Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vishal Verma | 7280 | 90.28% | 19 | 25.68% |
Dan J Williams | 454 | 5.63% | 20 | 27.03% |
Ross Zwisler | 146 | 1.81% | 1 | 1.35% |
Christoph Hellwig | 68 | 0.84% | 12 | 16.22% |
Aneesh Kumar K.V | 25 | 0.31% | 2 | 2.70% |
Luis R. Rodriguez | 21 | 0.26% | 2 | 2.70% |
Michael Christie | 14 | 0.17% | 3 | 4.05% |
Dmitriy Monakhov | 9 | 0.11% | 2 | 2.70% |
Christophe Jaillet | 9 | 0.11% | 1 | 1.35% |
Qian Cai | 8 | 0.10% | 1 | 1.35% |
Jeff Moyer | 8 | 0.10% | 1 | 1.35% |
Tejun Heo | 5 | 0.06% | 1 | 1.35% |
Linus Torvalds | 3 | 0.04% | 2 | 2.70% |
MinChan Kim | 3 | 0.04% | 1 | 1.35% |
Bart Van Assche | 3 | 0.04% | 2 | 2.70% |
Randy Dunlap | 2 | 0.02% | 1 | 1.35% |
Hannes Reinecke | 2 | 0.02% | 1 | 1.35% |
Neil Brown | 2 | 0.02% | 1 | 1.35% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.35% |
Total | 8064 | 74 |
// SPDX-License-Identifier: GPL-2.0-only /* * Block Translation Table * Copyright (c) 2014-2015, Intel Corporation. */ #include <linux/highmem.h> #include <linux/debugfs.h> #include <linux/blkdev.h> #include <linux/pagemap.h> #include <linux/module.h> #include <linux/device.h> #include <linux/mutex.h> #include <linux/hdreg.h> #include <linux/sizes.h> #include <linux/ndctl.h> #include <linux/fs.h> #include <linux/nd.h> #include <linux/backing-dev.h> #include "btt.h" #include "nd.h" enum log_ent_request { LOG_NEW_ENT = 0, LOG_OLD_ENT }; static struct device *to_dev(struct arena_info *arena) { return &arena->nd_btt->dev; } static u64 adjust_initial_offset(struct nd_btt *nd_btt, u64 offset) { return offset + nd_btt->initial_offset; } static int arena_read_bytes(struct arena_info *arena, resource_size_t offset, void *buf, size_t n, unsigned long flags) { struct nd_btt *nd_btt = arena->nd_btt; struct nd_namespace_common *ndns = nd_btt->ndns; /* arena offsets may be shifted from the base of the device */ offset = adjust_initial_offset(nd_btt, offset); return nvdimm_read_bytes(ndns, offset, buf, n, flags); } static int arena_write_bytes(struct arena_info *arena, resource_size_t offset, void *buf, size_t n, unsigned long flags) { struct nd_btt *nd_btt = arena->nd_btt; struct nd_namespace_common *ndns = nd_btt->ndns; /* arena offsets may be shifted from the base of the device */ offset = adjust_initial_offset(nd_btt, offset); return nvdimm_write_bytes(ndns, offset, buf, n, flags); } static int btt_info_write(struct arena_info *arena, struct btt_sb *super) { int ret; /* * infooff and info2off should always be at least 512B aligned. * We rely on that to make sure rw_bytes does error clearing * correctly, so make sure that is the case. */ dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->infooff, 512), "arena->infooff: %#llx is unaligned\n", arena->infooff); dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->info2off, 512), "arena->info2off: %#llx is unaligned\n", arena->info2off); ret = arena_write_bytes(arena, arena->info2off, super, sizeof(struct btt_sb), 0); if (ret) return ret; return arena_write_bytes(arena, arena->infooff, super, sizeof(struct btt_sb), 0); } static int btt_info_read(struct arena_info *arena, struct btt_sb *super) { return arena_read_bytes(arena, arena->infooff, super, sizeof(struct btt_sb), 0); } /* * 'raw' version of btt_map write * Assumptions: * mapping is in little-endian * mapping contains 'E' and 'Z' flags as desired */ static int __btt_map_write(struct arena_info *arena, u32 lba, __le32 mapping, unsigned long flags) { u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE); if (unlikely(lba >= arena->external_nlba)) dev_err_ratelimited(to_dev(arena), "%s: lba %#x out of range (max: %#x)\n", __func__, lba, arena->external_nlba); return arena_write_bytes(arena, ns_off, &mapping, MAP_ENT_SIZE, flags); } static int btt_map_write(struct arena_info *arena, u32 lba, u32 mapping, u32 z_flag, u32 e_flag, unsigned long rwb_flags) { u32 ze; __le32 mapping_le; /* * This 'mapping' is supposed to be just the LBA mapping, without * any flags set, so strip the flag bits. */ mapping = ent_lba(mapping); ze = (z_flag << 1) + e_flag; switch (ze) { case 0: /* * We want to set neither of the Z or E flags, and * in the actual layout, this means setting the bit * positions of both to '1' to indicate a 'normal' * map entry */ mapping |= MAP_ENT_NORMAL; break; case 1: mapping |= (1 << MAP_ERR_SHIFT); break; case 2: mapping |= (1 << MAP_TRIM_SHIFT); break; default: /* * The case where Z and E are both sent in as '1' could be * construed as a valid 'normal' case, but we decide not to, * to avoid confusion */ dev_err_ratelimited(to_dev(arena), "Invalid use of Z and E flags\n"); return -EIO; } mapping_le = cpu_to_le32(mapping); return __btt_map_write(arena, lba, mapping_le, rwb_flags); } static int btt_map_read(struct arena_info *arena, u32 lba, u32 *mapping, int *trim, int *error, unsigned long rwb_flags) { int ret; __le32 in; u32 raw_mapping, postmap, ze, z_flag, e_flag; u64 ns_off = arena->mapoff + (lba * MAP_ENT_SIZE); if (unlikely(lba >= arena->external_nlba)) dev_err_ratelimited(to_dev(arena), "%s: lba %#x out of range (max: %#x)\n", __func__, lba, arena->external_nlba); ret = arena_read_bytes(arena, ns_off, &in, MAP_ENT_SIZE, rwb_flags); if (ret) return ret; raw_mapping = le32_to_cpu(in); z_flag = ent_z_flag(raw_mapping); e_flag = ent_e_flag(raw_mapping); ze = (z_flag << 1) + e_flag; postmap = ent_lba(raw_mapping); /* Reuse the {z,e}_flag variables for *trim and *error */ z_flag = 0; e_flag = 0; switch (ze) { case 0: /* Initial state. Return postmap = premap */ *mapping = lba; break; case 1: *mapping = postmap; e_flag = 1; break; case 2: *mapping = postmap; z_flag = 1; break; case 3: *mapping = postmap; break; default: return -EIO; } if (trim) *trim = z_flag; if (error) *error = e_flag; return ret; } static int btt_log_group_read(struct arena_info *arena, u32 lane, struct log_group *log) { return arena_read_bytes(arena, arena->logoff + (lane * LOG_GRP_SIZE), log, LOG_GRP_SIZE, 0); } static struct dentry *debugfs_root; static void arena_debugfs_init(struct arena_info *a, struct dentry *parent, int idx) { char dirname[32]; struct dentry *d; /* If for some reason, parent bttN was not created, exit */ if (!parent) return; snprintf(dirname, 32, "arena%d", idx); d = debugfs_create_dir(dirname, parent); if (IS_ERR_OR_NULL(d)) return; a->debugfs_dir = d; debugfs_create_x64("size", S_IRUGO, d, &a->size); debugfs_create_x64("external_lba_start", S_IRUGO, d, &a->external_lba_start); debugfs_create_x32("internal_nlba", S_IRUGO, d, &a->internal_nlba); debugfs_create_u32("internal_lbasize", S_IRUGO, d, &a->internal_lbasize); debugfs_create_x32("external_nlba", S_IRUGO, d, &a->external_nlba); debugfs_create_u32("external_lbasize", S_IRUGO, d, &a->external_lbasize); debugfs_create_u32("nfree", S_IRUGO, d, &a->nfree); debugfs_create_u16("version_major", S_IRUGO, d, &a->version_major); debugfs_create_u16("version_minor", S_IRUGO, d, &a->version_minor); debugfs_create_x64("nextoff", S_IRUGO, d, &a->nextoff); debugfs_create_x64("infooff", S_IRUGO, d, &a->infooff); debugfs_create_x64("dataoff", S_IRUGO, d, &a->dataoff); debugfs_create_x64("mapoff", S_IRUGO, d, &a->mapoff); debugfs_create_x64("logoff", S_IRUGO, d, &a->logoff); debugfs_create_x64("info2off", S_IRUGO, d, &a->info2off); debugfs_create_x32("flags", S_IRUGO, d, &a->flags); debugfs_create_u32("log_index_0", S_IRUGO, d, &a->log_index[0]); debugfs_create_u32("log_index_1", S_IRUGO, d, &a->log_index[1]); } static void btt_debugfs_init(struct btt *btt) { int i = 0; struct arena_info *arena; btt->debugfs_dir = debugfs_create_dir(dev_name(&btt->nd_btt->dev), debugfs_root); if (IS_ERR_OR_NULL(btt->debugfs_dir)) return; list_for_each_entry(arena, &btt->arena_list, list) { arena_debugfs_init(arena, btt->debugfs_dir, i); i++; } } static u32 log_seq(struct log_group *log, int log_idx) { return le32_to_cpu(log->ent[log_idx].seq); } /* * This function accepts two log entries, and uses the * sequence number to find the 'older' entry. * It also updates the sequence number in this old entry to * make it the 'new' one if the mark_flag is set. * Finally, it returns which of the entries was the older one. * * TODO The logic feels a bit kludge-y. make it better.. */ static int btt_log_get_old(struct arena_info *a, struct log_group *log) { int idx0 = a->log_index[0]; int idx1 = a->log_index[1]; int old; /* * the first ever time this is seen, the entry goes into [0] * the next time, the following logic works out to put this * (next) entry into [1] */ if (log_seq(log, idx0) == 0) { log->ent[idx0].seq = cpu_to_le32(1); return 0; } if (log_seq(log, idx0) == log_seq(log, idx1)) return -EINVAL; if (log_seq(log, idx0) + log_seq(log, idx1) > 5) return -EINVAL; if (log_seq(log, idx0) < log_seq(log, idx1)) { if ((log_seq(log, idx1) - log_seq(log, idx0)) == 1) old = 0; else old = 1; } else { if ((log_seq(log, idx0) - log_seq(log, idx1)) == 1) old = 1; else old = 0; } return old; } /* * This function copies the desired (old/new) log entry into ent if * it is not NULL. It returns the sub-slot number (0 or 1) * where the desired log entry was found. Negative return values * indicate errors. */ static int btt_log_read(struct arena_info *arena, u32 lane, struct log_entry *ent, int old_flag) { int ret; int old_ent, ret_ent; struct log_group log; ret = btt_log_group_read(arena, lane, &log); if (ret) return -EIO; old_ent = btt_log_get_old(arena, &log); if (old_ent < 0 || old_ent > 1) { dev_err(to_dev(arena), "log corruption (%d): lane %d seq [%d, %d]\n", old_ent, lane, log.ent[arena->log_index[0]].seq, log.ent[arena->log_index[1]].seq); /* TODO set error state? */ return -EIO; } ret_ent = (old_flag ? old_ent : (1 - old_ent)); if (ent != NULL) memcpy(ent, &log.ent[arena->log_index[ret_ent]], LOG_ENT_SIZE); return ret_ent; } /* * This function commits a log entry to media * It does _not_ prepare the freelist entry for the next write * btt_flog_write is the wrapper for updating the freelist elements */ static int __btt_log_write(struct arena_info *arena, u32 lane, u32 sub, struct log_entry *ent, unsigned long flags) { int ret; u32 group_slot = arena->log_index[sub]; unsigned int log_half = LOG_ENT_SIZE / 2; void *src = ent; u64 ns_off; ns_off = arena->logoff + (lane * LOG_GRP_SIZE) + (group_slot * LOG_ENT_SIZE); /* split the 16B write into atomic, durable halves */ ret = arena_write_bytes(arena, ns_off, src, log_half, flags); if (ret) return ret; ns_off += log_half; src += log_half; return