Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Larry Finger | 9915 | 78.24% | 50 | 43.10% |
Chaoming Li | 1435 | 11.32% | 8 | 6.90% |
Ping-Ke Shih | 405 | 3.20% | 16 | 13.79% |
Mike McCormack | 234 | 1.85% | 5 | 4.31% |
Adam Lee | 179 | 1.41% | 1 | 0.86% |
Christophe Jaillet | 95 | 0.75% | 1 | 0.86% |
Joe Perches | 77 | 0.61% | 3 | 2.59% |
Troy Tan | 65 | 0.51% | 1 | 0.86% |
Allen Pais | 45 | 0.36% | 1 | 0.86% |
Tsang-Shian Lin | 41 | 0.32% | 1 | 0.86% |
George | 34 | 0.27% | 2 | 1.72% |
Tim Gardner | 29 | 0.23% | 1 | 0.86% |
Tzu-En Huang | 19 | 0.15% | 1 | 0.86% |
Jakob Koschel | 16 | 0.13% | 1 | 0.86% |
Simon Graham | 13 | 0.10% | 1 | 0.86% |
Johannes Berg | 11 | 0.09% | 4 | 3.45% |
Phong Tran | 8 | 0.06% | 1 | 0.86% |
Hauke Mehrtens | 6 | 0.05% | 1 | 0.86% |
Thomas Huehn | 6 | 0.05% | 1 | 0.86% |
Jiang Liu | 5 | 0.04% | 1 | 0.86% |
Sebastian Andrzej Siewior | 4 | 0.03% | 1 | 0.86% |
Chuhong Yuan | 4 | 0.03% | 1 | 0.86% |
Malcolm Priestley | 3 | 0.02% | 1 | 0.86% |
Rusty Russell | 3 | 0.02% | 1 | 0.86% |
Stanislaw Gruszka | 3 | 0.02% | 1 | 0.86% |
Hans Wennborg | 3 | 0.02% | 1 | 0.86% |
Jeff Xie | 3 | 0.02% | 1 | 0.86% |
Paul Gortmaker | 2 | 0.02% | 1 | 0.86% |
striebit | 2 | 0.02% | 1 | 0.86% |
Taehee Yoo | 2 | 0.02% | 1 | 0.86% |
John W. Linville | 2 | 0.02% | 1 | 0.86% |
Vitaliy Ivanov | 1 | 0.01% | 1 | 0.86% |
Julia Lawall | 1 | 0.01% | 1 | 0.86% |
Wang YanQing | 1 | 0.01% | 1 | 0.86% |
Devendra Naga | 1 | 0.01% | 1 | 0.86% |
Total | 12673 | 116 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2009-2012 Realtek Corporation.*/ #include "wifi.h" #include "core.h" #include "pci.h" #include "base.h" #include "ps.h" #include "efuse.h" #include <linux/interrupt.h> #include <linux/export.h> #include <linux/module.h> MODULE_AUTHOR("lizhaoming <chaoming_li@realsil.com.cn>"); MODULE_AUTHOR("Realtek WlanFAE <wlanfae@realtek.com>"); MODULE_AUTHOR("Larry Finger <Larry.FInger@lwfinger.net>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("PCI basic driver for rtlwifi"); static const u16 pcibridge_vendors[PCI_BRIDGE_VENDOR_MAX] = { INTEL_VENDOR_ID, ATI_VENDOR_ID, AMD_VENDOR_ID, SIS_VENDOR_ID }; static const u8 ac_to_hwq[] = { VO_QUEUE, VI_QUEUE, BE_QUEUE, BK_QUEUE }; static u8 _rtl_mac_to_hwqueue(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); __le16 fc = rtl_get_fc(skb); u8 queue_index = skb_get_queue_mapping(skb); struct ieee80211_hdr *hdr; if (unlikely(ieee80211_is_beacon(fc))) return BEACON_QUEUE; if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)) return MGNT_QUEUE; if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) if (ieee80211_is_nullfunc(fc)) return HIGH_QUEUE; if (rtlhal->hw_type == HARDWARE_TYPE_RTL8822BE) { hdr = rtl_get_hdr(skb); if (is_multicast_ether_addr(hdr->addr1) || is_broadcast_ether_addr(hdr->addr1)) return HIGH_QUEUE; } return ac_to_hwq[queue_index]; } /* Update PCI dependent default settings*/ static void _rtl_pci_update_default_setting(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor; u8 init_aspm; ppsc->reg_rfps_level = 0; ppsc->support_aspm = false; /*Update PCI ASPM setting */ ppsc->const_amdpci_aspm = rtlpci->const_amdpci_aspm; switch (rtlpci->const_pci_aspm) { case 0: /*No ASPM */ break; case 1: /*ASPM dynamically enabled/disable. */ ppsc->reg_rfps_level |= RT_RF_LPS_LEVEL_ASPM; break; case 2: /*ASPM with Clock Req dynamically enabled/disable. */ ppsc->reg_rfps_level |= (RT_RF_LPS_LEVEL_ASPM | RT_RF_OFF_LEVL_CLK_REQ); break; case 3: /* Always enable ASPM and Clock Req * from initialization to halt. */ ppsc->reg_rfps_level &= ~(RT_RF_LPS_LEVEL_ASPM); ppsc->reg_rfps_level |= (RT_RF_PS_LEVEL_ALWAYS_ASPM | RT_RF_OFF_LEVL_CLK_REQ); break; case 4: /* Always enable ASPM without Clock Req * from initialization to halt. */ ppsc->reg_rfps_level &= ~(RT_RF_LPS_LEVEL_ASPM | RT_RF_OFF_LEVL_CLK_REQ); ppsc->reg_rfps_level |= RT_RF_PS_LEVEL_ALWAYS_ASPM; break; } ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_HALT_NIC; /*Update Radio OFF setting */ switch (rtlpci->const_hwsw_rfoff_d3) { case 1: if (ppsc->reg_rfps_level & RT_RF_LPS_LEVEL_ASPM) ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_ASPM; break; case 2: if (ppsc->reg_rfps_level & RT_RF_LPS_LEVEL_ASPM) ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_ASPM; ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_HALT_NIC; break; case 3: ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_PCI_D3; break; } /*Set HW definition to determine if it supports ASPM. */ switch (rtlpci->const_support_pciaspm) { case 0: /*Not support ASPM. */ ppsc->support_aspm = false; break; case 1: /*Support ASPM. */ ppsc->support_aspm = true; ppsc->support_backdoor = true; break; case 2: /*ASPM value set by chipset. */ if (pcibridge_vendor == PCI_BRIDGE_VENDOR_INTEL) ppsc->support_aspm = true; break; default: pr_err("switch case %#x not processed\n", rtlpci->const_support_pciaspm); break; } /* toshiba aspm issue, toshiba will set aspm selfly * so we should not set aspm in driver */ pci_read_config_byte(rtlpci->pdev, 0x80, &init_aspm); if (rtlpriv->rtlhal.hw_type == HARDWARE_TYPE_RTL8192SE && init_aspm == 0x43) ppsc->support_aspm = false; } static bool _rtl_pci_platform_switch_device_pci_aspm( struct ieee80211_hw *hw, u8 value) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) value |= 0x40; pci_write_config_byte(rtlpci->pdev, 0x80, value); return false; } /*When we set 0x01 to enable clk request. Set 0x0 to disable clk req.*/ static void _rtl_pci_switch_clk_req(struct ieee80211_hw *hw, u8 value) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); pci_write_config_byte(rtlpci->pdev, 0x81, value); if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) udelay(100); } /*Disable RTL8192SE ASPM & Disable Pci Bridge ASPM*/ static void rtl_pci_disable_aspm(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor; u8 num4bytes = pcipriv->ndis_adapter.num4bytes; /*Retrieve original configuration settings. */ u8 linkctrl_reg = pcipriv->ndis_adapter.linkctrl_reg; u16 pcibridge_linkctrlreg = pcipriv->ndis_adapter. pcibridge_linkctrlreg; u16 aspmlevel = 0; u8 tmp_u1b = 0; if (!ppsc->support_aspm) return; if (pcibridge_vendor == PCI_BRIDGE_VENDOR_UNKNOWN) { rtl_dbg(rtlpriv, COMP_POWER, DBG_TRACE, "PCI(Bridge) UNKNOWN\n"); return; } if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) { RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_CLK_REQ); _rtl_pci_switch_clk_req(hw, 0x0); } /*for promising device will in L0 state after an I/O. */ pci_read_config_byte(rtlpci->pdev, 0x80, &tmp_u1b); /*Set corresponding value. */ aspmlevel |= BIT(0) | BIT(1); linkctrl_reg &= ~aspmlevel; pcibridge_linkctrlreg &= ~(BIT(0) | BIT(1)); _rtl_pci_platform_switch_device_pci_aspm(hw, linkctrl_reg); udelay(50); /*4 Disable Pci Bridge ASPM */ pci_write_config_byte(rtlpci->pdev, (num4bytes << 2), pcibridge_linkctrlreg); udelay(50); } /*Enable RTL8192SE ASPM & Enable Pci Bridge ASPM for *power saving We should follow the sequence to enable *RTL8192SE first then enable Pci Bridge ASPM *or the system will show bluescreen. */ static void rtl_pci_enable_aspm(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor; u8 num4bytes = pcipriv->ndis_adapter.num4bytes; u16 aspmlevel; u8 u_pcibridge_aspmsetting; u8 u_device_aspmsetting; if (!ppsc->support_aspm) return; if (pcibridge_vendor == PCI_BRIDGE_VENDOR_UNKNOWN) { rtl_dbg(rtlpriv, COMP_POWER, DBG_TRACE, "PCI(Bridge) UNKNOWN\n"); return; } /*4 Enable Pci Bridge ASPM */ u_pcibridge_aspmsetting = pcipriv->ndis_adapter.pcibridge_linkctrlreg | rtlpci->const_hostpci_aspm_setting; if (pcibridge_vendor == PCI_BRIDGE_VENDOR_INTEL) u_pcibridge_aspmsetting &= ~BIT(0); pci_write_config_byte(rtlpci->pdev, (num4bytes << 2), u_pcibridge_aspmsetting); rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "PlatformEnableASPM(): Write reg[%x] = %x\n", (pcipriv->ndis_adapter.pcibridge_pciehdr_offset + 0x10), u_pcibridge_aspmsetting); udelay(50); /*Get ASPM level (with/without Clock Req) */ aspmlevel = rtlpci->const_devicepci_aspm_setting; u_device_aspmsetting = pcipriv->ndis_adapter.linkctrl_reg; /*_rtl_pci_platform_switch_device_pci_aspm(dev,*/ /*(priv->ndis_adapter.linkctrl_reg | ASPMLevel)); */ u_device_aspmsetting |= aspmlevel; _rtl_pci_platform_switch_device_pci_aspm(hw, u_device_aspmsetting); if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) { _rtl_pci_switch_clk_req(hw, (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) ? 