Contributors: 31
Author Tokens Token Proportion Commits Commit Proportion
Chad Dupuis 17012 88.47% 34 33.33%
Saurav Kashyap 1373 7.14% 27 26.47%
Javed Hasan 323 1.68% 6 5.88%
Alexander Lobakin 229 1.19% 1 0.98%
Hannes Reinecke 54 0.28% 4 3.92%
Daniel Wagner 48 0.25% 2 1.96%
Thomas Bogendoerfer 35 0.18% 1 0.98%
Yuval Mintz 31 0.16% 2 1.96%
Bart Van Assche 15 0.08% 2 1.96%
Wei Yongjun 15 0.08% 1 0.98%
Leon Romanovsky 12 0.06% 1 0.98%
Christophe Jaillet 11 0.06% 2 1.96%
Christoph Hellwig 11 0.06% 1 0.98%
Shyam Sundar 10 0.05% 1 0.98%
Sebastian Andrzej Siewior 8 0.04% 1 0.98%
Dan Carpenter 6 0.03% 1 0.98%
Jiasheng Jiang 6 0.03% 1 0.98%
Luis R. Rodriguez 5 0.03% 1 0.98%
Shai Malin 4 0.02% 1 0.98%
Tomer Tayar 4 0.02% 1 0.98%
Jonathan Lemon 3 0.02% 1 0.98%
Joe Perches 2 0.01% 1 0.98%
Lee Jones 2 0.01% 1 0.98%
Thomas Gleixner 2 0.01% 1 0.98%
Sudarsana Reddy Kalluru 2 0.01% 1 0.98%
Colin Ian King 1 0.01% 1 0.98%
Kees Cook 1 0.01% 1 0.98%
Nilesh Javali 1 0.01% 1 0.98%
Sedat Dilek 1 0.01% 1 0.98%
Austin Kim 1 0.01% 1 0.98%
Li Yang 1 0.01% 1 0.98%
Total 19229 102


// SPDX-License-Identifier: GPL-2.0-only
/*
 *  QLogic FCoE Offload Driver
 *  Copyright (c) 2016-2018 Cavium Inc.
 */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/device.h>
#include <linux/highmem.h>
#include <linux/crc32.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/kthread.h>
#include <linux/phylink.h>
#include <scsi/libfc.h>
#include <scsi/scsi_host.h>
#include <scsi/fc_frame.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include "qedf.h"
#include "qedf_dbg.h"
#include <uapi/linux/pci_regs.h>

const struct qed_fcoe_ops *qed_ops;

static int qedf_probe(struct pci_dev *pdev, const struct pci_device_id *id);
static void qedf_remove(struct pci_dev *pdev);
static void qedf_shutdown(struct pci_dev *pdev);
static void qedf_schedule_recovery_handler(void *dev);
static void qedf_recovery_handler(struct work_struct *work);

/*
 * Driver module parameters.
 */
static unsigned int qedf_dev_loss_tmo = 60;
module_param_named(dev_loss_tmo, qedf_dev_loss_tmo, int, S_IRUGO);
MODULE_PARM_DESC(dev_loss_tmo,  " dev_loss_tmo setting for attached "
	"remote ports (default 60)");

uint qedf_debug = QEDF_LOG_INFO;
module_param_named(debug, qedf_debug, uint, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(debug, " Debug mask. Pass '1' to enable default debugging"
	" mask");

static uint qedf_fipvlan_retries = 60;
module_param_named(fipvlan_retries, qedf_fipvlan_retries, int, S_IRUGO);
MODULE_PARM_DESC(fipvlan_retries, " Number of FIP VLAN requests to attempt "
	"before giving up (default 60)");

static uint qedf_fallback_vlan = QEDF_FALLBACK_VLAN;
module_param_named(fallback_vlan, qedf_fallback_vlan, int, S_IRUGO);
MODULE_PARM_DESC(fallback_vlan, " VLAN ID to try if fip vlan request fails "
	"(default 1002).");

static int qedf_default_prio = -1;
module_param_named(default_prio, qedf_default_prio, int, S_IRUGO);
MODULE_PARM_DESC(default_prio, " Override 802.1q priority for FIP and FCoE"
	" traffic (value between 0 and 7, default 3).");

uint qedf_dump_frames;
module_param_named(dump_frames, qedf_dump_frames, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dump_frames, " Print the skb data of FIP and FCoE frames "
	"(default off)");

static uint qedf_queue_depth;
module_param_named(queue_depth, qedf_queue_depth, int, S_IRUGO);
MODULE_PARM_DESC(queue_depth, " Sets the queue depth for all LUNs discovered "
	"by the qedf driver. Default is 0 (use OS default).");

uint qedf_io_tracing;
module_param_named(io_tracing, qedf_io_tracing, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(io_tracing, " Enable logging of SCSI requests/completions "
	"into trace buffer. (default off).");

