Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniel Lezcano | 858 | 85.89% | 3 | 23.08% |
Srinivas Pandruvada | 132 | 13.21% | 4 | 30.77% |
Pujin Shi | 3 | 0.30% | 1 | 7.69% |
Peter Zijlstra | 2 | 0.20% | 2 | 15.38% |
Yangtao Li | 2 | 0.20% | 1 | 7.69% |
Hui Wang | 1 | 0.10% | 1 | 7.69% |
Gustavo A. R. Silva | 1 | 0.10% | 1 | 7.69% |
Total | 999 | 13 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2018 Linaro Limited * * Author: Daniel Lezcano <daniel.lezcano@linaro.org> * * The idle injection framework provides a way to force CPUs to enter idle * states for a specified fraction of time over a specified period. * * It relies on the smpboot kthreads feature providing common code for CPU * hotplug and thread [un]parking. * * All of the kthreads used for idle injection are created at init time. * * Next, the users of the idle injection framework provide a cpumask via * its register function. The kthreads will be synchronized with respect to * this cpumask. * * The idle + run duration is specified via separate helpers and that allows * idle injection to be started. * * The idle injection kthreads will call play_idle_precise() with the idle * duration and max allowed latency specified as per the above. * * After all of them have been woken up, a timer is set to start the next idle * injection cycle. * * The timer interrupt handler will wake up the idle injection kthreads for * all of the CPUs in the cpumask provided by the user. * * Idle injection is stopped synchronously and no leftover idle injection * kthread activity after its completion is guaranteed. * * It is up to the user of this framework to provide a lock for higher-level * synchronization to prevent race conditions like starting idle injection * while unregistering from the framework. */ #define pr_fmt(fmt) "ii_dev: " fmt #include <linux/cpu.h> #include <linux/hrtimer.h> #include <linux/kthread.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/smpboot.h> #include <linux/idle_inject.h> #include <uapi/linux/sched/types.h> /** * struct idle_inject_thread - task on/off switch structure * @tsk: task injecting the idle cycles * @should_run: whether or not to run the task (for the smpboot kthread API) */ struct idle_inject_thread { struct task_struct *tsk; int should_run; }; /** * struct idle_inject_device - idle injection data * @timer: idle injection period timer * @idle_duration_us: duration of CPU idle time to inject * @run_duration_us: duration of CPU run time to allow * @latency_us: max allowed latency * @update: Optional callback deciding whether or not to skip idle * injection in the given cycle. * @cpumask: mask of CPUs affected by idle injection * * This structure is used to define per instance idle inject device data. Each * instance has an idle duration, a run duration and mask of CPUs to inject * idle. * * Actual CPU idle time is injected by calling kernel scheduler interface * play_idle_precise(). There is one optional callback that can be registered * by calling idle_inject_register_full(): * * update() - This callback is invoked just before waking up CPUs to inject * idle. If it returns false, CPUs are not woken up to inject idle in the given * cycle. It also allows the caller to readjust the idle and run duration by * calling idle_inject_set_duration() for the next cycle. */ struct idle_inject_device { struct hrtimer timer; unsigned int idle_duration_us; unsigned int run_duration_us; unsigned int latency_us; bool (*update)(void); unsigned long cpumask[]; }; static DEFINE_PER_CPU(struct idle_inject_thread, idle_inject_thread); static DEFINE_PER_CPU(struct idle_inject_device *, idle_inject_device); /** * idle_inject_wakeup - Wake up idle injection threads * @ii_dev: target idle injection device * * Every idle injection task associated with the given idle injection device * and running on an online CPU will be woken up. */ static void idle_inject_wakeup(struct idle_inject_device *ii_dev) { struct idle_inject_thread *iit; unsigned int cpu; for_each_cpu_and(cpu, to_cpumask(ii_dev->cpumask), cpu_online_mask) { iit = per_cpu_ptr(&idle_inject_thread, cpu); iit->should_run = 1; wake_up_process(iit->tsk); } } /** * idle_inject_timer_fn - idle injection timer function * @timer: idle injection hrtimer * * This function is called when the idle injection timer expires. It wakes up * idle injection tasks associated with the timer and they, in turn, invoke * play_idle_precise() to