arena_write_bytes(arena, ns_off, src, log_half, flags); } static int btt_flog_write(struct arena_info *arena, u32 lane, u32 sub, struct log_entry *ent) { int ret; ret = __btt_log_write(arena, lane, sub, ent, NVDIMM_IO_ATOMIC); if (ret) return ret; /* prepare the next free entry */ arena->freelist[lane].sub = 1 - arena->freelist[lane].sub; if (++(arena->freelist[lane].seq) == 4) arena->freelist[lane].seq = 1; if (ent_e_flag(le32_to_cpu(ent->old_map))) arena->freelist[lane].has_err = 1; arena->freelist[lane].block = ent_lba(le32_to_cpu(ent->old_map)); return ret; } /* * This function initializes the BTT map to the initial state, which is * all-zeroes, and indicates an identity mapping */ static int btt_map_init(struct arena_info *arena) { int ret = -EINVAL; void *zerobuf; size_t offset = 0; size_t chunk_size = SZ_2M; size_t mapsize = arena->logoff - arena->mapoff; zerobuf = kzalloc(chunk_size, GFP_KERNEL); if (!zerobuf) return -ENOMEM; /* * mapoff should always be at least 512B aligned. We rely on that to * make sure rw_bytes does error clearing correctly, so make sure that * is the case. */ dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->mapoff, 512), "arena->mapoff: %#llx is unaligned\n", arena->mapoff); while (mapsize) { size_t size = min(mapsize, chunk_size); dev_WARN_ONCE(to_dev(arena), size < 512, "chunk size: %#zx is unaligned\n", size); ret = arena_write_bytes(arena, arena->mapoff + offset, zerobuf, size, 0); if (ret) goto free; offset += size; mapsize -= size; cond_resched(); } free: kfree(zerobuf); return ret; } /* * This function initializes the BTT log with 'fake' entries pointing * to the initial reserved set of blocks as being free */ static int btt_log_init(struct arena_info *arena) { size_t logsize = arena->info2off - arena->logoff; size_t chunk_size = SZ_4K, offset = 0; struct log_entry ent; void *zerobuf; int ret; u32 i; zerobuf = kzalloc(chunk_size, GFP_KERNEL); if (!zerobuf) return -ENOMEM; /* * logoff should always be at least 512B aligned. We rely on that to * make sure rw_bytes does error clearing correctly, so make sure that * is the case. */ dev_WARN_ONCE(to_dev(arena), !IS_ALIGNED(arena->logoff, 512), "arena->logoff: %#llx is unaligned\n", arena->logoff); while (logsize) { size_t size = min(logsize, chunk_size); dev_WARN_ONCE(to_dev(arena), size < 512, "chunk size: %#zx is unaligned\n", size); ret = arena_write_bytes(arena, arena->logoff + offset, zerobuf, size, 0); if (ret) goto free; offset += size; logsize -= size; cond_resched(); } for (i = 0; i < arena->nfree; i++) { ent.lba = cpu_to_le32(i); ent.old_map = cpu_to_le32(arena->external_nlba + i); ent.new_map = cpu_to_le32(arena->external_nlba + i); ent.seq = cpu_to_le32(LOG_SEQ_INIT); ret = __btt_log_write(arena, i, 0, &ent, 0); if (ret) goto free; } free: kfree(zerobuf); return ret; } static u64 to_namespace_offset(struct arena_info *arena, u64 lba) { return arena->dataoff + ((u64)lba * arena->internal_lbasize); } static int arena_clear_freelist_error(struct arena_info *arena, u32 lane) { int ret = 0; if (arena->freelist[lane].has_err) { void *zero_page = page_address(ZERO_PAGE(0)); u32 lba = arena->freelist[lane].block; u64 nsoff = to_namespace_offset(arena, lba); unsigned long len = arena->sector_size; mutex_lock(&arena->err_lock); while (len) { unsigned long chunk = min(len, PAGE_SIZE); ret = arena_write_bytes(arena, nsoff, zero_page, chunk, 0); if (ret) break; len -= chunk; nsoff += chunk; if (len == 0) arena->freelist[lane].has_err = 0; } mutex_unlock(&arena->err_lock); } return ret; } static int btt_freelist_init(struct arena_info *arena) { int new, ret; struct log_entry log_new; u32 i, map_entry, log_oldmap, log_newmap; arena->freelist = kcalloc(arena->nfree, sizeof(struct free_entry), GFP_KERNEL); if (!arena->freelist) return -ENOMEM; for (i = 0; i < arena->nfree; i++) { new = btt_log_read(arena, i, &log_new, LOG_NEW_ENT); if (new < 0) return new; /* old and new map entries with any flags stripped out */ log_oldmap = ent_lba(le32_to_cpu(log_new.old_map)); log_newmap = ent_lba(le32_to_cpu(log_new.new_map)); /* sub points to the next one to be overwritten */ arena->freelist[i].sub = 1 - new; arena->freelist[i].seq = nd_inc_seq(le32_to_cpu(log_new.seq)); arena->freelist[i].block = log_oldmap; /* * FIXME: if error clearing fails during init, we want to make * the BTT read-only */ if (ent_e_flag(le32_to_cpu(log_new.old_map)) && !ent_normal(le32_to_cpu(log_new.old_map))) { arena->freelist[i].has_err = 1; ret = arena_clear_freelist_error(arena, i); if (ret) dev_err_ratelimited(to_dev(arena), "Unable to clear known errors\n"); } /* This implies a newly created or untouched flog entry */ if (log_oldmap == log_newmap) continue; /* Check if map recovery is needed */ ret = btt_map_read(arena, le32_to_cpu(log_new.lba), &map_entry, NULL, NULL, 0); if (ret) return ret; /* * The map_entry from btt_read_map is stripped of any flag bits, * so use the stripped out versions from the log as well for * testing whether recovery is needed. For restoration, use the * 'raw' version of the log entries as that captured what we * were going to write originally. */ if ((log_newmap != map_entry) && (log_oldmap == map_entry)) { /* * Last transaction wrote the flog, but