1 : 0); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_CLK_REQ); } udelay(100); } static bool rtl_pci_get_amd_l1_patch(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); bool status = false; u8 offset_e0; unsigned int offset_e4; pci_write_config_byte(rtlpci->pdev, 0xe0, 0xa0); pci_read_config_byte(rtlpci->pdev, 0xe0, &offset_e0); if (offset_e0 == 0xA0) { pci_read_config_dword(rtlpci->pdev, 0xe4, &offset_e4); if (offset_e4 & BIT(23)) status = true; } return status; } static bool rtl_pci_check_buddy_priv(struct ieee80211_hw *hw, struct rtl_priv **buddy_priv) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_priv *tpriv = NULL, *iter; struct rtl_pci_priv *tpcipriv = NULL; if (!list_empty(&rtlpriv->glb_var->glb_priv_list)) { list_for_each_entry(iter, &rtlpriv->glb_var->glb_priv_list, list) { tpcipriv = (struct rtl_pci_priv *)iter->priv; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "pcipriv->ndis_adapter.funcnumber %x\n", pcipriv->ndis_adapter.funcnumber); rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "tpcipriv->ndis_adapter.funcnumber %x\n", tpcipriv->ndis_adapter.funcnumber); if (pcipriv->ndis_adapter.busnumber == tpcipriv->ndis_adapter.busnumber && pcipriv->ndis_adapter.devnumber == tpcipriv->ndis_adapter.devnumber && pcipriv->ndis_adapter.funcnumber != tpcipriv->ndis_adapter.funcnumber) { tpriv = iter; break; } } } rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "find_buddy_priv %d\n", tpriv != NULL); if (tpriv) *buddy_priv = tpriv; return tpriv != NULL; } static void rtl_pci_get_linkcontrol_field(struct ieee80211_hw *hw) { struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_pci *rtlpci = rtl_pcidev(pcipriv); u8 capabilityoffset = pcipriv->ndis_adapter.pcibridge_pciehdr_offset; u8 linkctrl_reg; u8 num4bbytes; num4bbytes = (capabilityoffset + 0x10) / 4; /*Read Link Control Register */ pci_read_config_byte(rtlpci->pdev, (num4bbytes << 2), &linkctrl_reg); pcipriv->ndis_adapter.pcibridge_linkctrlreg = linkctrl_reg; } static void rtl_pci_parse_configuration(struct pci_dev *pdev, struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); u8 tmp; u16 linkctrl_reg; /*Link Control Register */ pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &linkctrl_reg); pcipriv->ndis_adapter.linkctrl_reg = (u8)linkctrl_reg; rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Link Control Register =%x\n", pcipriv->ndis_adapter.linkctrl_reg); pci_read_config_byte(pdev, 0x98, &tmp); tmp |= BIT(4); pci_write_config_byte(pdev, 0x98, tmp); tmp = 0x17; pci_write_config_byte(pdev, 0x70f, tmp); } static void rtl_pci_init_aspm(struct ieee80211_hw *hw) { struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); _rtl_pci_update_default_setting(hw); if (ppsc->reg_rfps_level & RT_RF_PS_LEVEL_ALWAYS_ASPM) { /*Always enable ASPM & Clock Req. */ rtl_pci_enable_aspm(hw); RT_SET_PS_LEVEL(ppsc, RT_RF_PS_LEVEL_ALWAYS_ASPM); } } static void _rtl_pci_io_handler_init(struct device *dev, struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpriv->io.dev = dev; rtlpriv->io.write8_async = pci_write8_async; rtlpriv->io.write16_async = pci_write16_async; rtlpriv->io.write32_async = pci_write32_async; rtlpriv->io.read8_sync = pci_read8_sync; rtlpriv->io.read16_sync = pci_read16_sync; rtlpriv->io.read32_sync = pci_read32_sync; } static bool _rtl_update_earlymode_info(struct ieee80211_hw *hw, struct sk_buff *skb, struct rtl_tcb_desc *tcb_desc, u8 tid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct sk_buff *next_skb; u8 additionlen = FCS_LEN; /* here open is 4, wep/tkip is 8, aes is 12*/ if (info->control.hw_key) additionlen += info->control.hw_key->icv_len; /* The most skb num is 6 */ tcb_desc->empkt_num = 0; spin_lock_bh(&rtlpriv->locks.waitq_lock); skb_queue_walk(&rtlpriv->mac80211.skb_waitq[tid], next_skb) { struct ieee80211_tx_info *next_info; next_info = IEEE80211_SKB_CB(next_skb); if (next_info->flags & IEEE80211_TX_CTL_AMPDU) { tcb_desc->empkt_len[tcb_desc->empkt_num] = next_skb->len + additionlen; tcb_desc->empkt_num++; } else { break; } if (skb_queue_is_last(&rtlpriv->mac80211.skb_waitq[tid], next_skb)) break; if (tcb_desc->empkt_num >= rtlhal->max_earlymode_num) break; } spin_unlock_bh(&rtlpriv->locks.waitq_lock); return true; } /* just for early mode now */ static void _rtl_pci_tx_chk_waitq(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct sk_buff *skb = NULL; struct ieee80211_tx_info *info = NULL; struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); int tid; if (!rtlpriv->rtlhal.earlymode_enable) return; if (rtlpriv->dm.supp_phymode_switch && (rtlpriv->easy_concurrent_ctl.switch_in_process || (rtlpriv->buddy_priv && rtlpriv->buddy_priv->easy_concurrent_ctl.switch_in_process))) return; /* we just use em for BE/BK/VI/VO */ for (tid = 7; tid >= 0; tid--) { u8 hw_queue = ac_to_hwq[rtl_tid_to_ac(tid)]; struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[hw_queue]; while (!mac->act_scanning && rtlpriv->psc.rfpwr_state == ERFON) { struct rtl_tcb_desc tcb_desc; memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc)); spin_lock(&rtlpriv->locks.waitq_lock); if (!skb_queue_empty(&mac->skb_waitq[tid]) && (ring->entries - skb_queue_len(&ring->queue) > rtlhal->max_earlymode_num)) { skb = skb_dequeue(&mac->skb_waitq[tid]); } else { spin_unlock(&rtlpriv->locks.waitq_lock); break; } spin_unlock(&rtlpriv->locks.waitq_lock); /* Some macaddr can't do early mode. like * multicast/broadcast/no_qos data */ info = IEEE80211_SKB_CB(skb); if (info->flags & IEEE80211_TX_CTL_AMPDU) _rtl_update_earlymode_info(hw, skb, &tcb_desc, tid); rtlpriv->intf_ops->adapter_tx(hw, NULL, skb, &tcb_desc); } } } static void _rtl_pci_tx_isr(struct ieee80211_hw *hw, int prio) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[prio]; while (skb_queue_len(&ring->queue)) { struct sk_buff *skb; struct ieee80211_tx_info *info; __le16 fc; u8 tid; u8 *entry; if (rtlpriv->use_new_trx_flow) entry = (u8 *)(&ring->buffer_desc[ring->idx]); else entry = (u8 *)(&ring->desc[ring->idx]); if (!rtlpriv->cfg->ops->is_tx_desc_closed(hw, prio, ring->idx)) return; ring->idx = (ring->idx + 1) % ring->entries; skb = __skb_dequeue(&ring->queue); dma_unmap_single(&rtlpci->pdev->dev, rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry, true, HW_DESC_TXBUFF_ADDR), skb->len, DMA_TO_DEVICE); /* remove early mode header */ if (rtlpriv->rtlhal.earlymode_enable) skb_pull(skb, EM_HDR_LEN); rtl_dbg(rtlpriv, (COMP_INTR | COMP_SEND), DBG_TRACE, "new ring->idx:%d, free: skb_queue_len:%d, free: seq:%x\n", ring->idx, skb_queue_len(&ring->queue), *(u16 *)(skb->data + 22)); if (prio == TXCMD_QUEUE) { dev_kfree_skb(skb); goto tx_status_ok; } /* for sw LPS, just after NULL skb send out, we can * sure AP knows we are sleeping, we should not let * rf sleep */ fc = rtl_get_fc(skb); if (ieee80211_is_nullfunc(fc)) { if (ieee80211_has_pm(fc)) { rtlpriv->mac80211.offchan_delay = true; rtlpriv->psc.state_inap = true; } else { rtlpriv->psc.state_inap = false; } } if (ieee80211_is_action(fc)) { struct ieee80211_mgmt *action_frame = (struct ieee80211_mgmt *)skb->data; if (action_frame->u.action.u.ht_smps.action == WLAN_HT_ACTION_SMPS) { dev_kfree_skb(skb); goto tx_status_ok; } } /* update tid tx pkt num */ tid = rtl_get_tid(skb); if (tid <= 7) rtlpriv->link_info.tidtx_inperiod[tid]++; info = IEEE80211_SKB_CB(skb); if (likely(!ieee80211_is_nullfunc(fc))) { ieee80211_tx_info_clear_status(info); info->flags |= IEEE80211_TX_STAT_ACK; /*info->status.rates[0].count = 1; */ ieee80211_tx_status_irqsafe(hw, skb); } else { rtl_tx_ackqueue(hw, skb); } if ((ring->entries - skb_queue_len(&ring->queue)) <= 4) { rtl_dbg(rtlpriv, COMP_ERR, DBG_DMESG, "more desc left, wake skb_queue@%d, ring->idx = %d, skb_queue_len = 0x%x\n", prio, ring->idx, skb_queue_len(&ring->queue)); ieee80211_wake_queue(hw, skb_get_queue_mapping(skb)); } tx_status_ok: skb = NULL; } if (((rtlpriv->link_info.num_rx_inperiod + rtlpriv->link_info.num_tx_inperiod) > 8) || rtlpriv->link_info.num_rx_inperiod > 2) rtl_lps_leave(hw, false); } static int _rtl_pci_init_one_rxdesc(struct ieee80211_hw *hw, struct sk_buff *new_skb, u8 *entry, int rxring_idx, int desc_idx) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u32 bufferaddress; u8 tmp_one = 1; struct sk_buff *skb; if (likely(new_skb)) { skb = new_skb; goto remap; } skb = dev_alloc_skb(rtlpci->rxbuffersize); if (!skb) return 0; remap: /* just set skb->cb to mapping addr for pci_unmap_single use */ *((dma_addr_t *)skb->cb) = dma_map_single(&rtlpci->pdev->dev, skb_tail_pointer(skb), rtlpci->rxbuffersize, DMA_FROM_DEVICE); bufferaddress = *((dma_addr_t *)skb->cb); if (dma_mapping_error(&rtlpci->pdev->dev, bufferaddress)) return 0; rtlpci->rx_ring[rxring_idx].rx_buf[desc_idx] = skb; if (rtlpriv->use_new_trx_flow) { /* skb->cb may be 64 bit address */ rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false, HW_DESC_RX_PREPARE, (u8 *)(dma_addr_t *)skb->cb); } else { rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false, HW_DESC_RXBUFF_ADDR, (u8 *)&bufferaddress); rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false, HW_DESC_RXPKT_LEN, (u8 *)&rtlpci->rxbuffersize); rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false, HW_DESC_RXOWN, (u8 *)&tmp_one); } return 1; } /* inorder to receive 8K AMSDU we have set skb to * 9100bytes in init rx ring, but if this packet is * not a AMSDU, this large packet will be sent to * TCP/IP directly, this cause big packet ping fail * like: "ping -s 65507", so here we will realloc skb * based on the true size of packet, Mac80211 * Probably will do it better, but does not yet. * * Some platform will fail when alloc skb sometimes. * in this condition, we will send the old skb to * mac80211 directly, this will not cause any other * issues, but only this packet will be lost by TCP/IP */ static void _rtl_pci_rx_to_mac80211(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_rx_status rx_status) { if (unlikely(!rtl_action_proc(hw, skb, false))) { dev_kfree_skb_any(skb); } else { struct sk_buff *uskb = NULL; uskb = dev_alloc_skb(skb->len + 128); if (likely(uskb)) { memcpy(IEEE80211_SKB_RXCB(uskb), &rx_status, sizeof(rx_status)); skb_put_data(uskb, skb->data, skb->len); dev_kfree_skb_any(skb); ieee80211_rx_irqsafe(hw, uskb); } else { ieee80211_rx_irqsafe(hw, skb); } } } /*hsisr interrupt handler*/ static void _rtl_pci_hs_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[MAC_HSISR], rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[MAC_HSISR]) | rtlpci->sys_irq_mask); } static void _rtl_pci_rx_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); int rxring_idx = RTL_PCI_RX_MPDU_QUEUE; struct ieee80211_rx_status rx_status = { 0 }; unsigned int count = rtlpci->rxringcount; u8 own; u8 tmp_one; bool unicast = false; u8 hw_queue = 0; unsigned int rx_remained_cnt = 0; struct rtl_stats stats = { .signal = 0, .rate = 0, }; /*RX NORMAL PKT */ while (count--) { struct ieee80211_hdr *hdr; __le16 fc; u16 len; /*rx buffer descriptor */ struct rtl_rx_buffer_desc *buffer_desc = NULL; /*if use new trx flow, it means wifi info */ struct rtl_rx_desc *pdesc = NULL; /*rx pkt */ struct sk_buff *skb = rtlpci->rx_ring[rxring_idx].rx_buf[ rtlpci->rx_ring[rxring_idx].idx]; struct sk_buff *new_skb; if (rtlpriv->use_new_trx_flow) { if (rx_remained_cnt == 0) rx_remained_cnt = rtlpriv->cfg->ops->rx_desc_buff_remained_cnt(hw, hw_queue); if (rx_remained_cnt == 0) return; buffer_desc = &rtlpci->rx_ring[rxring_idx].buffer_desc[ rtlpci->rx_ring[rxring_idx].idx]; pdesc = (struct rtl_rx_desc *)skb->data; } else { /* rx descriptor */ pdesc = &rtlpci->rx_ring[rxring_idx].desc[ rtlpci->rx_ring[rxring_idx].idx]; own = (u8)rtlpriv->cfg->ops->get_desc(hw, (u8 *)pdesc, false, HW_DESC_OWN); if (own) /* wait data to be filled by hardware */ return; } /* Reaching this point means: data is filled already * AAAAAAttention !!! * We can NOT access 'skb' before 'pci_unmap_single' */ dma_unmap_single(&rtlpci->pdev->dev, *((dma_addr_t *)skb->cb), rtlpci->rxbuffersize, DMA_FROM_DEVICE); /* get a new skb - if fail, old one will be reused */ new_skb = dev_alloc_skb(rtlpci->rxbuffersize); if (unlikely(!new_skb)) goto no_new; memset(&rx_status, 0, sizeof(rx_status)); rtlpriv->cfg->ops->query_rx_desc(hw, &stats, &rx_status, (u8 *)pdesc, skb); if (rtlpriv->use_new_trx_flow) rtlpriv->cfg->ops->rx_check_dma_ok(hw, (u8 *)buffer_desc, hw_queue); len = rtlpriv->cfg->ops->get_desc(hw, (u8 *)pdesc, false, HW_DESC_RXPKT_LEN); if (skb->end - skb->tail > len) { skb_put(skb, len); if (rtlpriv->use_new_trx_flow) skb_reserve(skb, stats.rx_drvinfo_size + stats.rx_bufshift + 24); else skb_reserve(skb, stats.rx_drvinfo_size + stats.rx_bufshift); } else { rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "skb->end - skb->tail = %d, len is %d\n", skb->end - skb->tail, len); dev_kfree_skb_any(skb); goto new_trx_end; } /* handle command packet here */ if (stats.packet_report_type == C2H_PACKET) { rtl_c2hcmd_enqueue(hw, skb); goto new_trx_end; } /* NOTICE This can not be use for mac80211, * this is done in mac80211 code, * if done here sec DHCP will fail * skb_trim(skb, skb->len - 4); */ hdr = rtl_get_hdr(skb); fc = rtl_get_fc(skb); if (!stats.crc && !stats.hwerror && (skb->len > FCS_LEN)) { memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); if (is_broadcast_ether_addr(hdr->addr1)) { ;/*TODO*/ } else if (is_multicast_ether_addr(hdr->addr1)) { ;/*TODO*/ } else { unicast = true; rtlpriv->stats.rxbytesunicast += skb->len; } rtl_is_special_data(hw, skb, false, true); if (ieee80211_is_data(fc)) { rtlpriv->cfg->ops->led_control(hw, LED_CTL_RX); if (unicast) rtlpriv->link_info.num_rx_inperiod++; } rtl_collect_scan_list(hw, skb); /* static bcn for roaming */ rtl_beacon_statistic(hw, skb); rtl_p2p_info(hw, (void *)skb->data, skb->len); /* for sw lps */ rtl_swlps_beacon(hw, (void *)skb->data, skb->len); rtl_recognize_peer(hw, (void *)skb->data, skb->len); if (rtlpriv->mac80211.opmode == NL80211_IFTYPE_AP && rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G && (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc))) { dev_kfree_skb_any(skb); } else { _rtl_pci_rx_to_mac80211(hw, skb, rx_status); } } else { /* drop packets with errors or those too short */ dev_kfree_skb_any(skb); } new_trx_end: if (rtlpriv->use_new_trx_flow) { rtlpci->rx_ring[hw_queue].next_rx_rp += 1; rtlpci->rx_ring[hw_queue].next_rx_rp %= RTL_PCI_MAX_RX_COUNT; rx_remained_cnt--; rtl_write_word(rtlpriv, 0x3B4, rtlpci->rx_ring[hw_queue].next_rx_rp); } if (((rtlpriv->link_info.num_rx_inperiod + rtlpriv->link_info.num_tx_inperiod) > 8) || rtlpriv->link_info.num_rx_inperiod > 2) rtl_lps_leave(hw, false); skb = new_skb; no_new: if (rtlpriv->use_new_trx_flow) { _rtl_pci_init_one_rxdesc(hw, skb, (u8 *)buffer_desc, rxring_idx, rtlpci->rx_ring[rxring_idx].idx); } else { _rtl_pci_init_one_rxdesc(hw, skb, (u8 *)pdesc, rxring_idx, rtlpci->rx_ring[rxring_idx].idx); if (rtlpci->rx_ring[rxring_idx].idx == rtlpci->rxringcount - 1) rtlpriv->cfg->ops->set_desc(hw, (u8 *)pdesc, false, HW_DESC_RXERO, (u8 *)&tmp_one); } rtlpci->rx_ring[rxring_idx].idx = (rtlpci->rx_ring[rxring_idx].idx + 1) % rtlpci->rxringcount; } } static irqreturn_t _rtl_pci_interrupt(int irq, void *dev_id) { struct ieee80211_hw *hw = dev_id; struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); unsigned long flags; struct rtl_int intvec = {0}; irqreturn_t ret = IRQ_HANDLED; if (rtlpci->irq_enabled == 0) return ret; spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags); rtlpriv->cfg->ops->disable_interrupt(hw); /*read ISR: 4/8bytes */ rtlpriv->cfg->ops->interrupt_recognized(hw, &intvec); /*Shared IRQ or HW disappeared */ if (!intvec.inta || intvec.inta == 0xffff) goto done; /*<1> beacon related */ if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_TBDOK]) rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "beacon ok interrupt!