inject a specified amount of CPU idle time. * * Return: HRTIMER_RESTART. */ static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer) { unsigned int duration_us; struct idle_inject_device *ii_dev = container_of(timer, struct idle_inject_device, timer); if (!ii_dev->update || (ii_dev->update && ii_dev->update())) idle_inject_wakeup(ii_dev); duration_us = READ_ONCE(ii_dev->run_duration_us); duration_us += READ_ONCE(ii_dev->idle_duration_us); hrtimer_forward_now(timer, ns_to_ktime(duration_us * NSEC_PER_USEC)); return HRTIMER_RESTART; } /** * idle_inject_fn - idle injection work function * @cpu: the CPU owning the task * * This function calls play_idle_precise() to inject a specified amount of CPU * idle time. */ static void idle_inject_fn(unsigned int cpu) { struct idle_inject_device *ii_dev; struct idle_inject_thread *iit; ii_dev = per_cpu(idle_inject_device, cpu); iit = per_cpu_ptr(&idle_inject_thread, cpu); /* * Let the smpboot main loop know that the task should not run again. */ iit->should_run = 0; play_idle_precise(READ_ONCE(ii_dev->idle_duration_us) * NSEC_PER_USEC, READ_ONCE(ii_dev->latency_us) * NSEC_PER_USEC); } /** * idle_inject_set_duration - idle and run duration update helper * @ii_dev: idle injection control device structure * @run_duration_us: CPU run time to allow in microseconds * @idle_duration_us: CPU idle time to inject in microseconds */ void idle_inject_set_duration(struct idle_inject_device *ii_dev, unsigned int run_duration_us, unsigned int idle_duration_us) { if (run_duration_us + idle_duration_us) { WRITE_ONCE(ii_dev->run_duration_us, run_duration_us); WRITE_ONCE(ii_dev->idle_duration_us, idle_duration_us); } if (!run_duration_us) pr_debug("CPU is forced to 100 percent idle\n"); } EXPORT_SYMBOL_NS_GPL(idle_inject_set_duration, IDLE_INJECT); /** * idle_inject_get_duration - idle and run duration retrieval helper * @ii_dev: idle injection control device structure * @run_duration_us: memory location to store the current CPU run time * @idle_duration_us: memory location to store the current CPU idle time */ void idle_inject_get_duration(struct idle_inject_device *ii_dev, unsigned int *run_duration_us, unsigned int *idle_duration_us) { *run_duration_us = READ_ONCE(ii_dev->run_duration_us); *idle_duration_us = READ_ONCE(ii_dev->idle_duration_us); } EXPORT_SYMBOL_NS_GPL(idle_inject_get_duration, IDLE_INJECT); /** * idle_inject_set_latency - set the maximum latency allowed * @ii_dev: idle injection control device structure * @latency_us: set the latency requirement for the idle state */ void idle_inject_set_latency(struct idle_inject_device *ii_dev, unsigned int latency_us) { WRITE_ONCE(ii_dev->latency_us, latency_us); } EXPORT_SYMBOL_NS_GPL(idle_inject_set_latency, IDLE_INJECT); /** * idle_inject_start - start idle injections * @ii_dev: idle injection control device structure * * The function starts idle injection by first waking up all of the idle * injection kthreads associated with @ii_dev to let them inject CPU idle time * sets up a timer to start the next idle injection period. * * Return: -EINVAL if the CPU idle or CPU run time is not set or 0 on success. */ int idle_inject_start(struct idle_inject_device *ii_dev) { unsigned int idle_duration_us = READ_ONCE(ii_dev->idle_duration_us); unsigned int run_duration_us = READ_ONCE(ii_dev->run_duration_us); if (!(idle_duration_us + run_duration_us)) return -EINVAL; pr_debug("Starting injecting idle cycles on CPUs '%*pbl'\n", cpumask_pr_args(to_cpumask(ii_dev->cpumask))); idle_inject_wakeup(ii_dev); hrtimer_start(&ii_dev->timer, ns_to_ktime((idle_duration_us + run_duration_us) * NSEC_PER_USEC), HRTIMER_MODE_REL); return 0; } EXPORT_SYMBOL_NS_GPL(idle_inject_start, IDLE_INJECT); /** * idle_inject_stop - stops idle injections * @ii_dev: idle injection control device structure * * The function stops idle injection and waits for the threads to finish work. * If CPU idle time is being injected when this function runs, then it will * wait until the end of the cycle. * * When it returns, there is no more idle injection kthread activity. The * kthreads are scheduled out and the periodic timer is off. */ void idle_inject_stop(struct idle_inject_device *ii_dev) { struct idle_inject_thread *iit; unsigned int cpu; pr_debug("Stopping idle injection on CPUs '%*pbl'\n", cpumask_pr_args(to_cpumask(ii_dev->cpumask))); hrtimer_cancel(&ii_dev->timer); /* * Stopping idle injection requires all of the