 = RF_ENABLE | RF_RSTB | RF_SDMRSTB; rtl8xxxu_write8(priv, REG_RF_CTRL, val8); if (priv->hi_pa) rtl8xxxu_init_phy_regs(priv, rtl8188ru_phy_1t_highpa_table); else if (priv->tx_paths == 2) rtl8xxxu_init_phy_regs(priv, rtl8192cu_phy_2t_init_table); else rtl8xxxu_init_phy_regs(priv, rtl8723a_phy_1t_init_table); if (priv->rtl_chip == RTL8188R && priv->hi_pa && priv->vendor_umc && priv->chip_cut == 1) rtl8xxxu_write8(priv, REG_OFDM0_AGC_PARM1 + 2, 0x50); if (priv->hi_pa) rtl8xxxu_init_phy_regs(priv, rtl8xxx_agc_highpa_table); else rtl8xxxu_init_phy_regs(priv, rtl8xxx_agc_standard_table); ldoa15 = LDOA15_ENABLE | LDOA15_OBUF; ldov12d = LDOV12D_ENABLE | BIT(2) | (2 << LDOV12D_VADJ_SHIFT); ldohci12 = 0x57; lpldo = 1; val32 = (lpldo << 24) | (ldohci12 << 16) | (ldov12d << 8) | ldoa15; rtl8xxxu_write32(priv, REG_LDOA15_CTRL, val32); } /* * Most of this is black magic retrieved from the old rtl8723au driver */ static int rtl8xxxu_init_phy_bb(struct rtl8xxxu_priv *priv) { u32 val32; priv->fops->init_phy_bb(priv); if (priv->tx_paths == 1 && priv->rx_paths == 2) { /* * For 1T2R boards, patch the registers. * * It looks like 8191/2 1T2R boards use path B for TX */ val32 = rtl8xxxu_read32(priv, REG_FPGA0_TX_INFO); val32 &= ~(BIT(0) | BIT(1)); val32 |= BIT(1); rtl8xxxu_write32(priv, REG_FPGA0_TX_INFO, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA1_TX_INFO); val32 &= ~0x300033; val32 |= 0x200022; rtl8xxxu_write32(priv, REG_FPGA1_TX_INFO, val32); val32 = rtl8xxxu_read32(priv, REG_CCK0_AFE_SETTING); val32 &= ~CCK0_AFE_RX_MASK; val32 &= 0x00ffffff; val32 |= 0x40000000; val32 |= CCK0_AFE_RX_ANT_B; rtl8xxxu_write32(priv, REG_CCK0_AFE_SETTING, val32); val32 = rtl8xxxu_read32(priv, REG_OFDM0_TRX_PATH_ENABLE); val32 &= ~(OFDM_RF_PATH_RX_MASK | OFDM_RF_PATH_TX_MASK); val32 |= (OFDM_RF_PATH_RX_A | OFDM_RF_PATH_RX_B | OFDM_RF_PATH_TX_B); rtl8xxxu_write32(priv, REG_OFDM0_TRX_PATH_ENABLE, val32); val32 = rtl8xxxu_read32(priv, REG_OFDM0_AGC_PARM1); val32 &= ~(BIT(4) | BIT(5)); val32 |= BIT(4); rtl8xxxu_write32(priv, REG_OFDM0_AGC_PARM1, val32); val32 = rtl8xxxu_read32(priv, REG_TX_CCK_RFON); val32 &= ~(BIT(27) | BIT(26)); val32 |= BIT(27); rtl8xxxu_write32(priv, REG_TX_CCK_RFON, val32); val32 = rtl8xxxu_read32(priv, REG_TX_CCK_BBON); val32 &= ~(BIT(27) | BIT(26)); val32 |= BIT(27); rtl8xxxu_write32(priv, REG_TX_CCK_BBON, val32); val32 = rtl8xxxu_read32(priv, REG_TX_OFDM_RFON); val32 &= ~(BIT(27) | BIT(26)); val32 |= BIT(27); rtl8xxxu_write32(priv, REG_TX_OFDM_RFON, val32); val32 = rtl8xxxu_read32(priv, REG_TX_OFDM_BBON); val32 &= ~(BIT(27) | BIT(26)); val32 |= BIT(27); rtl8xxxu_write32(priv, REG_TX_OFDM_BBON, val32); val32 = rtl8xxxu_read32(priv, REG_TX_TO_TX); val32 &= ~(BIT(27) | BIT(26)); val32 |= BIT(27); rtl8xxxu_write32(priv, REG_TX_TO_TX, val32); } if (priv->fops->set_crystal_cap) priv->fops->set_crystal_cap(priv, priv->default_crystal_cap); if (priv->rtl_chip == RTL8192E) rtl8xxxu_write32(priv, REG_AFE_XTAL_CTRL, 0x000f81fb); return 0; } static int rtl8xxxu_init_rf_regs(struct rtl8xxxu_priv *priv, const struct rtl8xxxu_rfregval *array, enum rtl8xxxu_rfpath path) { int i, ret; u8 reg; u32 val; for (i = 0; ; i++) { reg = array[i].reg; val = array[i].val; if (reg == 0xff && val == 0xffffffff) break; switch (reg) { case 0xfe: msleep(50); continue; case 0xfd: mdelay(5); continue; case 0xfc: mdelay(1); continue; case 0xfb: udelay(50); continue; case 0xfa: udelay(5); continue; case 0xf9: udelay(1); continue; } ret = rtl8xxxu_write_rfreg(priv, path, reg, val); if (ret) { dev_warn(&priv->udev->dev, "Failed to initialize RF\n"); return -EAGAIN; } udelay(1); } return 0; } int rtl8xxxu_init_phy_rf(struct rtl8xxxu_priv *priv, const struct rtl8xxxu_rfregval *table, enum rtl8xxxu_rfpath path) { u32 val32; u16 val16, rfsi_rfenv; u16 reg_sw_ctrl, reg_int_oe, reg_hssi_parm2; switch (path) { case RF_A: reg_sw_ctrl = REG_FPGA0_XA_RF_SW_CTRL; reg_int_oe = REG_FPGA0_XA_RF_INT_OE; reg_hssi_parm2 = REG_FPGA0_XA_HSSI_PARM2; break; case RF_B: reg_sw_ctrl = REG_FPGA0_XB_RF_SW_CTRL; reg_int_oe = REG_FPGA0_XB_RF_INT_OE; reg_hssi_parm2 = REG_FPGA0_XB_HSSI_PARM2; break; default: dev_err(&priv->udev->dev, "%s:Unsupported RF path %c\n", __func__, path + 'A'); return -EINVAL; } /* For path B, use XB */ rfsi_rfenv = rtl8xxxu_read16(priv, reg_sw_ctrl); rfsi_rfenv &= FPGA0_RF_RFENV; /* * These two we might be able to optimize into one */ val32 = rtl8xxxu_read32(priv, reg_int_oe); val32 |= BIT(20); /* 0x10 << 16 */ rtl8xxxu_write32(priv, reg_int_oe, val32); udelay(1); val32 = rtl8xxxu_read32(priv, reg_int_oe); val32 |= BIT(4); rtl8xxxu_write32(priv, reg_int_oe, val32); udelay(1); /* * These two we might be able to optimize into one */ val32 = rtl8xxxu_read32(priv, reg_hssi_parm2); val32 &= ~FPGA0_HSSI_3WIRE_ADDR_LEN; rtl8xxxu_write32(priv, reg_hssi_parm2, val32); udelay(1); val32 = rtl8xxxu_read32(priv, reg_hssi_parm2); val32 &= ~FPGA0_HSSI_3WIRE_DATA_LEN; rtl8xxxu_write32(priv, reg_hssi_parm2, val32); udelay(1); rtl8xxxu_init_rf_regs(priv, table, path); /* For path B, use XB */ val16 = rtl8xxxu_read16(priv, reg_sw_ctrl); val16 &= ~FPGA0_RF_RFENV; val16 |= rfsi_rfenv; rtl8xxxu_write16(priv, reg_sw_ctrl, val16); return 0; } static int rtl8xxxu_llt_write(struct rtl8xxxu_priv *priv, u8 address, u8 data) { int ret = -EBUSY; int count = 0; u32 value; value = LLT_OP_WRITE | address << 8 | data; rtl8xxxu_write32(priv, REG_LLT_INIT, value); do { value = rtl8xxxu_read32(priv, REG_LLT_INIT); if ((value & LLT_OP_MASK) == LLT_OP_INACTIVE) { ret = 0; break; } } while (count++ < 20); return ret; } int rtl8xxxu_init_llt_table(struct rtl8xxxu_priv *priv) { int ret; int i, last_entry; u8 last_tx_page; last_tx_page = priv->fops->total_page_num; if (priv->fops->last_llt_entry) last_entry = priv->fops->last_llt_entry; else last_entry = 255; for (i = 0; i < last_tx_page; i++) { ret = rtl8xxxu_llt_write(priv, i, i + 1); if (ret) goto exit; } ret = rtl8xxxu_llt_write(priv, last_tx_page, 0xff); if (ret) goto exit; /* Mark remaining pages as a ring buffer */ for (i = last_tx_page + 1; i < last_entry; i++) { ret = rtl8xxxu_llt_write(priv, i, (i + 1)); if (ret) goto exit; } /* Let last entry point to the start entry of ring buffer */ ret = rtl8xxxu_llt_write(priv, last_entry, last_tx_page + 1); if (ret) goto exit; exit: return ret; } int rtl8xxxu_auto_llt_table(struct rtl8xxxu_priv *priv) { u32 val32; int ret = 0; int i; val32 = rtl8xxxu_read32(priv, REG_AUTO_LLT); val32 |= AUTO_LLT_INIT_LLT; rtl8xxxu_write32(priv, REG_AUTO_LLT, val32); for (i = 500; i; i--) { val32 = rtl8xxxu_read32(priv, REG_AUTO_LLT); if (!(val32 & AUTO_LLT_INIT_LLT)) break; usleep_range(2, 4); } if (!i) { ret = -EBUSY; dev_warn(&priv->udev->dev, "LLT table init failed\n"); } return ret; } static int rtl8xxxu_init_queue_priority(struct rtl8xxxu_priv *priv) { u16 val16, hi, lo; u16 hiq, mgq, bkq, beq, viq, voq; int hip, mgp, bkp, bep, vip, vop; int ret = 0; switch (priv->ep_tx_count) { case 1: if (priv->ep_tx_high_queue) { hi = TRXDMA_QUEUE_HIGH; } else if (priv->ep_tx_low_queue) { hi = TRXDMA_QUEUE_LOW; } else if (priv->ep_tx_normal_queue) { hi = TRXDMA_QUEUE_NORMAL; } else { hi = 0; ret = -EINVAL; } hiq = hi; mgq = hi; bkq = hi; beq = hi; viq = hi; voq = hi; hip = 0; mgp = 0; bkp = 0; bep = 0; vip = 0; vop = 0; break; case 2: if (priv->ep_tx_high_queue && priv->ep_tx_low_queue) { hi = TRXDMA_QUEUE_HIGH; lo = TRXDMA_QUEUE_LOW; } else if (priv->ep_tx_normal_queue && priv->ep_tx_low_queue) { hi = TRXDMA_QUEUE_NORMAL; lo = TRXDMA_QUEUE_LOW; } else if (priv->ep_tx_high_queue && priv->ep_tx_normal_queue) { hi = TRXDMA_QUEUE_HIGH; lo = TRXDMA_QUEUE_NORMAL; } else { ret = -EINVAL; hi = 0; lo = 0; } hiq = hi; mgq = hi; bkq = lo; beq = lo; viq = hi; voq = hi; hip = 0; mgp = 0; bkp = 1; bep = 1; vip = 0; vop = 0; break; case 3: beq = TRXDMA_QUEUE_LOW; bkq = TRXDMA_QUEUE_LOW; viq = TRXDMA_QUEUE_NORMAL; voq = TRXDMA_QUEUE_HIGH; mgq = TRXDMA_QUEUE_HIGH; hiq = TRXDMA_QUEUE_HIGH; hip = hiq ^ 3; mgp = mgq ^ 3; bkp = bkq ^ 3; bep = beq ^ 3; vip = viq ^ 3; vop = viq ^ 3; break; default: ret = -EINVAL; } /* * None of the vendor drivers are configuring the beacon * queue here .... why? */ if (!ret) { val16 = rtl8xxxu_read16(priv, REG_TRXDMA_CTRL); val16 &= 0x7; val16 |= (voq << TRXDMA_CTRL_VOQ_SHIFT) | (viq << TRXDMA_CTRL_VIQ_SHIFT) | (beq << TRXDMA_CTRL_BEQ_SHIFT) | (bkq << TRXDMA_CTRL_BKQ_SHIFT) | (mgq << TRXDMA_CTRL_MGQ_SHIFT) | (hiq << TRXDMA_CTRL_HIQ_SHIFT); rtl8xxxu_write16(priv, REG_TRXDMA_CTRL, val16); priv->pipe_out[TXDESC_QUEUE_VO] = usb_sndbulkpipe(priv->udev, priv->out_ep[vop]); priv->pipe_out[TXDESC_QUEUE_VI] = usb_sndbulkpipe(priv->udev, priv->out_ep[vip]); priv->pipe_out[TXDESC_QUEUE_BE] = usb_sndbulkpipe(priv->udev, priv->out_ep[bep]); priv->pipe_out[TXDESC_QUEUE_BK] = usb_sndbulkpipe(priv->udev, priv->out_ep[bkp]); priv->pipe_out[TXDESC_QUEUE_BEACON] = usb_sndbulkpipe(priv->udev, priv->out_ep[0]); priv->pipe_out[TXDESC_QUEUE_MGNT] = usb_sndbulkpipe(priv->udev, priv->out_ep[mgp]); priv->pipe_out[TXDESC_QUEUE_HIGH] = usb_sndbulkpipe(priv->udev, priv->out_ep[hip]); priv->pipe_out[TXDESC_QUEUE_CMD] = usb_sndbulkpipe(priv->udev, priv->out_ep[0]); } return ret; } void rtl8xxxu_fill_iqk_matrix_a(struct rtl8xxxu_priv *priv, bool iqk_ok, int result[][8], int candidate, bool tx_only) { u32 oldval, x, tx0_a, reg; int y, tx0_c; u32 val32; if (!iqk_ok) return; val32 = rtl8xxxu_read32(priv, REG_OFDM0_XA_TX_IQ_IMBALANCE); oldval = val32 >> 22; x = result[candidate][0]; if ((x & 0x00000200) != 0) x = x | 0xfffffc00; tx0_a = (x * oldval) >> 8; val32 = rtl8xxxu_read32(priv, REG_OFDM0_XA_TX_IQ_IMBALANCE); val32 &= ~0x3ff; val32 |= tx0_a; rtl8xxxu_write32(priv, REG_OFDM0_XA_TX_IQ_IMBALANCE, val32); val32 = rtl8xxxu_read32(priv, REG_OFDM0_ENERGY_CCA_THRES); val32 &= ~BIT(31); if ((x * oldval >> 7) & 0x1) val32 |= BIT(31); rtl8xxxu_write32(priv, REG_OFDM0_ENERGY_CCA_THRES, val32); y = result[candidate][1]; if ((y & 0x00000200) != 0) y = y | 0xfffffc00; tx0_c = (y * oldval) >> 8; val32 = rtl8xxxu_read32(priv, REG_OFDM0_XC_TX_AFE); val32 &= ~0xf0000000; val32 |= (((tx0_c & 0x3c0) >> 6) << 28); rtl8xxxu_write32(priv, REG_OFDM0_XC_TX_AFE, val32); val32 = rtl8xxxu_read32(priv, REG_OFDM0_XA_TX_IQ_IMBALANCE); val32 &= ~0x003f0000; val32 |= ((tx0_c & 0x3f) << 16); rtl8xxxu_write32(priv, REG_OFDM0_XA_TX_IQ_IMBALANCE, val32); val32 = rtl8xxxu_read32(priv, REG_OFDM0_ENERGY_CCA_THRES); val32 &= ~BIT(29); if ((y * oldval >> 7) & 0x1) val32 |= BIT(29); rtl8xxxu_write32(priv, REG_OFDM0_ENERGY_CCA_THRES, val32); if (tx_only) { dev_dbg(&priv->udev->dev, "%s: only TX\n", __func__); return; } reg = result[candidate][2]; val32 = rtl8xxxu_read32(priv, REG_OFDM0_XA_RX_IQ_IMBALANCE); val32 &= ~0x3ff; val32 |= (reg & 0x3ff); rtl8xxxu_write32(priv, REG_OFDM0_XA_RX_IQ_IMBALANCE, val32); reg = result[candidate][3] & 0x3F; val32 = rtl8xxxu_read32(priv, REG_OFDM0_XA_RX_IQ_IMBALANCE); val32 &= ~0xfc00; val32 |= ((reg << 10) & 0xfc00); rtl8xxxu_write32(priv, REG_OFDM0_XA_RX_IQ_IMBALANCE, val32); reg = (result[candidate][3] >> 6) & 0xF; val32 = rtl8xxxu_read32(priv, REG_OFDM0_RX_IQ_EXT_ANTA); val32 &= ~0xf0000000; val32 |= (reg << 28); rtl8xxxu_write32(priv, REG_OFDM0_RX_IQ_EXT_ANTA, val32); } void rtl8xxxu_fill_iqk_matrix_b(struct rtl8xxxu_priv *priv, bool iqk_ok, int result[][8], int candidate, bool tx_only) { u32 oldval, x, tx1_a, reg; int y, tx1_c; u32 val32; if (!iqk_ok) return; val32 = rtl8xxxu_read32(priv, REG_OFDM0_XB_TX_IQ_IMBALANCE); oldval = val32 >> 22; x = result[candidate][4]; if ((x & 0x00000200) != 0) x = x | 0xfffffc00; tx1_a = (x * oldval) >> 8; val32 = rtl8xxxu_read32(priv, REG_OFDM0_XB_TX_IQ_IMBALANCE); val32 &= ~0x3ff; val32 |= tx1_a; rtl8xxxu_write32(priv, REG_OFDM0_XB_TX_IQ_IMBALANCE, val32); val32 = rtl8xxxu_read32(priv, REG_OFDM0_ENERGY_CCA_THRES); val32 &= ~BIT(27); if ((x * oldval >> 7) & 0x1) val32 |= BIT(27); rtl8xxxu_write32(priv, REG_OFDM0_ENERGY_CCA_THRES, val32); y = result[candidate][5]; if ((y & 0x00000200) != 0) y = y | 0xfffffc00; tx1_c = (y * oldval) >> 8; val32 = rtl8xxxu_read32(priv, REG_OFDM0_XD_TX_AFE); val32 &= ~0xf0000000; val32 |= (((tx1_c & 0x3c0) >> 6) << 28); rtl8xxxu_write32(priv, REG_OFDM0_XD_TX_AFE, val32); val32 = rtl8xxxu_read32(priv, REG_OFDM0_XB_TX_IQ_IMBALANCE); val32 &= ~0x003f0000; val32 |= ((tx1_c & 0x3f) << 16); rtl8xxxu_write32(priv, REG_OFDM0_XB_TX_IQ_IMBALANCE, val32); val32 = rtl8xxxu_read32(priv, REG_OFDM0_ENERGY_CCA_THRES); val32 &= ~BIT(25); if ((y * oldval >> 7) & 0x1) val32 |= BIT(25); rtl8xxxu_write32(priv, REG_OFDM0_ENERGY_CCA_THRES, val32); if (tx_only) { dev_dbg(&priv->udev->dev, "%s: only TX\n", __func__); return; } reg = result[candidate][6]; val32 = rtl8xxxu_read32(priv, REG_OFDM0_XB_RX_IQ_IMBALANCE); val32 &= ~0x3ff; val32 |= (reg & 0x3ff); rtl8xxxu_write32(priv, REG_OFDM0_XB_RX_IQ_IMBALANCE, val32); reg = result[candidate][7] & 0x3f; val32 = rtl8xxxu_read32(priv, REG_OFDM0_XB_RX_IQ_IMBALANCE); val32 &= ~0xfc00; val32 |= ((reg << 10) & 0xfc00); rtl8xxxu_write32(priv, REG_OFDM0_XB_RX_IQ_IMBALANCE, val32); reg = (result[candidate][7] >> 6) & 0xf; val32 = rtl8xxxu_read32(priv, REG_OFDM0_AGCR_SSI_TABLE); val32 &= ~0x0000f000; val32 |= (reg << 12); rtl8xxxu_write32(priv, REG_OFDM0_AGCR_SSI_TABLE, val32); } #define MAX_TOLERANCE 5 bool rtl8xxxu_simularity_compare(struct rtl8xxxu_priv *priv, int result[][8], int c1, int c2) { u32 i, j, diff, simubitmap, bound = 0; int candidate[2] = {-1, -1}; /* for path A and path B */ bool retval = true; if (priv->tx_paths > 1) bound = 8; else bound = 4; simubitmap = 0; for (i = 0; i < bound; i++) { diff = (result[c1][i] > result[c2][i]) ? (result[c1][i] - result[c2][i]) : (result[c2][i] - result[c1][i]); if (diff > MAX_TOLERANCE) { if ((i == 2 || i == 6) && !simubitmap) { if (result[c1][i] + result[c1][i + 1] == 0) candidate[(i / 4)] = c2; else if (result[c2][i] + result[c2][i + 1] == 0) candidate[(i / 4)] = c1; else simubitmap = simubitmap | (1 << i); } else { simubitmap = simubitmap | (1 << i); } } } if (simubitmap == 0) { for (i = 0; i < (bound / 4); i++) { if (candidate[i] >= 0) { for (j = i * 4; j < (i + 1) * 4 - 2; j++) result[3][j] = result[candidate[i]][j]; retval = false; } } return retval; } else if (!(simubitmap & 0x0f)) { /* path A OK */ for (i = 0; i < 4; i++) result[3][i] = result[c1][i]; } else if (!(simubitmap & 0xf0) && priv->tx_paths > 1) { /* path B OK */ for (i = 4; i < 8; i++) result[3][i] = result[c1][i]; } return false; } bool rtl8xxxu_gen2_simularity_compare(struct rtl8xxxu_priv *priv, int result[][8], int c1, int c2) { u32 i, j, diff, simubitmap, bound = 0; int candidate[2] = {-1, -1}; /* for path A and path B */ int tmp1, tmp2; bool retval = true; if (priv->tx_paths > 1) bound = 8; else bound = 4; simubitmap = 0; for (i = 0; i < bound; i++) { if (i & 1) { if ((result[c1][i] & 0x00000200)) tmp1 = result[c1][i] | 0xfffffc00; else tmp1 = result[c1][i]; if ((result[c2][i]& 0x00000200)) tmp2 = result[c2][i] | 0xfffffc00; else tmp2 = result[c2][i]; } else { tmp1 = result[c1][i]; tmp2 = result[c2][i]; } diff = (tmp1 > tmp2) ? (tmp1 - tmp2) : (tmp2 - tmp1); if (diff > MAX_TOLERANCE) { if ((i == 2 || i == 6) && !simubitmap) { if (result[c1][i] + result[c1][i + 1] == 0) candidate[(i / 4)] = c2; else if (result[c2][i] + result[c2][i + 1] == 0) candidate[(i / 4)] = c1; else simubitmap = simubitmap | (1 << i); } else { simubitmap = simubitmap | (1 << i); } } } if (simubitmap == 0) { for (i = 0; i < (bound / 4); i++) { if (candidate[i] >= 0) { for (j = i * 4; j < (i + 1) * 4 - 2; j++) result[3][j] = result[candidate[i]][j]; retval = false; } } return retval; } else { if (!(simubitmap & 0x03)) { /* path A TX OK */ for (i = 0; i < 2; i++) result[3][i] = result[c1][i]; } if (!(simubitmap & 0x0c)) { /* path A RX OK */ for (i = 2; i < 4; i++) result[3][i] = result[c1][i]; } if (!(simubitmap & 0x30) && priv->tx_paths > 1) { /* path B TX OK */ for (i = 4; i < 6; i++) result[3][i] = result[c1][i]; } if (!(simubitmap & 0xc0) && priv->tx_paths > 1) { /* path B RX OK */ for (i = 6; i < 8; i++) result[3][i] = result[c1][i]; } } return false; } void rtl8xxxu_save_mac_regs(struct rtl8xxxu_priv *priv, const u32 *reg, u32 *backup) { int i; for (i = 0; i < (RTL8XXXU_MAC_REGS - 1); i++) backup[i] = rtl8xxxu_read8(priv, reg[i]); backup[i] = rtl8xxxu_read32(priv, reg[i]); } void rtl8xxxu_restore_mac_regs(struct rtl8xxxu_priv *priv, const u32 *reg, u32 *backup) { int i; for (i = 0; i < (RTL8XXXU_MAC_REGS - 1); i++) rtl8xxxu_write8(priv, reg[i], backup[i]); rtl8xxxu_write32(priv, reg[i], backup[i]); } void rtl8xxxu_save_regs(struct rtl8xxxu_priv *priv, const u32 *regs, u32 *backup, int count) { int i; for (i = 0; i < count; i++) backup[i] = rtl8xxxu_read32(priv, regs[i]); } void rtl8xxxu_restore_regs(struct rtl8xxxu_priv *priv, const u32 *regs, u32 *backup, int count) { int i; for (i = 0; i < count; i++) rtl8xxxu_write32(priv, regs[i], backup[i]); } void rtl8xxxu_path_adda_on(struct rtl8xxxu_priv *priv, const u32 *regs, bool path_a_on) { u32 path_on; int i; if (priv->tx_paths == 1) { path_on = priv->fops->adda_1t_path_on; rtl8xxxu_write32(priv, regs[0], priv->fops->adda_1t_init); } else { path_on = path_a_on ? priv->fops->adda_2t_path_on_a : priv->fops->adda_2t_path_on_b; rtl8xxxu_write32(priv, regs[0], path_on); } for (i = 1 ; i < RTL8XXXU_ADDA_REGS ; i++) rtl8xxxu_write32(priv, regs[i], path_on); } void rtl8xxxu_mac_calibration(struct rtl8xxxu_priv *priv, const u32 *regs, u32 *backup) { int i = 0; rtl8xxxu_write8(priv, regs[i], 0x3f); for (i = 1 ; i < (RTL8XXXU_MAC_REGS - 1); i++) rtl8xxxu_write8(priv, regs[i], (u8)(backup[i] & ~BIT(3))); rtl8xxxu_write8(priv, regs[i], (u8)(backup[i] & ~BIT(5))); } static int rtl8xxxu_iqk_path_a(struct rtl8xxxu_priv *priv) { u32 reg_eac, reg_e94, reg_e9c, reg_ea4, val32; int result = 0; /* path-A IQK setting */ rtl8xxxu_write32(priv, REG_TX_IQK_TONE_A, 0x10008c1f); rtl8xxxu_write32(priv, REG_RX_IQK_TONE_A, 0x10008c1f); rtl8xxxu_write32(priv, REG_TX_IQK_PI_A, 0x82140102); val32 = (priv->rf_paths > 1) ? 