wasn't able * to complete the map write. So fix up the map. */ ret = btt_map_write(arena, le32_to_cpu(log_new.lba), le32_to_cpu(log_new.new_map), 0, 0, 0); if (ret) return ret; } } return 0; } static bool ent_is_padding(struct log_entry *ent) { return (ent->lba == 0) && (ent->old_map == 0) && (ent->new_map == 0) && (ent->seq == 0); } /* * Detecting valid log indices: We read a log group (see the comments in btt.h * for a description of a 'log_group' and its 'slots'), and iterate over its * four slots. We expect that a padding slot will be all-zeroes, and use this * to detect a padding slot vs. an actual entry. * * If a log_group is in the initial state, i.e. hasn't been used since the * creation of this BTT layout, it will have three of the four slots with * zeroes. We skip over these log_groups for the detection of log_index. If * all log_groups are in the initial state (i.e. the BTT has never been * written to), it is safe to assume the 'new format' of log entries in slots * (0, 1). */ static int log_set_indices(struct arena_info *arena) { bool idx_set = false, initial_state = true; int ret, log_index[2] = {-1, -1}; u32 i, j, next_idx = 0; struct log_group log; u32 pad_count = 0; for (i = 0; i < arena->nfree; i++) { ret = btt_log_group_read(arena, i, &log); if (ret < 0) return ret; for (j = 0; j < 4; j++) { if (!idx_set) { if (ent_is_padding(&log.ent[j])) { pad_count++; continue; } else { /* Skip if index has been recorded */ if ((next_idx == 1) && (j == log_index[0])) continue; /* valid entry, record index */ log_index[next_idx] = j; next_idx++; } if (next_idx == 2) { /* two valid entries found */ idx_set = true; } else if (next_idx > 2) { /* too many valid indices */ return -ENXIO; } } else { /* * once the indices have been set, just verify * that all subsequent log groups are either in * their initial state or follow the same * indices. */ if (j == log_index[0]) { /* entry must be 'valid' */ if (ent_is_padding(&log.ent[j])) return -ENXIO; } else if (j == log_index[1]) { ; /* * log_index[1] can be padding if the * lane never got used and it is still * in the initial state (three 'padding' * entries) */ } else { /* entry must be invalid (padding) */ if (!ent_is_padding(&log.ent[j])) return -ENXIO; } } } /* * If any of the log_groups have more than one valid, * non-padding entry, then the we are no longer in the * initial_state */ if (pad_count < 3) initial_state = false; pad_count = 0; } if (!initial_state && !idx_set) return -ENXIO; /* * If all the entries in the log were in the initial state, * assume new padding scheme */ if (initial_state) log_index[1] = 1; /* * Only allow the known permutations of log/padding indices, * i.e. (0, 1), and (0, 2) */ if ((log_index[0] == 0) && ((log_index[1] == 1) || (log_index[1] == 2))) ; /* known index possibilities */ else { dev_err(to_dev(arena), "Found an unknown padding scheme\n"); return -ENXIO; } arena->log_index[0] = log_index[0]; arena->log_index[1] = log_index[1]; dev_dbg(to_dev(arena), "log_index_0 = %d\n", log_index[0]); dev_dbg(to_dev(arena), "log_index_1 = %d\n", log_index[1]); return 0; } static int btt_rtt_init(struct arena_info *arena) { arena->rtt = kcalloc(arena->nfree, sizeof(u32), GFP_KERNEL); if (arena->rtt == NULL) return -ENOMEM; return 0; } static int btt_maplocks_init(struct arena_info *arena) { u32 i; arena->map_locks = kcalloc(arena->nfree, sizeof(struct aligned_lock), GFP_KERNEL); if (!arena->map_locks) return -ENOMEM; for (i = 0; i < arena->nfree; i++) spin_lock_init(&arena->map_locks[i].lock); return 0; } static struct arena_info *alloc_arena(struct btt *btt, size_t size, size_t start, size_t arena_off) { struct arena_info *arena; u64 logsize, mapsize, datasize; u64 available = size; arena = kzalloc(sizeof(struct arena_info), GFP_KERNEL); if (!arena) return NULL; arena->nd_btt = btt->nd_btt; arena->sector_size = btt->sector_size; mutex_init(&arena->err_lock); if (!size) return arena; arena->size = size; arena->external_lba_start = start; arena->external_lbasize = btt->lbasize; arena->internal_lbasize = roundup(arena->external_lbasize, INT_LBASIZE_ALIGNMENT); arena->nfree = BTT_DEFAULT_NFREE; arena->version_major = btt->nd_btt->version_major; arena->version_minor = btt->nd_btt->version_minor; if (available % BTT_PG_SIZE) available -= (available % BTT_PG_SIZE); /* Two pages are reserved for the super block and its copy */ available -= 2 * BTT_PG_SIZE; /* The log takes a fixed amount of space based on nfree */ logsize = roundup(arena->nfree * LOG_GRP_SIZE, BTT_PG_SIZE); available -= logsize; /* Calculate optimal split between map and data area */ arena->internal_nlba = div_u64(available - BTT_PG_SIZE, arena->internal_lbasize + MAP_ENT_SIZE); arena->external_nlba = arena->internal_nlba - arena->nfree; mapsize = roundup((arena->external_nlba * MAP_ENT_SIZE), BTT_PG_SIZE); datasize = available - mapsize; /* 'Absolute' values, relative to start of storage space */ arena->infooff = arena_off; arena->dataoff = arena->infooff + BTT_PG_SIZE; arena->mapoff = arena->dataoff + datasize; arena->logoff = arena->mapoff + mapsize; arena->info2off = arena->logoff + logsize; /* Default log indices are (0,1) */ arena->log_index[0] = 0; arena->log_index[1] = 1; return