static uint qedf_max_lun = MAX_FIBRE_LUNS;
module_param_named(max_lun, qedf_max_lun, int, S_IRUGO);
MODULE_PARM_DESC(max_lun, " Sets the maximum luns per target that the driver "
	"supports. (default 0xffffffff)");

uint qedf_link_down_tmo;
module_param_named(link_down_tmo, qedf_link_down_tmo, int, S_IRUGO);
MODULE_PARM_DESC(link_down_tmo, " Delays informing the fcoe transport that the "
	"link is down by N seconds.");

bool qedf_retry_delay;
module_param_named(retry_delay, qedf_retry_delay, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(retry_delay, " Enable/disable handling of FCP_RSP IU retry "
	"delay handling (default off).");

static bool qedf_dcbx_no_wait;
module_param_named(dcbx_no_wait, qedf_dcbx_no_wait, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dcbx_no_wait, " Do not wait for DCBX convergence to start "
	"sending FIP VLAN requests on link up (Default: off).");

static uint qedf_dp_module;
module_param_named(dp_module, qedf_dp_module, uint, S_IRUGO);
MODULE_PARM_DESC(dp_module, " bit flags control for verbose printk passed "
	"qed module during probe.");

static uint qedf_dp_level = QED_LEVEL_NOTICE;
module_param_named(dp_level, qedf_dp_level, uint, S_IRUGO);
MODULE_PARM_DESC(dp_level, " printk verbosity control passed to qed module  "
	"during probe (0-3: 0 more verbose).");

static bool qedf_enable_recovery = true;
module_param_named(enable_recovery, qedf_enable_recovery,
		bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(enable_recovery, "Enable/disable recovery on driver/firmware "
		"interface level errors 0 = Disabled, 1 = Enabled (Default: 1).");

struct workqueue_struct *qedf_io_wq;

static struct fcoe_percpu_s qedf_global;
static DEFINE_SPINLOCK(qedf_global_lock);

static struct kmem_cache *qedf_io_work_cache;

void qedf_set_vlan_id(struct qedf_ctx *qedf, int vlan_id)
{
	int vlan_id_tmp = 0;

	vlan_id_tmp = vlan_id  | (qedf->prio << VLAN_PRIO_SHIFT);
	qedf->vlan_id = vlan_id_tmp;
	QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
		  "Setting vlan_id=0x%04x prio=%d.\n",
		  vlan_id_tmp, qedf->prio);
}

/* Returns true if we have a valid vlan, false otherwise */
static bool qedf_initiate_fipvlan_req(struct qedf_ctx *qedf)
{

	while (qedf->fipvlan_retries--) {
		/* This is to catch if link goes down during fipvlan retries */
		if (atomic_read(&qedf->link_state) == QEDF_LINK_DOWN) {
			QEDF_ERR(&qedf->dbg_ctx, "Link not up.\n");
			return false;
		}

		if (test_bit(QEDF_UNLOADING, &qedf->flags)) {
			QEDF_ERR(&qedf->dbg_ctx, "Driver unloading.\n");
			return false;
		}

		if (qedf->vlan_id > 0) {
			QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
				  "vlan = 0x%x already set, calling ctlr_link_up.\n",
				  qedf->vlan_id);
			if (atomic_read(&qedf->link_state) == QEDF_LINK_UP)
				fcoe_ctlr_link_up(&qedf->ctlr);
			return true;
		}

		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
			   "Retry %d.\n", qedf->fipvlan_retries);
		init_completion(&qedf->fipvlan_compl);
		qedf_fcoe_send_vlan_req(qedf);
		wait_for_completion_timeout(&qedf->fipvlan_compl, 1 * HZ);
	}

	return false;
}

static void qedf_handle_link_update(struct work_struct *work)
{
	struct qedf_ctx *qedf =
	    container_of(work, struct qedf_ctx, link_update.work);
	int rc;

	QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC, "Entered. link_state=%d.\n",
		  atomic_read(&qedf->link_state));

	if (atomic_read(&qedf->link_state) == QEDF_LINK_UP) {
		rc = qedf_initiate_fipvlan_req(qedf);
		if (rc)
			return;

		if (atomic_read(&qedf->link_state) != QEDF_LINK_UP) {
			QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
				  "Link is down, resetting vlan_id.\n");
			qedf->vlan_id = 0;
			return;
		}

		/*
		 * If we get here then we never received a repsonse to our
		 * fip vlan request so set the vlan_id to the default and
		 * tell FCoE that the link is up
		 */
		QEDF_WARN(&(qedf->dbg_ctx), "Did not receive FIP VLAN "
			   "response, falling back to default VLAN %d.\n",
			   qedf_fallback_vlan);
		qedf_set_vlan_id(qedf, qedf_fallback_vlan);

