Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ondrej Zary | 2662 | 95.55% | 3 | 37.50% |
Bart Van Assche | 71 | 2.55% | 1 | 12.50% |
Hannes Reinecke | 43 | 1.54% | 2 | 25.00% |
Sergei Shtylyov | 10 | 0.36% | 2 | 25.00% |
Total | 2786 | 8 |
// SPDX-License-Identifier: GPL-2.0 /* * Driver for Future Domain TMC-16x0 and TMC-3260 SCSI host adapters * Copyright 2019 Ondrej Zary * * Original driver by * Rickard E. Faith, faith@cs.unc.edu * * Future Domain BIOS versions supported for autodetect: * 2.0, 3.0, 3.2, 3.4 (1.0), 3.5 (2.0), 3.6, 3.61 * Chips supported: * TMC-1800, TMC-18C50, TMC-18C30, TMC-36C70 * Boards supported: * Future Domain TMC-1650, TMC-1660, TMC-1670, TMC-1680, TMC-1610M/MER/MEX * Future Domain TMC-3260 (PCI) * Quantum ISA-200S, ISA-250MG * Adaptec AHA-2920A (PCI) [BUT *NOT* AHA-2920C -- use aic7xxx instead] * IBM ? * * NOTE: * * The Adaptec AHA-2920C has an Adaptec AIC-7850 chip on it. * Use the aic7xxx driver for this board. * * The Adaptec AHA-2920A has a Future Domain chip on it, so this is the right * driver for that card. Unfortunately, the boxes will probably just say * "2920", so you'll have to look on the card for a Future Domain logo, or a * letter after the 2920. * * If you have a TMC-8xx or TMC-9xx board, then this is not the driver for * your board. * * DESCRIPTION: * * This is the Linux low-level SCSI driver for Future Domain TMC-1660/1680 * TMC-1650/1670, and TMC-3260 SCSI host adapters. The 1650 and 1670 have a * 25-pin external connector, whereas the 1660 and 1680 have a SCSI-2 50-pin * high-density external connector. The 1670 and 1680 have floppy disk * controllers built in. The TMC-3260 is a PCI bus card. * * Future Domain's older boards are based on the TMC-1800 chip, and this * driver was originally written for a TMC-1680 board with the TMC-1800 chip. * More recently, boards are being produced with the TMC-18C50 and TMC-18C30 * chips. * * Please note that the drive ordering that Future Domain implemented in BIOS * versions 3.4 and 3.5 is the opposite of the order (currently) used by the * rest of the SCSI industry. * * * REFERENCES USED: * * "TMC-1800 SCSI Chip Specification (FDC-1800T)", Future Domain Corporation, * 1990. * * "Technical Reference Manual: 18C50 SCSI Host Adapter Chip", Future Domain * Corporation, January 1992. * * "LXT SCSI Products: Specifications and OEM Technical Manual (Revision * B/September 1991)", Maxtor Corporation, 1991. * * "7213S product Manual (Revision P3)", Maxtor Corporation, 1992. * * "Draft Proposed American National Standard: Small Computer System * Interface - 2 (SCSI-2)", Global Engineering Documents. (X3T9.2/86-109, * revision 10h, October 17, 1991) * * Private communications, Drew Eckhardt (drew@cs.colorado.edu) and Eric * Youngdale (ericy@cais.com), 1992. * * Private communication, Tuong Le (Future Domain Engineering department), * 1994. (Disk geometry computations for Future Domain BIOS version 3.4, and * TMC-18C30 detection.) * * Hogan, Thom. The Programmer's PC Sourcebook. Microsoft Press, 1988. Page * 60 (2.39: Disk Partition Table Layout). * * "18C30 Technical Reference Manual", Future Domain Corporation, 1993, page * 6-1. */ #include <linux/module.