\n"); if (unlikely(intvec.inta & rtlpriv->cfg->maps[RTL_IMR_TBDER])) rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "beacon err interrupt!\n"); if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_BDOK]) rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "beacon interrupt!\n"); if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_BCNINT]) { rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "prepare beacon for interrupt!\n"); tasklet_schedule(&rtlpriv->works.irq_prepare_bcn_tasklet); } /*<2> Tx related */ if (unlikely(intvec.intb & rtlpriv->cfg->maps[RTL_IMR_TXFOVW])) rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "IMR_TXFOVW!\n"); if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_MGNTDOK]) { rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "Manage ok interrupt!\n"); _rtl_pci_tx_isr(hw, MGNT_QUEUE); } if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_HIGHDOK]) { rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "HIGH_QUEUE ok interrupt!\n"); _rtl_pci_tx_isr(hw, HIGH_QUEUE); } if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_BKDOK]) { rtlpriv->link_info.num_tx_inperiod++; rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "BK Tx OK interrupt!\n"); _rtl_pci_tx_isr(hw, BK_QUEUE); } if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_BEDOK]) { rtlpriv->link_info.num_tx_inperiod++; rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "BE TX OK interrupt!\n"); _rtl_pci_tx_isr(hw, BE_QUEUE); } if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_VIDOK]) { rtlpriv->link_info.num_tx_inperiod++; rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "VI TX OK interrupt!\n"); _rtl_pci_tx_isr(hw, VI_QUEUE); } if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_VODOK]) { rtlpriv->link_info.num_tx_inperiod++; rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "Vo TX OK interrupt!\n"); _rtl_pci_tx_isr(hw, VO_QUEUE); } if (rtlhal->hw_type == HARDWARE_TYPE_RTL8822BE) { if (intvec.intd & rtlpriv->cfg->maps[RTL_IMR_H2CDOK]) { rtlpriv->link_info.num_tx_inperiod++; rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "H2C TX OK interrupt!\n"); _rtl_pci_tx_isr(hw, H2C_QUEUE); } } if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) { if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_COMDOK]) { rtlpriv->link_info.num_tx_inperiod++; rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "CMD TX OK interrupt!\n"); _rtl_pci_tx_isr(hw, TXCMD_QUEUE); } } /*<3> Rx related */ if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_ROK]) { rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "Rx ok interrupt!\n"); _rtl_pci_rx_interrupt(hw); } if (unlikely(intvec.inta & rtlpriv->cfg->maps[RTL_IMR_RDU])) { rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "rx descriptor unavailable!\n"); _rtl_pci_rx_interrupt(hw); } if (unlikely(intvec.intb & rtlpriv->cfg->maps[RTL_IMR_RXFOVW])) { rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "rx overflow !\n"); _rtl_pci_rx_interrupt(hw); } /*<4> fw related*/ if (rtlhal->hw_type == HARDWARE_TYPE_RTL8723AE) { if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_C2HCMD]) { rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "firmware interrupt!\n"); queue_delayed_work(rtlpriv->works.rtl_wq, &rtlpriv->works.fwevt_wq, 0); } } /*<5> hsisr related*/ /* Only 8188EE & 8723BE Supported. * If Other ICs Come in, System will corrupt, * because maps[RTL_IMR_HSISR_IND] & maps[MAC_HSISR] * are not initialized */ if (rtlhal->hw_type == HARDWARE_TYPE_RTL8188EE || rtlhal->hw_type == HARDWARE_TYPE_RTL8723BE) { if (unlikely(intvec.inta & rtlpriv->cfg->maps[RTL_IMR_HSISR_IND])) { rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "hsisr interrupt!\n"); _rtl_pci_hs_interrupt(hw); } } if (rtlpriv->rtlhal.earlymode_enable) tasklet_schedule(&rtlpriv->works.irq_tasklet); done: rtlpriv->cfg->ops->enable_interrupt(hw); spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); return ret; } static void _rtl_pci_irq_tasklet(struct tasklet_struct *t) { struct rtl_priv *rtlpriv = from_tasklet(rtlpriv, t, works.irq_tasklet); struct ieee80211_hw *hw = rtlpriv->hw; _rtl_pci_tx_chk_waitq(hw); } static void _rtl_pci_prepare_bcn_tasklet(struct tasklet_struct *t) { struct rtl_priv *rtlpriv = from_tasklet(rtlpriv, t, works.irq_prepare_bcn_tasklet); struct ieee80211_hw *hw = rtlpriv->hw; struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl8192_tx_ring *ring = NULL; struct ieee80211_hdr *hdr = NULL; struct ieee80211_tx_info *info = NULL; struct sk_buff *pskb = NULL; struct rtl_tx_desc *pdesc = NULL; struct rtl_tcb_desc tcb_desc; /*This is for new trx flow*/ struct rtl_tx_buffer_desc *pbuffer_desc = NULL; u8 temp_one = 1; u8 *entry; memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc)); ring = &rtlpci->tx_ring[BEACON_QUEUE]; pskb = __skb_dequeue(&ring->queue); if (rtlpriv->use_new_trx_flow) entry = (u8 *)(&ring->buffer_desc[ring->idx]); else entry = (u8 *)(&ring->desc[ring->idx]); if (pskb) { dma_unmap_single(&rtlpci->pdev->dev, rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry, true, HW_DESC_TXBUFF_ADDR), pskb->len, DMA_TO_DEVICE); kfree_skb(pskb); } /*NB: the beacon data buffer must be 32-bit aligned. */ pskb = ieee80211_beacon_get(hw, mac->vif, 0); if (!pskb) return; hdr = rtl_get_hdr(pskb); info = IEEE80211_SKB_CB(pskb); pdesc = &ring->desc[0]; if (rtlpriv->use_new_trx_flow) pbuffer_desc = &ring->buffer_desc[0]; rtlpriv->cfg->ops->fill_tx_desc(hw, hdr, (u8 *)pdesc, (u8 *)pbuffer_desc, info, NULL, pskb, BEACON_QUEUE, &tcb_desc); __skb_queue_tail(&ring->queue, pskb); if (rtlpriv->use_new_trx_flow) { temp_one = 4; rtlpriv->cfg->ops->set_desc(hw, (u8 *)pbuffer_desc, true, HW_DESC_OWN, (u8 *)&temp_one); } else { rtlpriv->cfg->ops->set_desc(hw, (u8 *)pdesc, true, HW_DESC_OWN, &temp_one); } } static void _rtl_pci_init_trx_var(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtlpriv); u8 i; u16 desc_num; if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192EE) desc_num = TX_DESC_NUM_92E; else if (rtlhal->hw_type == HARDWARE_TYPE_RTL8822BE) desc_num = TX_DESC_NUM_8822B; else desc_num = RT_TXDESC_NUM; for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) rtlpci->txringcount[i] = desc_num; /*we just alloc 2 desc for beacon queue, *because we just need first desc in hw beacon. */ rtlpci->txringcount[BEACON_QUEUE] = 2; /*BE queue need more descriptor for performance *consideration or, No more tx desc will happen, *and may cause mac80211 mem leakage. */ if (!rtl_priv(hw)->use_new_trx_flow) rtlpci->txringcount[BE_QUEUE] = RT_TXDESC_NUM_BE_QUEUE; rtlpci->rxbuffersize = 9100; /*2048/1024; */ rtlpci->rxringcount = RTL_PCI_MAX_RX_COUNT; /*64; */ } static void _rtl_pci_init_struct(struct ieee80211_hw *hw, struct pci_dev *pdev) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); rtlpci->up_first_time = true; rtlpci->being_init_adapter = false; rtlhal->hw = hw; rtlpci->pdev = pdev; /*Tx/Rx related var */ _rtl_pci_init_trx_var(hw); /*IBSS*/ mac->beacon_interval = 100; /*AMPDU*/ mac->min_space_cfg = 0; mac->max_mss_density = 0; /*set sane AMPDU defaults */ mac->current_ampdu_density = 7; mac->current_ampdu_factor = 3; /*Retry Limit*/ mac->retry_short = 7; mac->retry_long = 7; /*QOS*/ rtlpci->acm_method = EACMWAY2_SW; /*task */ tasklet_setup(&rtlpriv->works.irq_tasklet, _rtl_pci_irq_tasklet); tasklet_setup(&rtlpriv->works.irq_prepare_bcn_tasklet, _rtl_pci_prepare_bcn_tasklet); INIT_WORK(&rtlpriv->works.lps_change_work, rtl_lps_change_work_callback); } static int _rtl_pci_init_tx_ring(struct ieee80211_hw *hw, unsigned int prio, unsigned int entries) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tx_buffer_desc *buffer_desc; struct rtl_tx_desc *desc; dma_addr_t buffer_desc_dma, desc_dma; u32 nextdescaddress; int i; /* alloc tx buffer desc for new trx flow*/ if (rtlpriv->use_new_trx_flow) { buffer_desc = dma_alloc_coherent(&rtlpci->pdev->dev, sizeof(*buffer_desc) * entries, &buffer_desc_dma, GFP_KERNEL); if (!buffer_desc || (unsigned long)buffer_desc & 0xFF) { pr_err("Cannot allocate TX ring (prio = %d)\n", prio); return -ENOMEM; } rtlpci->tx_ring[prio].buffer_desc = buffer_desc; rtlpci->tx_ring[prio].buffer_desc_dma = buffer_desc_dma; rtlpci->tx_ring[prio].cur_tx_rp = 0; rtlpci->tx_ring[prio].cur_tx_wp = 0; } /* alloc dma for this ring */ desc = dma_alloc_coherent(&rtlpci->pdev->dev, sizeof(*desc) * entries, &desc_dma, GFP_KERNEL); if (!desc || (unsigned long)desc & 0xFF) { pr_err("Cannot allocate TX ring (prio = %d)\n", prio); return -ENOMEM; } rtlpci->tx_ring[prio].desc = desc; rtlpci->tx_ring[prio].dma = desc_dma; rtlpci->tx_ring[prio].idx = 0; rtlpci->tx_ring[prio].entries = entries; skb_queue_head_init(&rtlpci->tx_ring[prio].queue); rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "queue:%d, ring_addr:%p\n", prio, desc); /* init every desc in this ring */ if (!rtlpriv->use_new_trx_flow) { for (i = 0; i < entries; i++) { nextdescaddress = (u32)desc_dma + ((i + 1) % entries) * sizeof(*desc); rtlpriv->cfg->ops->set_desc(hw, (u8 *)&desc[i], true, HW_DESC_TX_NEXTDESC_ADDR, (u8 *)&nextdescaddress); } } return 0; } static int _rtl_pci_init_rx_ring(struct ieee80211_hw *hw, int rxring_idx) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); int i; if (rtlpriv->use_new_trx_flow) { struct rtl_rx_buffer_desc *entry = NULL; /* alloc dma for this ring */ rtlpci->rx_ring[rxring_idx].buffer_desc = dma_alloc_coherent(&rtlpci->pdev->dev, sizeof(*rtlpci->rx_ring[rxring_idx].buffer_desc) * rtlpci->rxringcount, &rtlpci->rx_ring[rxring_idx].dma, GFP_KERNEL); if (!rtlpci->rx_ring[rxring_idx].buffer_desc || (ulong)rtlpci->rx_ring[rxring_idx].buffer_desc & 0xFF) { pr_err("Cannot allocate RX ring\n"); return -ENOMEM; } /* init every desc in this ring */ rtlpci->rx_ring[rxring_idx].idx = 0; for (i = 0; i < rtlpci->rxringcount; i++) { entry = &rtlpci->rx_ring[rxring_idx].buffer_desc[i]; if (!_rtl_pci_init_one_rxdesc(hw, NULL, (u8 *)entry, rxring_idx, i)) return -ENOMEM; } } else { struct rtl_rx_desc *entry = NULL; u8 tmp_one = 1; /* alloc dma for this ring */ rtlpci->rx_ring[rxring_idx].desc = dma_alloc_coherent(&rtlpci->pdev->dev, sizeof(*rtlpci->rx_ring[rxring_idx].desc) * rtlpci->rxringcount, &rtlpci->rx_ring[rxring_idx].dma, GFP_KERNEL); if (!rtlpci->rx_ring[rxring_idx].desc || (unsigned long)rtlpci->rx_ring[rxring_idx].desc & 0xFF) { pr_err("Cannot allocate RX ring\n"); return -ENOMEM; } /* init every desc in this ring */ rtlpci->rx_ring[rxring_idx].idx = 0; for (i = 0; i < rtlpci->rxringcount; i++) { entry = &rtlpci->rx_ring[rxring_idx].desc[i]; if (!_rtl_pci_init_one_rxdesc(hw, NULL, (u8 *)entry, rxring_idx, i)) return -ENOMEM; } rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false, HW_DESC_RXERO, &tmp_one); } return 0; } static void _rtl_pci_free_tx_ring(struct ieee80211_hw *hw, unsigned int prio) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[prio]; /* free every desc in this ring */ while (skb_queue_len(&ring->queue)) { u8 *entry; struct sk_buff *skb = __skb_dequeue(&ring->queue); if (rtlpriv->use_new_trx_flow) entry = (u8 *)(&ring->buffer_desc[ring->idx]); else entry = (u8 *)(&ring->desc[ring->idx]); dma_unmap_single(&rtlpci->pdev->dev, rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry, true, HW_DESC_TXBUFF_ADDR), skb->len, DMA_TO_DEVICE); kfree_skb(skb); ring->idx = (ring->idx + 1) % ring->entries; } /* free dma of this ring */ dma_free_coherent(&rtlpci->pdev->dev, sizeof(*ring->desc) * ring->entries, ring->desc, ring->dma); ring->desc = NULL; if (rtlpriv->use_new_trx_flow) { dma_free_coherent(&rtlpci->pdev->dev, sizeof(*ring->buffer_desc) * ring->entries, ring->buffer_desc, ring->buffer_desc_dma); ring->buffer_desc = NULL; } } static void _rtl_pci_free_rx_ring(struct ieee80211_hw *hw, int rxring_idx) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); int i; /* free every desc in this ring */ for (i = 0; i < rtlpci->rxringcount; i++) { struct sk_buff *skb = rtlpci->rx_ring[rxring_idx].rx_buf[i]; if (!skb) continue; dma_unmap_single(&rtlpci->pdev->dev, *((dma_addr_t *)skb->cb), rtlpci->rxbuffersize, DMA_FROM_DEVICE); kfree_skb(skb); } /* free dma of this ring */ if (rtlpriv->use_new_trx_flow) { dma_free_coherent(&rtlpci->pdev->dev, sizeof(*rtlpci->rx_ring[rxring_idx].buffer_desc) * rtlpci->rxringcount, rtlpci->rx_ring[rxring_idx].buffer_desc, rtlpci->rx_ring[rxring_idx].dma); rtlpci->rx_ring[rxring_idx].buffer_desc = NULL; } else { dma_free_coherent(&rtlpci->pdev->dev, sizeof(*rtlpci->rx_ring[rxring_idx].desc) * rtlpci->rxringcount, rtlpci->rx_ring[rxring_idx].desc, rtlpci->rx_ring[rxring_idx].dma); rtlpci->rx_ring[rxring_idx].desc = NULL; } } static int _rtl_pci_init_trx_ring(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); int ret; int i, rxring_idx; /* rxring_idx 0:RX_MPDU_QUEUE * rxring_idx 1:RX_CMD_QUEUE */ for (rxring_idx = 0; rxring_idx < RTL_PCI_MAX_RX_QUEUE; rxring_idx++) { ret = _rtl_pci_init_rx_ring(hw, rxring_idx); if (ret) return ret; } for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) { ret = _rtl_pci_init_tx_ring(hw, i, rtlpci->txringcount[i]); if (ret) goto err_free_rings; } return 0; err_free_rings: for (rxring_idx = 0; rxring_idx < RTL_PCI_MAX_RX_QUEUE; rxring_idx++) _rtl_pci_free_rx_ring(hw, rxring_idx); for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) if (rtlpci->tx_ring[i].desc || rtlpci->tx_ring[i].buffer_desc) _rtl_pci_free_tx_ring(hw, i); return 1; } static int _rtl_pci_deinit_trx_ring(struct ieee80211_hw *hw) { u32 i, rxring_idx; /*free rx rings */ for (rxring_idx = 0; rxring_idx < RTL_PCI_MAX_RX_QUEUE; rxring_idx++) _rtl_pci_free_rx_ring(hw, rxring_idx); /*free tx rings */ for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) _rtl_pci_free_tx_ring(hw, i); return 0; } int rtl_pci_reset_trx_ring(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); int i, rxring_idx; unsigned long flags; u8 tmp_one = 1; u32 bufferaddress; /* rxring_idx 0:RX_MPDU_QUEUE */ /* rxring_idx 1:RX_CMD_QUEUE */ for (rxring_idx = 0; rxring_idx < RTL_PCI_MAX_RX_QUEUE; rxring_idx++) { /* force the rx_ring[RX_MPDU_QUEUE/ * RX_CMD_QUEUE].idx to the first one *new trx flow, do nothing */ if (!rtlpriv->use_new_trx_flow && rtlpci->rx_ring[rxring_idx].desc) { struct rtl_rx_desc *entry = NULL; rtlpci->rx_ring[rxring_idx].idx = 0; for (i = 0; i < rtlpci->rxringcount; i++) { entry = &rtlpci->rx_ring[rxring_idx].desc[i]; bufferaddress = rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry, false, HW_DESC_RXBUFF_ADDR); memset((u8 *)entry, 0, sizeof(*rtlpci->rx_ring [rxring_idx].desc));/*clear one entry*/ if (rtlpriv->use_new_trx_flow) { rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false, HW_DESC_RX_PREPARE, (u8 *)&bufferaddress); } else { rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false, HW_DESC_RXBUFF_ADDR, (u8 *)&bufferaddress); rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false, HW_DESC_RXPKT_LEN, (u8 *)&rtlpci->rxbuffersize); rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false, HW_DESC_RXOWN, (u8 *)&tmp_one); } } rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false, HW_DESC_RXERO, (u8 *)&tmp_one); } rtlpci->rx_ring[rxring_idx].idx = 0; } /*after reset, release previous pending