0x28160202 : /*IS_81xxC_VENDOR_UMC_B_CUT(pHalData->VersionID)?0x28160202: */ 0x28160502; rtl8xxxu_write32(priv, REG_RX_IQK_PI_A, val32); /* path-B IQK setting */ if (priv->rf_paths > 1) { rtl8xxxu_write32(priv, REG_TX_IQK_TONE_B, 0x10008c22); rtl8xxxu_write32(priv, REG_RX_IQK_TONE_B, 0x10008c22); rtl8xxxu_write32(priv, REG_TX_IQK_PI_B, 0x82140102); rtl8xxxu_write32(priv, REG_RX_IQK_PI_B, 0x28160202); } /* LO calibration setting */ rtl8xxxu_write32(priv, REG_IQK_AGC_RSP, 0x001028d1); /* One shot, path A LOK & IQK */ rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf9000000); rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf8000000); mdelay(1); /* Check failed */ reg_eac = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_A_2); reg_e94 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_A); reg_e9c = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_A); reg_ea4 = rtl8xxxu_read32(priv, REG_RX_POWER_BEFORE_IQK_A_2); if (!(reg_eac & BIT(28)) && ((reg_e94 & 0x03ff0000) != 0x01420000) && ((reg_e9c & 0x03ff0000) != 0x00420000)) result |= 0x01; else /* If TX not OK, ignore RX */ goto out; /* If TX is OK, check whether RX is OK */ if (!(reg_eac & BIT(27)) && ((reg_ea4 & 0x03ff0000) != 0x01320000) && ((reg_eac & 0x03ff0000) != 0x00360000)) result |= 0x02; else dev_warn(&priv->udev->dev, "%s: Path A RX IQK failed!\n", __func__); out: return result; } static int rtl8xxxu_iqk_path_b(struct rtl8xxxu_priv *priv) { u32 reg_eac, reg_eb4, reg_ebc, reg_ec4, reg_ecc; int result = 0; /* One shot, path B LOK & IQK */ rtl8xxxu_write32(priv, REG_IQK_AGC_CONT, 0x00000002); rtl8xxxu_write32(priv, REG_IQK_AGC_CONT, 0x00000000); mdelay(1); /* Check failed */ reg_eac = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_A_2); reg_eb4 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_B); reg_ebc = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_B); reg_ec4 = rtl8xxxu_read32(priv, REG_RX_POWER_BEFORE_IQK_B_2); reg_ecc = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_B_2); if (!(reg_eac & BIT(31)) && ((reg_eb4 & 0x03ff0000) != 0x01420000) && ((reg_ebc & 0x03ff0000) != 0x00420000)) result |= 0x01; else goto out; if (!(reg_eac & BIT(30)) && (((reg_ec4 & 0x03ff0000) >> 16) != 0x132) && (((reg_ecc & 0x03ff0000) >> 16) != 0x36)) result |= 0x02; else dev_warn(&priv->udev->dev, "%s: Path B RX IQK failed!\n", __func__); out: return result; } static void rtl8xxxu_phy_iqcalibrate(struct rtl8xxxu_priv *priv, int result[][8], int t) { struct device *dev = &priv->udev->dev; u32 i, val32; int path_a_ok, path_b_ok; int retry = 2; static const u32 adda_regs[RTL8XXXU_ADDA_REGS] = { REG_FPGA0_XCD_SWITCH_CTRL, REG_BLUETOOTH, REG_RX_WAIT_CCA, REG_TX_CCK_RFON, REG_TX_CCK_BBON, REG_TX_OFDM_RFON, REG_TX_OFDM_BBON, REG_TX_TO_RX, REG_TX_TO_TX, REG_RX_CCK, REG_RX_OFDM, REG_RX_WAIT_RIFS, REG_RX_TO_RX, REG_STANDBY, REG_SLEEP, REG_PMPD_ANAEN }; static const u32 iqk_mac_regs[RTL8XXXU_MAC_REGS] = { REG_TXPAUSE, REG_BEACON_CTRL, REG_BEACON_CTRL_1, REG_GPIO_MUXCFG }; static const u32 iqk_bb_regs[RTL8XXXU_BB_REGS] = { REG_OFDM0_TRX_PATH_ENABLE, REG_OFDM0_TR_MUX_PAR, REG_FPGA0_XCD_RF_SW_CTRL, REG_CONFIG_ANT_A, REG_CONFIG_ANT_B, REG_FPGA0_XAB_RF_SW_CTRL, REG_FPGA0_XA_RF_INT_OE, REG_FPGA0_XB_RF_INT_OE, REG_FPGA0_RF_MODE }; /* * Note: IQ calibration must be performed after loading * PHY_REG.txt , and radio_a, radio_b.txt */ if (t == 0) { /* Save ADDA parameters, turn Path A ADDA on */ rtl8xxxu_save_regs(priv, adda_regs, priv->adda_backup, RTL8XXXU_ADDA_REGS); rtl8xxxu_save_mac_regs(priv, iqk_mac_regs, priv->mac_backup); rtl8xxxu_save_regs(priv, iqk_bb_regs, priv->bb_backup, RTL8XXXU_BB_REGS); } rtl8xxxu_path_adda_on(priv, adda_regs, true); if (t == 0) { val32 = rtl8xxxu_read32(priv, REG_FPGA0_XA_HSSI_PARM1); if (val32 & FPGA0_HSSI_PARM1_PI) priv->pi_enabled = 1; } if (!priv->pi_enabled) { /* Switch BB to PI mode to do IQ Calibration. */ rtl8xxxu_write32(priv, REG_FPGA0_XA_HSSI_PARM1, 0x01000100); rtl8xxxu_write32(priv, REG_FPGA0_XB_HSSI_PARM1, 0x01000100); } val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE); val32 &= ~FPGA_RF_MODE_CCK; rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32); rtl8xxxu_write32(priv, REG_OFDM0_TRX_PATH_ENABLE, 0x03a05600); rtl8xxxu_write32(priv, REG_OFDM0_TR_MUX_PAR, 0x000800e4); rtl8xxxu_write32(priv, REG_FPGA0_XCD_RF_SW_CTRL, 0x22204000); if (!priv->no_pape) { val32 = rtl8xxxu_read32(priv, REG_FPGA0_XAB_RF_SW_CTRL); val32 |= (FPGA0_RF_PAPE | (FPGA0_RF_PAPE << FPGA0_RF_BD_CTRL_SHIFT)); rtl8xxxu_write32(priv, REG_FPGA0_XAB_RF_SW_CTRL, val32); } val32 = rtl8xxxu_read32(priv, REG_FPGA0_XA_RF_INT_OE); val32 &= ~BIT(10); rtl8xxxu_write32(priv, REG_FPGA0_XA_RF_INT_OE, val32); val32 = rtl8xxxu_read32(priv, REG_FPGA0_XB_RF_INT_OE); val32 &= ~BIT(10); rtl8xxxu_write32(priv, REG_FPGA0_XB_RF_INT_OE, val32); if (priv->tx_paths > 1) { rtl8xxxu_write32(priv, REG_FPGA0_XA_LSSI_PARM, 0x00010000); rtl8xxxu_write32(priv, REG_FPGA0_XB_LSSI_PARM, 0x00010000); } /* MAC settings */ rtl8xxxu_mac_calibration(priv, iqk_mac_regs, priv->mac_backup); /* Page B init */ rtl8xxxu_write32(priv, REG_CONFIG_ANT_A, 0x00080000); if (priv->tx_paths > 1) rtl8xxxu_write32(priv, REG_CONFIG_ANT_B, 0x00080000); /* IQ calibration setting */ rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0x80800000); rtl8xxxu_write32(priv, REG_TX_IQK, 0x01007c00); rtl8xxxu_write32(priv, REG_RX_IQK, 0x01004800); for (i = 0; i < retry; i++) { path_a_ok = rtl8xxxu_iqk_path_a(priv); if (path_a_ok == 0x03) { val32 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_A); result[t][0] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_A); result[t][1] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_RX_POWER_BEFORE_IQK_A_2); result[t][2] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_A_2); result[t][3] = (val32 >> 16) & 0x3ff; break; } else if (i == (retry - 1) && path_a_ok == 0x01) { /* TX IQK OK */ dev_dbg(dev, "%s: Path A IQK Only Tx Success!!\n", __func__); val32 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_A); result[t][0] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_A); result[t][1] = (val32 >> 16) & 0x3ff; } } if (!path_a_ok) dev_dbg(dev, "%s: Path A IQK failed!\n", __func__); if (priv->tx_paths > 1) { /* * Path A into standby */ rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0x0); rtl8xxxu_write32(priv, REG_FPGA0_XA_LSSI_PARM, 0x00010000); rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0x80800000); /* Turn Path B ADDA on */ rtl8xxxu_path_adda_on(priv, adda_regs, false); for (i = 0; i < retry; i++) { path_b_ok = rtl8xxxu_iqk_path_b(priv); if (path_b_ok == 0x03) { val32 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_B); result[t][4] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_B); result[t][5] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_RX_POWER_BEFORE_IQK_B_2); result[t][6] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_B_2); result[t][7] = (val32 >> 16) & 0x3ff; break; } else if (i == (retry - 1) && path_b_ok == 0x01) { /* TX IQK OK */ val32 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_B); result[t][4] = (val32 >> 16) & 0x3ff; val32 = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_B); result[t][5] = (val32 >> 16) & 0x3ff; } } if (!path_b_ok) dev_dbg(dev, "%s: Path B IQK failed!\n", __func__); } /* Back to BB mode, load original value */ rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0); if (t) { if (!priv->pi_enabled) { /* * Switch back BB to SI mode after finishing * IQ Calibration */ val32 = 0x01000000; rtl8xxxu_write32(priv, REG_FPGA0_XA_HSSI_PARM1, val32); rtl8xxxu_write32(priv, REG_FPGA0_XB_HSSI_PARM1, val32); } /* Reload ADDA power saving parameters */ rtl8xxxu_restore_regs(priv, adda_regs, priv->adda_backup, RTL8XXXU_ADDA_REGS); /* Reload MAC parameters */ rtl8xxxu_restore_mac_regs(priv, iqk_mac_regs, priv->mac_backup); /* Reload BB parameters */ rtl8xxxu_restore_regs(priv, iqk_bb_regs, priv->bb_backup, RTL8XXXU_BB_REGS); /* Restore RX initial gain */ rtl8xxxu_write32(priv, REG_FPGA0_XA_LSSI_PARM, 0x00032ed3); if (priv->tx_paths > 1) { rtl8xxxu_write32(priv, REG_FPGA0_XB_LSSI_PARM, 0x00032ed3); } /* Load 0xe30 IQC default value */ rtl8xxxu_write32(priv, REG_TX_IQK_TONE_A, 0x01008c00); rtl8xxxu_write32(priv, REG_RX_IQK_TONE_A, 0x01008c00); } } void rtl8xxxu_gen2_prepare_calibrate(struct rtl8xxxu_priv *priv, u8 start) { struct h2c_cmd h2c; memset(&h2c, 0, sizeof(struct h2c_cmd)); h2c.bt_wlan_calibration.cmd = H2C_8723B_BT_WLAN_CALIBRATION; h2c.bt_wlan_calibration.data = start; rtl8xxxu_gen2_h2c_cmd(priv, &h2c, sizeof(h2c.bt_wlan_calibration)); } void rtl8xxxu_gen1_phy_iq_calibrate(struct rtl8xxxu_priv *priv) { struct device *dev = &priv->udev->dev; int result[4][8]; /* last is final result */ int i, candidate; bool path_a_ok, path_b_ok; u32 reg_e94, reg_e9c, reg_ea4, reg_eac; u32 reg_eb4, reg_ebc, reg_ec4, reg_ecc; s32 reg_tmp = 0; bool simu; memset(result, 0, sizeof(result)); candidate = -1; path_a_ok = false; path_b_ok = false; rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE); for (i = 0; i < 3; i++) { rtl8xxxu_phy_iqcalibrate(priv, result, i); if (i == 1) { simu = rtl8xxxu_simularity_compare(priv, result, 0, 1); if (simu) { candidate = 0; break; } } if (i == 2) { simu = rtl8xxxu_simularity_compare(priv, result, 0, 2); if (simu) { candidate = 0; break; } simu = rtl8xxxu_simularity_compare(priv, result, 1, 2); if (simu) { candidate = 1; } else { for (i = 0; i < 8; i++) reg_tmp += result[3][i]; if (reg_tmp) candidate = 3; else candidate = -1; } } } for (i = 0; i < 4; i++) { reg_e94 = result[i][0]; reg_e9c = result[i][1]; reg_ea4 = result[i][2]; reg_eac = result[i][3]; reg_eb4 = result[i][4]; reg_ebc = result[i][5]; reg_ec4 = result[i][6]; reg_ecc = result[i][7]; } if (candidate >= 0) { reg_e94 = result[candidate][0]; priv->rege94 = reg_e94; reg_e9c = result[candidate][1]; priv->rege9c = reg_e9c; reg_ea4 = result[candidate][2]; reg_eac = result[candidate][3]; reg_eb4 = result[candidate][4]; priv->regeb4 = reg_eb4; reg_ebc = result[candidate][5]; priv->regebc = reg_ebc; reg_ec4 = result[candidate][6]; reg_ecc = result[candidate][7]; dev_dbg(dev, "%s: candidate is %x\n", __func__, candidate); dev_dbg(dev, "%s: e94 =%x e9c=%x ea4=%x eac=%x eb4=%x ebc=%x ec4=%x ecc=%x\n", __func__, reg_e94, reg_e9c, reg_ea4, reg_eac, reg_eb4, reg_ebc, reg_ec4, reg_ecc); path_a_ok = true; path_b_ok = true; } else { reg_e94 = reg_eb4 = priv->rege94 = priv->regeb4 = 0x100; reg_e9c = reg_ebc = priv->rege9c = priv->regebc = 0x0; } if (reg_e94 && candidate >= 0) rtl8xxxu_fill_iqk_matrix_a(priv, path_a_ok, result, candidate, (reg_ea4 == 0)); if (priv->tx_paths > 1 && reg_eb4) rtl8xxxu_fill_iqk_matrix_b(priv, path_b_ok, result, candidate, (reg_ec4 == 0)); rtl8xxxu_save_regs(priv, rtl8xxxu_iqk_phy_iq_bb_reg, priv->bb_recovery_backup, RTL8XXXU_BB_REGS); } void rtl8723a_phy_lc_calibrate(struct rtl8xxxu_priv *priv) { u32 val32; u32 rf_amode, rf_bmode = 0, lstf; /* Check continuous TX and Packet TX */ lstf = rtl8xxxu_read32(priv, REG_OFDM1_LSTF); if (lstf & OFDM_LSTF_MASK) { /* Disable all continuous TX */ val32 = lstf & ~OFDM_LSTF_MASK; rtl8xxxu_write32(priv, REG_OFDM1_LSTF, val32); /* Read original RF mode Path A */ rf_amode = rtl8xxxu_read_rfreg(priv, RF_A, RF6052_REG_AC); /* Set RF mode to standby Path A */ rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_AC, (rf_amode & 0x8ffff) | 0x10000); /* Path-B */ if (priv->tx_paths > 1) { rf_bmode = rtl8xxxu_read_rfreg(priv, RF_B, RF6052_REG_AC); rtl8xxxu_write_rfreg(priv, RF_B, RF6052_REG_AC, (rf_bmode & 0x8ffff) | 0x10000); } } else { /* Deal with Packet TX case */ /* block all queues */ rtl8xxxu_write8(priv, REG_TXPAUSE, 0xff); } /* Start LC calibration */ if (priv->fops->has_s0s1) rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_S0S1, 0xdfbe0); val32 = rtl8xxxu_read_rfreg(priv, RF_A, RF6052_REG_MODE_AG); val32 |= 0x08000; rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_MODE_AG, val32); msleep(100); if (priv->fops->has_s0s1) rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_S0S1, 0xdffe0); /* Restore original parameters */ if (lstf & OFDM_LSTF_MASK) { /* Path-A */ rtl8xxxu_write32(priv, REG_OFDM1_LSTF, lstf); rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_AC, rf_amode); /* Path-B */ if (priv->tx_paths > 1) rtl8xxxu_write_rfreg(priv, RF_B, RF6052_REG_AC, rf_bmode); } else /* Deal with Packet TX case */ rtl8xxxu_write8(priv, REG_TXPAUSE, 0x00); } static int rtl8xxxu_set_mac(struct rtl8xxxu_priv *priv) { int i; u16 reg; reg = REG_MACID; for (i = 0; i < ETH_ALEN; i++) rtl8xxxu_write8(priv, reg + i, priv->mac_addr[i]); return 0; } static int rtl8xxxu_set_bssid(struct rtl8xxxu_priv *priv, const u8 *bssid) { int i; u16 reg; dev_dbg(&priv->udev->dev, "%s: (%pM)\n", __func__, bssid); reg = REG_BSSID; for (i = 0; i < ETH_ALEN; i++) rtl8xxxu_write8(priv, reg + i, bssid[i]); return 0; } static void rtl8xxxu_set_ampdu_factor(struct rtl8xxxu_priv *priv, u8 ampdu_factor) { u8 vals[4] = { 0x41, 0xa8, 0x72, 0xb9 }; u8 max_agg = 0xf; int i; ampdu_factor = 1 << (ampdu_factor + 2); if (ampdu_factor > max_agg) ampdu_factor = max_agg; for (i = 0; i < 4; i++) { if ((vals[i] & 0xf0) > (ampdu_factor << 4)) vals[i] = (vals[i] & 0x0f) | (ampdu_factor << 4); if ((vals[i] & 0x0f) > ampdu_factor) vals[i] = (vals[i] & 0xf0) | ampdu_factor; rtl8xxxu_write8(priv, REG_AGGLEN_LMT + i, vals[i]); } } static void rtl8xxxu_set_ampdu_min_space(struct rtl8xxxu_priv *priv, u8 density) { u8 val8; val8 = rtl8xxxu_read8(priv, REG_AMPDU_MIN_SPACE); val8 &= 0xf8; val8 |= density; rtl8xxxu_write8(priv, REG_AMPDU_MIN_SPACE, val8); } static int rtl8xxxu_active_to_emu(struct rtl8xxxu_priv *priv) { u8 val8; int count, ret = 0; /* Start of rtl8723AU_card_enable_flow */ /* Act to Cardemu sequence*/ /* Turn off RF */ rtl8xxxu_write8(priv, REG_RF_CTRL, 0); /* 0x004E[7] = 0, switch DPDT_SEL_P output from register 0x0065[2] */ val8 = rtl8xxxu_read8(priv, REG_LEDCFG2); val8 &= ~LEDCFG2_DPDT_SELECT; rtl8xxxu_write8(priv, REG_LEDCFG2, val8); /* 0x0005[1] = 1 turn off MAC by HW state machine*/ val8 = rtl8xxxu_read8(priv, REG_APS_FSMCO + 1); val8 |= BIT(1); rtl8xxxu_write8(priv, REG_APS_FSMCO + 1, val8); for (count = RTL8XXXU_MAX_REG_POLL; count; count--) { val8 = rtl8xxxu_read8(priv, REG_APS_FSMCO + 1); if ((val8 & BIT(1)) == 0) break; udelay(10); } if (!count) { dev_warn(&priv->udev->dev, "%s: Disabling MAC timed out\n", __func__); ret = -EBUSY; goto exit; } /* 0x0000[5] = 1 analog Ips to digital, 1:isolation */ val8 = rtl8xxxu_read8(priv, REG_SYS_ISO_CTRL); val8 |= SYS_ISO_ANALOG_IPS; rtl8xxxu_write8(priv, REG_SYS_ISO_CTRL, val8); /* 0x0020[0] = 0 disable LDOA12 MACRO block*/ val8 = rtl8xxxu_read8(priv, REG_LDOA15_CTRL); val8 &= ~LDOA15_ENABLE; rtl8xxxu_write8(priv, REG_LDOA15_CTRL, val8); exit: return ret; } int rtl8xxxu_active_to_lps(struct rtl8xxxu_priv *priv) { u8 val8; u8 val32; int count, ret = 0; rtl8xxxu_write8(priv, REG_TXPAUSE, 0xff); /* * Poll - wait for RX packet to complete */ for (count = RTL8XXXU_MAX_REG_POLL; count; count--) { val32 = rtl8xxxu_read32(priv, 0x5f8); if (!val32) break; udelay(10); } if (!count) { dev_warn(&priv->udev->dev, "%s: RX poll timed out (0x05f8)\n", __func__); ret = -EBUSY; goto exit; } /* Disable CCK and OFDM, clock gated */ val8 = rtl8xxxu_read8(priv, REG_SYS_FUNC); val8 &= ~SYS_FUNC_BBRSTB; rtl8xxxu_write8(priv, REG_SYS_FUNC, val8); udelay(2); /* Reset baseband */ val8 = rtl8xxxu_read8(priv, REG_SYS_FUNC); val8 &= ~SYS_FUNC_BB_GLB_RSTN; rtl8xxxu_write8(priv, REG_SYS_FUNC, val8); /* Reset MAC TRX */ val8 = rtl8xxxu_read8(priv, REG_CR); val8 = CR_HCI_TXDMA_ENABLE | CR_HCI_RXDMA_ENABLE; rtl8xxxu_write8(priv, REG_CR, val8); /* Reset MAC TRX */ val8 = rtl8xxxu_read8(priv, REG_CR + 1); val8 &= ~BIT(1); /* CR_SECURITY_ENABLE */ rtl8xxxu_write8(priv, REG_CR + 1, val8); /* Respond TX OK to scheduler */ val8 = rtl8xxxu_read8(priv, REG_DUAL_TSF_RST); val8 |= DUAL_TSF_TX_OK; rtl8xxxu_write8(priv, REG_DUAL_TSF_RST, val8); exit: return ret; } void rtl8xxxu_disabled_to_emu(struct rtl8xxxu_priv *priv) { u8 val8; /* Clear suspend enable and power down enable*/ val8 = rtl8xxxu_read8(priv, REG_APS_FSMCO + 1); val8 &= ~(BIT(3) | BIT(7)); rtl8xxxu_write8(priv, REG_APS_FSMCO + 1, val8); /* 0x48[16] = 0 to disable GPIO9 as EXT WAKEUP*/ val8 = rtl8xxxu_read8(priv, REG_GPIO_INTM + 2); val8 &= ~BIT(0); rtl8xxxu_write8(priv, REG_GPIO_INTM + 2, val8); /* 0x04[12:11] = 11 enable WL suspend*/ val8 = rtl8xxxu_read8(priv, REG_APS_FSMCO + 1); val8 &= ~(BIT(3) | BIT(4)); rtl8xxxu_write8(priv, REG_APS_FSMCO + 1, val8); } static int rtl8xxxu_emu_to_disabled(struct rtl8xxxu_priv *priv) { u8 val8; /* 0x0007[7:0] = 0x20 SOP option to disable BG/MB */ rtl8xxxu_write8(priv, REG_APS_FSMCO + 3, 0x20); /* 0x04[12:11] = 01 enable WL suspend */ val8 = rtl8xxxu_read8(priv, REG_APS_FSMCO + 1); val8 &= ~BIT(4); val8 |= BIT(3); rtl8xxxu_write8(priv, REG_APS_FSMCO + 1, val8); val8 = rtl8xxxu_read8(priv, REG_APS_FSMCO + 1); val8 |= BIT(7); rtl8xxxu_write8(priv, REG_APS_FSMCO + 1, val8); /* 0x48[16] = 1 to enable GPIO9 as EXT wakeup */ val8 = rtl8xxxu_read8(priv, REG_GPIO_INTM + 2); val8 |= BIT(0); rtl8xxxu_write8(priv, REG_GPIO_INTM + 2, val8); return 0; } int rtl8xxxu_flush_fifo(struct rtl8xxxu_priv *priv) { struct device *dev = &priv->udev->dev; u32 val32; int retry, retval; rtl8xxxu_write8(priv, REG_TXPAUSE, 0xff); val32 = rtl8xxxu_read32(priv, REG_RXPKT_NUM); val32 |= RXPKT_NUM_RW_RELEASE_EN; rtl8xxxu_write32(priv, REG_RXPKT_NUM, val32); retry = 100; retval = -EBUSY; do { val32 = rtl8xxxu_read32(priv, REG_RXPKT_NUM); if (val32 & RXPKT_NUM_RXDMA_IDLE) { retval = 0; break; } } while (retry--); rtl8xxxu_write16(priv, REG_RQPN_NPQ, 0); rtl8xxxu_write32(priv, REG_RQPN, 0x80000000); mdelay(2); if (!retry) dev_warn(dev, "Failed to flush FIFO\n"); return retval; } void rtl8xxxu_gen1_usb_quirks(struct rtl8xxxu_priv *priv) { /* Fix USB interface interference issue */ rtl8xxxu_write8(priv, 0xfe40, 0xe0); rtl8xxxu_write8(priv, 0xfe41, 0x8d); rtl8xxxu_write8(priv, 0xfe42, 0x80); /* * This sets TXDMA_OFFSET_DROP_DATA_EN (bit 9) as well as bits * 8 and 5, for which I have found no documentation. */ rtl8xxxu_write32(priv, REG_TXDMA_OFFSET_CHK, 0xfd0320); /* * Solve too many protocol error on USB bus. * Can't do this for 8188/8192 UMC A cut parts */ if (!