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/pci.h> #include <linux/workqueue.h> #include <scsi/scsicam.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> #include "fdomain.h" /* * FIFO_COUNT: The host adapter has an 8K cache (host adapters based on the * 18C30 chip have a 2k cache). When this many 512 byte blocks are filled by * the SCSI device, an interrupt will be raised. Therefore, this could be as * low as 0, or as high as 16. Note, however, that values which are too high * or too low seem to prevent any interrupts from occurring, and thereby lock * up the machine. */ #define FIFO_COUNT 2 /* Number of 512 byte blocks before INTR */ #define PARITY_MASK ACTL_PAREN /* Parity enabled, 0 = disabled */ enum chip_type { unknown = 0x00, tmc1800 = 0x01, tmc18c50 = 0x02, tmc18c30 = 0x03, }; struct fdomain { int base; struct scsi_cmnd *cur_cmd; enum chip_type chip; struct work_struct work; }; static struct scsi_pointer *fdomain_scsi_pointer(struct scsi_cmnd *cmd) { return scsi_cmd_priv(cmd); } static inline void fdomain_make_bus_idle(struct fdomain *fd) { outb(0, fd->base + REG_BCTL); outb(0, fd->base + REG_MCTL); if (fd->chip == tmc18c50 || fd->chip == tmc18c30) /* Clear forced intr. */ outb(ACTL_RESET | ACTL_CLRFIRQ | PARITY_MASK, fd->base + REG_ACTL); else outb(ACTL_RESET | PARITY_MASK, fd->base + REG_ACTL); } static enum chip_type fdomain_identify(int port) { u16 id = inb(port + REG_ID_LSB) | inb(port + REG_ID_MSB) << 8; switch (id) { case 0x6127: return tmc1800; case 0x60e9: /* 18c50 or 18c30 */ break; default: return unknown; } /* Try to toggle 32-bit mode. This only works on an 18c30 chip. */ outb(CFG2_32BIT, port + REG_CFG2); if ((inb(port + REG_CFG2) & CFG2_32BIT)) { outb(0, port + REG_CFG2); if ((inb(port + REG_CFG2) & CFG2_32BIT) == 0) return tmc18c30; } /* If that failed, we are an 18c50. */ return tmc18c50; } static int fdomain_test_loopback(int base) { int i; for (i = 0; i < 255; i++) { outb(i, base + REG_LOOPBACK); if (inb(base + REG_LOOPBACK) != i) return 1; } return 0; } static void fdomain_reset(int base) { outb(BCTL_RST, base + REG_BCTL); mdelay(20); outb(0, base + REG_BCTL); mdelay(1150); outb(0, base + REG_MCTL); outb(PARITY_MASK, base + REG_ACTL); } static int fdomain_select(struct Scsi_Host *sh, int target) { int status; unsigned long timeout; struct fdomain *fd = shost_priv(sh); outb(BCTL_BUSEN | BCTL_SEL, fd->base + REG_BCTL); outb(BIT(sh->this_id) | BIT(target), fd->base + REG_SCSI_DATA_NOACK); /* Stop arbitration and enable parity */ outb(PARITY_MASK, fd->base + REG_ACTL); timeout = 350; /* 350 msec */ do { status = inb(fd->base + REG_BSTAT); if (status & BSTAT_BSY) { /* Enable SCSI Bus */ /* (on error, should make bus idle with 0) */ outb(BCTL_BUSEN, fd->base + REG_BCTL); return 0; } mdelay(1); } while (--timeout); fdomain_make_bus_idle(fd); return 1; } static void fdomain_finish_cmd(struct fdomain *fd) { outb(0, fd->base + REG_ICTL); fdomain_make_bus_idle(fd); scsi_done(fd->cur_cmd); fd->cur_cmd = NULL; } static void fdomain_read_data(struct scsi_cmnd *cmd) { struct fdomain *fd = shost_priv(cmd->device->host); unsigned char *virt, *ptr; size_t offset, len; while ((len = inw(fd->base + REG_FIFO_COUNT)) > 