idle injection kthreads * associated with the given cpumask to be parked and stay that way, so * prevent CPUs from going online at this point. Any CPUs going online * after the loop below will be covered by clearing the should_run flag * that will cause the smpboot main loop to schedule them out. */ cpu_hotplug_disable(); /* * Iterate over all (online + offline) CPUs here in case one of them * goes offline with the should_run flag set so as to prevent its idle * injection kthread from running when the CPU goes online again after * the ii_dev has been freed. */ for_each_cpu(cpu, to_cpumask(ii_dev->cpumask)) { iit = per_cpu_ptr(&idle_inject_thread, cpu); iit->should_run = 0; wait_task_inactive(iit->tsk, TASK_ANY); } cpu_hotplug_enable(); } EXPORT_SYMBOL_NS_GPL(idle_inject_stop, IDLE_INJECT); /** * idle_inject_setup - prepare the current task for idle injection * @cpu: not used * * Called once, this function is in charge of setting the current task's * scheduler parameters to make it an RT task. */ static void idle_inject_setup(unsigned int cpu) { sched_set_fifo(current); } /** * idle_inject_should_run - function helper for the smpboot API * @cpu: CPU the kthread is running on * * Return: whether or not the thread can run. */ static int idle_inject_should_run(unsigned int cpu) { struct idle_inject_thread *iit = per_cpu_ptr(&idle_inject_thread, cpu); return iit->should_run; } /** * idle_inject_register_full - initialize idle injection on a set of CPUs * @cpumask: CPUs to be affected by idle injection * @update: This callback is called just before waking up CPUs to inject * idle * * This function creates an idle injection control device structure for the * given set of CPUs and initializes the timer associated with it. This * function also allows to register update()callback. * It does not start any injection cycles. * * Return: NULL if memory allocation fails, idle injection control device * pointer on success. */ struct idle_inject_device *idle_inject_register_full(struct cpumask *cpumask, bool (*update)(void)) { struct idle_inject_device *ii_dev; int cpu, cpu_rb; ii_dev = kzalloc(sizeof(*ii_dev) + cpumask_size(), GFP_KERNEL); if (!ii_dev) return NULL; cpumask_copy(to_cpumask(ii_dev->cpumask), cpumask); hrtimer_init(&ii_dev->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); ii_dev->timer.function = idle_inject_timer_fn; ii_dev->latency_us = UINT_MAX; ii_dev->update = update; for_each_cpu(cpu, to_cpumask(ii_dev->cpumask)) { if (per_cpu(idle_inject_device, cpu)) { pr_err("cpu%d is already registered\n", cpu); goto out_rollback; } per_cpu(idle_inject_device, cpu) = ii_dev; } return ii_dev; out_rollback: for_each_cpu(cpu_rb, to_cpumask(ii_dev->cpumask)) { if (cpu == cpu_rb) break; per_cpu(idle_inject_device, cpu_rb) = NULL; } kfree(ii_dev); return NULL; } EXPORT_SYMBOL_NS_GPL(idle_inject_register_full, IDLE_INJECT); /** * idle_inject_register - initialize idle injection on a set of CPUs * @cpumask: CPUs to be affected by idle injection * * This function creates an idle injection control device structure for the * given set of CPUs and initializes the timer associated with it. It does not * start any injection cycles. * * Return: NULL if memory allocation fails, idle injection control device * pointer on success. */ struct idle_inject_device *idle_inject_register(struct cpumask *cpumask) { return idle_inject_register_full(cpumask, NULL); } EXPORT_SYMBOL_NS_GPL(idle_inject_register, IDLE_INJECT); /** * idle_inject_unregister - unregister idle injection control device * @ii_dev: idle injection control device to unregister * * The function stops idle injection for the given control device, * unregisters its kthreads and frees memory allocated when that device was * created. */ void idle_inject_unregister(struct idle_inject_device *ii_dev) { unsigned int cpu; idle_inject_stop(ii_dev); for_each_cpu(cpu, to_cpumask(ii_dev->cpumask)) per_cpu(idle_inject_device, cpu) = NULL; kfree(ii_dev); } EXPORT_SYMBOL_NS_GPL(idle_inject_unregister, IDLE_INJECT); static struct smp_hotplug_thread idle_inject_threads = { .store = &idle_inject_thread.tsk, .setup = idle_inject_setup, .thread_fn = idle_inject_fn, .thread_comm = "idle_inject/%u", .thread_should_run = idle_inject_should_run, }; static int __init idle_inject_init(void) { return smpboot_register_percpu_thread(&idle_inject_threads); } early_initcall(idle_inject_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1