(!priv->chip_cut && priv->vendor_umc)) { rtl8xxxu_write8(priv, 0xfe40, 0xe6); rtl8xxxu_write8(priv, 0xfe41, 0x94); rtl8xxxu_write8(priv, 0xfe42, 0x80); rtl8xxxu_write8(priv, 0xfe40, 0xe0); rtl8xxxu_write8(priv, 0xfe41, 0x19); rtl8xxxu_write8(priv, 0xfe42, 0x80); rtl8xxxu_write8(priv, 0xfe40, 0xe5); rtl8xxxu_write8(priv, 0xfe41, 0x91); rtl8xxxu_write8(priv, 0xfe42, 0x80); rtl8xxxu_write8(priv, 0xfe40, 0xe2); rtl8xxxu_write8(priv, 0xfe41, 0x81); rtl8xxxu_write8(priv, 0xfe42, 0x80); } } void rtl8xxxu_gen2_usb_quirks(struct rtl8xxxu_priv *priv) { u32 val32; val32 = rtl8xxxu_read32(priv, REG_TXDMA_OFFSET_CHK); val32 |= TXDMA_OFFSET_DROP_DATA_EN; rtl8xxxu_write32(priv, REG_TXDMA_OFFSET_CHK, val32); } void rtl8xxxu_power_off(struct rtl8xxxu_priv *priv) { u8 val8; u16 val16; u32 val32; /* * Workaround for 8188RU LNA power leakage problem. */ if (priv->rtl_chip == RTL8188R) { val32 = rtl8xxxu_read32(priv, REG_FPGA0_XCD_RF_PARM); val32 |= BIT(1); rtl8xxxu_write32(priv, REG_FPGA0_XCD_RF_PARM, val32); } rtl8xxxu_flush_fifo(priv); rtl8xxxu_active_to_lps(priv); /* Turn off RF */ rtl8xxxu_write8(priv, REG_RF_CTRL, 0x00); /* Reset Firmware if running in RAM */ if (rtl8xxxu_read8(priv, REG_MCU_FW_DL) & MCU_FW_RAM_SEL) rtl8xxxu_firmware_self_reset(priv); /* Reset MCU */ val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC); val16 &= ~SYS_FUNC_CPU_ENABLE; rtl8xxxu_write16(priv, REG_SYS_FUNC, val16); /* Reset MCU ready status */ rtl8xxxu_write8(priv, REG_MCU_FW_DL, 0x00); rtl8xxxu_active_to_emu(priv); rtl8xxxu_emu_to_disabled(priv); /* Reset MCU IO Wrapper */ val8 = rtl8xxxu_read8(priv, REG_RSV_CTRL + 1); val8 &= ~BIT(0); rtl8xxxu_write8(priv, REG_RSV_CTRL + 1, val8); val8 = rtl8xxxu_read8(priv, REG_RSV_CTRL + 1); val8 |= BIT(0); rtl8xxxu_write8(priv, REG_RSV_CTRL + 1, val8); /* RSV_CTRL 0x1C[7:0] = 0x0e lock ISO/CLK/Power control register */ rtl8xxxu_write8(priv, REG_RSV_CTRL, 0x0e); } void rtl8723bu_set_ps_tdma(struct rtl8xxxu_priv *priv, u8 arg1, u8 arg2, u8 arg3, u8 arg4, u8 arg5) { struct h2c_cmd h2c; memset(&h2c, 0, sizeof(struct h2c_cmd)); h2c.b_type_dma.cmd = H2C_8723B_B_TYPE_TDMA; h2c.b_type_dma.data1 = arg1; h2c.b_type_dma.data2 = arg2; h2c.b_type_dma.data3 = arg3; h2c.b_type_dma.data4 = arg4; h2c.b_type_dma.data5 = arg5; rtl8xxxu_gen2_h2c_cmd(priv, &h2c, sizeof(h2c.b_type_dma)); } void rtl8xxxu_gen2_disable_rf(struct rtl8xxxu_priv *priv) { u32 val32; val32 = rtl8xxxu_read32(priv, REG_RX_WAIT_CCA); val32 &= ~(BIT(22) | BIT(23)); rtl8xxxu_write32(priv, REG_RX_WAIT_CCA, val32); } static void rtl8xxxu_init_queue_reserved_page(struct rtl8xxxu_priv *priv) { struct rtl8xxxu_fileops *fops = priv->fops; u32 hq, lq, nq, eq, pubq; u32 val32; hq = 0; lq = 0; nq = 0; eq = 0; pubq = 0; if (priv->ep_tx_high_queue) hq = fops->page_num_hi; if (priv->ep_tx_low_queue) lq = fops->page_num_lo; if (priv->ep_tx_normal_queue) nq = fops->page_num_norm; val32 = (nq << RQPN_NPQ_SHIFT) | (eq << RQPN_EPQ_SHIFT); rtl8xxxu_write32(priv, REG_RQPN_NPQ, val32); pubq = fops->total_page_num - hq - lq - nq - 1; val32 = RQPN_LOAD; val32 |= (hq << RQPN_HI_PQ_SHIFT); val32 |= (lq << RQPN_LO_PQ_SHIFT); val32 |= (pubq << RQPN_PUB_PQ_SHIFT); rtl8xxxu_write32(priv, REG_RQPN, val32); } void rtl8xxxu_init_burst(struct rtl8xxxu_priv *priv) { u8 val8; /* * For USB high speed set 512B packets */ val8 = rtl8xxxu_read8(priv, REG_RXDMA_PRO_8723B); u8p_replace_bits(&val8, 1, RXDMA_PRO_DMA_BURST_SIZE); u8p_replace_bits(&val8, 3, RXDMA_PRO_DMA_BURST_CNT); val8 |= RXDMA_PRO_DMA_MODE; rtl8xxxu_write8(priv, REG_RXDMA_PRO_8723B, val8); /* * Enable single packet AMPDU */ val8 = rtl8xxxu_read8(priv, REG_HT_SINGLE_AMPDU_8723B); val8 |= HT_SINGLE_AMPDU_ENABLE; rtl8xxxu_write8(priv, REG_HT_SINGLE_AMPDU_8723B, val8); rtl8xxxu_write16(priv, REG_MAX_AGGR_NUM, 0x0c14); if (priv->rtl_chip == RTL8723B) val8 = 0x5e; else if (priv->rtl_chip == RTL8188F) val8 = 0x70; /* 0x5e would make it very slow */ rtl8xxxu_write8(priv, REG_AMPDU_MAX_TIME_8723B, val8); rtl8xxxu_write32(priv, REG_AGGLEN_LMT, 0xffffffff); rtl8xxxu_write8(priv, REG_RX_PKT_LIMIT, 0x18); rtl8xxxu_write8(priv, REG_PIFS, 0x00); if (priv->rtl_chip == RTL8188F) { rtl8xxxu_write8(priv, REG_FWHW_TXQ_CTRL, FWHW_TXQ_CTRL_AMPDU_RETRY); rtl8xxxu_write32(priv, REG_FAST_EDCA_CTRL, 0x03086666); } if (priv->rtl_chip == RTL8723B) val8 = 0x50; else if (priv->rtl_chip == RTL8188F) val8 = 0x28; /* 0x50 would make the upload slow */ rtl8xxxu_write8(priv, REG_USTIME_TSF_8723B, val8); rtl8xxxu_write8(priv, REG_USTIME_EDCA, val8); /* to prevent mac is reseted by bus. */ val8 = rtl8xxxu_read8(priv, REG_RSV_CTRL); val8 |= RSV_CTRL_WLOCK_1C | RSV_CTRL_DIS_PRST; rtl8xxxu_write8(priv, REG_RSV_CTRL, val8); } static int rtl8xxxu_init_device(struct ieee80211_hw *hw) { struct rtl8xxxu_priv *priv = hw->priv; struct device *dev = &priv->udev->dev; struct rtl8xxxu_fileops *fops = priv->fops; bool macpower; int ret; u8 val8; u16 val16; u32 val32; /* Check if MAC is already powered on */ val8 = rtl8xxxu_read8(priv, REG_CR); val16 = rtl8xxxu_read16(priv, REG_SYS_CLKR); /* * Fix 92DU-VC S3 hang with the reason is that secondary mac is not * initialized. First MAC returns 0xea, second MAC returns 0x00 */ if (val8 == 0xea || !(val16 & SYS_CLK_MAC_CLK_ENABLE)) macpower = false; else macpower = true; if (fops->needs_full_init) macpower = false; ret = fops->power_on(priv); if (ret < 0) { dev_warn(dev, "%s: Failed power on\n", __func__); goto exit; } if (!macpower) rtl8xxxu_init_queue_reserved_page(priv); ret = rtl8xxxu_init_queue_priority(priv); dev_dbg(dev, "%s: init_queue_priority %i\n", __func__, ret); if (ret) goto exit; /* * Set RX page boundary */ rtl8xxxu_write16(priv, REG_TRXFF_BNDY + 2, fops->trxff_boundary); ret = rtl8xxxu_download_firmware(priv); dev_dbg(dev, "%s: download_firmware %i\n", __func__, ret); if (ret) goto exit; ret = rtl8xxxu_start_firmware(priv); dev_dbg(dev, "%s: start_firmware %i\n", __func__, ret); if (ret) goto exit; if (fops->phy_init_antenna_selection) fops->phy_init_antenna_selection(priv); ret = rtl8xxxu_init_mac(priv); dev_dbg(dev, "%s: init_mac %i\n", __func__, ret); if (ret) goto exit; ret = rtl8xxxu_init_phy_bb(priv); dev_dbg(dev, "%s: init_phy_bb %i\n", __func__, ret); if (ret) goto exit; ret = fops->init_phy_rf(priv); if (ret) goto exit; /* RFSW Control - clear bit 14 ?? */ if (priv->rtl_chip != RTL8723B && priv->rtl_chip != RTL8192E && priv->rtl_chip != RTL8188E) rtl8xxxu_write32(priv, REG_FPGA0_TX_INFO, 0x00000003); val32 = FPGA0_RF_TRSW | FPGA0_RF_TRSWB | FPGA0_RF_ANTSW | FPGA0_RF_ANTSWB | ((FPGA0_RF_ANTSW | FPGA0_RF_ANTSWB) << FPGA0_RF_BD_CTRL_SHIFT); if (!priv->no_pape) { val32 |= (FPGA0_RF_PAPE | (FPGA0_RF_PAPE << FPGA0_RF_BD_CTRL_SHIFT)); } rtl8xxxu_write32(priv, REG_FPGA0_XAB_RF_SW_CTRL, val32); /* 0x860[6:5]= 00 - why? - this sets antenna B */ if (priv->rtl_chip != RTL8192E && priv->rtl_chip != RTL8188E) rtl8xxxu_write32(priv, REG_FPGA0_XA_RF_INT_OE, 0x66f60210); if (!macpower) { /* * Set TX buffer boundary */ val8 = fops->total_page_num + 1; rtl8xxxu_write8(priv, REG_TXPKTBUF_BCNQ_BDNY, val8); rtl8xxxu_write8(priv, REG_TXPKTBUF_MGQ_BDNY, val8); rtl8xxxu_write8(priv, REG_TXPKTBUF_WMAC_LBK_BF_HD, val8); rtl8xxxu_write8(priv, REG_TRXFF_BNDY, val8); rtl8xxxu_write8(priv, REG_TDECTRL + 1, val8); } /* * The vendor drivers set PBP for all devices, except 8192e. * There is no explanation for this in any of the sources. */ val8 = (fops->pbp_rx << PBP_PAGE_SIZE_RX_SHIFT) | (fops->pbp_tx << PBP_PAGE_SIZE_TX_SHIFT); if (priv->rtl_chip != RTL8192E) rtl8xxxu_write8(priv, REG_PBP, val8); dev_dbg(dev, "%s: macpower %i\n", __func__, macpower); if (!macpower) { ret = fops->llt_init(priv); if (ret) { dev_warn(dev, "%s: LLT table init failed\n", __func__); goto exit; } /* * Chip specific quirks */ fops->usb_quirks(priv); /* * Enable TX report and TX report timer for 8723bu/8188eu/... */ if (fops->has_tx_report) { /* * The RTL8188EU has two types of TX reports: * rpt_sel=1: * One report for one frame. We can use this for frames * with IEEE80211_TX_CTL_REQ_TX_STATUS. * rpt_sel=2: * One report for many frames transmitted over a period * of time. (This is what REG_TX_REPORT_TIME is for.) The * report includes the number of frames transmitted * successfully, and the number of unsuccessful * transmissions. We use this for software rate control. * * Bit 0 of REG_TX_REPORT_CTRL is required for both types. * Bit 1 (TX_REPORT_CTRL_TIMER_ENABLE) is required for * type 2. */ val8 = rtl8xxxu_read8(priv, REG_TX_REPORT_CTRL); if (priv->rtl_chip == RTL8188E) val8 |= BIT(0); val8 |= TX_REPORT_CTRL_TIMER_ENABLE; rtl8xxxu_write8(priv, REG_TX_REPORT_CTRL, val8); /* Set MAX RPT MACID */ rtl8xxxu_write8(priv, REG_TX_REPORT_CTRL + 1, 0x02); /* TX report Timer. Unit: 32us */ rtl8xxxu_write16(priv, REG_TX_REPORT_TIME, 0xcdf0); /* tmp ps ? */ val8 = rtl8xxxu_read8(priv, 0xa3); val8 &= 0xf8; rtl8xxxu_write8(priv, 0xa3, val8); } } /* * Unit in 8 bytes, not obvious what it is used for */ rtl8xxxu_write8(priv, REG_RX_DRVINFO_SZ, 4); if (priv->rtl_chip == RTL8192E) { rtl8xxxu_write32(priv, REG_HIMR0, 0x00); rtl8xxxu_write32(priv, REG_HIMR1, 0x00); } else if (priv->rtl_chip == RTL8188F) { rtl8xxxu_write32(priv, REG_HISR0, 0xffffffff); rtl8xxxu_write32(priv, REG_HISR1, 0xffffffff); } else if (priv->rtl_chip == RTL8188E) { rtl8xxxu_write32(priv, REG_HISR0, 0xffffffff); val32 = IMR0_PSTIMEOUT | IMR0_TBDER | IMR0_CPWM | IMR0_CPWM2; rtl8xxxu_write32(priv, REG_HIMR0, val32); val32 = IMR1_TXERR | IMR1_RXERR | IMR1_TXFOVW | IMR1_RXFOVW; rtl8xxxu_write32(priv, REG_HIMR1, val32); val8 = rtl8xxxu_read8(priv, REG_USB_SPECIAL_OPTION); val8 |= USB_SPEC_INT_BULK_SELECT; rtl8xxxu_write8(priv, REG_USB_SPECIAL_OPTION, val8); } else { /* * Enable all interrupts - not obvious USB needs to do this */ rtl8xxxu_write32(priv, REG_HISR, 0xffffffff); rtl8xxxu_write32(priv, REG_HIMR, 0xffffffff); } rtl8xxxu_set_mac(priv); rtl8xxxu_set_linktype(priv, NL80211_IFTYPE_STATION); /* * Configure initial WMAC settings */ val32 = RCR_ACCEPT_PHYS_MATCH | RCR_ACCEPT_MCAST | RCR_ACCEPT_BCAST | RCR_ACCEPT_MGMT_FRAME | RCR_HTC_LOC_CTRL | RCR_APPEND_PHYSTAT | RCR_APPEND_ICV | RCR_APPEND_MIC; rtl8xxxu_write32(priv, REG_RCR, val32); if (priv->rtl_chip == RTL8188F) { /* Accept all data frames */ rtl8xxxu_write16(priv, REG_RXFLTMAP2, 0xffff); /* * Since ADF is removed from RCR, ps-poll will not be indicate to driver, * RxFilterMap should mask ps-poll to gurantee AP mode can rx ps-poll. */ rtl8xxxu_write16(priv, REG_RXFLTMAP1, 0x400); /* Accept all management frames */ rtl8xxxu_write16(priv, REG_RXFLTMAP0, 0xffff); } else { /* * Accept all multicast */ rtl8xxxu_write32(priv, REG_MAR, 0xffffffff); rtl8xxxu_write32(priv, REG_MAR + 4, 0xffffffff); } /* * Init adaptive controls */ val32 = rtl8xxxu_read32(priv, REG_RESPONSE_RATE_SET); val32 &= ~RESPONSE_RATE_BITMAP_ALL; val32 |= RESPONSE_RATE_RRSR_CCK_ONLY_1M; rtl8xxxu_write32(priv, REG_RESPONSE_RATE_SET, val32); /* CCK = 0x0a, OFDM = 0x10 */ rtl8xxxu_set_spec_sifs(priv, 0x10, 0x10); rtl8xxxu_set_retry(priv, 0x30, 0x30); rtl8xxxu_set_spec_sifs(priv, 0x0a, 0x10); /* * Init EDCA */ rtl8xxxu_write16(priv, REG_MAC_SPEC_SIFS, 0x100a); /* Set CCK SIFS */ rtl8xxxu_write16(priv, REG_SIFS_CCK, 0x100a); /* Set OFDM SIFS */ rtl8xxxu_write16(priv, REG_SIFS_OFDM, 0x100a); /* TXOP */ rtl8xxxu_write32(priv, REG_EDCA_BE_PARAM, 0x005ea42b); rtl8xxxu_write32(priv, REG_EDCA_BK_PARAM, 0x0000a44f); rtl8xxxu_write32(priv, REG_EDCA_VI_PARAM, 0x005ea324); rtl8xxxu_write32(priv, REG_EDCA_VO_PARAM, 0x002fa226); /* Set data auto rate fallback retry count */ rtl8xxxu_write32(priv, REG_DARFRC, 0x00000000); rtl8xxxu_write32(priv, REG_DARFRC + 4, 0x10080404); rtl8xxxu_write32(priv, REG_RARFRC, 0x04030201); rtl8xxxu_write32(priv, REG_RARFRC + 4, 0x08070605); val8 = rtl8xxxu_read8(priv, REG_FWHW_TXQ_CTRL); val8 |= FWHW_TXQ_CTRL_AMPDU_RETRY; rtl8xxxu_write8(priv, REG_FWHW_TXQ_CTRL, val8); /* Set ACK timeout */ rtl8xxxu_write8(priv, REG_ACKTO, 0x40); /* * Initialize beacon parameters */ val16 = BEACON_DISABLE_TSF_UPDATE | (BEACON_DISABLE_TSF_UPDATE << 8); rtl8xxxu_write16(priv, REG_BEACON_CTRL, val16); rtl8xxxu_write16(priv, REG_TBTT_PROHIBIT, 0x6404); if (priv->rtl_chip != RTL8188F) /* Firmware will control REG_DRVERLYINT when power saving is enable, */ /* so don't set this register on STA mode. */ rtl8xxxu_write8(priv, REG_DRIVER_EARLY_INT, DRIVER_EARLY_INT_TIME); rtl8xxxu_write8(priv, REG_BEACON_DMA_TIME, BEACON_DMA_ATIME_INT_TIME); rtl8xxxu_write16(priv, REG_BEACON_TCFG, 0x660F); /* * Initialize burst parameters */ if (priv->fops->init_burst) priv->fops->init_burst(priv); if (fops->init_aggregation) fops->init_aggregation(priv); if (priv->rtl_chip == RTL8188F || priv->rtl_chip == RTL8188E) { rtl8xxxu_write16(priv, REG_PKT_VO_VI_LIFE_TIME, 0x0400); /* unit: 256us. 256ms */ rtl8xxxu_write16(priv, REG_PKT_BE_BK_LIFE_TIME, 0x0400); /* unit: 256us. 256ms */ } /* * Enable CCK and OFDM block */ val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE); val32 |= (FPGA_RF_MODE_CCK | FPGA_RF_MODE_OFDM); rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32); /* * Invalidate all CAM entries - bit 30 is undocumented */ rtl8xxxu_write32(priv, REG_CAM_CMD, CAM_CMD_POLLING | BIT(30)); /* * Start out with default power levels for channel 6, 20MHz */ fops->set_tx_power(priv, 1, false); /* Let the 8051 take control of antenna setting */ if (priv->rtl_chip != RTL8192E && priv->rtl_chip != RTL8188F) { val8 = rtl8xxxu_read8(priv, REG_LEDCFG2); val8 |= LEDCFG2_DPDT_SELECT; rtl8xxxu_write8(priv, REG_LEDCFG2, val8); } rtl8xxxu_write8(priv, REG_HWSEQ_CTRL, 0xff); /* Disable BAR - not sure if this has any effect on USB */ rtl8xxxu_write32(priv, REG_BAR_MODE_CTRL, 0x0201ffff); if (priv->rtl_chip != RTL8188F && priv->rtl_chip != RTL8188E) rtl8xxxu_write16(priv, REG_FAST_EDCA_CTRL, 0); if (fops->init_statistics) fops->init_statistics(priv); if (priv->rtl_chip == RTL8192E) { /* * 0x4c6[3] 1: RTS BW = Data BW * 0: RTS BW depends on CCA / secondary CCA result. */ val8 = rtl8xxxu_read8(priv, REG_QUEUE_CTRL); val8 &= ~BIT(3); rtl8xxxu_write8(priv, REG_QUEUE_CTRL, val8); /* * Reset USB mode switch setting */ rtl8xxxu_write8(priv, REG_ACLK_MON, 0x00); } else if (priv->rtl_chip == RTL8188F || priv->rtl_chip == RTL8188E) { /* * Init GPIO settings for 8188f, 8188e */ val8 = rtl8xxxu_read8(priv, REG_GPIO_MUXCFG); val8 &= ~GPIO_MUXCFG_IO_SEL_ENBT; rtl8xxxu_write8(priv, REG_GPIO_MUXCFG, val8); } if (priv->rtl_chip == RTL8188F) /* CCK PD */ rtl8xxxu_write8(priv, REG_CCK_PD_THRESH, CCK_PD_TYPE1_LV1_TH); fops->phy_lc_calibrate(priv); fops->phy_iq_calibrate(priv); /* * This should enable thermal meter */ if (fops->gen2_thermal_meter) { if (priv->rtl_chip == RTL8188F) { val32 = rtl8xxxu_read_rfreg(priv, RF_A, RF6052_REG_T_METER_8723B); val32 |= 0x30000; rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_T_METER_8723B, val32); } else { rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_T_METER_8723B, 0x37cf8); } } else { rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_T_METER, 0x60); } /* Set NAV_UPPER to 30000us */ val8 = ((30000 + NAV_UPPER_UNIT - 1) / NAV_UPPER_UNIT); rtl8xxxu_write8(priv, REG_NAV_UPPER, val8); if (priv->rtl_chip == RTL8723A) { /* * 2011/03/09 MH debug only, UMC-B cut pass 2500 S5 test, * but we need to find root cause. * This is 8723au only. */ val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE); if ((val32 & 0xff000000) != 0x83000000) { val32 |= FPGA_RF_MODE_CCK; rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32); } } else if (priv->rtl_chip == RTL8192E || priv->rtl_chip == RTL8188E) { rtl8xxxu_write8(priv, REG_USB_HRPWM, 0x00); } val32 = rtl8xxxu_read32(priv, REG_FWHW_TXQ_CTRL); val32 |= FWHW_TXQ_CTRL_XMIT_MGMT_ACK; /* ack for xmit mgmt frames. */ rtl8xxxu_write32(priv, REG_FWHW_TXQ_CTRL, val32); if (priv->rtl_chip == RTL8192E) { /* * Fix LDPC rx hang issue. */ val32 = rtl8xxxu_read32(priv, REG_AFE_MISC); rtl8xxxu_write8(priv, REG_8192E_LDOV12_CTRL, 0x75); val32 &= 0xfff00fff; val32 |= 0x0007e000; rtl8xxxu_write32(priv, REG_AFE_MISC, val32); /* * 0x824[9] = 0x82C[9] = 0xA80[7] those registers setting * should be equal or CCK RSSI report may be incorrect */ val32 = rtl8xxxu_read32(priv, REG_FPGA0_XA_HSSI_PARM2); priv->cck_agc_report_type = u32_get_bits(val32, FPGA0_HSSI_PARM2_CCK_HIGH_PWR); val32 = rtl8xxxu_read32(priv, REG_FPGA0_XB_HSSI_PARM2); if (priv->cck_agc_report_type != u32_get_bits(val32, FPGA0_HSSI_PARM2_CCK_HIGH_PWR)) { if (priv->cck_agc_report_type) val32 |= FPGA0_HSSI_PARM2_CCK_HIGH_PWR; else val32 &= ~FPGA0_HSSI_PARM2_CCK_HIGH_PWR; rtl8xxxu_write32(priv, REG_FPGA0_XB_HSSI_PARM2, val32); } val32 = rtl8xxxu_read32(priv, REG_AGC_RPT); if (priv->cck_agc_report_type) val32 |= AGC_RPT_CCK; else val32 &= ~AGC_RPT_CCK; rtl8xxxu_write32(priv, REG_AGC_RPT, val32); } /* Initialise the center frequency offset tracking */ if (priv->fops->set_crystal_cap) { val32 = rtl8xxxu_read32(priv, REG_OFDM1_CFO_TRACKING); priv->cfo_tracking.atc_status = val32 & CFO_TRACKING_ATC_STATUS; priv->cfo_tracking.adjust = true; priv->cfo_tracking.crystal_cap = priv->default_crystal_cap; } if (priv->rtl_chip == RTL8188E) rtl8188e_ra_info_init_all(&priv->ra_info); exit: return ret; } static void rtl8xxxu_cam_write(struct rtl8xxxu_priv *priv, struct ieee80211_key_conf *key, const u8 *mac) { u32 cmd, val32, addr, ctrl; int j, i, tmp_debug; tmp_debug = rtl8xxxu_debug; if (rtl8xxxu_debug & RTL8XXXU_DEBUG_KEY) rtl8xxxu_debug |= RTL8XXXU_DEBUG_REG_WRITE; /* * This is a bit of a hack - the lower bits of the cipher * suite selector happens to match the cipher index in the CAM */ addr = key->keyidx << CAM_CMD_KEY_SHIFT; ctrl = (key->cipher & 0x0f) << 2 | key->keyidx | CAM_WRITE_VALID; for (j = 5; j >= 0; j--) { switch (j) { case 0: val32 = ctrl | (mac[0] << 16) | (mac[1] << 24); break; case 1: val32 = mac[2] | (mac[3] << 8) | (mac[4] << 16) | (mac[5] << 24); break; default: i = (j - 2) << 2; val32 = key->key[i] | (key->key[i + 1] << 8) | key->key[i + 2] << 16 | key->key[i + 3] << 24; break; } rtl8xxxu_write32(priv, REG_CAM_WRITE, val32); cmd = CAM_CMD_POLLING | CAM_CMD_WRITE | (addr + j); rtl8xxxu_write32(priv, REG_CAM_CMD, cmd); udelay(100); } rtl8xxxu_debug = tmp_debug; } static int rtl8xxxu_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant) { struct rtl8xxxu_priv *priv = hw->priv; *tx_ant = BIT(priv->tx_paths) - 1; *rx_ant = BIT(priv->rx_paths) - 1; return 0; } static void rtl8xxxu_sw_scan_start(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const u8 *mac) { struct rtl8xxxu_priv *priv = hw->priv; u8 val8; val8 = rtl8xxxu_read8(priv, REG_BEACON_CTRL); val8 |= BEACON_DISABLE_TSF_UPDATE; rtl8xxxu_write8(priv, REG_BEACON_CTRL, val8); } static void rtl8xxxu_sw_scan_complete(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct rtl8xxxu_priv *priv = hw->priv; u8 val8; val8 = rtl8xxxu_read8(priv, REG_BEACON_CTRL); val8 &= ~BEACON_DISABLE_TSF_UPDATE; rtl8xxxu_write8(priv, REG_BEACON_CTRL, val8); } void rtl8xxxu_update_rate_mask(struct rtl8xxxu_priv *priv, u32 ramask, u8 rateid, int sgi, int txbw_40mhz) { struct h2c_cmd h2c; memset(&h2c, 0, sizeof(struct h2c_cmd)); h2c.ramask.cmd = H2C_SET_RATE_MASK; h2c.ramask.mask_lo = cpu_to_le16(ramask & 0xffff); h2c.ramask.mask_hi = cpu_to_le16(ramask >> 16); h2c.ramask.arg = 0x80; if (sgi) h2c.ramask.arg |= 0x20; dev_dbg(&priv->udev->dev, "%s: rate mask %08x, arg %02x, size %zi\n", __func__, ramask, h2c.ramask.arg, sizeof(h2c.ramask)); rtl8xxxu_gen1_h2c_cmd(priv, &h2c, sizeof(h2c.ramask)); } void rtl8xxxu_gen2_update_rate_mask(struct rtl8xxxu_priv *priv, u32 ramask, u8 rateid, int sgi, int txbw_40mhz) { struct h2c_cmd h2c; u8 bw; if (txbw_40mhz) bw = RTL8XXXU_CHANNEL_WIDTH_40; else bw = RTL8XXXU_CHANNEL_WIDTH_20; memset(&h2c, 0, sizeof(struct h2c_cmd)); h2c.b_macid_cfg.cmd = H2C_8723B_MACID_CFG_RAID; h2c.b_macid_cfg.ramask0 = ramask & 0xff; h2c.b_macid_cfg.ramask1 = (ramask >> 8) & 0xff; h2c.b_macid_cfg.ramask2 = (ramask >> 16) & 0xff; h2c.b_macid_cfg.ramask3 = (ramask >> 24) & 0xff; h2c.b_macid_cfg.data1 = rateid; if (sgi) h2c.b_macid_cfg.data1 |= BIT(7); h2c.b_macid_cfg.data2 = bw; dev_dbg(&priv->udev->dev, "%s: rate mask %08x, rateid %02x, sgi %d, size %zi\n", __func__, ramask, rateid, sgi, sizeof(h2c.b_macid_cfg)); rtl8xxxu_gen2_h2c_cmd(priv, &h2c, sizeof(h2c.b_macid_cfg)); } void rtl8xxxu_gen1_report_connect(struct rtl8xxxu_priv *priv, u8 macid, bool connect) { struct h2c_cmd h2c; memset(&h2c, 0, sizeof(struct h2c_cmd)); h2c.joinbss.cmd = H2C_JOIN_BSS_REPORT; if (connect) h2c.joinbss.data = H2C_JOIN_BSS_CONNECT; else h2c.joinbss.data = H2C_JOIN_BSS_DISCONNECT; rtl8xxxu_gen1_h2c_cmd(priv, &h2c, sizeof(h2c.joinbss)); } void rtl8xxxu_gen2_report_connect(struct rtl8xxxu_priv *priv, u8 macid, bool connect) { /* * The firmware turns on the rate control when it knows it's * connected to a network. */ struct h2c_cmd h2c; memset(&h2c, 0, sizeof(struct h2c_cmd)); h2c.media_status_rpt.cmd = H2C_8723B_MEDIA_STATUS_RPT; if (connect) h2c.media_status_rpt.parm |= BIT(0); else h2c.media_status_rpt.parm &= ~BIT(0); rtl8xxxu_gen2_h2c_cmd(priv, &h2c, sizeof(h2c.media_status_rpt)); } void rtl8xxxu_gen1_report_rssi(struct rtl8xxxu_priv *priv, u8 macid, u8 rssi) { struct h2c_cmd h2c; const int h2c_size = 4; memset(&h2c, 0, sizeof(struct h2c_cmd)); h2c.rssi_report.cmd = H2C_SET_RSSI; h2c.rssi_report.macid = macid; h2c.rssi_report.rssi = rssi; rtl8xxxu_gen1_h2c_cmd(priv, &h2c, h2c_size); } void rtl8xxxu_gen2_report_rssi(struct rtl8xxxu_priv *priv, u8 macid, u8 rssi) { struct h2c_cmd h2c; int h2c_size = sizeof(h2c.rssi_report); if (priv->rtl_chip == RTL8723B) h2c_size = 4; memset(&h2c, 0, sizeof(struct h2c_cmd)); h2c.rssi_report.cmd = H2C_8723B_RSSI_SETTING; h2c.rssi_report.macid = macid; h2c.rssi_report.rssi = rssi; rtl8xxxu_gen2_h2c_cmd(priv, &h2c, h2c_size); } void rtl8xxxu_gen1_init_aggregation(struct rtl8xxxu_priv *priv) { u8 agg_ctrl, usb_spec, page_thresh, timeout; usb_spec = rtl8xxxu_read8(priv, REG_USB_SPECIAL_OPTION); usb_spec &= ~USB_SPEC_USB_AGG_ENABLE; rtl8xxxu_write8(priv, REG_USB_SPECIAL_OPTION, usb_spec); agg_ctrl = rtl8xxxu_read8(priv, REG_TRXDMA_CTRL); agg_ctrl &= ~TRXDMA_CTRL_RXDMA_AGG_EN; if (!rtl8xxxu_dma_aggregation) { rtl8xxxu_write8(priv, REG_TRXDMA_CTRL, agg_ctrl); return; } agg_ctrl |= TRXDMA_CTRL_RXDMA_AGG_EN; rtl8xxxu_write8(priv, REG_TRXDMA_CTRL, agg_ctrl); /* * The number of packets we can take looks to be buffer size / 512 * which matches the 512 byte rounding we have to do when de-muxing * the packets. * * Sample numbers from the vendor driver: * USB High-Speed mode values: * RxAggBlockCount = 8 : 512 byte unit * RxAggBlockTimeout = 6 * RxAggPageCount = 48 : 128 byte unit * RxAggPageTimeout = 4 or 6 (absolute time 34ms/(2^6)) */ page_thresh = (priv->fops->rx_agg_buf_size / 512); if (rtl8xxxu_dma_agg_pages >= 0) { if (rtl8xxxu_dma_agg_pages <= page_thresh) timeout = page_thresh; else if (rtl8xxxu_dma_agg_pages <= 6) dev_err(&priv->udev->dev, "%s: dma_agg_pages=%i too small, minimum is 6\n", __func__, rtl8xxxu_dma_agg_pages); else dev_err(&priv->udev->dev, "%s: dma_agg_pages=%i larger than limit %i\n", __func__, rtl8xxxu_dma_agg_pages, page_thresh); } rtl8xxxu_write8(priv, REG_RXDMA_AGG_PG_TH, page_thresh); /* * REG_RXDMA_AGG_PG_TH + 1 seems to be the timeout register on * gen2 chips and rtl8188eu. The rtl8723au seems unhappy if we * don't set it, so better set both. */ timeout = 4; if (rtl8xxxu_dma_agg_timeout >= 0) { if (rtl8xxxu_dma_agg_timeout <= 127) timeout = rtl8xxxu_dma_agg_timeout; else dev_err(&priv->udev->dev, "%s: Invalid dma_agg_timeout: %i\n", __func__, rtl8xxxu_dma_agg_timeout); } rtl8xxxu_write8(priv, REG_RXDMA_AGG_PG_TH + 1, timeout); rtl8xxxu_write8(priv, REG_USB_DMA_AGG_TO, timeout); priv->rx_buf_aggregation = 1; } static const struct ieee80211_rate rtl8xxxu_legacy_ratetable[] = { {.bitrate = 10, .hw_value = 0x00,}, {.bitrate = 20, .hw_value = 0x01,}, {.bitrate = 55, .hw_value = 0x02,}, {.bitrate = 110, .hw_value = 0x03,}, {.bitrate = 60, .hw_value = 0x04,}, {.bitrate = 90, .hw_value = 0x05,}, {.bitrate = 120, .hw_value = 0x06,}, {.bitrate = 180, .hw_value = 0x07,}, {.bitrate = 240, .hw_value = 0x08,}, {.bitrate = 360, .hw_value = 0x09,}, {.bitrate = 480, .hw_value = 0x0a,}, {.bitrate = 540, .hw_value = 0x0b,}, }; static void rtl8xxxu_desc_to_mcsrate(u16 rate, u8 *mcs, u8 *nss) { if (rate <= DESC_RATE_54M) return; if (rate >= DESC_RATE_MCS0 && rate <= DESC_RATE_MCS15) { if (rate < DESC_RATE_MCS8) *nss = 1; else *nss = 2; *mcs = rate - DESC_RATE_MCS0; } } static void rtl8xxxu_set_basic_rates(struct rtl8xxxu_priv *priv, u32 rate_cfg) { struct ieee80211_hw *hw = priv->hw; u32 val32; u8 rate_idx = 0; rate_cfg &= RESPONSE_RATE_BITMAP_ALL; val32 = rtl8xxxu_read32(priv, REG_RESPONSE_RATE_SET); if (hw->conf.chandef.chan->band == NL80211_BAND_5GHZ) val32 &= RESPONSE_RATE_RRSR_INIT_5G; else val32 &= RESPONSE_RATE_RRSR_INIT_2G; val32 |= rate_cfg; rtl8xxxu_write32(priv, REG_RESPONSE_RATE_SET, val32); dev_dbg(&priv->udev->dev, "%s: rates %08x\n", __func__, rate_cfg); while (rate_cfg) { rate_cfg = (rate_cfg >> 1); rate_idx++; } rtl8xxxu_write8(priv, REG_INIRTS_RATE_SEL, rate_idx); } static u16 rtl8xxxu_wireless_mode(struct ieee80211_hw *hw, struct ieee80211_sta *sta) { u16 network_type = WIRELESS_MODE_UNKNOWN; if (hw->conf.chandef.chan->band == NL80211_BAND_5GHZ) { if (sta->deflink.vht_cap.vht_supported) network_type = WIRELESS_MODE_AC; else if (sta->deflink.ht_cap.ht_supported) network_type = WIRELESS_MODE_N_5G; network_type |= WIRELESS_MODE_A; } else { if (sta->deflink.vht_cap.vht_supported) network_type = WIRELESS_MODE_AC; else if (sta->deflink.ht_cap.ht_supported) network_type = WIRELESS_MODE_N_24G; if (sta->deflink.supp_rates[0] <= 0xf) network_type |= WIRELESS_MODE_B; else if (sta->deflink.supp_rates[0] & 0xf) network_type |= (WIRELESS_MODE_B | WIRELESS_MODE_G); else network_type |= WIRELESS_MODE_G; } return network_type; } static void rtl8xxxu_set_aifs(struct rtl8xxxu_priv *priv, u8 slot_time) { u32 reg_edca_param[IEEE80211_NUM_ACS] = { [IEEE80211_AC_VO] = REG_EDCA_VO_PARAM, [IEEE80211_AC_VI] = REG_EDCA_VI_PARAM, [IEEE80211_AC_BE] = REG_EDCA_BE_PARAM, [IEEE80211_AC_BK] = REG_EDCA_BK_PARAM, }; u32 val32; u16 wireless_mode = 0; u8 aifs, aifsn, sifs; int i; if (priv->vif) { struct ieee80211_sta *sta; rcu_read_lock(); sta = ieee80211_find_sta(priv->vif, priv->vif->bss_conf.bssid); if (sta) wireless_mode = rtl8xxxu_wireless_mode(priv->hw, sta); rcu_read_unlock(); } if (priv->hw->conf.chandef.chan->band == NL80211_BAND_5GHZ || (wireless_mode & WIRELESS_MODE_N_24G)) sifs = 16; else sifs = 10; for (i = 0; i < IEEE80211_NUM_ACS; i++) { val32 = rtl8xxxu_read32(priv, reg_edca_param[i]); /* It was set in conf_tx. */ aifsn = val32 & 0xff; /* aifsn not set yet or already fixed */ if (aifsn < 2 || aifsn > 15) continue; aifs = aifsn * slot_time + sifs; val32 &= ~0xff; val32 |= aifs; rtl8xxxu_write32(priv, reg_edca_param[i], val32); } } void rtl8xxxu_update_ra_report(struct rtl8xxxu_ra_report *rarpt, u8 rate, u8 sgi, u8 bw) { u8 mcs, nss; rarpt->txrate.flags = 0; if (rate <= DESC_RATE_54M) { rarpt->txrate.legacy = rtl8xxxu_legacy_ratetable[rate].bitrate; } else { rtl8xxxu_desc_to_mcsrate(rate, &mcs, &nss); rarpt->txrate.flags |= RATE_INFO_FLAGS_MCS; rarpt->txrate.mcs = mcs; rarpt->txrate.nss = nss; if (sgi) rarpt->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; rarpt->txrate.bw = bw; } rarpt->bit_rate = cfg80211_calculate_bitrate(&rarpt->txrate); rarpt->desc_rate = rate; } static void rtl8xxxu_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf, u64 changed) { struct rtl8xxxu_priv *priv = hw->priv; struct device *dev = &priv->udev->dev; struct ieee80211_sta *sta; struct rtl8xxxu_ra_report *rarpt; u32 val32; u8 val8; rarpt = &priv->ra_report; if (changed & BSS_CHANGED_ASSOC) { dev_dbg(dev, "Changed ASSOC: %i!\n", vif->cfg.assoc); rtl8xxxu_set_linktype(priv, vif->type); if (vif->cfg.assoc) { u32 ramask; int sgi = 0; u8 highest_rate; u8 bw; rcu_read_lock(); sta = ieee80211_find_sta(vif, bss_conf->bssid); if (!sta) { dev_info(dev, "%s: ASSOC no sta found\n", __func__); rcu_read_unlock(); goto error; } if (sta->deflink.ht_cap.ht_supported) dev_info(dev, "%s: HT supported\n", __func__); if (sta->deflink.vht_cap.vht_supported) dev_info(dev, "%s: VHT supported\n", __func__); /* TODO: Set bits 28-31 for rate adaptive id */ ramask = (sta->deflink.supp_rates[0] & 0xfff) | sta->deflink.ht_cap.mcs.rx_mask[0] << 12 | sta->deflink.ht_cap.mcs.rx_mask[1] << 20; if (sta->deflink.ht_cap.cap & (IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_SGI_20)) sgi = 1; highest_rate = fls(ramask) - 1; if (rtl8xxxu_ht40_2g && (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)) bw = RATE_INFO_BW_40; else bw = RATE_INFO_BW_20; rcu_read_unlock(); rtl8xxxu_update_ra_report(rarpt, highest_rate, sgi, bw); priv->vif = vif; priv->rssi_level = RTL8XXXU_RATR_STA_INIT; priv->fops->update_rate_mask(priv, ramask, 0, sgi, bw == RATE_INFO_BW_40); rtl8xxxu_write8(priv, REG_BCN_MAX_ERR, 0xff); rtl8xxxu_stop_tx_beacon(priv); /* joinbss sequence */ rtl8xxxu_write16(priv, REG_BCN_PSR_RPT, 0xc000 | vif->cfg.aid); priv->fops->report_connect(priv, 0, true); } else { val8 = rtl8xxxu_read8(priv, REG_BEACON_CTRL); val8 |= BEACON_DISABLE_TSF_UPDATE; rtl8xxxu_write8(priv, REG_BEACON_CTRL, val8); priv->fops->report_connect(priv, 0, false); } } if (changed & BSS_CHANGED_ERP_PREAMBLE) { dev_dbg(dev, "Changed ERP_PREAMBLE: Use short preamble %i\n", bss_conf->use_short_preamble); val32 = rtl8xxxu_read32(priv, REG_RESPONSE_RATE_SET); if (bss_conf->use_short_preamble) val32 |= RSR_ACK_SHORT_PREAMBLE; else val32 &= ~RSR_ACK_SHORT_PREAMBLE; rtl8xxxu_write32(priv, REG_RESPONSE_RATE_SET, val32); } if (changed & BSS_CHANGED_ERP_SLOT) { dev_dbg(dev, "Changed ERP_SLOT: short_slot_time %i\n", bss_conf->use_short_slot); if (bss_conf->use_short_slot) val8 = 9; else val8 = 20; rtl8xxxu_write8(priv, REG_SLOT, val8); rtl8xxxu_set_aifs(priv, val8); } if (changed & BSS_CHANGED_BSSID) { dev_dbg(dev, "Changed BSSID!\n"); rtl8xxxu_set_bssid(priv, bss_conf->bssid); } if (changed & BSS_CHANGED_BASIC_RATES) { dev_dbg(dev, "Changed BASIC_RATES!\n"); rtl8xxxu_set_basic_rates(priv, bss_conf->basic_rates); } error: return; } static u32 rtl8xxxu_80211_to_rtl_queue(u32 queue) { u32 rtlqueue; switch (queue) { case IEEE80211_AC_VO: rtlqueue = TXDESC_QUEUE_VO; break; case IEEE80211_AC_VI: rtlqueue = TXDESC_QUEUE_VI; break; case IEEE80211_AC_BE: rtlqueue = TXDESC_QUEUE_BE; break; case IEEE80211_AC_BK: rtlqueue = TXDESC_QUEUE_BK; break; default: rtlqueue = TXDESC_QUEUE_BE; } return rtlqueue; } static u32 rtl8xxxu_queue_select(struct ieee80211_hdr *hdr, struct sk_buff *skb) { u32 queue; if (ieee80211_is_mgmt(hdr->frame_control)) queue = TXDESC_QUEUE_MGNT; else queue = rtl8xxxu_80211_to_rtl_queue(skb_get_queue_mapping(skb)); return queue; } /* * Despite newer chips 8723b/8812/8821 having a larger TX descriptor * format. The descriptor checksum is still only calculated over the * initial 32 bytes of the descriptor! */ static void rtl8xxxu_calc_tx_desc_csum(struct rtl8xxxu_txdesc32 *tx_desc) { __le16 *ptr = (__le16 *)tx_desc; u16 csum = 0; int i; /* * Clear csum field before calculation, as the csum field is * in the middle of the struct. */ tx_desc->csum = cpu_to_le16(0); for (i = 0; i < (sizeof(struct rtl8xxxu_txdesc32) / sizeof(u16)); i++) csum = csum ^ le16_to_cpu(ptr[i]); tx_desc->csum |= cpu_to_le16(csum); } static void rtl8xxxu_free_tx_resources(struct rtl8xxxu_priv *priv) { struct rtl8xxxu_tx_urb *tx_urb, *tmp; unsigned long flags; spin_lock_irqsave(&priv->tx_urb_lock, flags); list_for_each_entry_safe(tx_urb, tmp, &priv->tx_urb_free_list, list) { list_del(&tx_urb->list); priv->tx_urb_free_count--; usb_free_urb(&tx_urb->urb); } spin_unlock_irqrestore(&priv->tx_urb_lock, flags); } static struct rtl8xxxu_tx_urb * rtl8xxxu_alloc_tx_urb(struct rtl8xxxu_priv *priv) { struct rtl8xxxu_tx_urb *tx_urb; unsigned long flags; spin_lock_irqsave(&priv->tx_urb_lock, flags); tx_urb = list_first_entry_or_null(&priv->tx_urb_free_list, struct rtl8xxxu_tx_urb, list); if (tx_urb) { list_del(&tx_urb->list); priv->tx_urb_free_count--; if (priv->tx_urb_free_count < RTL8XXXU_TX_URB_LOW_WATER && !priv->tx_stopped) { priv->tx_stopped = true; ieee80211_stop_queues(priv->hw); } } spin_unlock_irqrestore(&priv->tx_urb_lock, flags); return tx_urb; } static void rtl8xxxu_free_tx_urb(struct rtl8xxxu_priv *priv, struct rtl8xxxu_tx_urb *tx_urb) { unsigned long flags; INIT_LIST_HEAD(&tx_urb->list); spin_lock_irqsave(&priv->tx_urb_lock, flags); list_add(&tx_urb->list, &priv->tx_urb_free_list); priv->tx_urb_free_count++; if (priv->tx_urb_free_count > RTL8XXXU_TX_URB_HIGH_WATER && priv->tx_stopped) { priv->tx_stopped = false; ieee80211_wake_queues(priv->hw); } spin_unlock_irqrestore(&priv->tx_urb_lock, flags); } static void rtl8xxxu_tx_complete(struct urb *urb) { struct sk_buff *skb = (struct sk_buff *)urb->context; struct ieee80211_tx_info *tx_info; struct ieee80211_hw *hw; struct rtl8xxxu_priv *priv; struct rtl8xxxu_tx_urb *tx_urb = container_of(urb, struct rtl8xxxu_tx_urb, urb); tx_info = IEEE80211_SKB_CB(skb); hw = tx_info->rate_driver_data[0]; priv = hw->priv; skb_pull(skb, priv->fops->tx_desc_size); ieee80211_tx_info_clear_status(tx_info); tx_info->status.rates[0].idx = -1; tx_info->status.rates[0].count = 0; if (!urb->status) tx_info->flags |= IEEE80211_TX_STAT_ACK; ieee80211_tx_status_irqsafe(hw, skb); rtl8xxxu_free_tx_urb(priv, tx_urb); } static void rtl8xxxu_dump_action(struct device *dev, struct ieee80211_hdr *hdr) { struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)hdr; u16 cap, timeout; if (!