0) { offset = scsi_bufflen(cmd) - scsi_get_resid(cmd); virt = scsi_kmap_atomic_sg(scsi_sglist(cmd), scsi_sg_count(cmd), &offset, &len); ptr = virt + offset; if (len & 1) *ptr++ = inb(fd->base + REG_FIFO); if (len > 1) insw(fd->base + REG_FIFO, ptr, len >> 1); scsi_set_resid(cmd, scsi_get_resid(cmd) - len); scsi_kunmap_atomic_sg(virt); } } static void fdomain_write_data(struct scsi_cmnd *cmd) { struct fdomain *fd = shost_priv(cmd->device->host); /* 8k FIFO for pre-tmc18c30 chips, 2k FIFO for tmc18c30 */ int FIFO_Size = fd->chip == tmc18c30 ? 0x800 : 0x2000; unsigned char *virt, *ptr; size_t offset, len; while ((len = FIFO_Size - inw(fd->base + REG_FIFO_COUNT)) > 512) { offset = scsi_bufflen(cmd) - scsi_get_resid(cmd); if (len + offset > scsi_bufflen(cmd)) { len = scsi_bufflen(cmd) - offset; if (len == 0) break; } virt = scsi_kmap_atomic_sg(scsi_sglist(cmd), scsi_sg_count(cmd), &offset, &len); ptr = virt + offset; if (len & 1) outb(*ptr++, fd->base + REG_FIFO); if (len > 1) outsw(fd->base + REG_FIFO, ptr, len >> 1); scsi_set_resid(cmd, scsi_get_resid(cmd) - len); scsi_kunmap_atomic_sg(virt); } } static void fdomain_work(struct work_struct *work) { struct fdomain *fd = container_of(work, struct fdomain, work); struct Scsi_Host *sh = container_of((void *)fd, struct Scsi_Host, hostdata); struct scsi_cmnd *cmd = fd->cur_cmd; struct scsi_pointer *scsi_pointer = fdomain_scsi_pointer(cmd); unsigned long flags; int status; int done = 0; spin_lock_irqsave(sh->host_lock, flags); if (scsi_pointer->phase & in_arbitration) { status = inb(fd->base + REG_ASTAT); if (!(status & ASTAT_ARB)) { set_host_byte(cmd, DID_BUS_BUSY); fdomain_finish_cmd(fd); goto out; } scsi_pointer->phase = in_selection; outb(ICTL_SEL | FIFO_COUNT, fd->base + REG_ICTL); outb(BCTL_BUSEN | BCTL_SEL, fd->base + REG_BCTL); outb(BIT(cmd->device->host->this_id) | BIT(scmd_id(cmd)), fd->base + REG_SCSI_DATA_NOACK); /* Stop arbitration and enable parity */ outb(ACTL_IRQEN | PARITY_MASK, fd->base + REG_ACTL); goto out; } else if (scsi_pointer->phase & in_selection) { status = inb(fd->base + REG_BSTAT); if (!(status & BSTAT_BSY)) { /* Try again, for slow devices */ if (fdomain_select(cmd->device->host, scmd_id(cmd))) { set_host_byte(cmd, DID_NO_CONNECT); fdomain_finish_cmd(fd); goto out; } /* Stop arbitration and enable parity */ outb(ACTL_IRQEN | PARITY_MASK, fd->base + REG_ACTL); } scsi_pointer->phase = in_other; outb(ICTL_FIFO | ICTL_REQ | FIFO_COUNT, fd->base + REG_ICTL); outb(BCTL_BUSEN, fd->base + REG_BCTL); goto out; } /* fdomain_scsi_pointer(cur_cmd)->phase == in_other: this is the body of the routine */ status = inb(fd->base + REG_BSTAT); if (status & BSTAT_REQ) { switch (status & (BSTAT_MSG | BSTAT_CMD | BSTAT_IO)) { case BSTAT_CMD: /* COMMAND OUT */ outb(cmd->cmnd[scsi_pointer->sent_command++], fd->base + REG_SCSI_DATA); break; case 0: /* DATA OUT -- tmc18c50/tmc18c30 only */ if (fd->chip != tmc1800 && !scsi_pointer->have_data_in) { scsi_pointer->have_data_in = -1; outb(ACTL_IRQEN | ACTL_FIFOWR | ACTL_FIFOEN | PARITY_MASK, fd->base + REG_ACTL); } break; case BSTAT_IO: /* DATA IN -- tmc18c50/tmc18c30 only */ if (fd->chip != tmc1800 && !scsi_pointer->have_data_in) { scsi_pointer->have_data_in = 1; outb(ACTL_IRQEN | ACTL_FIFOEN | PARITY_MASK, fd->base + REG_ACTL); } break; case BSTAT_CMD | BSTAT_IO: /* STATUS IN */ scsi_pointer->Status = inb(fd->base + REG_SCSI_DATA); break; case BSTAT_MSG | BSTAT_CMD: /* MESSAGE OUT */ outb(MESSAGE_REJECT, fd->base + REG_SCSI_DATA); break; case BSTAT_MSG | BSTAT_CMD | BSTAT_IO: /* MESSAGE IN */ scsi_pointer->Message = inb(fd->base + REG_SCSI_DATA); if (scsi_pointer->Message == COMMAND_COMPLETE) ++done; break; } } if (fd->chip == tmc1800 && !scsi_pointer->have_data_in && scsi_pointer->sent_command >= cmd->cmd_len) { if (cmd->sc_data_direction == DMA_TO_DEVICE) { scsi_pointer->have_data_in = -1; outb(ACTL_IRQEN | ACTL_FIFOWR | ACTL_FIFOEN | PARITY_MASK, fd->base + REG_ACTL); } else { scsi_pointer->have_data_in = 1; outb(ACTL_IRQEN | ACTL_FIFOEN | PARITY_MASK, fd->base + REG_ACTL); } } if (scsi_pointer->have_data_in == -1) /* DATA OUT */ fdomain_write_data(cmd); if (scsi_pointer->have_data_in == 1) /* DATA IN */ fdomain_read_data(cmd); if (done) { set_status_byte(cmd, scsi_pointer->Status); set_host_byte(cmd, DID_OK); scsi_msg_to_host_byte(cmd, scsi_pointer->Message); fdomain_finish_cmd(fd); } else { if (scsi_pointer->phase & disconnect) { outb(ICTL_FIFO | ICTL_SEL | ICTL_REQ | FIFO_COUNT, fd->base + REG_ICTL); outb(0, fd->base + REG_BCTL); } else outb(ICTL_FIFO | ICTL_REQ | FIFO_COUNT, fd->base + REG_ICTL); } out: spin_unlock_irqrestore(sh->host_lock, flags); } static irqreturn_t fdomain_irq(int irq, void *dev_id) { struct fdomain *fd = dev_id; /* Is it our IRQ? */ if ((inb(fd->base + REG_ASTAT) & ASTAT_IRQ) == 0) return IRQ_NONE; outb(0, fd->base + REG_ICTL); /* We usually have one spurious interrupt after each command. */ if (!fd->cur_cmd) /* Spurious interrupt */ return IRQ_NONE; schedule_work(&fd->work); return IRQ_HANDLED; } static int fdomain_queue(struct Scsi_Host *sh, struct scsi_cmnd *cmd) { struct scsi_pointer *scsi_pointer = fdomain_scsi_pointer(cmd); struct fdomain *fd = shost_priv(cmd->device->host); unsigned long flags; scsi_pointer->Status = 0; scsi_pointer->Message = 0; scsi_pointer->have_data_in = 0; scsi_pointer->sent_command = 0; scsi_pointer->phase = in_arbitration; scsi_set_resid(cmd, scsi_bufflen(cmd)); spin_lock_irqsave(sh->host_lock, flags); fd->cur_cmd = cmd; fdomain_make_bus_idle(fd); /* Start arbitration */ outb(0, fd->base + REG_ICTL); outb(0, fd->base + REG_BCTL); /* Disable data drivers */ /* Set our id bit */ outb(BIT(cmd->device->host->this_id), fd->base + REG_SCSI_DATA_NOACK); outb(ICTL_ARB, fd->base + REG_ICTL); /* Start arbitration */ outb(ACTL_ARB | ACTL_IRQEN | PARITY_MASK, fd->base + REG_ACTL); spin_unlock_irqrestore(sh->host_lock, flags); return 0; } static int fdomain_abort(struct scsi_cmnd *cmd) { struct Scsi_Host *sh = cmd->device->host; struct fdomain *fd = shost_priv(sh); unsigned long flags; if (!fd->cur_cmd) return FAILED; spin_lock_irqsave(sh->host_lock, flags); fdomain_make_bus_idle(fd); fdomain_scsi_pointer(fd->cur_cmd)->phase |= aborted; /* Aborts are not done well. . . */ set_host_byte(fd->cur_cmd, DID_ABORT); fdomain_finish_cmd(fd); spin_unlock_irqrestore(sh->host_lock, flags); return SUCCESS; } static int