		/*
		 * Zero out data_src_addr so we'll update it with the new
		 * lport port_id
		 */
		eth_zero_addr(qedf->data_src_addr);
		fcoe_ctlr_link_up(&qedf->ctlr);
	} else if (atomic_read(&qedf->link_state) == QEDF_LINK_DOWN) {
		/*
		 * If we hit here and link_down_tmo_valid is still 1 it means
		 * that link_down_tmo timed out so set it to 0 to make sure any
		 * other readers have accurate state.
		 */
		atomic_set(&qedf->link_down_tmo_valid, 0);
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
		    "Calling fcoe_ctlr_link_down().\n");
		fcoe_ctlr_link_down(&qedf->ctlr);
		if (qedf_wait_for_upload(qedf) == false)
			QEDF_ERR(&qedf->dbg_ctx,
				 "Could not upload all sessions.\n");
		/* Reset the number of FIP VLAN retries */
		qedf->fipvlan_retries = qedf_fipvlan_retries;
	}
}

#define	QEDF_FCOE_MAC_METHOD_GRANGED_MAC		1
#define QEDF_FCOE_MAC_METHOD_FCF_MAP			2
#define QEDF_FCOE_MAC_METHOD_FCOE_SET_MAC		3
static void qedf_set_data_src_addr(struct qedf_ctx *qedf, struct fc_frame *fp)
{
	u8 *granted_mac;
	struct fc_frame_header *fh = fc_frame_header_get(fp);
	u8 fc_map[3];
	int method = 0;

	/* Get granted MAC address from FIP FLOGI payload */
	granted_mac = fr_cb(fp)->granted_mac;

	/*
	 * We set the source MAC for FCoE traffic based on the Granted MAC
	 * address from the switch.
	 *
	 * If granted_mac is non-zero, we used that.
	 * If the granted_mac is zeroed out, created the FCoE MAC based on
	 * the sel_fcf->fc_map and the d_id fo the FLOGI frame.
	 * If sel_fcf->fc_map is 0 then we use the default FCF-MAC plus the
	 * d_id of the FLOGI frame.
	 */
	if (!is_zero_ether_addr(granted_mac)) {
		ether_addr_copy(qedf->data_src_addr, granted_mac);
		method = QEDF_FCOE_MAC_METHOD_GRANGED_MAC;
	} else if (qedf->ctlr.sel_fcf->fc_map != 0) {
		hton24(fc_map, qedf->ctlr.sel_fcf->fc_map);
		qedf->data_src_addr[0] = fc_map[0];
		qedf->data_src_addr[1] = fc_map[1];
		qedf->data_src_addr[2] = fc_map[2];
		qedf->data_src_addr[3] = fh->fh_d_id[0];
		qedf->data_src_addr[4] = fh->fh_d_id[1];
		qedf->data_src_addr[5] = fh->fh_d_id[2];
		method = QEDF_FCOE_MAC_METHOD_FCF_MAP;
	} else {
		fc_fcoe_set_mac(qedf->data_src_addr, fh->fh_d_id);
		method = QEDF_FCOE_MAC_METHOD_FCOE_SET_MAC;
	}

	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
	    "QEDF data_src_mac=%pM method=%d.\n", qedf->data_src_addr, method);
}

static void qedf_flogi_resp(struct fc_seq *seq, struct fc_frame *fp,
	void *arg)
{
	struct fc_exch *exch = fc_seq_exch(seq);
	struct fc_lport *lport = exch->lp;
	struct qedf_ctx *qedf = lport_priv(lport);

	if (!qedf) {
		QEDF_ERR(NULL, "qedf is NULL.\n");
		return;
	}

	/*
	 * If ERR_PTR is set then don't try to stat anything as it will cause
	 * a crash when we access fp.
	 */
	if (IS_ERR(fp)) {
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_ELS,
		    "fp has IS_ERR() set.\n");
		goto skip_stat;
	}

	/* Log stats for FLOGI reject */
	if (fc_frame_payload_op(fp) == ELS_LS_RJT)
		qedf->flogi_failed++;
	else if (fc_frame_payload_op(fp) == ELS_LS_ACC) {
		/* Set the source MAC we will use for FCoE traffic */
		qedf_set_data_src_addr(qedf, fp);
		qedf->flogi_pending = 0;
	}

	/* Complete flogi_compl so we can proceed to sending ADISCs */
	complete(&qedf->flogi_compl);

skip_stat:
	/* Report response to libfc */
	fc_lport_flogi_resp(seq, fp, lport);
}

static struct fc_seq *qedf_elsct_send(struct fc_lport *lport, u32 did,
	struct fc_frame *fp, unsigned int op,
	void (*resp)(struct fc_seq *,
	struct fc_frame *,
	void *),
	void *arg, u32 timeout)
{
	struct qedf_ctx *qedf = lport_priv(lport);