(rtl8xxxu_debug & RTL8XXXU_DEBUG_ACTION)) return; switch (mgmt->u.action.u.addba_resp.action_code) { case WLAN_ACTION_ADDBA_RESP: cap = le16_to_cpu(mgmt->u.action.u.addba_resp.capab); timeout = le16_to_cpu(mgmt->u.action.u.addba_resp.timeout); dev_info(dev, "WLAN_ACTION_ADDBA_RESP: " "timeout %i, tid %02x, buf_size %02x, policy %02x, " "status %02x\n", timeout, (cap & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2, (cap & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6, (cap >> 1) & 0x1, le16_to_cpu(mgmt->u.action.u.addba_resp.status)); break; case WLAN_ACTION_ADDBA_REQ: cap = le16_to_cpu(mgmt->u.action.u.addba_req.capab); timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout); dev_info(dev, "WLAN_ACTION_ADDBA_REQ: " "timeout %i, tid %02x, buf_size %02x, policy %02x\n", timeout, (cap & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2, (cap & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6, (cap >> 1) & 0x1); break; default: dev_info(dev, "action frame %02x\n", mgmt->u.action.u.addba_resp.action_code); break; } } /* * Fill in v1 (gen1) specific TX descriptor bits. * This format is used on 8188cu/8192cu/8723au */ void rtl8xxxu_fill_txdesc_v1(struct ieee80211_hw *hw, struct ieee80211_hdr *hdr, struct ieee80211_tx_info *tx_info, struct rtl8xxxu_txdesc32 *tx_desc, bool sgi, bool short_preamble, bool ampdu_enable, u32 rts_rate) { struct ieee80211_rate *tx_rate = ieee80211_get_tx_rate(hw, tx_info); struct rtl8xxxu_priv *priv = hw->priv; struct device *dev = &priv->udev->dev; u8 *qc = ieee80211_get_qos_ctl(hdr); u8 tid = qc[0] & IEEE80211_QOS_CTL_TID_MASK; u32 rate; u16 rate_flags = tx_info->control.rates[0].flags; u16 seq_number; if (rate_flags & IEEE80211_TX_RC_MCS && !ieee80211_is_mgmt(hdr->frame_control)) rate = tx_info->control.rates[0].idx + DESC_RATE_MCS0; else rate = tx_rate->hw_value; if (rtl8xxxu_debug & RTL8XXXU_DEBUG_TX) dev_info(dev, "%s: TX rate: %d, pkt size %u\n", __func__, rate, le16_to_cpu(tx_desc->pkt_size)); seq_number = IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl)); tx_desc->txdw5 = cpu_to_le32(rate); if (ieee80211_is_data(hdr->frame_control)) tx_desc->txdw5 |= cpu_to_le32(0x0001ff00); tx_desc->txdw3 = cpu_to_le32((u32)seq_number << TXDESC32_SEQ_SHIFT); if (ampdu_enable && test_bit(tid, priv->tid_tx_operational)) tx_desc->txdw1 |= cpu_to_le32(TXDESC32_AGG_ENABLE); else tx_desc->txdw1 |= cpu_to_le32(TXDESC32_AGG_BREAK); if (ieee80211_is_mgmt(hdr->frame_control)) { tx_desc->txdw5 = cpu_to_le32(rate); tx_desc->txdw4 |= cpu_to_le32(TXDESC32_USE_DRIVER_RATE); tx_desc->txdw5 |= cpu_to_le32(6 << TXDESC32_RETRY_LIMIT_SHIFT); tx_desc->txdw5 |= cpu_to_le32(TXDESC32_RETRY_LIMIT_ENABLE); } if (ieee80211_is_data_qos(hdr->frame_control)) tx_desc->txdw4 |= cpu_to_le32(TXDESC32_QOS); if (short_preamble) tx_desc->txdw4 |= cpu_to_le32(TXDESC32_SHORT_PREAMBLE); if (sgi) tx_desc->txdw5 |= cpu_to_le32(TXDESC32_SHORT_GI); /* * rts_rate is zero if RTS/CTS or CTS to SELF are not enabled */ tx_desc->txdw4 |= cpu_to_le32(rts_rate << TXDESC32_RTS_RATE_SHIFT); if (ampdu_enable || (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS)) { tx_desc->txdw4 |= cpu_to_le32(TXDESC32_RTS_CTS_ENABLE); tx_desc->txdw4 |= cpu_to_le32(TXDESC32_HW_RTS_ENABLE); } else if (rate_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { tx_desc->txdw4 |= cpu_to_le32(TXDESC32_CTS_SELF_ENABLE); tx_desc->txdw4 |= cpu_to_le32(TXDESC32_HW_RTS_ENABLE); } } /* * Fill in v2 (gen2) specific TX descriptor bits. * This format is used on 8192eu/8723bu */ void rtl8xxxu_fill_txdesc_v2(struct ieee80211_hw *hw, struct ieee80211_hdr *hdr, struct ieee80211_tx_info *tx_info, struct rtl8xxxu_txdesc32 *tx_desc32, bool sgi, bool short_preamble, bool ampdu_enable, u32 rts_rate) { struct ieee80211_rate *tx_rate = ieee80211_get_tx_rate(hw, tx_info); struct rtl8xxxu_priv *priv = hw->priv; struct device *dev = &priv->udev->dev; struct rtl8xxxu_txdesc40 *tx_desc40; u8 *qc = ieee80211_get_qos_ctl(hdr); u8 tid = qc[0] & IEEE80211_QOS_CTL_TID_MASK; u32 rate; u16 rate_flags = tx_info->control.rates[0].flags; u16 seq_number; tx_desc40 = (struct rtl8xxxu_txdesc40 *)tx_desc32; if (rate_flags & IEEE80211_TX_RC_MCS && !ieee80211_is_mgmt(hdr->frame_control)) rate = tx_info->control.rates[0].idx + DESC_RATE_MCS0; else rate = tx_rate->hw_value; if (rtl8xxxu_debug & RTL8XXXU_DEBUG_TX) dev_info(dev, "%s: TX rate: %d, pkt size %u\n", __func__, rate, le16_to_cpu(tx_desc40->pkt_size)); seq_number = IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl)); tx_desc40->txdw4 = cpu_to_le32(rate); if (ieee80211_is_data(hdr->frame_control)) { tx_desc40->txdw4 |= cpu_to_le32(0x1f << TXDESC40_DATA_RATE_FB_SHIFT); } tx_desc40->txdw9 = cpu_to_le32((u32)seq_number << TXDESC40_SEQ_SHIFT); if (ampdu_enable && test_bit(tid, priv->tid_tx_operational)) tx_desc40->txdw2 |= cpu_to_le32(TXDESC40_AGG_ENABLE); else tx_desc40->txdw2 |= cpu_to_le32(TXDESC40_AGG_BREAK); if (ieee80211_is_mgmt(hdr->frame_control)) { tx_desc40->txdw4 = cpu_to_le32(rate); tx_desc40->txdw3 |= cpu_to_le32(TXDESC40_USE_DRIVER_RATE); tx_desc40->txdw4 |= cpu_to_le32(6 << TXDESC40_RETRY_LIMIT_SHIFT); tx_desc40->txdw4 |= cpu_to_le32(TXDESC40_RETRY_LIMIT_ENABLE); } if (short_preamble) tx_desc40->txdw5 |= cpu_to_le32(TXDESC40_SHORT_PREAMBLE); tx_desc40->txdw4 |= cpu_to_le32(rts_rate << TXDESC40_RTS_RATE_SHIFT); /* * rts_rate is zero if RTS/CTS or CTS to SELF are not enabled */ if (ampdu_enable || (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS)) { tx_desc40->txdw3 |= cpu_to_le32(TXDESC40_RTS_CTS_ENABLE); tx_desc40->txdw3 |= cpu_to_le32(TXDESC40_HW_RTS_ENABLE); } else if (rate_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { /* * For some reason the vendor driver doesn't set * TXDESC40_HW_RTS_ENABLE for CTS to SELF */ tx_desc40->txdw3 |= cpu_to_le32(TXDESC40_CTS_SELF_ENABLE); } } /* * Fill in v3 (gen1) specific TX descriptor bits. * This format is a hybrid between the v1 and v2 formats, only seen * on 8188eu devices so far. */ void rtl8xxxu_fill_txdesc_v3(struct ieee80211_hw *hw, struct ieee80211_hdr *hdr, struct ieee80211_tx_info *tx_info, struct rtl8xxxu_txdesc32 *tx_desc, bool sgi, bool short_preamble, bool ampdu_enable, u32 rts_rate) { struct ieee80211_rate *tx_rate = ieee80211_get_tx_rate(hw, tx_info); struct rtl8xxxu_priv *priv = hw->priv; struct device *dev = &priv->udev->dev; struct rtl8xxxu_ra_info *ra = &priv->ra_info; u8 *qc = ieee80211_get_qos_ctl(hdr); u8 tid = qc[0] & IEEE80211_QOS_CTL_TID_MASK; u32 rate; u16 rate_flags = tx_info->control.rates[0].flags; u16 seq_number; if (rate_flags & IEEE80211_TX_RC_MCS && !ieee80211_is_mgmt(hdr->frame_control)) rate = tx_info->control.rates[0].idx + DESC_RATE_MCS0; else rate = tx_rate->hw_value; seq_number = IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl)); if (ieee80211_is_data(hdr->frame_control)) { rate = ra->decision_rate; tx_desc->txdw5 = cpu_to_le32(rate); tx_desc->txdw4 |= cpu_to_le32(TXDESC32_USE_DRIVER_RATE); tx_desc->txdw4 |= le32_encode_bits(ra->pt_stage, TXDESC32_PT_STAGE_MASK); /* Data/RTS rate FB limit */ tx_desc->txdw5 |= cpu_to_le32(0x0001ff00); } if (rtl8xxxu_debug & RTL8XXXU_DEBUG_TX) dev_info(dev, "%s: TX rate: %d, pkt size %d\n", __func__, rate, le16_to_cpu(tx_desc->pkt_size)); tx_desc->txdw3 = cpu_to_le32((u32)seq_number << TXDESC32_SEQ_SHIFT); if (ampdu_enable && test_bit(tid, priv->tid_tx_operational)) tx_desc->txdw2 |= cpu_to_le32(TXDESC40_AGG_ENABLE); else tx_desc->txdw2 |= cpu_to_le32(TXDESC40_AGG_BREAK); if (ieee80211_is_mgmt(hdr->frame_control)) { tx_desc->txdw5 = cpu_to_le32(rate); tx_desc->txdw4 |= cpu_to_le32(TXDESC32_USE_DRIVER_RATE); tx_desc->txdw5 |= cpu_to_le32(6 << TXDESC32_RETRY_LIMIT_SHIFT); tx_desc->txdw5 |= cpu_to_le32(TXDESC32_RETRY_LIMIT_ENABLE); } if (ieee80211_is_data_qos(hdr->frame_control)) { tx_desc->txdw4 |= cpu_to_le32(TXDESC32_QOS); if (conf_is_ht40(&hw->conf)) { tx_desc->txdw4 |= cpu_to_le32(TXDESC_DATA_BW); if (conf_is_ht40_minus(&hw->conf)) tx_desc->txdw4 |= cpu_to_le32(TXDESC_PRIME_CH_OFF_UPPER); else tx_desc->txdw4 |= cpu_to_le32(TXDESC_PRIME_CH_OFF_LOWER); } } if (short_preamble) tx_desc->txdw4 |= cpu_to_le32(TXDESC32_SHORT_PREAMBLE); if (sgi && ra->rate_sgi) tx_desc->txdw5 |= cpu_to_le32(TXDESC32_SHORT_GI); /* * rts_rate is zero if RTS/CTS or CTS to SELF are not enabled */ tx_desc->txdw4 |= cpu_to_le32(rts_rate << TXDESC32_RTS_RATE_SHIFT); if (ampdu_enable || (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS)) { tx_desc->txdw4 |= cpu_to_le32(TXDESC32_RTS_CTS_ENABLE); tx_desc->txdw4 |= cpu_to_le32(TXDESC32_HW_RTS_ENABLE); } else if (rate_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { tx_desc->txdw4 |= cpu_to_le32(TXDESC32_CTS_SELF_ENABLE); tx_desc->txdw4 |= cpu_to_le32(TXDESC32_HW_RTS_ENABLE); } tx_desc->txdw2 |= cpu_to_le32(TXDESC_ANTENNA_SELECT_A | TXDESC_ANTENNA_SELECT_B); tx_desc->txdw7 |= cpu_to_le16(TXDESC_ANTENNA_SELECT_C >> 16); } static void rtl8xxxu_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct rtl8xxxu_priv *priv = hw->priv; struct rtl8xxxu_txdesc32 *tx_desc; struct rtl8xxxu_tx_urb *tx_urb; struct ieee80211_sta *sta = NULL; struct ieee80211_vif *vif = tx_info->control.vif; struct device *dev = &priv->udev->dev; u32 queue, rts_rate; u16 pktlen = skb->len; u16 rate_flag = tx_info->control.rates[0].flags; int tx_desc_size = priv->fops->tx_desc_size; int ret; bool ampdu_enable, sgi = false, short_preamble = false; if (skb_headroom(skb) < tx_desc_size) { dev_warn(dev, "%s: Not enough headroom (%i) for tx descriptor\n", __func__, skb_headroom(skb)); goto error; } if (unlikely(skb->len > (65535 - tx_desc_size))) { dev_warn(dev, "%s: Trying to send over-sized skb (%i)\n", __func__, skb->len); goto error; } tx_urb = rtl8xxxu_alloc_tx_urb(priv); if (!tx_urb) { dev_warn(dev, "%s: Unable to allocate tx urb\n", __func__); goto error; } if (ieee80211_is_action(hdr->frame_control)) rtl8xxxu_dump_action(dev, hdr); tx_info->rate_driver_data[0] = hw; if (control && control->sta) sta = control->sta; queue = rtl8xxxu_queue_select(hdr, skb); tx_desc = skb_push(skb, tx_desc_size); memset(tx_desc, 0, tx_desc_size); tx_desc->pkt_size = cpu_to_le16(pktlen); tx_desc->pkt_offset = tx_desc_size; tx_desc->txdw0 = TXDESC_OWN | TXDESC_FIRST_SEGMENT | TXDESC_LAST_SEGMENT; if (is_multicast_ether_addr(ieee80211_get_DA(hdr)) || is_broadcast_ether_addr(ieee80211_get_DA(hdr))) tx_desc->txdw0 |= TXDESC_BROADMULTICAST; tx_desc->txdw1 = cpu_to_le32(queue << TXDESC_QUEUE_SHIFT); if (tx_info->control.hw_key) { switch (tx_info->control.hw_key->cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: case WLAN_CIPHER_SUITE_TKIP: tx_desc->txdw1 |= cpu_to_le32(TXDESC_SEC_RC4); break; case WLAN_CIPHER_SUITE_CCMP: tx_desc->txdw1 |= cpu_to_le32(TXDESC_SEC_AES); break; default: break; } } /* (tx_info->flags & IEEE80211_TX_CTL_AMPDU) && */ ampdu_enable = false; if (ieee80211_is_data_qos(hdr->frame_control) && sta) { if (sta->deflink.ht_cap.ht_supported) { u32 ampdu, val32; u8 *qc = ieee80211_get_qos_ctl(hdr); u8 tid = qc[0] & IEEE80211_QOS_CTL_TID_MASK; ampdu = (u32)sta->deflink.ht_cap.ampdu_density; val32 = ampdu << TXDESC_AMPDU_DENSITY_SHIFT; tx_desc->txdw2 |= cpu_to_le32(val32); ampdu_enable = true; if (!test_bit(tid, priv->tx_aggr_started) && !(skb->protocol == cpu_to_be16(ETH_P_PAE))) if (!ieee80211_start_tx_ba_session(sta, tid, 0)) set_bit(tid, priv->tx_aggr_started); } } if (rate_flag & IEEE80211_TX_RC_SHORT_GI || (ieee80211_is_data_qos(hdr->frame_control) && sta && sta->deflink.ht_cap.cap & (IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_SGI_20))) sgi = true; if (rate_flag & IEEE80211_TX_RC_USE_SHORT_PREAMBLE || (sta && vif && vif->bss_conf.use_short_preamble)) short_preamble = true; if (rate_flag & IEEE80211_TX_RC_USE_RTS_CTS) rts_rate = ieee80211_get_rts_cts_rate(hw, tx_info)->hw_value; else if (rate_flag & IEEE80211_TX_RC_USE_CTS_PROTECT) rts_rate = ieee80211_get_rts_cts_rate(hw, tx_info)->hw_value; else rts_rate = 0; priv->fops->fill_txdesc(hw, hdr, tx_info, tx_desc, sgi, short_preamble, ampdu_enable, rts_rate); rtl8xxxu_calc_tx_desc_csum(tx_desc); usb_fill_bulk_urb(&tx_urb->urb, priv->udev, priv->pipe_out[queue], skb->data, skb->len, rtl8xxxu_tx_complete, skb); usb_anchor_urb(&tx_urb->urb, &priv->tx_anchor); ret = usb_submit_urb(&tx_urb->urb, GFP_ATOMIC); if (ret) { usb_unanchor_urb(&tx_urb->urb); rtl8xxxu_free_tx_urb(priv, tx_urb); goto error; } return; error: dev_kfree_skb(skb); } static void rtl8xxxu_rx_parse_phystats(struct rtl8xxxu_priv *priv, struct ieee80211_rx_status *rx_status, struct rtl8723au_phy_stats *phy_stats, u32 rxmcs, struct ieee80211_hdr *hdr, bool crc_icv_err) { if (phy_stats->sgi_en) rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; if (rxmcs < DESC_RATE_6M) { /* * Handle PHY stats for CCK rates */ u8 cck_agc_rpt = phy_stats->cck_agc_rpt_ofdm_cfosho_a; rx_status->signal = priv->fops->cck_rssi(priv, cck_agc_rpt); } else { bool parse_cfo = priv->fops->set_crystal_cap && priv->vif && priv->vif->type == NL80211_IFTYPE_STATION && priv->vif->cfg.assoc && !crc_icv_err && !ieee80211_is_ctl(hdr->frame_control) && ether_addr_equal(priv->vif->bss_conf.bssid, hdr->addr2); if (parse_cfo) { priv->cfo_tracking.cfo_tail[0] = phy_stats->path_cfotail[0]; priv->cfo_tracking.cfo_tail[1] = phy_stats->path_cfotail[1]; priv->cfo_tracking.packet_count++; } rx_status->signal = (phy_stats->cck_sig_qual_ofdm_pwdb_all >> 1) - 110; } } static void rtl8xxxu_free_rx_resources(struct rtl8xxxu_priv *priv) { struct rtl8xxxu_rx_urb *rx_urb, *tmp; unsigned long flags; spin_lock_irqsave(&priv->rx_urb_lock, flags); list_for_each_entry_safe(rx_urb, tmp, &priv->rx_urb_pending_list, list) { list_del(&rx_urb->list); priv->rx_urb_pending_count--; usb_free_urb(&rx_urb->urb); } spin_unlock_irqrestore(&priv->rx_urb_lock, flags); } static void rtl8xxxu_queue_rx_urb(struct rtl8xxxu_priv *priv, struct rtl8xxxu_rx_urb *rx_urb) { struct sk_buff *skb; unsigned long flags; int pending = 0; spin_lock_irqsave(&priv->rx_urb_lock, flags); if (!priv->shutdown) { list_add_tail(&rx_urb->list, &priv->rx_urb_pending_list); priv->rx_urb_pending_count++; pending = priv->rx_urb_pending_count; } else { skb = (struct sk_buff *)rx_urb->urb.context; dev_kfree_skb_irq(skb); usb_free_urb(&rx_urb->urb); } spin_unlock_irqrestore(&priv->rx_urb_lock, flags); if (pending > RTL8XXXU_RX_URB_PENDING_WATER) schedule_work(&priv->rx_urb_wq); } static void rtl8xxxu_rx_urb_work(struct work_struct *work) { struct rtl8xxxu_priv *priv; struct rtl8xxxu_rx_urb *rx_urb, *tmp; struct list_head local; struct sk_buff *skb; unsigned long flags; int ret; priv = container_of(work, struct rtl8xxxu_priv, rx_urb_wq); INIT_LIST_HEAD(&local); spin_lock_irqsave(&priv->rx_urb_lock, flags); list_splice_init(&priv->rx_urb_pending_list, &local); priv->rx_urb_pending_count = 0; spin_unlock_irqrestore(&priv->rx_urb_lock, flags); list_for_each_entry_safe(rx_urb, tmp, &local, list) { list_del_init(&rx_urb->list); ret = rtl8xxxu_submit_rx_urb(priv, rx_urb); /* * If out of memory or temporary error, put it back on the * queue and try again. Otherwise the device is dead/gone * and we should drop it. */ switch (ret) { case 0: break; case -ENOMEM: case -EAGAIN: rtl8xxxu_queue_rx_urb(priv, rx_urb); break; default: dev_warn(&priv->udev->dev, "failed to requeue urb with error %i\n", ret); skb = (struct sk_buff *)rx_urb->urb.context; dev_kfree_skb(skb); usb_free_urb(&rx_urb->urb); } } } /* * The RTL8723BU/RTL8192EU vendor driver use coexistence table type * 0-7 to represent writing different combinations of register values * to REG_BT_COEX_TABLEs. It's for different kinds of coexistence use * cases which Realtek doesn't provide detail for these settings. Keep * this aligned with vendor driver for easier maintenance. */ static void rtl8723bu_set_coex_with_type(struct rtl8xxxu_priv *priv, u8 type) { switch (type) { case 0: rtl8xxxu_write32(priv, REG_BT_COEX_TABLE1, 0x55555555); rtl8xxxu_write32(priv, REG_BT_COEX_TABLE2, 0x55555555); rtl8xxxu_write32(priv, REG_BT_COEX_TABLE3, 0x00ffffff); rtl8xxxu_write8(priv, REG_BT_COEX_TABLE4, 0x03); break; case 1: case 3: rtl8xxxu_write32(priv, REG_BT_COEX_TABLE1, 0x55555555); rtl8xxxu_write32(priv, REG_BT_COEX_TABLE2, 0x5a5a5a5a); rtl8xxxu_write32(priv, REG_BT_COEX_TABLE3, 0x00ffffff); rtl8xxxu_write8(priv, REG_BT_COEX_TABLE4, 0x03); break; case 2: rtl8xxxu_write32(priv, REG_BT_COEX_TABLE1, 0x5a5a5a5a); rtl8xxxu_write32(priv, REG_BT_COEX_TABLE2, 0x5a5a5a5a); rtl8xxxu_write32(priv, REG_BT_COEX_TABLE3, 0x00ffffff); rtl8xxxu_write8(priv, REG_BT_COEX_TABLE4, 0x03); break; case 4: rtl8xxxu_write32(priv, REG_BT_COEX_TABLE1, 0x5a5a5a5a); rtl8xxxu_write32(priv, REG_BT_COEX_TABLE2, 0xaaaa5a5a); rtl8xxxu_write32(priv, REG_BT_COEX_TABLE3, 0x00ffffff); rtl8xxxu_write8(priv, REG_BT_COEX_TABLE4, 0x03); break; case 5: rtl8xxxu_write32(priv, REG_BT_COEX_TABLE1, 0x5a5a5a5a); rtl8xxxu_write32(priv, REG_BT_COEX_TABLE2, 0xaa5a5a5a); rtl8xxxu_write32(priv, REG_BT_COEX_TABLE3, 0x00ffffff); rtl8xxxu_write8(priv, REG_BT_COEX_TABLE4, 0x03); break; case 6: rtl8xxxu_write32(priv, REG_BT_COEX_TABLE1, 0x55555555); rtl8xxxu_write32(priv, REG_BT_COEX_TABLE2, 0xaaaaaaaa); rtl8xxxu_write32(priv, REG_BT_COEX_TABLE3, 0x00ffffff); rtl8xxxu_write8(priv, REG_BT_COEX_TABLE4, 0x03); break; case 7: rtl8xxxu_write32(priv, REG_BT_COEX_TABLE1, 0xaaaaaaaa); rtl8xxxu_write32(priv, REG_BT_COEX_TABLE2, 0xaaaaaaaa); rtl8xxxu_write32(priv, REG_BT_COEX_TABLE3, 0x00ffffff); rtl8xxxu_write8(priv, REG_BT_COEX_TABLE4, 0x03); break; default: break; } } static void rtl8723bu_update_bt_link_info(struct rtl8xxxu_priv *priv, u8 bt_info) { struct rtl8xxxu_btcoex *btcoex = &priv->bt_coex; if (bt_info & BT_INFO_8723B_1ANT_B_INQ_PAGE) btcoex->c2h_bt_inquiry = true; else btcoex->c2h_bt_inquiry = false; if (!