arena; } static void free_arenas(struct btt *btt) { struct arena_info *arena, *next; list_for_each_entry_safe(arena, next, &btt->arena_list, list) { list_del(&arena->list); kfree(arena->rtt); kfree(arena->map_locks); kfree(arena->freelist); debugfs_remove_recursive(arena->debugfs_dir); kfree(arena); } } /* * This function reads an existing valid btt superblock and * populates the corresponding arena_info struct */ static void parse_arena_meta(struct arena_info *arena, struct btt_sb *super, u64 arena_off) { arena->internal_nlba = le32_to_cpu(super->internal_nlba); arena->internal_lbasize = le32_to_cpu(super->internal_lbasize); arena->external_nlba = le32_to_cpu(super->external_nlba); arena->external_lbasize = le32_to_cpu(super->external_lbasize); arena->nfree = le32_to_cpu(super->nfree); arena->version_major = le16_to_cpu(super->version_major); arena->version_minor = le16_to_cpu(super->version_minor); arena->nextoff = (super->nextoff == 0) ? 0 : (arena_off + le64_to_cpu(super->nextoff)); arena->infooff = arena_off; arena->dataoff = arena_off + le64_to_cpu(super->dataoff); arena->mapoff = arena_off + le64_to_cpu(super->mapoff); arena->logoff = arena_off + le64_to_cpu(super->logoff); arena->info2off = arena_off + le64_to_cpu(super->info2off); arena->size = (le64_to_cpu(super->nextoff) > 0) ? (le64_to_cpu(super->nextoff)) : (arena->info2off - arena->infooff + BTT_PG_SIZE); arena->flags = le32_to_cpu(super->flags); } static int discover_arenas(struct btt *btt) { int ret = 0; struct arena_info *arena; struct btt_sb *super; size_t remaining = btt->rawsize; u64 cur_nlba = 0; size_t cur_off = 0; int num_arenas = 0; super = kzalloc(sizeof(*super), GFP_KERNEL); if (!super) return -ENOMEM; while (remaining) { /* Alloc memory for arena */ arena = alloc_arena(btt, 0, 0, 0); if (!arena) { ret = -ENOMEM; goto out_super; } arena->infooff = cur_off; ret = btt_info_read(arena, super); if (ret) goto out; if (!nd_btt_arena_is_valid(btt->nd_btt, super)) { if (remaining == btt->rawsize) { btt->init_state = INIT_NOTFOUND; dev_info(to_dev(arena), "No existing arenas\n"); goto out; } else { dev_err(to_dev(arena), "Found corrupted metadata!\n"); ret = -ENODEV; goto out; } } arena->external_lba_start = cur_nlba; parse_arena_meta(arena, super, cur_off); ret = log_set_indices(arena); if (ret) { dev_err(to_dev(arena), "Unable to deduce log/padding indices\n"); goto out; } ret = btt_freelist_init(arena); if (ret) goto out; ret = btt_rtt_init(arena); if (ret) goto out; ret = btt_maplocks_init(arena); if (ret) goto out; list_add_tail(&arena->list, &btt->arena_list); remaining -= arena->size; cur_off += arena->size; cur_nlba += arena->external_nlba; num_arenas++; if (arena->nextoff == 0) break; } btt->num_arenas = num_arenas; btt->nlba = cur_nlba; btt->init_state = INIT_READY; kfree(super); return ret; out: kfree(arena); free_arenas(btt); out_super: kfree(super); return ret; } static int create_arenas(struct btt *btt) { size_t remaining = btt->rawsize; size_t cur_off = 0; while (remaining) { struct arena_info *arena; size_t arena_size = min_t(u64, ARENA_MAX_SIZE, remaining); remaining -= arena_size; if (arena_size < ARENA_MIN_SIZE) break; arena = alloc_arena(btt, arena_size, btt->nlba, cur_off); if (!arena) { free_arenas(btt); return -ENOMEM; } btt->nlba += arena->external_nlba; if (remaining >= ARENA_MIN_SIZE) arena->nextoff = arena->size; else arena->nextoff = 0; cur_off += arena_size; list_add_tail(&arena->list, &btt->arena_list); } return 0; } /* * This function completes arena initialization by writing * all the metadata. * It is only called for an uninitialized arena when a write * to that arena occurs for the first time. */ static int btt_arena_write_layout(struct arena_info *arena) { int ret; u64 sum; struct btt_sb *super; struct nd_btt *nd_btt = arena->nd_btt; const uuid_t *parent_uuid = nd_dev_to_uuid(&nd_btt->ndns->dev); ret = btt_map_init(arena); if (ret) return ret; ret = btt_log_init(arena); if (ret) return ret; super = kzalloc(sizeof(struct btt_sb), GFP_NOIO); if (!super) return -ENOMEM; strncpy(super->signature, BTT_SIG, BTT_SIG_LEN); export_uuid(super->uuid, nd_btt->uuid); export_uuid(super->parent_uuid, parent_uuid); super->flags = cpu_to_le32(arena->flags); super->version_major = cpu_to_le16(arena->version_major); super->version_minor = cpu_to_le16(arena->version_minor); super->external_lbasize = cpu_to_le32(arena->external_lbasize); super->external_nlba = cpu_to_le32(arena->external_nlba); super->internal_lbasize = cpu_to_le32(arena->internal_lbasize); super->internal_nlba = cpu_to_le32(arena->internal_nlba); super->nfree = cpu_to_le32(arena->nfree); super->infosize = cpu_to_le32(sizeof(struct btt_sb)); super->nextoff = cpu_to_le64(arena->nextoff); /* * Subtract arena->infooff (arena start) so numbers are relative * to 'this' arena */ super->dataoff = cpu_to_le64(arena->dataoff - arena->infooff); super->mapoff = cpu_to_le64(arena->mapoff - arena->infooff); super->logoff = cpu_to_le64(arena->logoff - arena->infooff); super->info2off = cpu_to_le64(arena->info2off - arena->infooff); super->flags = 0; sum = nd_sb_checksum((struct nd_gen_sb *) super); super->checksum = cpu_to_le64(sum); ret = btt_info_write(arena, super); kfree(super); return ret; } /* * This