	/*
	 * Intercept FLOGI for statistic purposes. Note we use the resp
	 * callback to tell if this is really a flogi.
	 */
	if (resp == fc_lport_flogi_resp) {
		qedf->flogi_cnt++;
		if (qedf->flogi_pending >= QEDF_FLOGI_RETRY_CNT) {
			schedule_delayed_work(&qedf->stag_work, 2);
			return NULL;
		}
		qedf->flogi_pending++;
		return fc_elsct_send(lport, did, fp, op, qedf_flogi_resp,
		    arg, timeout);
	}

	return fc_elsct_send(lport, did, fp, op, resp, arg, timeout);
}

int qedf_send_flogi(struct qedf_ctx *qedf)
{
	struct fc_lport *lport;
	struct fc_frame *fp;

	lport = qedf->lport;

	if (!lport->tt.elsct_send) {
		QEDF_ERR(&qedf->dbg_ctx, "tt.elsct_send not set.\n");
		return -EINVAL;
	}

	fp = fc_frame_alloc(lport, sizeof(struct fc_els_flogi));
	if (!fp) {
		QEDF_ERR(&(qedf->dbg_ctx), "fc_frame_alloc failed.\n");
		return -ENOMEM;
	}

	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_ELS,
	    "Sending FLOGI to reestablish session with switch.\n");
	lport->tt.elsct_send(lport, FC_FID_FLOGI, fp,
	    ELS_FLOGI, qedf_flogi_resp, lport, lport->r_a_tov);

	init_completion(&qedf->flogi_compl);

	return 0;
}

/*
 * This function is called if link_down_tmo is in use.  If we get a link up and
 * link_down_tmo has not expired then use just FLOGI/ADISC to recover our
 * sessions with targets.  Otherwise, just call fcoe_ctlr_link_up().
 */
static void qedf_link_recovery(struct work_struct *work)
{
	struct qedf_ctx *qedf =
	    container_of(work, struct qedf_ctx, link_recovery.work);
	struct fc_lport *lport = qedf->lport;
	struct fc_rport_priv *rdata;
	bool rc;
	int retries = 30;
	int rval, i;
	struct list_head rdata_login_list;

	INIT_LIST_HEAD(&rdata_login_list);

	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
	    "Link down tmo did not expire.\n");

	/*
	 * Essentially reset the fcoe_ctlr here without affecting the state
	 * of the libfc structs.
	 */
	qedf->ctlr.state = FIP_ST_LINK_WAIT;
	fcoe_ctlr_link_down(&qedf->ctlr);

	/*
	 * Bring the link up before we send the fipvlan request so libfcoe
	 * can select a new fcf in parallel
	 */
	fcoe_ctlr_link_up(&qedf->ctlr);

	/* Since the link when down and up to verify which vlan we're on */
	qedf->fipvlan_retries = qedf_fipvlan_retries;
	rc = qedf_initiate_fipvlan_req(qedf);
	/* If getting the VLAN fails, set the VLAN to the fallback one */
	if (!rc)
		qedf_set_vlan_id(qedf, qedf_fallback_vlan);

	/*
	 * We need to wait for an FCF to be selected due to the
	 * fcoe_ctlr_link_up other the FLOGI will be rejected.
	 */
	while (retries > 0) {
		if (qedf->ctlr.sel_fcf) {
			QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
			    "FCF reselected, proceeding with FLOGI.\n");
			break;
		}
		msleep(500);
		retries--;
	}

	if (retries < 1) {
		QEDF_ERR(&(qedf->dbg_ctx), "Exhausted retries waiting for "
		    "FCF selection.\n");
		return;
	}

	rval = qedf_send_flogi(qedf);
	if (rval)
		return;

	/* Wait for FLOGI completion before proceeding with sending ADISCs */
	i = wait_for_completion_timeout(&qedf->flogi_compl,
	    qedf->lport->r_a_tov);
	if (i == 0) {
		QEDF_ERR(&(qedf->dbg_ctx), "FLOGI timed out.\n");
		return;
	}

	/*
	 * Call lport->tt.rport_login which will cause libfc to send an
	 * ADISC since the rport is in state ready.
	 */
	mutex_lock(&lport->disc.disc_mutex);
	list_for_each_entry_rcu(rdata, &lport->disc.rports, peers) {
		if (kref_get_unless_zero(&rdata->kref)) {
			fc_rport_login(rdata);
			kref_put(&rdata->kref, fc_rport_destroy);
		}
	}
	mutex_unlock(&lport->disc.disc_mutex);
}

static void qedf_update_link_speed(struct qedf_ctx *qedf,
	struct qed_link_output *link)
{
	__ETHTOOL_DECLARE_LINK_MODE_MASK(sup_caps);
	struct fc_lport *lport = qedf->lport;

	lport->link_speed = FC_PORTSPEED_UNKNOWN;
	lport->link_supported_speeds = FC_PORTSPEED_UNKNOWN;