fdomain_host_reset(struct scsi_cmnd *cmd) { struct Scsi_Host *sh = cmd->device->host; struct fdomain *fd = shost_priv(sh); unsigned long flags; spin_lock_irqsave(sh->host_lock, flags); fdomain_reset(fd->base); spin_unlock_irqrestore(sh->host_lock, flags); return SUCCESS; } static int fdomain_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]) { unsigned char *p = scsi_bios_ptable(bdev); if (p && p[65] == 0xaa && p[64] == 0x55 /* Partition table valid */ && p[4]) { /* Partition type */ geom[0] = p[5] + 1; /* heads */ geom[1] = p[6] & 0x3f; /* sectors */ } else { if (capacity >= 0x7e0000) { geom[0] = 255; /* heads */ geom[1] = 63; /* sectors */ } else if (capacity >= 0x200000) { geom[0] = 128; /* heads */ geom[1] = 63; /* sectors */ } else { geom[0] = 64; /* heads */ geom[1] = 32; /* sectors */ } } geom[2] = sector_div(capacity, geom[0] * geom[1]); kfree(p); return 0; } static struct scsi_host_template fdomain_template = { .module = THIS_MODULE, .name = "Future Domain TMC-16x0", .proc_name = "fdomain", .queuecommand = fdomain_queue, .eh_abort_handler = fdomain_abort, .eh_host_reset_handler = fdomain_host_reset, .bios_param = fdomain_biosparam, .can_queue = 1, .this_id = 7, .sg_tablesize = 64, .dma_boundary = PAGE_SIZE - 1, .cmd_size = sizeof(struct scsi_pointer), }; struct Scsi_Host *fdomain_create(int base, int irq, int this_id, struct device *dev) { struct Scsi_Host *sh; struct fdomain *fd; enum chip_type chip; static const char * const chip_names[] = { "Unknown", "TMC-1800", "TMC-18C50", "TMC-18C30" }; unsigned long irq_flags = 0; chip = fdomain_identify(base); if (!chip) return NULL; fdomain_reset(base); if (fdomain_test_loopback(base)) return NULL; if (!irq) { dev_err(dev, "card has no IRQ assigned"); return NULL; } sh = scsi_host_alloc(&fdomain_template, sizeof(struct fdomain)); if (!sh) return NULL; if (this_id) sh->this_id = this_id & 0x07; sh->irq = irq; sh->io_port = base; sh->n_io_port = FDOMAIN_REGION_SIZE; fd = shost_priv(sh); fd->base = base; fd->chip = chip; INIT_WORK(&fd->work, fdomain_work); if (dev_is_pci(dev) || !strcmp(dev->bus->name, "pcmcia")) irq_flags = IRQF_SHARED; if (request_irq(irq, fdomain_irq, irq_flags, "fdomain", fd)) goto fail_put; shost_printk(KERN_INFO, sh, "%s chip at 0x%x irq %d SCSI ID %d\n", dev_is_pci(dev) ? "TMC-36C70 (PCI bus)" : chip_names[chip], base, irq, sh->this_id); if (scsi_add_host(sh, dev)) goto fail_free_irq; scsi_scan_host(sh); return sh; fail_free_irq: free_irq(irq, fd); fail_put: scsi_host_put(sh); return NULL; } EXPORT_SYMBOL_GPL(fdomain_create); int fdomain_destroy(struct Scsi_Host *sh) { struct fdomain *fd = shost_priv(sh); cancel_work_sync(&fd->work); scsi_remove_host(sh); if (sh->irq) free_irq(sh->irq, fd); scsi_host_put(sh); return 0; } EXPORT_SYMBOL_GPL(fdomain_destroy); #ifdef CONFIG_PM_SLEEP static int fdomain_resume(struct device *dev) { struct fdomain *fd = shost_priv(dev_get_drvdata(dev)); fdomain_reset(fd->base); return 0; } static SIMPLE_DEV_PM_OPS(fdomain_pm_ops, NULL, fdomain_resume); #endif /* CONFIG_PM_SLEEP */ MODULE_AUTHOR("Ondrej Zary, Rickard E. Faith"); MODULE_DESCRIPTION("Future Domain TMC-16x0/TMC-3260 SCSI driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1