function completes the initialization for the BTT namespace * such that it is ready to accept IOs */ static int btt_meta_init(struct btt *btt) { int ret = 0; struct arena_info *arena; mutex_lock(&btt->init_lock); list_for_each_entry(arena, &btt->arena_list, list) { ret = btt_arena_write_layout(arena); if (ret) goto unlock; ret = btt_freelist_init(arena); if (ret) goto unlock; ret = btt_rtt_init(arena); if (ret) goto unlock; ret = btt_maplocks_init(arena); if (ret) goto unlock; } btt->init_state = INIT_READY; unlock: mutex_unlock(&btt->init_lock); return ret; } static u32 btt_meta_size(struct btt *btt) { return btt->lbasize - btt->sector_size; } /* * This function calculates the arena in which the given LBA lies * by doing a linear walk. This is acceptable since we expect only * a few arenas. If we have backing devices that get much larger, * we can construct a balanced binary tree of arenas at init time * so that this range search becomes faster. */ static int lba_to_arena(struct btt *btt, sector_t sector, __u32 *premap, struct arena_info **arena) { struct arena_info *arena_list; __u64 lba = div_u64(sector << SECTOR_SHIFT, btt->sector_size); list_for_each_entry(arena_list, &btt->arena_list, list) { if (lba < arena_list->external_nlba) { *arena = arena_list; *premap = lba; return 0; } lba -= arena_list->external_nlba; } return -EIO; } /* * The following (lock_map, unlock_map) are mostly just to improve * readability, since they index into an array of locks */ static void lock_map(struct arena_info *arena, u32 premap) __acquires(&arena->map_locks[idx].lock) { u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree; spin_lock(&arena->map_locks[idx].lock); } static void unlock_map(struct arena_info *arena, u32 premap) __releases(&arena->map_locks[idx].lock) { u32 idx = (premap * MAP_ENT_SIZE / L1_CACHE_BYTES) % arena->nfree; spin_unlock(&arena->map_locks[idx].lock); } static int btt_data_read(struct arena_info *arena, struct page *page, unsigned int off, u32 lba, u32 len) { int ret; u64 nsoff = to_namespace_offset(arena, lba); void *mem = kmap_atomic(page); ret = arena_read_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC); kunmap_atomic(mem); return ret; } static int btt_data_write(struct arena_info *arena, u32 lba, struct page *page, unsigned int off, u32 len) { int ret; u64 nsoff = to_namespace_offset(arena, lba); void *mem = kmap_atomic(page); ret = arena_write_bytes(arena, nsoff, mem + off, len, NVDIMM_IO_ATOMIC); kunmap_atomic(mem); return ret; } static void zero_fill_data(struct page *page, unsigned int off, u32 len) { void *mem = kmap_atomic(page); memset(mem + off, 0, len); kunmap_atomic(mem); } #ifdef CONFIG_BLK_DEV_INTEGRITY static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip, struct arena_info *arena, u32 postmap, int rw) { unsigned int len = btt_meta_size(btt); u64 meta_nsoff; int ret = 0; if (bip == NULL) return 0; meta_nsoff = to_namespace_offset(arena, postmap) + btt->sector_size; while (len) { unsigned int cur_len; struct bio_vec bv; void *mem; bv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); /* * The 'bv' obtained from bvec_iter_bvec has its .bv_len and * .bv_offset already adjusted for iter->bi_bvec_done, and we * can use those directly */ cur_len = min(len, bv.bv_len); mem = bvec_kmap_local(&bv); if (rw) ret = arena_write_bytes(arena, meta_nsoff, mem, cur_len, NVDIMM_IO_ATOMIC); else ret = arena_read_bytes(arena, meta_nsoff, mem, cur_len, NVDIMM_IO_ATOMIC); kunmap_local(mem); if (ret) return ret; len -= cur_len; meta_nsoff += cur_len; if (!bvec_iter_advance(bip->bip_vec, &bip->bip_iter, cur_len)) return -EIO; } return ret; } #else /* CONFIG_BLK_DEV_INTEGRITY */ static int btt_rw_integrity(struct btt *btt, struct bio_integrity_payload *bip, struct arena_info *arena, u32 postmap, int rw) { return 0; } #endif static int btt_read_pg(struct btt *btt, struct bio_integrity_payload *bip, struct page *page, unsigned int off, sector_t sector, unsigned int len) { int ret = 0; int t_flag, e_flag; struct arena_info *arena = NULL; u32 lane = 0, premap, postmap; while (len) { u32 cur_len; lane = nd_region_acquire_lane(btt->nd_region); ret = lba_to_arena(btt, sector, &premap, &arena); if (ret) goto out_lane; cur_len = min(btt->sector_size, len); ret = btt_map_read(arena, premap, &postmap, &t_flag, &e_flag, NVDIMM_IO_ATOMIC); if (ret) goto out_lane; /* * We loop to make sure that the post map LBA didn't change * from under us between writing the RTT and doing the actual * read. */ while (1) { u32 new_map; int new_t, new_e; if (t_flag) { zero_fill_data(page, off, cur_len); goto out_lane; } if (e_flag) { ret = -EIO; goto out_lane; } arena->rtt[lane] = RTT_VALID | postmap; /* * Barrier to make sure this write is not reordered * to do the verification map_read before the RTT store */ barrier(); ret = btt_map_read(arena, premap, &new_map, &new_t, &new_e, NVDIMM_IO_ATOMIC); if (ret) goto out_rtt; if ((postmap == new_map) && (t_flag == new_t) && (e_flag == new_e)) break; postmap = new_map; t_flag = new_t; e_flag = new_e; } ret = btt_data_read(arena, page, off, postmap, cur_len); if (ret) { /* Media error - set the e_flag */ if (btt_map_write(arena, premap, postmap, 0, 1, NVDIMM_IO_ATOMIC)) dev_warn_ratelimited(to_dev(arena), "Error