	/* Set fc_host link speed */
	switch (link->speed) {
	case 10000:
		lport->link_speed = FC_PORTSPEED_10GBIT;
		break;
	case 25000:
		lport->link_speed = FC_PORTSPEED_25GBIT;
		break;
	case 40000:
		lport->link_speed = FC_PORTSPEED_40GBIT;
		break;
	case 50000:
		lport->link_speed = FC_PORTSPEED_50GBIT;
		break;
	case 100000:
		lport->link_speed = FC_PORTSPEED_100GBIT;
		break;
	case 20000:
		lport->link_speed = FC_PORTSPEED_20GBIT;
		break;
	default:
		lport->link_speed = FC_PORTSPEED_UNKNOWN;
		break;
	}

	/*
	 * Set supported link speed by querying the supported
	 * capabilities of the link.
	 */

	phylink_zero(sup_caps);
	phylink_set(sup_caps, 10000baseT_Full);
	phylink_set(sup_caps, 10000baseKX4_Full);
	phylink_set(sup_caps, 10000baseR_FEC);
	phylink_set(sup_caps, 10000baseCR_Full);
	phylink_set(sup_caps, 10000baseSR_Full);
	phylink_set(sup_caps, 10000baseLR_Full);
	phylink_set(sup_caps, 10000baseLRM_Full);
	phylink_set(sup_caps, 10000baseKR_Full);

	if (linkmode_intersects(link->supported_caps, sup_caps))
		lport->link_supported_speeds |= FC_PORTSPEED_10GBIT;

	phylink_zero(sup_caps);
	phylink_set(sup_caps, 25000baseKR_Full);
	phylink_set(sup_caps, 25000baseCR_Full);
	phylink_set(sup_caps, 25000baseSR_Full);

	if (linkmode_intersects(link->supported_caps, sup_caps))
		lport->link_supported_speeds |= FC_PORTSPEED_25GBIT;

	phylink_zero(sup_caps);
	phylink_set(sup_caps, 40000baseLR4_Full);
	phylink_set(sup_caps, 40000baseKR4_Full);
	phylink_set(sup_caps, 40000baseCR4_Full);
	phylink_set(sup_caps, 40000baseSR4_Full);

	if (linkmode_intersects(link->supported_caps, sup_caps))
		lport->link_supported_speeds |= FC_PORTSPEED_40GBIT;

	phylink_zero(sup_caps);
	phylink_set(sup_caps, 50000baseKR2_Full);
	phylink_set(sup_caps, 50000baseCR2_Full);
	phylink_set(sup_caps, 50000baseSR2_Full);

	if (linkmode_intersects(link->supported_caps, sup_caps))
		lport->link_supported_speeds |= FC_PORTSPEED_50GBIT;

	phylink_zero(sup_caps);
	phylink_set(sup_caps, 100000baseKR4_Full);
	phylink_set(sup_caps, 100000baseSR4_Full);
	phylink_set(sup_caps, 100000baseCR4_Full);
	phylink_set(sup_caps, 100000baseLR4_ER4_Full);

	if (linkmode_intersects(link->supported_caps, sup_caps))
		lport->link_supported_speeds |= FC_PORTSPEED_100GBIT;

	phylink_zero(sup_caps);
	phylink_set(sup_caps, 20000baseKR2_Full);

	if (linkmode_intersects(link->supported_caps, sup_caps))
		lport->link_supported_speeds |= FC_PORTSPEED_20GBIT;

	if (lport->host && lport->host->shost_data)
		fc_host_supported_speeds(lport->host) =
			lport->link_supported_speeds;
}

static void qedf_bw_update(void *dev)
{
	struct qedf_ctx *qedf = (struct qedf_ctx *)dev;
	struct qed_link_output link;

	/* Get the latest status of the link */
	qed_ops->common->get_link(qedf->cdev, &link);

	if (test_bit(QEDF_UNLOADING, &qedf->flags)) {
		QEDF_ERR(&qedf->dbg_ctx,
			 "Ignore link update, driver getting unload.\n");
		return;
	}

	if (link.link_up) {
		if (atomic_read(&qedf->link_state) == QEDF_LINK_UP)
			qedf_update_link_speed(qedf, &link);
		else
			QEDF_ERR(&qedf->dbg_ctx,
				 "Ignore bw update, link is down.\n");

	} else {
		QEDF_ERR(&qedf->dbg_ctx, "link_up is not set.\n");
	}
}

static void qedf_link_update(void *dev, struct qed_link_output *link)
{
	struct qedf_ctx *qedf = (struct qedf_ctx *)dev;