packet, *and force the tx idx to the first one */ spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags); for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) { if (rtlpci->tx_ring[i].desc || rtlpci->tx_ring[i].buffer_desc) { struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[i]; while (skb_queue_len(&ring->queue)) { u8 *entry; struct sk_buff *skb = __skb_dequeue(&ring->queue); if (rtlpriv->use_new_trx_flow) entry = (u8 *)(&ring->buffer_desc [ring->idx]); else entry = (u8 *)(&ring->desc[ring->idx]); dma_unmap_single(&rtlpci->pdev->dev, rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry, true, HW_DESC_TXBUFF_ADDR), skb->len, DMA_TO_DEVICE); dev_kfree_skb_irq(skb); ring->idx = (ring->idx + 1) % ring->entries; } if (rtlpriv->use_new_trx_flow) { rtlpci->tx_ring[i].cur_tx_rp = 0; rtlpci->tx_ring[i].cur_tx_wp = 0; } ring->idx = 0; ring->entries = rtlpci->txringcount[i]; } } spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); return 0; } static bool rtl_pci_tx_chk_waitq_insert(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct sk_buff *skb) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_sta_info *sta_entry = NULL; u8 tid = rtl_get_tid(skb); __le16 fc = rtl_get_fc(skb); if (!sta) return false; sta_entry = (struct rtl_sta_info *)sta->drv_priv; if (!rtlpriv->rtlhal.earlymode_enable) return false; if (ieee80211_is_nullfunc(fc)) return false; if (ieee80211_is_qos_nullfunc(fc)) return false; if (ieee80211_is_pspoll(fc)) return false; if (sta_entry->tids[tid].agg.agg_state != RTL_AGG_OPERATIONAL) return false; if (_rtl_mac_to_hwqueue(hw, skb) > VO_QUEUE) return false; if (tid > 7) return false; /* maybe every tid should be checked */ if (!rtlpriv->link_info.higher_busytxtraffic[tid]) return false; spin_lock_bh(&rtlpriv->locks.waitq_lock); skb_queue_tail(&rtlpriv->mac80211.skb_waitq[tid], skb); spin_unlock_bh(&rtlpriv->locks.waitq_lock); return true; } static int rtl_pci_tx(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct sk_buff *skb, struct rtl_tcb_desc *ptcb_desc) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct rtl8192_tx_ring *ring; struct rtl_tx_desc *pdesc; struct rtl_tx_buffer_desc *ptx_bd_desc = NULL; u16 idx; u8 hw_queue = _rtl_mac_to_hwqueue(hw, skb); unsigned long flags; struct ieee80211_hdr *hdr = rtl_get_hdr(skb); __le16 fc = rtl_get_fc(skb); u8 *pda_addr = hdr->addr1; struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 own; u8 temp_one = 1; if (ieee80211_is_mgmt(fc)) rtl_tx_mgmt_proc(hw, skb); if (rtlpriv->psc.sw_ps_enabled) { if (ieee80211_is_data(fc) && !ieee80211_is_nullfunc(fc) && !ieee80211_has_pm(fc)) hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); } rtl_action_proc(hw, skb, true); if (is_multicast_ether_addr(pda_addr)) rtlpriv->stats.txbytesmulticast += skb->len; else if (is_broadcast_ether_addr(pda_addr)) rtlpriv->stats.txbytesbroadcast += skb->len; else rtlpriv->stats.txbytesunicast += skb->len; spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags); ring = &rtlpci->tx_ring[hw_queue]; if (hw_queue != BEACON_QUEUE) { if (rtlpriv->use_new_trx_flow) idx = ring->cur_tx_wp; else idx = (ring->idx + skb_queue_len(&ring->queue)) % ring->entries; } else { idx = 0; } pdesc = &ring->desc[idx]; if (rtlpriv->use_new_trx_flow) { ptx_bd_desc = &ring->buffer_desc[idx]; } else { own = (u8)rtlpriv->cfg->ops->get_desc(hw, (u8 *)pdesc, true, HW_DESC_OWN); if (own == 1 && hw_queue != BEACON_QUEUE) { rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "No more TX desc@%d, ring->idx = %d, idx = %d, skb_queue_len = 0x%x\n", hw_queue, ring->idx, idx, skb_queue_len(&ring->queue)); spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); return skb->len; } } if (rtlpriv->cfg->ops->get_available_desc && rtlpriv->cfg->ops->get_available_desc(hw, hw_queue) == 0) { rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "get_available_desc fail\n"); spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); return skb->len; } if (ieee80211_is_data(fc)) rtlpriv->cfg->ops->led_control(hw, LED_CTL_TX); rtlpriv->cfg->ops->fill_tx_desc(hw, hdr, (u8 *)pdesc, (u8 *)ptx_bd_desc, info, sta, skb, hw_queue, ptcb_desc); __skb_queue_tail(&ring->queue, skb); if (rtlpriv->use_new_trx_flow) { rtlpriv->cfg->ops->set_desc(hw, (u8 *)pdesc, true, HW_DESC_OWN, &hw_queue); } else { rtlpriv->cfg->ops->set_desc(hw, (u8 *)pdesc, true, HW_DESC_OWN, &temp_one); } if ((ring->entries - skb_queue_len(&ring->queue)) < 2 && hw_queue != BEACON_QUEUE) { rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD, "less desc left, stop skb_queue@%d, ring->idx = %d, idx = %d, skb_queue_len = 0x%x\n", hw_queue, ring->idx, idx, skb_queue_len(&ring->queue)); ieee80211_stop_queue(hw, skb_get_queue_mapping(skb)); } spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); rtlpriv->cfg->ops->tx_polling(hw, hw_queue); return 0; } static void rtl_pci_flush(struct ieee80211_hw *hw, u32 queues, bool drop) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 i = 0; int queue_id; struct rtl8192_tx_ring *ring; if (mac->skip_scan) return; for (queue_id = RTL_PCI_MAX_TX_QUEUE_COUNT - 1; queue_id >= 0;) { u32 queue_len; if (((queues >> queue_id) & 0x1) == 0) { queue_id--; continue; } ring = &pcipriv->dev.tx_ring[queue_id]; queue_len = skb_queue_len(&ring->queue); if (queue_len == 0 || queue_id == BEACON_QUEUE || queue_id == TXCMD_QUEUE) { queue_id--; continue; } else { msleep(20); i++; } /* we just wait 1s for all queues */ if (rtlpriv->psc.rfpwr_state == ERFOFF || is_hal_stop(rtlhal) || i >= 200) return; } } static void rtl_pci_deinit(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); _rtl_pci_deinit_trx_ring(hw); synchronize_irq(rtlpci->pdev->irq); tasklet_kill(&rtlpriv->works.irq_tasklet); cancel_work_sync(&rtlpriv->works.lps_change_work); destroy_workqueue(rtlpriv->works.rtl_wq); } static int rtl_pci_init(struct ieee80211_hw *hw, struct pci_dev *pdev) { int err; _rtl_pci_init_struct(hw, pdev); err = _rtl_pci_init_trx_ring(hw); if (err) { pr_err("tx ring initialization failed\n"); return err; } return 0; } static int rtl_pci_start(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw)); struct rtl_btc_ops *btc_ops = rtlpriv->btcoexist.btc_ops; int err; rtl_pci_reset_trx_ring(hw); rtlpci->driver_is_goingto_unload = false; if (rtlpriv->cfg->ops->get_btc_status && rtlpriv->cfg->ops->get_btc_status()) { rtlpriv->btcoexist.btc_info.ap_num = 36; btc_ops->btc_init_variables(rtlpriv); btc_ops->btc_init_hal_vars(rtlpriv); } else if (btc_ops) { btc_ops->btc_init_variables_wifi_only(rtlpriv); } err = rtlpriv->cfg->ops->hw_init(hw); if (err) { rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Failed to config hardware!\n"); kfree(rtlpriv->btcoexist.btc_context); kfree(rtlpriv->btcoexist.wifi_only_context); return err; } rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT, &rtlmac->retry_long); rtlpriv->cfg->ops->enable_interrupt(hw); rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "enable_interrupt OK\n"); rtl_init_rx_config(hw); /*should be after adapter start and interrupt enable. */ set_hal_start(rtlhal); RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); rtlpci->up_first_time = false; rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%s OK\n", __func__); return 0; } static void rtl_pci_stop(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); unsigned long flags; u8 rf_timeout = 0; if (rtlpriv->cfg->ops->get_btc_status()) rtlpriv->btcoexist.btc_ops->btc_halt_notify(rtlpriv); if (rtlpriv->btcoexist.btc_ops) rtlpriv->btcoexist.btc_ops->btc_deinit_variables(rtlpriv); /*should be before disable interrupt&adapter *and will do it immediately. */ set_hal_stop(rtlhal); rtlpci->driver_is_goingto_unload = true; rtlpriv->cfg->ops->disable_interrupt(hw); cancel_work_sync(&rtlpriv->works.lps_change_work); spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags); while (ppsc->rfchange_inprogress) { spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags); if (rf_timeout > 100) { spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags); break; } mdelay(1); rf_timeout++; spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags); } ppsc->rfchange_inprogress = true; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags); rtlpriv->cfg->ops->hw_disable(hw); /* some things are not needed if firmware not available */ if (!rtlpriv->max_fw_size) return; rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags); ppsc->rfchange_inprogress = false; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags); rtl_pci_enable_aspm(hw); } static bool _rtl_pci_find_adapter(struct pci_dev *pdev, struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct pci_dev *bridge_pdev = pdev->bus->self; u16 venderid; u16 deviceid; u8 revisionid; u16 irqline; u8 tmp; pcipriv->ndis_adapter.pcibridge_vendor = PCI_BRIDGE_VENDOR_UNKNOWN; venderid = pdev->vendor; deviceid = pdev->device; pci_read_config_byte(pdev, 0x8, &revisionid); pci_read_config_word(pdev, 0x3C, &irqline); /* PCI ID 0x10ec:0x8192 occurs for both RTL8192E, which uses * r8192e_pci, and RTL8192SE, which uses this driver. If the * revision ID is RTL_PCI_REVISION_ID_8192PCIE (0x01), then * the correct driver is r8192e_pci, thus this routine should * return false. */ if (deviceid == RTL_PCI_8192SE_DID && revisionid == RTL_PCI_REVISION_ID_8192PCIE) return false; if (deviceid == RTL_PCI_8192_DID || deviceid == RTL_PCI_0044_DID || deviceid == RTL_PCI_0047_DID || deviceid == RTL_PCI_8192SE_DID || deviceid == RTL_PCI_8174_DID || deviceid == RTL_PCI_8173_DID || deviceid == RTL_PCI_8172_DID || deviceid == RTL_PCI_8171_DID) { switch (revisionid) { case RTL_PCI_REVISION_ID_8192PCIE: rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "8192 PCI-E is found - vid/did=%x/%x\n", venderid, deviceid); rtlhal->hw_type = HARDWARE_TYPE_RTL8192E; return false; case RTL_PCI_REVISION_ID_8192SE: rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "8192SE is found - vid/did=%x/%x\n", venderid, deviceid); rtlhal->hw_type = HARDWARE_TYPE_RTL8192SE; break; default: rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "Err: Unknown device - vid/did=%x/%x\n", venderid, deviceid); rtlhal->hw_type = HARDWARE_TYPE_RTL8192SE; break; } } else if (deviceid == RTL_PCI_8723AE_DID) { rtlhal->hw_type = HARDWARE_TYPE_RTL8723AE; rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "8723AE PCI-E is found - vid/did=%x/%x\n", venderid, deviceid); } else if (deviceid == RTL_PCI_8192CET_DID || deviceid == RTL_PCI_8192CE_DID || deviceid == RTL_PCI_8191CE_DID || deviceid == RTL_PCI_8188CE_DID) { rtlhal->hw_type = HARDWARE_TYPE_RTL8192CE; rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "8192C PCI-E is found - vid/did=%x/%x\n", venderid, deviceid); } else if (deviceid == RTL_PCI_8192DE_DID || deviceid == RTL_PCI_8192DE_DID2) { rtlhal->hw_type = HARDWARE_TYPE_RTL8192DE; rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "8192D PCI-E is found - vid/did=%x/%x\n", venderid, deviceid); } else if (deviceid == RTL_PCI_8188EE_DID) { rtlhal->hw_type = HARDWARE_TYPE_RTL8188EE; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Find adapter, Hardware type is 8188EE\n"); } else if (deviceid == RTL_PCI_8723BE_DID) { rtlhal->hw_type = HARDWARE_TYPE_RTL8723BE; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Find adapter, Hardware type is 8723BE\n"); } else if (deviceid == RTL_PCI_8192EE_DID) { rtlhal->hw_type = HARDWARE_TYPE_RTL8192EE; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Find adapter, Hardware type is 8192EE\n"); } else if (deviceid == RTL_PCI_8821AE_DID) { rtlhal->hw_type = HARDWARE_TYPE_RTL8821AE; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Find adapter, Hardware type is 8821AE\n"); } else if (deviceid == RTL_PCI_8812AE_DID) { rtlhal->hw_type = HARDWARE_TYPE_RTL8812AE; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Find adapter, Hardware type is 8812AE\n"); } else if (deviceid == RTL_PCI_8822BE_DID) { rtlhal->hw_type = HARDWARE_TYPE_RTL8822BE; rtlhal->bandset = BAND_ON_BOTH; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Find adapter, Hardware type is 8822BE\n"); } else { rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "Err: Unknown device - vid/did=%x/%x\n", venderid, deviceid); rtlhal->hw_type = RTL_DEFAULT_HARDWARE_TYPE; } if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192DE) { if (revisionid == 0 || revisionid == 1) { if (revisionid == 0) { rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Find 92DE MAC0\n"); rtlhal->interfaceindex = 0; } else if (revisionid == 1) { rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Find 92DE MAC1\n"); rtlhal->interfaceindex = 1; } } else { rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Unknown device - VendorID/DeviceID=%x/%x, Revision=%x\n", venderid, deviceid, revisionid); rtlhal->interfaceindex = 0; } } switch (rtlhal->hw_type) { case HARDWARE_TYPE_RTL8192EE: case HARDWARE_TYPE_RTL8822BE: /* use new trx flow */ rtlpriv->use_new_trx_flow = true; break; default: rtlpriv->use_new_trx_flow = false; break; } /*find bus info */ pcipriv->ndis_adapter.busnumber = pdev->bus->number; pcipriv->ndis_adapter.devnumber = PCI_SLOT(pdev->devfn); pcipriv->ndis_adapter.funcnumber = PCI_FUNC(pdev->devfn); /*find bridge info */ pcipriv->ndis_adapter.pcibridge_vendor = PCI_BRIDGE_VENDOR_UNKNOWN; /* some ARM have no bridge_pdev and will crash here * so we should check if bridge_pdev is NULL */ if (bridge_pdev) { /*find bridge info if available */ pcipriv->ndis_adapter.pcibridge_vendorid = bridge_pdev->vendor; for (tmp = 0; tmp < PCI_BRIDGE_VENDOR_MAX; tmp++) { if (bridge_pdev->vendor == pcibridge_vendors[tmp]) { pcipriv->ndis_adapter.pcibridge_vendor = tmp; rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Pci Bridge Vendor is found index: %d\n", tmp); break; } } } if (pcipriv->ndis_adapter.pcibridge_vendor != PCI_BRIDGE_VENDOR_UNKNOWN) { pcipriv->ndis_adapter.pcibridge_busnum = bridge_pdev->bus->number; pcipriv->ndis_adapter.pcibridge_devnum = PCI_SLOT(bridge_pdev->devfn); pcipriv->ndis_adapter.pcibridge_funcnum = PCI_FUNC(bridge_pdev->devfn); pcipriv->ndis_adapter.pcibridge_pciehdr_offset = pci_pcie_cap(bridge_pdev); pcipriv->ndis_adapter.num4bytes = (pcipriv->ndis_adapter.pcibridge_pciehdr_offset + 0x10) / 4; rtl_pci_get_linkcontrol_field(hw); if (pcipriv->ndis_adapter.pcibridge_vendor == PCI_BRIDGE_VENDOR_AMD) { pcipriv->ndis_adapter.amd_l1_patch = rtl_pci_get_amd_l1_patch(hw); } } rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "pcidev busnumber:devnumber:funcnumber:vendor:link_ctl %d:%d:%d:%x:%x\n", pcipriv->ndis_adapter.busnumber, pcipriv->ndis_adapter.devnumber, pcipriv->ndis_adapter.funcnumber, pdev->vendor, pcipriv->ndis_adapter.linkctrl_reg); rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "pci_bridge busnumber:devnumber:funcnumber:vendor:pcie_cap:link_ctl_reg:amd %d:%d:%d:%x:%x:%x:%x\n", pcipriv->ndis_adapter.pcibridge_busnum, pcipriv->ndis_adapter.pcibridge_devnum, pcipriv->ndis_adapter.pcibridge_funcnum, pcibridge_vendors[pcipriv->ndis_adapter.pcibridge_vendor], pcipriv->ndis_adapter.pcibridge_pciehdr_offset, pcipriv->ndis_adapter.pcibridge_linkctrlreg, pcipriv->ndis_adapter.amd_l1_patch); rtl_pci_parse_configuration(pdev, hw); list_add_tail(&rtlpriv->list, &rtlpriv->glb_var->glb_priv_list); return true; } static int rtl_pci_intr_mode_msi(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_pci *rtlpci = rtl_pcidev(pcipriv); int ret; ret = pci_enable_msi(rtlpci->pdev); if (ret < 0) return ret; ret = request_irq(rtlpci->pdev->irq, &_rtl_pci_interrupt, IRQF_SHARED, KBUILD_MODNAME, hw); if (ret < 0) { pci_disable_msi(rtlpci->pdev); return ret; } rtlpci->using_msi = true; rtl_dbg(rtlpriv, COMP_INIT | COMP_INTR, DBG_DMESG, "MSI Interrupt Mode!