persistently tracking bad blocks at %#x\n", premap); goto out_rtt; } if (bip) { ret = btt_rw_integrity(btt, bip, arena, postmap, READ); if (ret) goto out_rtt; } arena->rtt[lane] = RTT_INVALID; nd_region_release_lane(btt->nd_region, lane); len -= cur_len; off += cur_len; sector += btt->sector_size >> SECTOR_SHIFT; } return 0; out_rtt: arena->rtt[lane] = RTT_INVALID; out_lane: nd_region_release_lane(btt->nd_region, lane); return ret; } /* * Normally, arena_{read,write}_bytes will take care of the initial offset * adjustment, but in the case of btt_is_badblock, where we query is_bad_pmem, * we need the final, raw namespace offset here */ static bool btt_is_badblock(struct btt *btt, struct arena_info *arena, u32 postmap) { u64 nsoff = adjust_initial_offset(arena->nd_btt, to_namespace_offset(arena, postmap)); sector_t phys_sector = nsoff >> 9; return is_bad_pmem(btt->phys_bb, phys_sector, arena->internal_lbasize); } static int btt_write_pg(struct btt *btt, struct bio_integrity_payload *bip, sector_t sector, struct page *page, unsigned int off, unsigned int len) { int ret = 0; struct arena_info *arena = NULL; u32 premap = 0, old_postmap, new_postmap, lane = 0, i; struct log_entry log; int sub; while (len) { u32 cur_len; int e_flag; retry: lane = nd_region_acquire_lane(btt->nd_region); ret = lba_to_arena(btt, sector, &premap, &arena); if (ret) goto out_lane; cur_len = min(btt->sector_size, len); if ((arena->flags & IB_FLAG_ERROR_MASK) != 0) { ret = -EIO; goto out_lane; } if (btt_is_badblock(btt, arena, arena->freelist[lane].block)) arena->freelist[lane].has_err = 1; if (mutex_is_locked(&arena->err_lock) || arena->freelist[lane].has_err) { nd_region_release_lane(btt->nd_region, lane); ret = arena_clear_freelist_error(arena, lane); if (ret) return ret; /* OK to acquire a different lane/free block */ goto retry; } new_postmap = arena->freelist[lane].block; /* Wait if the new block is being read from */ for (i = 0; i < arena->nfree; i++) while (arena->rtt[i] == (RTT_VALID | new_postmap)) cpu_relax(); if (new_postmap >= arena->internal_nlba) { ret = -EIO; goto out_lane; } ret = btt_data_write(arena, new_postmap, page, off, cur_len); if (ret) goto out_lane; if (bip) { ret = btt_rw_integrity(btt, bip, arena, new_postmap, WRITE); if (ret) goto out_lane; } lock_map(arena, premap); ret = btt_map_read(arena, premap, &old_postmap, NULL, &e_flag, NVDIMM_IO_ATOMIC); if (ret) goto out_map; if (old_postmap >= arena->internal_nlba) { ret = -EIO; goto out_map; } if (e_flag) set_e_flag(old_postmap); log.lba = cpu_to_le32(premap); log.old_map = cpu_to_le32(old_postmap); log.new_map = cpu_to_le32(new_postmap); log.seq = cpu_to_le32(arena->freelist[lane].seq); sub = arena->freelist[lane].sub; ret = btt_flog_write(arena, lane, sub, &log); if (ret) goto out_map; ret = btt_map_write(arena, premap, new_postmap, 0, 0, NVDIMM_IO_ATOMIC); if (ret) goto out_map; unlock_map(arena, premap); nd_region_release_lane(btt->nd_region, lane); if (e_flag) { ret = arena_clear_freelist_error(arena, lane); if (ret) return ret; } len -= cur_len; off += cur_len; sector += btt->sector_size >> SECTOR_SHIFT; } return 0; out_map: unlock_map(arena, premap); out_lane: nd_region_release_lane(btt->nd_region, lane); return ret; } static int btt_do_bvec(struct btt *btt, struct bio_integrity_payload *bip, struct page *page, unsigned int len, unsigned int off, enum req_op op, sector_t sector) { int ret; if (!op_is_write(op)) { ret = btt_read_pg(btt, bip, page, off, sector, len); flush_dcache_page(page); } else { flush_dcache_page(page); ret = btt_write_pg(btt, bip, sector, page, off, len); } return ret; } static void btt_submit_bio(struct bio *bio) { struct bio_integrity_payload *bip = bio_integrity(bio); struct btt *btt = bio->bi_bdev->bd_disk->private_data; struct bvec_iter iter; unsigned long start; struct bio_vec bvec; int err = 0; bool do_acct; if (!bio_integrity_prep(bio)) return; do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue); if (do_acct) start = bio_start_io_acct(bio); bio_for_each_segment(bvec, bio, iter) { unsigned int len = bvec.bv_len; if (len > PAGE_SIZE || len < btt->sector_size || len % btt->sector_size) { dev_err_ratelimited(&btt->nd_btt->dev, "unaligned bio segment (len: %d)\n", len); bio->bi_status = BLK_STS_IOERR; break; } err = btt_do_bvec(btt, bip, bvec.bv_page, len, bvec.bv_offset, bio_op(bio), iter.bi_sector); if (err) { dev_err(&btt->nd_btt->dev, "io error in %s sector %lld, len %d,\n", (op_is_write(bio_op(bio))) ? "WRITE" : "READ", (unsigned long long) iter.bi_sector, len); bio->bi_status = errno_to_blk_status(err); break; } } if (do_acct) bio_end_io_acct(bio, start); bio_endio(bio); } static int btt_getgeo(struct block_device *bd, struct hd_geometry *geo) { /* some standard values */ geo->heads = 1 << 6; geo->sectors = 1 << 5; geo->cylinders = get_capacity(bd->bd_disk) >> 11; return 0; } static const struct block_device_operations btt_fops = { .owner = THIS_MODULE, .submit_bio = btt_submit_bio, .getgeo = btt_getgeo, }; static int btt_blk_init(struct btt *btt) { struct nd_btt *nd_btt = btt->nd_btt; struct nd_namespace_common *ndns = nd_btt->ndns; int rc = -ENOMEM; btt->btt_disk = blk_alloc_disk(NUMA_NO_NODE); if (!btt->btt_disk) return -ENOMEM; nvdimm_namespace_disk_name(ndns, btt->btt_disk->disk_name); btt->btt_disk->first_minor = 0; btt->btt_disk->fops = &btt_fops; btt->btt_disk->private_data = btt; blk_queue_logical_block_size(btt->btt_disk->queue, btt->sector_size); blk_queue_max_hw_sectors(btt->btt_disk->queue, UINT_MAX); blk_queue_flag_set(QUEUE_FLAG_NONROT, btt->btt_disk->queue); blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, btt->btt_disk->queue); if (btt_meta_size(btt)) { rc = nd_integrity_init(btt->btt_disk, btt_meta_size(btt)); if (rc) goto out_cleanup_disk; } set_capacity(btt->btt_disk, btt->nlba * btt->sector_size >> 9); rc = device_add_disk(&btt->nd_btt->dev, btt->btt_disk, NULL); if (rc) goto out_cleanup_disk; btt->nd_btt->size = btt->nlba * (u64)btt->sector_size; nvdimm_check_and_set_ro(btt->btt_disk); return 0; out_cleanup_disk: put_disk(btt->btt_disk); return rc; } static void btt_blk_cleanup(struct btt *btt) { del_gendisk(btt->btt_disk); put_disk(btt->btt_disk); } /** * btt_init - initialize a block translation table for the given device * @nd_btt: device with BTT geometry and backing device info * @rawsize: raw size in bytes of the backing device * @lbasize: lba size of the backing device * @uuid: A uuid for the backing device - this is stored on media * @maxlane: maximum number of parallel requests the device can handle * * Initialize a Block Translation Table on a backing device to provide * single sector power fail atomicity. * * Context: * Might sleep. * * Returns: * Pointer to a new struct btt on success, NULL on failure. */ static struct btt *btt_init(struct nd_btt *nd_btt, unsigned long long rawsize, u32 lbasize, uuid_t *uuid, struct nd_region *nd_region) { int ret; struct btt *btt; struct nd_namespace_io *nsio; struct device *dev = &nd_btt->dev; btt = devm_kzalloc(dev, sizeof(struct btt), GFP_KERNEL); if (!btt) return NULL; btt->nd_btt = nd_btt; btt->rawsize = rawsize; btt->lbasize = lbasize; btt->sector_size = ((lbasize >= 4096) ? 4096 : 512); INIT_LIST_HEAD(&btt->arena_list); mutex_init(&btt->init_lock); btt->nd_region = nd_region; nsio = to_nd_namespace_io(&nd_btt->ndns->dev); btt->phys_bb = &nsio->bb; ret = discover_arenas(btt); if (ret) { dev_err(dev, "init: error in arena_discover: %d\n", ret); return NULL; } if (btt->init_state != INIT_READY && nd_region->ro) { dev_warn(dev, "%s is read-only, unable to init btt metadata\n", dev_name(&nd_region->dev)); return NULL; } else if (btt->init_state != INIT_READY) { btt->num_arenas = (rawsize / ARENA_MAX_SIZE) + ((rawsize % ARENA_MAX_SIZE) ? 1 : 0); dev_dbg(dev, "init: %d arenas for %llu rawsize\n", btt->num_arenas, rawsize); ret = create_arenas(btt); if (ret) { dev_info(dev, "init: create_arenas: %d\n", ret); return NULL; } ret = btt_meta_init(btt); if (ret) { dev_err(dev, "init: error in meta_init: %d\n", ret); return NULL; } } ret = btt_blk_init(btt); if (ret) { dev_err(dev, "init: error in blk_init: %d\n", ret); return NULL; } btt_debugfs_init(btt); return btt; } /** * btt_fini - de-initialize a BTT * @btt: the BTT handle that was generated by btt_init * * De-initialize a Block Translation Table on device removal * * Context: * Might sleep. */ static void btt_fini(struct btt *btt) { if (btt) { btt_blk_cleanup(btt); free_arenas(btt); debugfs_remove_recursive(btt->debugfs_dir); } } int nvdimm_namespace_attach_btt(struct nd_namespace_common *ndns) { struct nd_btt *nd_btt = to_nd_btt(ndns->claim); struct nd_region *nd_region; struct btt_sb *btt_sb; struct btt *btt; size_t size, rawsize; int rc; if (!nd_btt->uuid || !nd_btt->ndns || !nd_btt->lbasize) { dev_dbg(&nd_btt->dev, "incomplete btt configuration\n"); return -ENODEV; } btt_sb = devm_kzalloc(&nd_btt->dev, sizeof(*btt_sb), GFP_KERNEL); if (!btt_sb) return -ENOMEM; size = nvdimm_namespace_capacity(ndns); rc = devm_namespace_enable(&nd_btt->dev, ndns, size); if (rc) return rc; /* * If this returns < 0, that is ok as it just means there wasn't * an existing BTT, and we're creating a new one. We still need to * call this as we need the version dependent fields in nd_btt to be * set correctly based on the holder class */ nd_btt_version(nd_btt, ndns, btt_sb); rawsize = size - nd_btt->initial_offset; if (rawsize < ARENA_MIN_SIZE) { dev_dbg(&nd_btt->dev, "%s must be at least %ld bytes\n", dev_name(&ndns->dev), ARENA_MIN_SIZE + nd_btt->initial_offset); return -ENXIO; } nd_region = to_nd_region(nd_btt->dev.parent); btt = btt_init(nd_btt, rawsize, nd_btt->lbasize, nd_btt->uuid, nd_region); if (!btt) return -ENOMEM; nd_btt->btt = btt; return 0; } EXPORT_SYMBOL(nvdimm_namespace_attach_btt); int nvdimm_namespace_detach_btt(struct nd_btt *nd_btt) { struct btt *btt = nd_btt->btt; btt_fini(btt); nd_btt->btt = NULL; return 0; } EXPORT_SYMBOL(nvdimm_namespace_detach_btt); static int __init nd_btt_init(void) { int rc = 0; debugfs_root = debugfs_create_dir("btt", NULL); if (IS_ERR_OR_NULL(debugfs_root)) rc = -ENXIO; return rc; } static void __exit nd_btt_exit(void) { debugfs_remove_recursive(debugfs_root); } MODULE_ALIAS_ND_DEVICE(ND_DEVICE_BTT); MODULE_AUTHOR("Vishal Verma <vishal.l.verma@linux.intel.com>"); MODULE_LICENSE("GPL v2"); module_init(nd_btt_init); module_exit(nd_btt_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1