	/*
	 * Prevent race where we're removing the module and we get link update
	 * for qed.
	 */
	if (test_bit(QEDF_UNLOADING, &qedf->flags)) {
		QEDF_ERR(&qedf->dbg_ctx,
			 "Ignore link update, driver getting unload.\n");
		return;
	}

	if (link->link_up) {
		if (atomic_read(&qedf->link_state) == QEDF_LINK_UP) {
			QEDF_INFO((&qedf->dbg_ctx), QEDF_LOG_DISC,
			    "Ignoring link up event as link is already up.\n");
			return;
		}
		QEDF_ERR(&(qedf->dbg_ctx), "LINK UP (%d GB/s).\n",
		    link->speed / 1000);

		/* Cancel any pending link down work */
		cancel_delayed_work(&qedf->link_update);

		atomic_set(&qedf->link_state, QEDF_LINK_UP);
		qedf_update_link_speed(qedf, link);

		if (atomic_read(&qedf->dcbx) == QEDF_DCBX_DONE ||
		    qedf_dcbx_no_wait) {
			QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
			     "DCBx done.\n");
			if (atomic_read(&qedf->link_down_tmo_valid) > 0)
				queue_delayed_work(qedf->link_update_wq,
				    &qedf->link_recovery, 0);
			else
				queue_delayed_work(qedf->link_update_wq,
				    &qedf->link_update, 0);
			atomic_set(&qedf->link_down_tmo_valid, 0);
		}

	} else {
		QEDF_ERR(&(qedf->dbg_ctx), "LINK DOWN.\n");

		atomic_set(&qedf->link_state, QEDF_LINK_DOWN);
		atomic_set(&qedf->dcbx, QEDF_DCBX_PENDING);
		/*
		 * Flag that we're waiting for the link to come back up before
		 * informing the fcoe layer of the event.
		 */
		if (qedf_link_down_tmo > 0) {
			QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
			    "Starting link down tmo.\n");
			atomic_set(&qedf->link_down_tmo_valid, 1);
		}
		qedf->vlan_id = 0;
		qedf_update_link_speed(qedf, link);
		queue_delayed_work(qedf->link_update_wq, &qedf->link_update,
		    qedf_link_down_tmo * HZ);
	}
}


static void qedf_dcbx_handler(void *dev, struct qed_dcbx_get *get, u32 mib_type)
{
	struct qedf_ctx *qedf = (struct qedf_ctx *)dev;
	u8 tmp_prio;

	QEDF_ERR(&(qedf->dbg_ctx), "DCBx event valid=%d enabled=%d fcoe "
	    "prio=%d.\n", get->operational.valid, get->operational.enabled,
	    get->operational.app_prio.fcoe);

	if (get->operational.enabled && get->operational.valid) {
		/* If DCBX was already negotiated on link up then just exit */
		if (atomic_read(&qedf->dcbx) == QEDF_DCBX_DONE) {
			QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
			    "DCBX already set on link up.\n");
			return;
		}

		atomic_set(&qedf->dcbx, QEDF_DCBX_DONE);

		/*
		 * Set the 8021q priority in the following manner:
		 *
		 * 1. If a modparam is set use that
		 * 2. If the value is not between 0..7 use the default
		 * 3. Use the priority we get from the DCBX app tag
		 */
		tmp_prio = get->operational.app_prio.fcoe;
		if (qedf_default_prio > -1)
			qedf->prio = qedf_default_prio;
		else if (tmp_prio > 7) {
			QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
			    "FIP/FCoE prio %d out of range, setting to %d.\n",
			    tmp_prio, QEDF_DEFAULT_PRIO);
			qedf->prio = QEDF_DEFAULT_PRIO;
		} else
			qedf->prio = tmp_prio;

		if (atomic_read(&qedf->link_state) == QEDF_LINK_UP &&
		    !qedf_dcbx_no_wait) {
			if (atomic_read(&qedf->link_down_tmo_valid) > 0)
				queue_delayed_work(qedf->link_update_wq,
				    &qedf->link_recovery, 0);
			else
				queue_delayed_work(qedf->link_update_wq,
				    &qedf->link_update, 0);
			atomic_set(&qedf->link_down_tmo_valid, 0);
		}
	}

}

static u32 qedf_get_login_failures(void *cookie)
{
	struct qedf_ctx *qedf;

	qedf = (struct qedf_ctx *)cookie;
	return qedf->flogi_failed;
}

static struct qed_fcoe_cb_ops qedf_cb_ops = {
	{
		.link_update = qedf_link_update,
		.bw_update = qedf_bw_update,
		.schedule_recovery_handler = qedf_schedule_recovery_handler,
		.dcbx_aen = qedf_dcbx_handler,
		.get_generic_tlv_data = qedf_get_generic_tlv_data,
		.get_protocol_tlv_data = qedf_get_protocol_tlv_data,
		.schedule_hw_err_handler = qedf_schedule_hw_err_handler,
	}
};

/*
 * Various transport templates.
 */

static struct scsi_transport_template *qedf_fc_transport_template;
static struct scsi_transport_template *qedf_fc_vport_transport_template;