(bt_info & BT_INFO_8723B_1ANT_B_CONNECTION)) { btcoex->bt_status = BT_8723B_1ANT_STATUS_NON_CONNECTED_IDLE; btcoex->has_sco = false; btcoex->has_hid = false; btcoex->has_pan = false; btcoex->has_a2dp = false; } else { if ((bt_info & 0x1f) == BT_INFO_8723B_1ANT_B_CONNECTION) btcoex->bt_status = BT_8723B_1ANT_STATUS_CONNECTED_IDLE; else if ((bt_info & BT_INFO_8723B_1ANT_B_SCO_ESCO) || (bt_info & BT_INFO_8723B_1ANT_B_SCO_BUSY)) btcoex->bt_status = BT_8723B_1ANT_STATUS_SCO_BUSY; else if (bt_info & BT_INFO_8723B_1ANT_B_ACL_BUSY) btcoex->bt_status = BT_8723B_1ANT_STATUS_ACL_BUSY; else btcoex->bt_status = BT_8723B_1ANT_STATUS_MAX; if (bt_info & BT_INFO_8723B_1ANT_B_FTP) btcoex->has_pan = true; else btcoex->has_pan = false; if (bt_info & BT_INFO_8723B_1ANT_B_A2DP) btcoex->has_a2dp = true; else btcoex->has_a2dp = false; if (bt_info & BT_INFO_8723B_1ANT_B_HID) btcoex->has_hid = true; else btcoex->has_hid = false; if (bt_info & BT_INFO_8723B_1ANT_B_SCO_ESCO) btcoex->has_sco = true; else btcoex->has_sco = false; } if (!btcoex->has_a2dp && !btcoex->has_sco && !btcoex->has_pan && btcoex->has_hid) btcoex->hid_only = true; else btcoex->hid_only = false; if (!btcoex->has_sco && !btcoex->has_pan && !btcoex->has_hid && btcoex->has_a2dp) btcoex->has_a2dp = true; else btcoex->has_a2dp = false; if (btcoex->bt_status == BT_8723B_1ANT_STATUS_SCO_BUSY || btcoex->bt_status == BT_8723B_1ANT_STATUS_ACL_BUSY) btcoex->bt_busy = true; else btcoex->bt_busy = false; } static void rtl8723bu_handle_bt_inquiry(struct rtl8xxxu_priv *priv) { struct ieee80211_vif *vif; struct rtl8xxxu_btcoex *btcoex; bool wifi_connected; vif = priv->vif; btcoex = &priv->bt_coex; wifi_connected = (vif && vif->cfg.assoc); if (!wifi_connected) { rtl8723bu_set_ps_tdma(priv, 0x8, 0x0, 0x0, 0x0, 0x0); rtl8723bu_set_coex_with_type(priv, 0); } else if (btcoex->has_sco || btcoex->has_hid || btcoex->has_a2dp) { rtl8723bu_set_ps_tdma(priv, 0x61, 0x35, 0x3, 0x11, 0x11); rtl8723bu_set_coex_with_type(priv, 4); } else if (btcoex->has_pan) { rtl8723bu_set_ps_tdma(priv, 0x61, 0x3f, 0x3, 0x11, 0x11); rtl8723bu_set_coex_with_type(priv, 4); } else { rtl8723bu_set_ps_tdma(priv, 0x8, 0x0, 0x0, 0x0, 0x0); rtl8723bu_set_coex_with_type(priv, 7); } } static void rtl8723bu_handle_bt_info(struct rtl8xxxu_priv *priv) { struct ieee80211_vif *vif; struct rtl8xxxu_btcoex *btcoex; bool wifi_connected; vif = priv->vif; btcoex = &priv->bt_coex; wifi_connected = (vif && vif->cfg.assoc); if (wifi_connected) { u32 val32 = 0; u32 high_prio_tx = 0, high_prio_rx = 0; val32 = rtl8xxxu_read32(priv, 0x770); high_prio_tx = val32 & 0x0000ffff; high_prio_rx = (val32 & 0xffff0000) >> 16; if (btcoex->bt_busy) { if (btcoex->hid_only) { rtl8723bu_set_ps_tdma(priv, 0x61, 0x20, 0x3, 0x11, 0x11); rtl8723bu_set_coex_with_type(priv, 5); } else if (btcoex->a2dp_only) { rtl8723bu_set_ps_tdma(priv, 0x61, 0x35, 0x3, 0x11, 0x11); rtl8723bu_set_coex_with_type(priv, 4); } else if ((btcoex->has_a2dp && btcoex->has_pan) || (btcoex->has_hid && btcoex->has_a2dp && btcoex->has_pan)) { rtl8723bu_set_ps_tdma(priv, 0x51, 0x21, 0x3, 0x10, 0x10); rtl8723bu_set_coex_with_type(priv, 4); } else if (btcoex->has_hid && btcoex->has_a2dp) { rtl8723bu_set_ps_tdma(priv, 0x51, 0x21, 0x3, 0x10, 0x10); rtl8723bu_set_coex_with_type(priv, 3); } else { rtl8723bu_set_ps_tdma(priv, 0x61, 0x35, 0x3, 0x11, 0x11); rtl8723bu_set_coex_with_type(priv, 4); } } else { rtl8723bu_set_ps_tdma(priv, 0x8, 0x0, 0x0, 0x0, 0x0); if (high_prio_tx + high_prio_rx <= 60) rtl8723bu_set_coex_with_type(priv, 2); else rtl8723bu_set_coex_with_type(priv, 7); } } else { rtl8723bu_set_ps_tdma(priv, 0x8, 0x0, 0x0, 0x0, 0x0); rtl8723bu_set_coex_with_type(priv, 0); } } static void rtl8xxxu_c2hcmd_callback(struct work_struct *work) { struct rtl8xxxu_priv *priv; struct rtl8723bu_c2h *c2h; struct sk_buff *skb = NULL; u8 bt_info = 0; struct rtl8xxxu_btcoex *btcoex; struct rtl8xxxu_ra_report *rarpt; u8 bw; priv = container_of(work, struct rtl8xxxu_priv, c2hcmd_work); btcoex = &priv->bt_coex; rarpt = &priv->ra_report; while (!skb_queue_empty(&priv->c2hcmd_queue)) { skb = skb_dequeue(&priv->c2hcmd_queue); c2h = (struct rtl8723bu_c2h *)skb->data; switch (c2h->id) { case C2H_8723B_BT_INFO: bt_info = c2h->bt_info.bt_info; rtl8723bu_update_bt_link_info(priv, bt_info); if (btcoex->c2h_bt_inquiry) { rtl8723bu_handle_bt_inquiry(priv); break; } rtl8723bu_handle_bt_info(priv); break; case C2H_8723B_RA_REPORT: bw = rarpt->txrate.bw; if (skb->len >= offsetofend(typeof(*c2h), ra_report.bw)) { if (c2h->ra_report.bw == RTL8XXXU_CHANNEL_WIDTH_40) bw = RATE_INFO_BW_40; else bw = RATE_INFO_BW_20; } rtl8xxxu_update_ra_report(rarpt, c2h->ra_report.rate, c2h->ra_report.sgi, bw); break; default: break; } dev_kfree_skb(skb); } } static void rtl8723bu_handle_c2h(struct rtl8xxxu_priv *priv, struct sk_buff *skb) { struct rtl8723bu_c2h *c2h = (struct rtl8723bu_c2h *)skb->data; struct device *dev = &priv->udev->dev; int len; len = skb->len - 2; dev_dbg(dev, "C2H ID %02x seq %02x, len %02x source %02x\n", c2h->id, c2h->seq, len, c2h->bt_info.response_source); switch(c2h->id) { case C2H_8723B_BT_INFO: if (c2h->bt_info.response_source > BT_INFO_SRC_8723B_BT_ACTIVE_SEND) dev_dbg(dev, "C2H_BT_INFO WiFi only firmware\n"); else dev_dbg(dev, "C2H_BT_INFO BT/WiFi coexist firmware\n"); if (c2h->bt_info.bt_has_reset) dev_dbg(dev, "BT has been reset\n"); if (c2h->bt_info.tx_rx_mask) dev_dbg(dev, "BT TRx mask\n"); break; case C2H_8723B_BT_MP_INFO: dev_dbg(dev, "C2H_MP_INFO ext ID %02x, status %02x\n", c2h->bt_mp_info.ext_id, c2h->bt_mp_info.status); break; case C2H_8723B_RA_REPORT: dev_dbg(dev, "C2H RA RPT: rate %02x, unk %i, macid %02x, noise %i\n", c2h->ra_report.rate, c2h->ra_report.sgi, c2h->ra_report.macid, c2h->ra_report.noisy_state); break; default: dev_info(dev, "Unhandled C2H event %02x seq %02x\n", c2h->id, c2h->seq); print_hex_dump(KERN_INFO, "C2H content: ", DUMP_PREFIX_NONE, 16, 1, c2h->raw.payload, len, false); break; } skb_queue_tail(&priv->c2hcmd_queue, skb); schedule_work(&priv->c2hcmd_work); } static void rtl8188e_c2hcmd_callback(struct work_struct *work) { struct rtl8xxxu_priv *priv = container_of(work, struct rtl8xxxu_priv, c2hcmd_work); struct device *dev = &priv->udev->dev; struct sk_buff *skb = NULL; struct rtl8xxxu_rxdesc16 *rx_desc; while (!skb_queue_empty(&priv->c2hcmd_queue)) { skb = skb_dequeue(&priv->c2hcmd_queue); rx_desc = (struct rtl8xxxu_rxdesc16 *)(skb->data - sizeof(struct rtl8xxxu_rxdesc16)); switch (rx_desc->rpt_sel) { case 1: dev_dbg(dev, "C2H TX report type 1\n"); break; case 2: dev_dbg(dev, "C2H TX report type 2\n"); rtl8188e_handle_ra_tx_report2(priv, skb); break; case 3: dev_dbg(dev, "C2H USB interrupt report\n"); break; default: dev_warn(dev, "%s: rpt_sel should not be %d\n", __func__, rx_desc->rpt_sel); break; } dev_kfree_skb(skb); } } int rtl8xxxu_parse_rxdesc16(struct rtl8xxxu_priv *priv, struct sk_buff *skb) { struct ieee80211_hw *hw = priv->hw; struct ieee80211_rx_status *rx_status; struct rtl8xxxu_rxdesc16 *rx_desc; struct rtl8723au_phy_stats *phy_stats; struct sk_buff *next_skb = NULL; __le32 *_rx_desc_le; u32 *_rx_desc; int drvinfo_sz, desc_shift; int i, pkt_cnt, pkt_len, urb_len, pkt_offset; urb_len = skb->len; pkt_cnt = 0; if (urb_len < sizeof(struct rtl8xxxu_rxdesc16)) { kfree_skb(skb); return RX_TYPE_ERROR; } do { rx_desc = (struct rtl8xxxu_rxdesc16 *)skb->data; _rx_desc_le = (__le32 *)skb->data; _rx_desc = (u32 *)skb->data; for (i = 0; i < (sizeof(struct rtl8xxxu_rxdesc16) / sizeof(u32)); i++) _rx_desc[i] = le32_to_cpu(_rx_desc_le[i]); /* * Only read pkt_cnt from the header if we're parsing the * first packet */ if (!pkt_cnt) pkt_cnt = rx_desc->pkt_cnt; pkt_len = rx_desc->pktlen; drvinfo_sz = rx_desc->drvinfo_sz * 8; desc_shift = rx_desc->shift; pkt_offset = roundup(pkt_len + drvinfo_sz + desc_shift + sizeof(struct rtl8xxxu_rxdesc16), 128); /* * Only clone the skb if there's enough data at the end to * at least cover the rx descriptor */ if (pkt_cnt > 1 && urb_len >= (pkt_offset + sizeof(struct rtl8xxxu_rxdesc16))) next_skb = skb_clone(skb, GFP_ATOMIC); rx_status = IEEE80211_SKB_RXCB(skb); memset(rx_status, 0, sizeof(struct ieee80211_rx_status)); skb_pull(skb, sizeof(struct rtl8xxxu_rxdesc16)); if (rx_desc->rpt_sel) { skb_queue_tail(&priv->c2hcmd_queue, skb); schedule_work(&priv->c2hcmd_work); } else { phy_stats = (struct rtl8723au_phy_stats *)skb->data; skb_pull(skb, drvinfo_sz + desc_shift); skb_trim(skb, pkt_len); if (rx_desc->phy_stats) rtl8xxxu_rx_parse_phystats( priv, rx_status, phy_stats, rx_desc->rxmcs, (struct ieee80211_hdr *)skb->data, rx_desc->crc32 || rx_desc->icverr); rx_status->mactime = rx_desc->tsfl; rx_status->flag |= RX_FLAG_MACTIME_START; if (!rx_desc->swdec) rx_status->flag |= RX_FLAG_DECRYPTED; if (rx_desc->crc32) rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; if (rx_desc->bw) rx_status->bw = RATE_INFO_BW_40; if (rx_desc->rxht) { rx_status->encoding = RX_ENC_HT; rx_status->rate_idx = rx_desc->rxmcs - DESC_RATE_MCS0; } else { rx_status->rate_idx = rx_desc->rxmcs; } rx_status->freq = hw->conf.chandef.chan->center_freq; rx_status->band = hw->conf.chandef.chan->band; ieee80211_rx_irqsafe(hw, skb); } skb = next_skb; if (skb) skb_pull(next_skb, pkt_offset); pkt_cnt--; urb_len -= pkt_offset; next_skb = NULL; } while (skb && pkt_cnt > 0 && urb_len >= sizeof(struct rtl8xxxu_rxdesc16)); return RX_TYPE_DATA_PKT; } int rtl8xxxu_parse_rxdesc24(struct rtl8xxxu_priv *priv, struct sk_buff *skb) { struct ieee80211_hw *hw = priv->hw; struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); struct rtl8xxxu_rxdesc24 *rx_desc = (struct rtl8xxxu_rxdesc24 *)skb->data; struct rtl8723au_phy_stats *phy_stats; __le32 *_rx_desc_le = (__le32 *)skb->data; u32 *_rx_desc = (u32 *)skb->data; int drvinfo_sz, desc_shift; int i; for (i = 0; i < (sizeof(struct rtl8xxxu_rxdesc24) / sizeof(u32)); i++) _rx_desc[i] = le32_to_cpu(_rx_desc_le[i]); memset(rx_status, 0, sizeof(struct ieee80211_rx_status)); skb_pull(skb, sizeof(struct rtl8xxxu_rxdesc24)); phy_stats = (struct rtl8723au_phy_stats *)skb->data; drvinfo_sz = rx_desc->drvinfo_sz * 8; desc_shift = rx_desc->shift; skb_pull(skb, drvinfo_sz + desc_shift); if (rx_desc->rpt_sel) { struct device *dev = &priv->udev->dev; dev_dbg(dev, "%s: C2H packet\n", __func__); rtl8723bu_handle_c2h(priv, skb); return RX_TYPE_C2H; } if (rx_desc->phy_stats) rtl8xxxu_rx_parse_phystats(priv, rx_status, phy_stats, rx_desc->rxmcs, (struct ieee80211_hdr *)skb->data, rx_desc->crc32 || rx_desc->icverr); rx_status->mactime = rx_desc->tsfl; rx_status->flag |= RX_FLAG_MACTIME_START; if (!rx_desc->swdec) rx_status->flag |= RX_FLAG_DECRYPTED; if (rx_desc->crc32) rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; if (rx_desc->bw) rx_status->bw = RATE_INFO_BW_40; if (rx_desc->rxmcs >= DESC_RATE_MCS0) { rx_status->encoding = RX_ENC_HT; rx_status->rate_idx = rx_desc->rxmcs - DESC_RATE_MCS0; } else { rx_status->rate_idx = rx_desc->rxmcs; } rx_status->freq = hw->conf.chandef.chan->center_freq; rx_status->band = hw->conf.chandef.chan->band; ieee80211_rx_irqsafe(hw, skb); return RX_TYPE_DATA_PKT; } static void rtl8xxxu_rx_complete(struct urb *urb) { struct rtl8xxxu_rx_urb *rx_urb = container_of(urb, struct rtl8xxxu_rx_urb, urb); struct ieee80211_hw *hw = rx_urb->hw; struct rtl8xxxu_priv *priv = hw->priv; struct sk_buff *skb = (struct sk_buff *)urb->context; struct device *dev = &priv->udev->dev; skb_put(skb, urb->actual_length); if (urb->status == 0) { priv->fops->parse_rx_desc(priv, skb); skb = NULL; rx_urb->urb.context = NULL; rtl8xxxu_queue_rx_urb(priv, rx_urb); } else { dev_dbg(dev, "%s: status %i\n", __func__, urb->status); goto cleanup; } return; cleanup: usb_free_urb(urb); dev_kfree_skb(skb); return; } static int rtl8xxxu_submit_rx_urb(struct rtl8xxxu_priv *priv, struct rtl8xxxu_rx_urb *rx_urb) { struct rtl8xxxu_fileops *fops = priv->fops; struct sk_buff *skb; int skb_size; int ret, rx_desc_sz; rx_desc_sz = fops->rx_desc_size; if (priv->rx_buf_aggregation && fops->rx_agg_buf_size) { skb_size = fops->rx_agg_buf_size; skb_size += (rx_desc_sz + sizeof(struct rtl8723au_phy_stats)); } else { skb_size = IEEE80211_MAX_FRAME_LEN; } skb = __netdev_alloc_skb(NULL, skb_size, GFP_KERNEL); if (!skb) return -ENOMEM; memset(skb->data, 0, rx_desc_sz); usb_fill_bulk_urb(&rx_urb->urb, priv->udev, priv->pipe_in, skb->data, skb_size, rtl8xxxu_rx_complete, skb); usb_anchor_urb(&rx_urb->urb, &priv->rx_anchor); ret = usb_submit_urb(&rx_urb->urb, GFP_ATOMIC); if (ret) usb_unanchor_urb(&rx_urb->urb); return ret; } static void rtl8xxxu_int_complete(struct urb *urb) { struct rtl8xxxu_priv *priv = (struct rtl8xxxu_priv *)urb->context; struct device *dev = &priv->udev->dev; int ret; if (rtl8xxxu_debug & RTL8XXXU_DEBUG_INTERRUPT) dev_dbg(dev, "%s: status %i\n", __func__, urb->status); if (urb->status == 0) { usb_anchor_urb(urb, &priv->int_anchor); ret = usb_submit_urb(urb, GFP_ATOMIC); if (ret) usb_unanchor_urb(urb); } else { dev_dbg(dev, "%s: Error %i\n", __func__, urb->status); } } static int rtl8xxxu_submit_int_urb(struct ieee80211_hw *hw) { struct rtl8xxxu_priv *priv = hw->priv; struct urb *urb; u32 val32; int ret; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) return -ENOMEM; usb_fill_int_urb(urb, priv->udev, priv->pipe_interrupt, priv->int_buf, USB_INTR_CONTENT_LENGTH, rtl8xxxu_int_complete, priv, 1); usb_anchor_urb(urb, &priv->int_anchor); ret = usb_submit_urb(urb, GFP_KERNEL); if (ret) { usb_unanchor_urb(urb); goto error; } val32 = rtl8xxxu_read32(priv, REG_USB_HIMR); val32 |= USB_HIMR_CPWM; rtl8xxxu_write32(priv, REG_USB_HIMR, val32); error: usb_free_urb(urb); return ret; } static int rtl8xxxu_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct rtl8xxxu_priv *priv = hw->priv; int ret; u8 val8; switch (vif->type) { case NL80211_IFTYPE_STATION: if (!priv->vif) priv->vif = vif; else return -EOPNOTSUPP; rtl8xxxu_stop_tx_beacon(priv); val8 = rtl8xxxu_read8(priv, REG_BEACON_CTRL); val8 |= BEACON_ATIM | BEACON_FUNCTION_ENABLE | BEACON_DISABLE_TSF_UPDATE; rtl8xxxu_write8(priv, REG_BEACON_CTRL, val8); ret = 0; break; default: ret = -EOPNOTSUPP; } rtl8xxxu_set_linktype(priv, vif->type); return ret; } static void rtl8xxxu_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct rtl8xxxu_priv *priv = hw->priv; dev_dbg(&priv->udev->dev, "%s\n", __func__); if (priv->vif) priv->vif = NULL; } static int rtl8xxxu_config(struct ieee80211_hw *hw, u32 changed) { struct rtl8xxxu_priv *priv = hw->priv; struct device *dev = &priv->udev->dev; int ret = 0, channel; bool ht40; if (rtl8xxxu_debug & RTL8XXXU_DEBUG_CHANNEL) dev_info(dev, "%s: channel: %i (changed %08x chandef.width %02x)\n", __func__, hw->conf.chandef.chan->hw_value, changed, hw->conf.chandef.width); if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { switch (hw->conf.chandef.width) { case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: ht40 = false; break; case NL80211_CHAN_WIDTH_40: ht40 = true; break; default: ret = -ENOTSUPP; goto exit; } channel = hw->conf.chandef.chan->hw_value; priv->fops->set_tx_power(priv, channel, ht40); priv->fops->config_channel(hw); } exit: return ret; } static int rtl8xxxu_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, unsigned int link_id, u16 queue, const struct ieee80211_tx_queue_params *param) { struct rtl8xxxu_priv *priv = hw->priv; struct device *dev = &priv->udev->dev; u32 val32; u8 aifs, acm_ctrl, acm_bit; aifs = param->aifs; val32 = aifs | fls(param->cw_min) << EDCA_PARAM_ECW_MIN_SHIFT | fls(param->cw_max) << EDCA_PARAM_ECW_MAX_SHIFT | (u32)param->txop << EDCA_PARAM_TXOP_SHIFT; acm_ctrl = rtl8xxxu_read8(priv, REG_ACM_HW_CTRL); dev_dbg(dev, "%s: IEEE80211 queue %02x val %08x, acm %i, acm_ctrl %02x\n", __func__, queue, val32, param->acm, acm_ctrl); switch (queue) { case IEEE80211_AC_VO: acm_bit = ACM_HW_CTRL_VO; rtl8xxxu_write32(priv, REG_EDCA_VO_PARAM, val32); break; case IEEE80211_AC_VI: acm_bit = ACM_HW_CTRL_VI; rtl8xxxu_write32(priv, REG_EDCA_VI_PARAM, val32); break; case IEEE80211_AC_BE: acm_bit = ACM_HW_CTRL_BE; rtl8xxxu_write32(priv, REG_EDCA_BE_PARAM, val32); break; case IEEE80211_AC_BK: acm_bit = ACM_HW_CTRL_BK; rtl8xxxu_write32(priv, REG_EDCA_BK_PARAM, val32); break; default: acm_bit = 0; break; } if (param->acm) acm_ctrl |= acm_bit; else acm_ctrl &= ~acm_bit; rtl8xxxu_write8(priv, REG_ACM_HW_CTRL, acm_ctrl); return 0; } static void rtl8xxxu_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct rtl8xxxu_priv *priv = hw->priv; u32 rcr = rtl8xxxu_read32(priv, REG_RCR); dev_dbg(&priv->udev->dev, "%s: changed_flags %08x, total_flags %08x\n", __func__, changed_flags, *total_flags); /* * FIF_ALLMULTI ignored as all multicast frames are accepted (REG_MAR) */ if (*total_flags & FIF_FCSFAIL) rcr |= RCR_ACCEPT_CRC32; else rcr &= ~RCR_ACCEPT_CRC32; /* * FIF_PLCPFAIL not supported? */ if (*total_flags & FIF_BCN_PRBRESP_PROMISC) rcr &= ~RCR_CHECK_BSSID_BEACON; else rcr |= RCR_CHECK_BSSID_BEACON; if (*total_flags & FIF_CONTROL) rcr |= RCR_ACCEPT_CTRL_FRAME; else rcr &= ~RCR_ACCEPT_CTRL_FRAME; if (*total_flags & FIF_OTHER_BSS) { rcr |= RCR_ACCEPT_AP; rcr &= ~RCR_CHECK_BSSID_MATCH; } else { rcr &= ~RCR_ACCEPT_AP; rcr |= RCR_CHECK_BSSID_MATCH; } if (*total_flags & FIF_PSPOLL) rcr |= RCR_ACCEPT_PM; else rcr &= ~RCR_ACCEPT_PM; /* * FIF_PROBE_REQ ignored as probe requests always seem to be accepted */ rtl8xxxu_write32(priv, REG_RCR, rcr); *total_flags &= (FIF_ALLMULTI | FIF_FCSFAIL | FIF_BCN_PRBRESP_PROMISC | FIF_CONTROL | FIF_OTHER_BSS | FIF_PSPOLL | FIF_PROBE_REQ); } static int rtl8xxxu_set_rts_threshold(struct ieee80211_hw *hw, u32 rts) { if (rts > 2347) return -EINVAL; return 0; } static int rtl8xxxu_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct rtl8xxxu_priv *priv = hw->priv; struct device *dev = &priv->udev->dev; u8 mac_addr[ETH_ALEN]; u8 val8; u16 val16; u32 val32; int retval = -EOPNOTSUPP; dev_dbg(dev, "%s: cmd %02x, cipher %08x, index %i\n", __func__, cmd, key->cipher, key->keyidx); if (vif->type != NL80211_IFTYPE_STATION) return -EOPNOTSUPP; if (key->keyidx > 3) return -EOPNOTSUPP; switch (key->cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: break; case WLAN_CIPHER_SUITE_CCMP: key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX; break; case WLAN_CIPHER_SUITE_TKIP: key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; break; default: return -EOPNOTSUPP; } if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) { dev_dbg(dev, "%s: pairwise key\n", __func__); ether_addr_copy(mac_addr, sta->addr); } else { dev_dbg(dev, "%s: group key\n", __func__); eth_broadcast_addr(mac_addr); } val16 = rtl8xxxu_read16(priv, REG_CR); val16 |= CR_SECURITY_ENABLE; rtl8xxxu_write16(priv, REG_CR, val16); val8 = SEC_CFG_TX_SEC_ENABLE | SEC_CFG_TXBC_USE_DEFKEY | SEC_CFG_RX_SEC_ENABLE | SEC_CFG_RXBC_USE_DEFKEY; val8 |= SEC_CFG_TX_USE_DEFKEY | SEC_CFG_RX_USE_DEFKEY; rtl8xxxu_write8(priv, REG_SECURITY_CFG, val8); switch (cmd) { case SET_KEY: key->hw_key_idx = key->keyidx; key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; rtl8xxxu_cam_write(priv, key, mac_addr); retval = 0; break; case DISABLE_KEY: rtl8xxxu_write32(priv, REG_CAM_WRITE, 0x00000000); val32 = CAM_CMD_POLLING | CAM_CMD_WRITE | key->keyidx << CAM_CMD_KEY_SHIFT; rtl8xxxu_write32(priv, REG_CAM_CMD, val32); retval = 0; break; default: dev_warn(dev, "%s: Unsupported command %02x\n", __func__, cmd); } return retval; } static int rtl8xxxu_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) { struct rtl8xxxu_priv *priv = hw->priv; struct device *dev = &priv->udev->dev; u8 ampdu_factor, ampdu_density; struct ieee80211_sta *sta = params->sta; u16 tid = params->tid; enum ieee80211_ampdu_mlme_action action = params->action; switch (action) { case IEEE80211_AMPDU_TX_START: dev_dbg(dev, "%s: IEEE80211_AMPDU_TX_START\n", __func__); ampdu_factor = sta->deflink.ht_cap.ampdu_factor; ampdu_density = sta->deflink.ht_cap.ampdu_density; rtl8xxxu_set_ampdu_factor(priv, ampdu_factor); rtl8xxxu_set_ampdu_min_space(priv, ampdu_density); dev_dbg(dev, "Changed HT: ampdu_factor %02x, ampdu_density %02x\n", ampdu_factor, ampdu_density); return IEEE80211_AMPDU_TX_START_IMMEDIATE; case IEEE80211_AMPDU_TX_STOP_CONT: case IEEE80211_AMPDU_TX_STOP_FLUSH: case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: dev_dbg(dev, "%s: IEEE80211_AMPDU_TX_STOP\n", __func__); rtl8xxxu_set_ampdu_factor(priv, 0); rtl8xxxu_set_ampdu_min_space(priv, 0); clear_bit(tid, priv->tx_aggr_started); clear_bit(tid, priv->tid_tx_operational); ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; case IEEE80211_AMPDU_TX_OPERATIONAL: dev_dbg(dev, "%s: IEEE80211_AMPDU_TX_OPERATIONAL\n", __func__); set_bit(tid, priv->tid_tx_operational); break; case IEEE80211_AMPDU_RX_START: dev_dbg(dev, "%s: IEEE80211_AMPDU_RX_START\n", __func__); break; case IEEE80211_AMPDU_RX_STOP: dev_dbg(dev, "%s: IEEE80211_AMPDU_RX_STOP\n", __func__); break; default: break; } return 0; } static void rtl8xxxu_sta_statistics(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct station_info *sinfo) { struct rtl8xxxu_priv *priv = hw->priv; sinfo->txrate = priv->ra_report.txrate; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); } static u8 rtl8xxxu_signal_to_snr(int signal) { if (signal < RTL8XXXU_NOISE_FLOOR_MIN) signal = RTL8XXXU_NOISE_FLOOR_MIN; else if (signal > 0) signal = 0; return (u8)(signal - RTL8XXXU_NOISE_FLOOR_MIN); } static void rtl8xxxu_refresh_rate_mask(struct rtl8xxxu_priv *priv, int signal, struct ieee80211_sta *sta) { struct ieee80211_hw *hw = priv->hw; u16 wireless_mode; u8 rssi_level, ratr_idx; u8 txbw_40mhz; u8 snr, snr_thresh_high, snr_thresh_low; u8 go_up_gap = 5; rssi_level = priv->rssi_level; snr = rtl8xxxu_signal_to_snr(signal); snr_thresh_high = RTL8XXXU_SNR_THRESH_HIGH; snr_thresh_low = RTL8XXXU_SNR_THRESH_LOW; txbw_40mhz = (hw->conf.chandef.width == NL80211_CHAN_WIDTH_40) ? 1 : 0; switch (rssi_level) { case RTL8XXXU_RATR_STA_MID: snr_thresh_high += go_up_gap; break; case RTL8XXXU_RATR_STA_LOW: snr_thresh_high += go_up_gap; snr_thresh_low += go_up_gap; break; default: break; } if (snr > snr_thresh_high) rssi_level = RTL8XXXU_RATR_STA_HIGH; else if (snr > snr_thresh_low) rssi_level = RTL8XXXU_RATR_STA_MID; else rssi_level = RTL8XXXU_RATR_STA_LOW; if (rssi_level != priv->rssi_level) { int sgi = 0; u32 rate_bitmap = 0; rcu_read_lock(); rate_bitmap = (sta->deflink.supp_rates[0] & 0xfff) | (sta->deflink.ht_cap.mcs.rx_mask[0] << 12) | (sta->deflink.ht_cap.mcs.rx_mask[1] << 20); if (sta->deflink.ht_cap.cap & (IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_SGI_20)) sgi = 1; rcu_read_unlock(); wireless_mode = rtl8xxxu_wireless_mode(hw, sta); switch (wireless_mode) { case WIRELESS_MODE_B: ratr_idx = RATEID_IDX_B; if (rate_bitmap & 0x0000000c) rate_bitmap &= 0x0000000d; else rate_bitmap &= 0x0000000f; break; case WIRELESS_MODE_A: case WIRELESS_MODE_G: ratr_idx = RATEID_IDX_G; if (rssi_level == RTL8XXXU_RATR_STA_HIGH) rate_bitmap &= 0x00000f00; else rate_bitmap &= 0x00000ff0; break; case (WIRELESS_MODE_B | WIRELESS_MODE_G): ratr_idx = RATEID_IDX_BG; if (rssi_level == RTL8XXXU_RATR_STA_HIGH) rate_bitmap &= 0x00000f00; else if (rssi_level == RTL8XXXU_RATR_STA_MID) rate_bitmap &= 0x00000ff0; else rate_bitmap &= 0x00000ff5; break; case WIRELESS_MODE_N_24G: case WIRELESS_MODE_N_5G: case (WIRELESS_MODE_G | WIRELESS_MODE_N_24G): case (WIRELESS_MODE_A | WIRELESS_MODE_N_5G): if (priv->tx_paths == 2 && priv->rx_paths == 2) ratr_idx = RATEID_IDX_GN_N2SS; else ratr_idx = RATEID_IDX_GN_N1SS; break; case (WIRELESS_MODE_B | WIRELESS_MODE_G | WIRELESS_MODE_N_24G): case (WIRELESS_MODE_B | WIRELESS_MODE_N_24G): if (txbw_40mhz) { if (priv->tx_paths == 2 && priv->rx_paths == 2) ratr_idx = RATEID_IDX_BGN_40M_2SS; else ratr_idx = RATEID_IDX_BGN_40M_1SS; } else { if (priv->tx_paths == 2 && priv->rx_paths == 2) ratr_idx = RATEID_IDX_BGN_20M_2SS_BN; else ratr_idx = RATEID_IDX_BGN_20M_1SS_BN; } if (priv->tx_paths == 2 && priv->rx_paths == 2) { if (rssi_level == RTL8XXXU_RATR_STA_HIGH) { rate_bitmap &= 0x0f8f0000; } else if (rssi_level == RTL8XXXU_RATR_STA_MID) { rate_bitmap &= 0x0f8ff000; } else { if (txbw_40mhz) rate_bitmap &= 0x0f8ff015; else rate_bitmap &= 0x0f8ff005; } } else { if (rssi_level == RTL8XXXU_RATR_STA_HIGH) { rate_bitmap &= 0x000f0000; } else if (rssi_level == RTL8XXXU_RATR_STA_MID) { rate_bitmap &= 0x000ff000; } else { if (txbw_40mhz) rate_bitmap &= 0x000ff015; else rate_bitmap &= 0x000ff005; } } break; default: ratr_idx = RATEID_IDX_BGN_40M_2SS; rate_bitmap &= 0x0fffffff; break; } priv->rssi_level = rssi_level; priv->fops->update_rate_mask(priv, rate_bitmap, ratr_idx, sgi, txbw_40mhz); } } static void rtl8xxxu_set_atc_status(struct rtl8xxxu_priv *priv, bool atc_status) { struct rtl8xxxu_cfo_tracking *cfo = &priv->cfo_tracking; u32 val32; if (atc_status == cfo->atc_status) return; cfo->atc_status = atc_status; val32 = rtl8xxxu_read32(priv, REG_OFDM1_CFO_TRACKING); if (atc_status) val32 |= CFO_TRACKING_ATC_STATUS; else val32 &= ~CFO_TRACKING_ATC_STATUS; rtl8xxxu_write32(priv, REG_OFDM1_CFO_TRACKING, val32); } /* Central frequency offset correction */ static void rtl8xxxu_track_cfo(struct rtl8xxxu_priv *priv) { struct rtl8xxxu_cfo_tracking *cfo = &priv->cfo_tracking; int cfo_khz_a, cfo_khz_b, cfo_average; int crystal_cap; if (!priv->vif || !priv->vif->cfg.assoc) { /* Reset */ cfo->adjust = true; if (cfo->crystal_cap > priv->default_crystal_cap) priv->fops->set_crystal_cap(priv, cfo->crystal_cap - 1); else if (cfo->crystal_cap < priv->default_crystal_cap) priv->fops->set_crystal_cap(priv, cfo->crystal_cap + 1); rtl8xxxu_set_atc_status(priv, true); return; } if (cfo->packet_count == cfo->packet_count_pre) /* No new information. */ return; cfo->packet_count_pre = cfo->packet_count; /* CFO_tail[1:0] is S(8,7), (num_subcarrier>>7) x 312.5K = CFO value(K Hz) */ cfo_khz_a = (int)((cfo->cfo_tail[0] * 3125) / 10) >> 7; cfo_khz_b = (int)((cfo->cfo_tail[1] * 3125) / 10) >> 7; if (priv->tx_paths == 1) cfo_average = cfo_khz_a; else cfo_average = (cfo_khz_a + cfo_khz_b) / 2; dev_dbg(&priv->udev->dev, "cfo_average: %d\n", cfo_average); if (cfo->adjust) { if (abs(cfo_average) < CFO_TH_XTAL_LOW) cfo->adjust = false; } else { if (abs(cfo_average) > CFO_TH_XTAL_HIGH) cfo->adjust = true; } /* * TODO: We should return here only if bluetooth is enabled. * See the vendor drivers for how to determine that. */ if (priv->has_bluetooth) return; if (!cfo->adjust) return; crystal_cap = cfo->crystal_cap; if (cfo_average > CFO_TH_XTAL_LOW) crystal_cap++; else if (cfo_average < -CFO_TH_XTAL_LOW) crystal_cap--; crystal_cap = clamp(crystal_cap, 0, 0x3f); priv->fops->set_crystal_cap(priv, crystal_cap); rtl8xxxu_set_atc_status(priv, abs(cfo_average) >= CFO_TH_ATC); } static void rtl8xxxu_watchdog_callback(struct work_struct *work) { struct ieee80211_vif *vif; struct rtl8xxxu_priv *priv; priv = container_of(work, struct rtl8xxxu_priv, ra_watchdog.work); vif = priv->vif; if (vif && vif->type == NL80211_IFTYPE_STATION) { int signal; struct ieee80211_sta *sta; rcu_read_lock(); sta = ieee80211_find_sta(vif, vif->bss_conf.bssid); if (!sta) { struct device *dev = &priv->udev->dev; dev_dbg(dev, "%s: no sta found\n", __func__); rcu_read_unlock(); goto out; } rcu_read_unlock(); signal = ieee80211_ave_rssi(vif); priv->fops->report_rssi(priv, 0, rtl8xxxu_signal_to_snr(signal)); if (priv->fops->set_crystal_cap) rtl8xxxu_track_cfo(priv); rtl8xxxu_refresh_rate_mask(priv, signal, sta); } out: schedule_delayed_work(&priv->ra_watchdog, 2 * HZ); } static int rtl8xxxu_start(struct ieee80211_hw *hw) { struct rtl8xxxu_priv *priv = hw->priv; struct rtl8xxxu_rx_urb *rx_urb; struct rtl8xxxu_tx_urb *tx_urb; struct sk_buff *skb; unsigned long flags; int ret, i; ret = 0; init_usb_anchor(&priv->rx_anchor); init_usb_anchor(&priv->tx_anchor); init_usb_anchor(&priv->int_anchor); priv->fops->enable_rf(priv); if (priv->usb_interrupts) { ret = rtl8xxxu_submit_int_urb(hw); if (ret) goto exit; } for (i = 0; i < RTL8XXXU_TX_URBS; i++) { tx_urb = kmalloc(sizeof(struct rtl8xxxu_tx_urb), GFP_KERNEL); if (!tx_urb) { if (!i) ret = -ENOMEM; goto error_out; } usb_init_urb(&tx_urb->urb); INIT_LIST_HEAD(&tx_urb->list); tx_urb->hw = hw; list_add(&tx_urb->list, &priv->tx_urb_free_list); priv->tx_urb_free_count++; } priv->tx_stopped = false; spin_lock_irqsave(&priv->rx_urb_lock, flags); priv->shutdown = false; spin_unlock_irqrestore(&priv->rx_urb_lock, flags); for (i = 0; i < RTL8XXXU_RX_URBS; i++) { rx_urb = kmalloc(sizeof(struct rtl8xxxu_rx_urb), GFP_KERNEL); if (!rx_urb) { if (!i) ret = -ENOMEM; goto error_out; } usb_init_urb(&rx_urb->urb); INIT_LIST_HEAD(&rx_urb->list); rx_urb->hw = hw; ret = rtl8xxxu_submit_rx_urb(priv, rx_urb); if (ret) { if (ret != -ENOMEM) { skb = (struct sk_buff *)rx_urb->urb.context; dev_kfree_skb(skb); } rtl8xxxu_queue_rx_urb(priv, rx_urb); } } schedule_delayed_work(&priv->ra_watchdog, 2 * HZ); exit: /* * Accept all data and mgmt frames */ rtl8xxxu_write16(priv, REG_RXFLTMAP2, 0xffff); rtl8xxxu_write16(priv, REG_RXFLTMAP0, 0xffff); if (priv->rtl_chip == RTL8188E) rtl8xxxu_write32(priv, REG_OFDM0_XA_AGC_CORE1, 0x6955341e); else rtl8xxxu_write32(priv, REG_OFDM0_XA_AGC_CORE1, 0x6954341e); return ret; error_out: rtl8xxxu_free_tx_resources(priv); /* * Disable all data and mgmt frames */ rtl8xxxu_write16(priv, REG_RXFLTMAP2, 0x0000); rtl8xxxu_write16(priv, REG_RXFLTMAP0, 0x0000); return ret; } static void rtl8xxxu_stop(struct ieee80211_hw *hw) { struct rtl8xxxu_priv *priv = hw->priv; unsigned long flags; rtl8xxxu_write8(priv, REG_TXPAUSE, 0xff); rtl8xxxu_write16(priv, REG_RXFLTMAP0, 0x0000); rtl8xxxu_write16(priv, REG_RXFLTMAP2, 0x0000); spin_lock_irqsave(&priv->rx_urb_lock, flags); priv->shutdown = true; spin_unlock_irqrestore(&priv->rx_urb_lock, flags); usb_kill_anchored_urbs(&priv->rx_anchor); usb_kill_anchored_urbs(&priv->tx_anchor); if (priv->usb_interrupts) usb_kill_anchored_urbs(&priv->int_anchor); rtl8xxxu_write8(priv, REG_TXPAUSE, 0xff); priv->fops->disable_rf(priv); /* * Disable interrupts */ if (priv->usb_interrupts) rtl8xxxu_write32(priv, REG_USB_HIMR, 0); cancel_delayed_work_sync(&priv->ra_watchdog); rtl8xxxu_free_rx_resources(priv); rtl8xxxu_free_tx_resources(priv); } static const struct ieee80211_ops rtl8xxxu_ops = { .tx = rtl8xxxu_tx, .wake_tx_queue = ieee80211_handle_wake_tx_queue, .add_interface = rtl8xxxu_add_interface, .remove_interface = rtl8xxxu_remove_interface, .config = rtl8xxxu_config, .conf_tx = rtl8xxxu_conf_tx, .bss_info_changed = rtl8xxxu_bss_info_changed, .configure_filter = rtl8xxxu_configure_filter, .set_rts_threshold = rtl8xxxu_set_rts_threshold, .start = rtl8xxxu_start, .stop = rtl8xxxu_stop, .sw_scan_start = rtl8xxxu_sw_scan_start, .sw_scan_complete = rtl8xxxu_sw_scan_complete, .set_key = rtl8xxxu_set_key, .ampdu_action = rtl8xxxu_ampdu_action, .sta_statistics = rtl8xxxu_sta_statistics, .get_antenna = rtl8xxxu_get_antenna, }; static int rtl8xxxu_parse_usb(struct rtl8xxxu_priv *priv, struct usb_interface *interface) { struct usb_interface_descriptor *interface_desc; struct usb_host_interface *host_interface; struct usb_endpoint_descriptor *endpoint; struct device *dev = &priv->udev->dev; int i, j = 0, endpoints; u8 dir, xtype, num; int ret = 0; host_interface = interface->cur_altsetting; interface_desc = &host_interface->desc; endpoints = interface_desc->bNumEndpoints; for (i = 0; i < endpoints; i++) { endpoint = &host_interface->endpoint[i].desc; dir = endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK; num = usb_endpoint_num(endpoint); xtype = usb_endpoint_type(endpoint); if (rtl8xxxu_debug & RTL8XXXU_DEBUG_USB) dev_dbg(dev, "%s: endpoint: dir %02x, # %02x, type %02x\n", __func__, dir, num, xtype); if (usb_endpoint_dir_in(endpoint) && usb_endpoint_xfer_bulk(endpoint)) { if (rtl8xxxu_debug & RTL8XXXU_DEBUG_USB) dev_dbg(dev, "%s: in endpoint num %i\n", __func__, num); if (priv->pipe_in) { dev_warn(dev, "%s: Too many IN pipes\n", __func__); ret = -EINVAL; goto exit; } priv->pipe_in = usb_rcvbulkpipe(priv->udev, num); } if (usb_endpoint_dir_in(endpoint) && usb_endpoint_xfer_int(endpoint)) { if (rtl8xxxu_debug & RTL8XXXU_DEBUG_USB) dev_dbg(dev, "%s: interrupt endpoint num %i\n", __func__, num); if (priv->pipe_interrupt) { dev_warn(dev, "%s: Too many INTERRUPT pipes\n", __func__); ret = -EINVAL; goto exit; } priv->pipe_interrupt = usb_rcvintpipe(priv->udev, num); } if (usb_endpoint_dir_out(endpoint) && usb_endpoint_xfer_bulk(endpoint)) { if (rtl8xxxu_debug & RTL8XXXU_DEBUG_USB) dev_dbg(dev, "%s: out endpoint num %i\n", __func__, num); if (j >= RTL8XXXU_OUT_ENDPOINTS) { dev_warn(dev, "%s: Too many OUT pipes\n", __func__); ret = -EINVAL; goto exit; } priv->out_ep[j++] = num; } } exit: priv->nr_out_eps = j; return ret; } static void rtl8xxxu_init_led(struct rtl8xxxu_priv *priv) { struct led_classdev *led = &priv->led_cdev; if (!priv->fops->led_classdev_brightness_set) return; led->brightness_set_blocking = priv->fops->led_classdev_brightness_set; snprintf(priv->led_name, sizeof(priv->led_name), "rtl8xxxu-usb%s", dev_name(&priv->udev->dev)); led->name = priv->led_name; led->max_brightness = RTL8XXXU_HW_LED_CONTROL; if (led_classdev_register(&priv->udev->dev, led)) return; priv->led_registered = true; led->brightness = led->max_brightness; priv->fops->led_classdev_brightness_set(led, led->brightness); } static void rtl8xxxu_deinit_led(struct rtl8xxxu_priv *priv) { struct led_classdev *led = &priv->led_cdev; if (!priv->led_registered) return; priv->fops->led_classdev_brightness_set(led, LED_OFF); led_classdev_unregister(led); } static int rtl8xxxu_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct rtl8xxxu_priv *priv; struct ieee80211_hw *hw; struct usb_device *udev; struct ieee80211_supported_band *sband; int ret; int untested = 1; udev = usb_get_dev(interface_to_usbdev(interface)); switch (id->idVendor) { case USB_VENDOR_ID_REALTEK: switch(id->idProduct) { case 0x1724: case 0x8176: case 0x8178: case 0x817f: case 0x818b: case 0xf179: case 0x8179: untested = 0; break; } break; case 0x7392: if (id->idProduct == 0x7811 || id->idProduct == 0xa611) untested = 0; break; case 0x050d: if (id->idProduct == 0x1004) untested = 0; break; case 0x20f4: if (id->idProduct == 0x648b) untested = 0; break; case 0x2001: if (id->idProduct == 0x3308) untested = 0; break; case 0x2357: if (id->idProduct == 0x0109) untested = 0; break; default: break; } if (untested) { rtl8xxxu_debug |= RTL8XXXU_DEBUG_EFUSE; dev_info(&udev->dev, "This Realtek USB WiFi dongle (0x%04x:0x%04x) is untested!\n", id->idVendor, id->idProduct); dev_info(&udev->dev, "Please report results to Jes.Sorensen@gmail.com\n"); } hw = ieee80211_alloc_hw(sizeof(struct rtl8xxxu_priv), &rtl8xxxu_ops); if (!hw) { ret = -ENOMEM; goto err_put_dev; } priv = hw->priv; priv->hw = hw; priv->udev = udev; priv->fops = (struct rtl8xxxu_fileops *)id->driver_info; mutex_init(&priv->usb_buf_mutex); mutex_init(&priv->h2c_mutex); INIT_LIST_HEAD(&priv->tx_urb_free_list); spin_lock_init(&priv->tx_urb_lock); INIT_LIST_HEAD(&priv->rx_urb_pending_list); spin_lock_init(&priv->rx_urb_lock); INIT_WORK(&priv->rx_urb_wq, rtl8xxxu_rx_urb_work); INIT_DELAYED_WORK(&priv->ra_watchdog, rtl8xxxu_watchdog_callback); skb_queue_head_init(&priv->c2hcmd_queue); usb_set_intfdata(interface, hw); ret = rtl8xxxu_parse_usb(priv, interface); if (ret) goto err_set_intfdata; ret = priv->fops->identify_chip(priv); if (ret) { dev_err(&udev->dev, "Fatal - failed to identify chip\n"); goto err_set_intfdata; } hw->wiphy->available_antennas_tx = BIT(priv->tx_paths) - 1; hw->wiphy->available_antennas_rx = BIT(priv->rx_paths) - 1; if (priv->rtl_chip == RTL8188E) INIT_WORK(&priv->c2hcmd_work, rtl8188e_c2hcmd_callback); else INIT_WORK(&priv->c2hcmd_work, rtl8xxxu_c2hcmd_callback); ret = rtl8xxxu_read_efuse(priv); if (ret) { dev_err(&udev->dev, "Fatal - failed to read EFuse\n"); goto err_set_intfdata; } ret = priv->fops->parse_efuse(priv); if (ret) { dev_err(&udev->dev, "Fatal - failed to parse EFuse\n"); goto err_set_intfdata; } if (rtl8xxxu_debug & RTL8XXXU_DEBUG_EFUSE) rtl8xxxu_dump_efuse(priv); rtl8xxxu_print_chipinfo(priv); ret = priv->fops->load_firmware(priv); if (ret) { dev_err(&udev->dev, "Fatal - failed to load firmware\n"); goto err_set_intfdata; } ret = rtl8xxxu_init_device(hw); if (ret) goto err_set_intfdata; hw->wiphy->max_scan_ssids = 1; hw->wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN; hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); hw->queues = 4; sband = &rtl8xxxu_supported_band; sband->ht_cap.ht_supported = true; sband->ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; sband->ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_16; sband->ht_cap.cap = IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_SGI_40; memset(&sband->ht_cap.mcs, 0, sizeof(sband->ht_cap.mcs)); sband->ht_cap.mcs.rx_mask[0] = 0xff; sband->ht_cap.mcs.rx_mask[4] = 0x01; if (priv->rf_paths > 1) { sband->ht_cap.mcs.rx_mask[1] = 0xff; sband->ht_cap.cap |= IEEE80211_HT_CAP_SGI_40; } sband->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; /* * Some APs will negotiate HT20_40 in a noisy environment leading * to miserable performance. Rather than defaulting to this, only * enable it if explicitly requested at module load time. */ if (rtl8xxxu_ht40_2g) { dev_info(&udev->dev, "Enabling HT_20_40 on the 2.4GHz band\n"); sband->ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; } hw->wiphy->bands[NL80211_BAND_2GHZ] = sband; hw->wiphy->rts_threshold = 2347; SET_IEEE80211_DEV(priv->hw, &interface->dev); SET_IEEE80211_PERM_ADDR(hw, priv->mac_addr); hw->extra_tx_headroom = priv->fops->tx_desc_size; ieee80211_hw_set(hw, SIGNAL_DBM); /* * The firmware handles rate control, except for RTL8188EU, * where we handle the rate control in the driver. */ ieee80211_hw_set(hw, HAS_RATE_CONTROL); ieee80211_hw_set(hw, SUPPORT_FAST_XMIT); ieee80211_hw_set(hw, AMPDU_AGGREGATION); wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); ret = ieee80211_register_hw(priv->hw); if (ret) { dev_err(&udev->dev, "%s: Failed to register: %i\n", __func__, ret); goto err_set_intfdata; } rtl8xxxu_init_led(priv); return 0; err_set_intfdata: usb_set_intfdata(interface, NULL); kfree(priv->fw_data); mutex_destroy(&priv->usb_buf_mutex); mutex_destroy(&priv->h2c_mutex); ieee80211_free_hw(hw); err_put_dev: usb_put_dev(udev); return ret; } static void rtl8xxxu_disconnect(struct usb_interface *interface) { struct rtl8xxxu_priv *priv; struct ieee80211_hw *hw; hw = usb_get_intfdata(interface); priv = hw->priv; rtl8xxxu_deinit_led(priv); ieee80211_unregister_hw(hw); priv->fops->power_off(priv); usb_set_intfdata(interface, NULL); dev_info(&priv->udev->dev, "disconnecting\n"); kfree(priv->fw_data); mutex_destroy(&priv->usb_buf_mutex); mutex_destroy(&priv->h2c_mutex); if (priv->udev->state != USB_STATE_NOTATTACHED) { dev_info(&priv->udev->dev, "Device still attached, trying to reset\n"); usb_reset_device(priv->udev); } usb_put_dev(priv->udev); ieee80211_free_hw(hw); } static const struct usb_device_id dev_table[] = { {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x8724, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8723au_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x1724, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8723au_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x0724, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8723au_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x818b, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192eu_fops}, /* TP-Link TL-WN822N v4 */ {USB_DEVICE_AND_INTERFACE_INFO(0x2357, 0x0108, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192eu_fops}, /* D-Link DWA-131 rev E1, tested by David Patiño */ {USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x3319, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192eu_fops}, /* Tested by Myckel Habets */ {USB_DEVICE_AND_INTERFACE_INFO(0x2357, 0x0109, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192eu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0xb720, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8723bu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x7392, 0xa611, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8723bu_fops}, /* RTL8188FU */ {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0xf179, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188fu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x8179, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188eu_fops}, /* Tested by Hans de Goede - rtl8188etv */ {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x0179, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188eu_fops}, /* Sitecom rtl8188eus */ {USB_DEVICE_AND_INTERFACE_INFO(0x0df6, 0x0076, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188eu_fops}, /* D-Link USB-GO-N150 */ {USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x3311, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188eu_fops}, /* D-Link DWA-125 REV D1 */ {USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x330f, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188eu_fops}, /* D-Link DWA-123 REV D1 */ {USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x3310, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188eu_fops}, /* D-Link DWA-121 rev B1 */ {USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x331b, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188eu_fops}, /* Abocom - Abocom */ {USB_DEVICE_AND_INTERFACE_INFO(0x07b8, 0x8179, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188eu_fops}, /* Elecom WDC-150SU2M */ {USB_DEVICE_AND_INTERFACE_INFO(0x056e, 0x4008, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188eu_fops}, /* TP-Link TL-WN722N v2 */ {USB_DEVICE_AND_INTERFACE_INFO(0x2357, 0x010c, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188eu_fops}, /* TP-Link TL-WN727N v5.21 */ {USB_DEVICE_AND_INTERFACE_INFO(0x2357, 0x0111, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188eu_fops}, /* MERCUSYS MW150US v2 */ {USB_DEVICE_AND_INTERFACE_INFO(0x2c4e, 0x0102, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188eu_fops}, /* ASUS USB-N10 Nano B1 */ {USB_DEVICE_AND_INTERFACE_INFO(0x0b05, 0x18f0, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188eu_fops}, /* Edimax EW-7811Un V2 */ {USB_DEVICE_AND_INTERFACE_INFO(0x7392, 0xb811, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188eu_fops}, /* Rosewill USB-N150 Nano */ {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0xffef, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8188eu_fops}, #ifdef CONFIG_RTL8XXXU_UNTESTED /* Still supported by rtlwifi */ {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x8176, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x8178, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x817f, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, /* Tested by Larry Finger */ {USB_DEVICE_AND_INTERFACE_INFO(0x7392, 0x7811, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, /* Tested by Andrea Merello */ {USB_DEVICE_AND_INTERFACE_INFO(0x050d, 0x1004, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, /* Tested by Jocelyn Mayer */ {USB_DEVICE_AND_INTERFACE_INFO(0x20f4, 0x648b, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, /* Tested by Stefano Bravi */ {USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x3308, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, /* Currently untested 8188 series devices */ {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x018a, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x8191, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x8170, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x8177, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x817a, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x817b, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x817d, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x817e, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x818a, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x317f, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x1058, 0x0631, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x04bb, 0x094c, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x050d, 0x1102, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x06f8, 0xe033, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x07b8, 0x8189, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x0846, 0x9041, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x0b05, 0x17ba, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x1e1e, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x5088, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x0df6, 0x0052, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x0df6, 0x005c, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x0eb0, 0x9071, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x103c, 0x1629, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x13d3, 0x3357, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x330b, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x2019, 0x4902, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x2019, 0xab2a, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x2019, 0xab2e, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x2019, 0xed17, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x4855, 0x0090, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x4856, 0x0091, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0xcdab, 0x8010, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x04f2, 0xaff7, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x04f2, 0xaff9, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x04f2, 0xaffa, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x04f2, 0xaff8, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x04f2, 0xaffb, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x04f2, 0xaffc, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x2019, 0x1201, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, /* Currently untested 8192 series devices */ {USB_DEVICE_AND_INTERFACE_INFO(0x04bb, 0x0950, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x050d, 0x2102, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x050d, 0x2103, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x0586, 0x341f, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x06f8, 0xe035, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x0b05, 0x17ab, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x0df6, 0x0061, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x0df6, 0x0070, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x0789, 0x016d, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x07aa, 0x0056, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x07b8, 0x8178, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x0846, 0x9021, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x0846, 0xf001, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x2e2e, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x0e66, 0x0019, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x0e66, 0x0020, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x3307, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x3309, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x330a, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x2019, 0xab2b, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x20f4, 0x624d, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x2357, 0x0100, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x4855, 0x0091, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x7392, 0x7822, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192cu_fops}, /* found in rtl8192eu vendor driver */ {USB_DEVICE_AND_INTERFACE_INFO(0x2357, 0x0107, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192eu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(0x2019, 0xab33, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192eu_fops}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x818c, 0xff, 0xff, 0xff), .driver_info = (unsigned long)&rtl8192eu_fops}, #endif { } }; static struct usb_driver rtl8xxxu_driver = { .name = DRIVER_NAME, .probe = rtl8xxxu_probe, .disconnect = rtl8xxxu_disconnect, .id_table = dev_table, .no_dynamic_id = 1, .disable_hub_initiated_lpm = 1, }; static int __init rtl8xxxu_module_init(void) { int res; res = usb_register(&rtl8xxxu_driver); if (res < 0) pr_err(DRIVER_NAME ": usb_register() failed (%i)\n", res); return res; } static void __exit rtl8xxxu_module_exit(void) { usb_deregister(&rtl8xxxu_driver); } MODULE_DEVICE_TABLE(usb, dev_table); module_init(rtl8xxxu_module_init); module_exit(rtl8xxxu_module_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1