\n"); return 0; } static int rtl_pci_intr_mode_legacy(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_pci *rtlpci = rtl_pcidev(pcipriv); int ret; ret = request_irq(rtlpci->pdev->irq, &_rtl_pci_interrupt, IRQF_SHARED, KBUILD_MODNAME, hw); if (ret < 0) return ret; rtlpci->using_msi = false; rtl_dbg(rtlpriv, COMP_INIT | COMP_INTR, DBG_DMESG, "Pin-based Interrupt Mode!\n"); return 0; } static int rtl_pci_intr_mode_decide(struct ieee80211_hw *hw) { struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_pci *rtlpci = rtl_pcidev(pcipriv); int ret; if (rtlpci->msi_support) { ret = rtl_pci_intr_mode_msi(hw); if (ret < 0) ret = rtl_pci_intr_mode_legacy(hw); } else { ret = rtl_pci_intr_mode_legacy(hw); } return ret; } static void platform_enable_dma64(struct pci_dev *pdev, bool dma64) { u8 value; pci_read_config_byte(pdev, 0x719, &value); /* 0x719 Bit5 is DMA64 bit fetch. */ if (dma64) value |= BIT(5); else value &= ~BIT(5); pci_write_config_byte(pdev, 0x719, value); } int rtl_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct ieee80211_hw *hw = NULL; struct rtl_priv *rtlpriv = NULL; struct rtl_pci_priv *pcipriv = NULL; struct rtl_pci *rtlpci; unsigned long pmem_start, pmem_len, pmem_flags; int err; err = pci_enable_device(pdev); if (err) { WARN_ONCE(true, "%s : Cannot enable new PCI device\n", pci_name(pdev)); return err; } if (((struct rtl_hal_cfg *)id->driver_data)->mod_params->dma64 && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { if (dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) { WARN_ONCE(true, "Unable to obtain 64bit DMA for consistent allocations\n"); err = -ENOMEM; goto fail1; } platform_enable_dma64(pdev, true); } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) { if (dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32))) { WARN_ONCE(true, "rtlwifi: Unable to obtain 32bit DMA for consistent allocations\n"); err = -ENOMEM; goto fail1; } platform_enable_dma64(pdev, false); } pci_set_master(pdev); hw = ieee80211_alloc_hw(sizeof(struct rtl_pci_priv) + sizeof(struct rtl_priv), &rtl_ops); if (!hw) { WARN_ONCE(true, "%s : ieee80211 alloc failed\n", pci_name(pdev)); err = -ENOMEM; goto fail1; } SET_IEEE80211_DEV(hw, &pdev->dev); pci_set_drvdata(pdev, hw); rtlpriv = hw->priv; rtlpriv->hw = hw; pcipriv = (void *)rtlpriv->priv; pcipriv->dev.pdev = pdev; init_completion(&rtlpriv->firmware_loading_complete); /*proximity init here*/ rtlpriv->proximity.proxim_on = false; pcipriv = (void *)rtlpriv->priv; pcipriv->dev.pdev = pdev; /* init cfg & intf_ops */ rtlpriv->rtlhal.interface = INTF_PCI; rtlpriv->cfg = (struct rtl_hal_cfg *)(id->driver_data); rtlpriv->intf_ops = &rtl_pci_ops; rtlpriv->glb_var = &rtl_global_var; rtl_efuse_ops_init(hw); /* MEM map */ err = pci_request_regions(pdev, KBUILD_MODNAME); if (err) { WARN_ONCE(true, "rtlwifi: Can't obtain PCI resources\n"); goto fail1; } pmem_start = pci_resource_start(pdev, rtlpriv->cfg->bar_id); pmem_len = pci_resource_len(pdev, rtlpriv->cfg->bar_id); pmem_flags = pci_resource_flags(pdev, rtlpriv->cfg->bar_id); /*shared mem start */ rtlpriv->io.pci_mem_start = (unsigned long)pci_iomap(pdev, rtlpriv->cfg->bar_id, pmem_len); if (rtlpriv->io.pci_mem_start == 0) { WARN_ONCE(true, "rtlwifi: Can't map PCI mem\n"); err = -ENOMEM; goto fail2; } rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "mem mapped space: start: 0x%08lx len:%08lx flags:%08lx, after map:0x%08lx\n", pmem_start, pmem_len, pmem_flags, rtlpriv->io.pci_mem_start); /* Disable Clk Request */ pci_write_config_byte(pdev, 0x81, 0); /* leave D3 mode */ pci_write_config_byte(pdev, 0x44, 0); pci_write_config_byte(pdev, 0x04, 0x06); pci_write_config_byte(pdev, 0x04, 0x07); /* find adapter */ if (!_rtl_pci_find_adapter(pdev, hw)) { err = -ENODEV; goto fail2; } /* Init IO handler */ _rtl_pci_io_handler_init(&pdev->dev, hw); /*like read eeprom and so on */ rtlpriv->cfg->ops->read_eeprom_info(hw); if (rtlpriv->cfg->ops->init_sw_vars(hw)) { pr_err("Can't init_sw_vars\n"); err = -ENODEV; goto fail3; } rtlpriv->cfg->ops->init_sw_leds(hw); /*aspm */ rtl_pci_init_aspm(hw); /* Init mac80211 sw */ err = rtl_init_core(hw); if (err) { pr_err("Can't allocate sw for mac80211\n"); goto fail3; } /* Init PCI sw */ err = rtl_pci_init(hw, pdev); if (err) { pr_err("Failed to init PCI\n"); goto fail3; } err = ieee80211_register_hw(hw); if (err) { pr_err("Can't register mac80211 hw.\n"); err = -ENODEV; goto fail3; } rtlpriv->mac80211.mac80211_registered = 1; /* add for debug */ rtl_debug_add_one(hw); /*init rfkill */ rtl_init_rfkill(hw); /* Init PCI sw */ rtlpci = rtl_pcidev(pcipriv); err = rtl_pci_intr_mode_decide(hw); if (err) { rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%s: failed to register IRQ handler\n", wiphy_name(hw->wiphy)); goto fail3; } rtlpci->irq_alloc = 1; set_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status); return 0; fail3: pci_set_drvdata(pdev, NULL); rtl_deinit_core(hw); fail2: if (rtlpriv->io.pci_mem_start != 0) pci_iounmap(pdev, (void __iomem *)rtlpriv->io.pci_mem_start); pci_release_regions(pdev); complete(&rtlpriv->firmware_loading_complete); fail1: if (hw) ieee80211_free_hw(hw); pci_disable_device(pdev); return err; } EXPORT_SYMBOL(rtl_pci_probe); void rtl_pci_disconnect(struct pci_dev *pdev) { struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(pcipriv); struct rtl_mac *rtlmac = rtl_mac(rtlpriv); /* just in case driver is removed before firmware callback */ wait_for_completion(&rtlpriv->firmware_loading_complete); clear_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status); /* remove form debug */ rtl_debug_remove_one(hw); /*ieee80211_unregister_hw will call ops_stop */ if (rtlmac->mac80211_registered == 1) { ieee80211_unregister_hw(hw); rtlmac->mac80211_registered = 0; } else { rtl_deinit_deferred_work(hw, false); rtlpriv->intf_ops->adapter_stop(hw); } rtlpriv->cfg->ops->disable_interrupt(hw); /*deinit rfkill */ rtl_deinit_rfkill(hw); rtl_pci_deinit(hw); rtl_deinit_core(hw); rtlpriv->cfg->ops->deinit_sw_vars(hw); if (rtlpci->irq_alloc) { free_irq(rtlpci->pdev->irq, hw); rtlpci->irq_alloc = 0; } if (rtlpci->using_msi) pci_disable_msi(rtlpci->pdev); list_del(&rtlpriv->list); if (rtlpriv->io.pci_mem_start != 0) { pci_iounmap(pdev, (void __iomem *)rtlpriv->io.pci_mem_start); pci_release_regions(pdev); } pci_disable_device(pdev); rtl_pci_disable_aspm(hw); pci_set_drvdata(pdev, NULL); ieee80211_free_hw(hw); } EXPORT_SYMBOL(rtl_pci_disconnect); #ifdef CONFIG_PM_SLEEP /*************************************** * kernel pci power state define: * PCI_D0 ((pci_power_t __force) 0) * PCI_D1 ((pci_power_t __force) 1) * PCI_D2 ((pci_power_t __force) 2) * PCI_D3hot ((pci_power_t __force) 3) * PCI_D3cold ((pci_power_t __force) 4) * PCI_UNKNOWN ((pci_power_t __force) 5) * This function is called when system * goes into suspend state mac80211 will * call rtl_mac_stop() from the mac80211 * suspend function first, So there is * no need to call hw_disable here. ****************************************/ int rtl_pci_suspend(struct device *dev) { struct ieee80211_hw *hw = dev_get_drvdata(dev); struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpriv->cfg->ops->hw_suspend(hw); rtl_deinit_rfkill(hw); return 0; } EXPORT_SYMBOL(rtl_pci_suspend); int rtl_pci_resume(struct device *dev) { struct ieee80211_hw *hw = dev_get_drvdata(dev); struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpriv->cfg->ops->hw_resume(hw); rtl_init_rfkill(hw); return 0; } EXPORT_SYMBOL(rtl_pci_resume); #endif /* CONFIG_PM_SLEEP */ const struct rtl_intf_ops rtl_pci_ops = { .read_efuse_byte = read_efuse_byte, .adapter_start = rtl_pci_start, .adapter_stop = rtl_pci_stop, .check_buddy_priv = rtl_pci_check_buddy_priv, .adapter_tx = rtl_pci_tx, .flush = rtl_pci_flush, .reset_trx_ring = rtl_pci_reset_trx_ring, .waitq_insert = rtl_pci_tx_chk_waitq_insert, .disable_aspm = rtl_pci_disable_aspm, .enable_aspm = rtl_pci_enable_aspm, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1