/*
 * SCSI EH handlers
 */
static int qedf_eh_abort(struct scsi_cmnd *sc_cmd)
{
	struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
	struct fc_lport *lport;
	struct qedf_ctx *qedf;
	struct qedf_ioreq *io_req;
	struct fc_rport_libfc_priv *rp = rport->dd_data;
	struct fc_rport_priv *rdata;
	struct qedf_rport *fcport = NULL;
	int rc = FAILED;
	int wait_count = 100;
	int refcount = 0;
	int rval;
	int got_ref = 0;

	lport = shost_priv(sc_cmd->device->host);
	qedf = (struct qedf_ctx *)lport_priv(lport);

	/* rport and tgt are allocated together, so tgt should be non-NULL */
	fcport = (struct qedf_rport *)&rp[1];
	rdata = fcport->rdata;
	if (!rdata || !kref_get_unless_zero(&rdata->kref)) {
		QEDF_ERR(&qedf->dbg_ctx, "stale rport, sc_cmd=%p\n", sc_cmd);
		rc = SUCCESS;
		goto out;
	}


	io_req = qedf_priv(sc_cmd)->io_req;
	if (!io_req) {
		QEDF_ERR(&qedf->dbg_ctx,
			 "sc_cmd not queued with lld, sc_cmd=%p op=0x%02x, port_id=%06x\n",
			 sc_cmd, sc_cmd->cmnd[0],
			 rdata->ids.port_id);
		rc = SUCCESS;
		goto drop_rdata_kref;
	}

	rval = kref_get_unless_zero(&io_req->refcount);	/* ID: 005 */
	if (rval)
		got_ref = 1;

	/* If we got a valid io_req, confirm it belongs to this sc_cmd. */
	if (!rval || io_req->sc_cmd != sc_cmd) {
		QEDF_ERR(&qedf->dbg_ctx,
			 "Freed/Incorrect io_req, io_req->sc_cmd=%p, sc_cmd=%p, port_id=%06x, bailing out.\n",
			 io_req->sc_cmd, sc_cmd, rdata->ids.port_id);

		goto drop_rdata_kref;
	}

	if (fc_remote_port_chkready(rport)) {
		refcount = kref_read(&io_req->refcount);
		QEDF_ERR(&qedf->dbg_ctx,
			 "rport not ready, io_req=%p, xid=0x%x sc_cmd=%p op=0x%02x, refcount=%d, port_id=%06x\n",
			 io_req, io_req->xid, sc_cmd, sc_cmd->cmnd[0],
			 refcount, rdata->ids.port_id);

		goto drop_rdata_kref;
	}

	rc = fc_block_scsi_eh(sc_cmd);
	if (rc)
		goto drop_rdata_kref;

	if (test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags)) {
		QEDF_ERR(&qedf->dbg_ctx,
			 "Connection uploading, xid=0x%x., port_id=%06x\n",
			 io_req->xid, rdata->ids.port_id);
		while (io_req->sc_cmd && (wait_count != 0)) {
			msleep(100);
			wait_count--;
		}
		if (wait_count) {
			QEDF_ERR(&qedf->dbg_ctx, "ABTS succeeded\n");
			rc = SUCCESS;
		} else {
			QEDF_ERR(&qedf->dbg_ctx, "ABTS failed\n");
			rc = FAILED;
		}
		goto drop_rdata_kref;
	}

	if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
		QEDF_ERR(&qedf->dbg_ctx, "link not ready.\n");
		goto drop_rdata_kref;
	}

	QEDF_ERR(&qedf->dbg_ctx,
		 "Aborting io_req=%p sc_cmd=%p xid=0x%x fp_idx=%d, port_id=%06x.\n",
		 io_req, sc_cmd, io_req->xid, io_req->fp_idx,
		 rdata->ids.port_id);

	if (qedf->stop_io_on_error) {
		qedf_stop_all_io(qedf);
		rc = SUCCESS;
		goto drop_rdata_kref;
	}

	init_completion(&io_req->abts_done);
	rval = qedf_initiate_abts(io_req, true);
	if (rval) {
		QEDF_ERR(&(qedf->dbg_ctx), "Failed to queue ABTS.\n");
		/*
		 * If we fail to queue the ABTS then return this command to
		 * the SCSI layer as it will own and free the xid
		 */
		rc = SUCCESS;
		qedf_scsi_done(qedf, io_req, DID_ERROR);
		goto drop_rdata_kref;
	}

	wait_for_completion(&io_req->abts_done);

	if (io_req->event == QEDF_IOREQ_EV_ABORT_SUCCESS ||
	    io_req->event == QEDF_IOREQ_EV_ABORT_FAILED ||
	    io_req->event == QEDF_IOREQ_EV_CLEANUP_SUCCESS) {
		/*
		 * If we get a reponse to the abort this is success from
		 * the perspective that all references to the command have
		 * been removed from the driver and firmware
		 */
		rc = SUCCESS;
	} else {
		/* If the abort and cleanup failed then return a failure */
		rc = FAILED;
	}

	if (rc == SUCCESS)
		QEDF_ERR(&(qedf->dbg_ctx), "ABTS succeeded, xid=0x%x.\n",
			  io_req->xid);
	else
		QEDF_ERR(&(qedf->dbg_ctx), "ABTS failed, xid=0x%x.\n",
			  io_req->xid);

drop_rdata_kref:
	kref_put(&rdata->kref, fc_rport_destroy);
out:
	if (got_ref)
		kref_put(&io_req->refcount, qedf_release_cmd);
	return rc;
}

static int qedf_eh_target_reset(struct scsi_cmnd *sc_cmd)
{
	QEDF_ERR(NULL, "%d:0:%d:%lld: TARGET RESET Issued...",
		 sc_cmd->device->host->host_no, sc_cmd->device->id,
		 sc_cmd->device->lun);
	return qedf_initiate_tmf(sc_cmd, FCP_TMF_TGT_RESET);
}

static int qedf_eh_device_reset(struct scsi_cmnd *sc_cmd)
{
	QEDF_ERR(NULL, "%d:0:%d:%lld: LUN RESET Issued... ",
		 sc_cmd->device->host->host_no, sc_cmd->device->id,
		 sc_cmd->device->lun);
	return qedf_initiate_tmf(sc_cmd, FCP_TMF_LUN_RESET);
}

bool qedf_wait_for_upload(struct qedf_ctx *qedf)
{
	struct qedf_rport *fcport;
	int wait_cnt = 120;

	while (wait_cnt--) {
		if (atomic_read(&qedf->num_offloads))
			QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
				  "Waiting for all uploads to complete num_offloads = 0x%x.\n",
				  atomic_read(&qedf->num_offloads));
		else
			return true;
		msleep(500);
	}

	rcu_read_lock();
	list_for_each_entry_rcu(fcport, &qedf->fcports, peers) {
		if (test_bit(QEDF_RPORT_SESSION_READY,
				       &fcport->flags)) {
			if (fcport->rdata)
				QEDF_ERR(&qedf->dbg_ctx,
					 "Waiting for fcport %p portid=%06x.\n",
					 fcport, fcport->rdata->ids.port_id);
			} else {
				QEDF_ERR(&qedf->dbg_ctx,
					 "Waiting for fcport %p.\n", fcport);
			}
	}

	rcu_read_unlock();
	return false;
}

/* Performs soft reset of qedf_ctx by simulating a link down/up */
void qedf_ctx_soft_reset(struct fc_lport *lport)
{
	struct qedf_ctx *qedf;
	struct qed_link_output if_link;

	if (lport->vport) {
		printk_ratelimited("Cannot issue host reset on NPIV port.\n");
		return;
	}

	qedf = lport_priv(lport);

	qedf->flogi_pending = 0;
	/* For host reset, essentially do a soft link up/down */
	atomic_set(&qedf->link_state, QEDF_LINK_DOWN);
	QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
		  "Queuing link down work.\n");
	queue_delayed_work(qedf->link_update_wq, &qedf->link_update,
	    0);

	if (qedf_wait_for_upload(qedf) == false) {
		QEDF_ERR(&qedf->dbg_ctx, "Could not upload all sessions.\n");
		WARN_ON(atomic_read(&qedf->num_offloads));
	}

	/* Before setting link up query physical link state */
	qed_ops->common->get_link(qedf->cdev, &if_link);
	/* Bail if the physical link is not up */
	if (!if_link.link_up) {
		QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
			  "Physical link is not up.\n");
		return;
	}
	/* Flush and wait to make sure link down is processed */
	flush_delayed_work(&qedf->link_update);
	msleep(500);

	atomic_set(&qedf->link_state, QEDF_LINK_UP);
	qedf->vlan_id  = 0;
	QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
		  "Queue link up work.\n");
	queue_delayed_work(qedf->link_update_wq, &qedf->link_update,
	    0);
}

/* Reset the host by gracefully logging out and then logging back in */
static int qedf_eh_host_reset(struct scsi_cmnd *sc_cmd)
{
	struct fc_lport *lport;
	struct qedf_ctx *qedf;

	lport = shost_priv(sc_cmd->device->host);
	qedf = lport_priv(lport);

	if (atomic_read(&qedf->link_state) == QEDF_LINK_DOWN ||
	    test_bit(QEDF_UNLOADING, &qedf->flags))
		return FAILED;

	QEDF_ERR(&(qedf->dbg_ctx), "HOST RESET Issued...");

	qedf_ctx_soft_reset(lport);

	return SUCCESS;
}

static int qedf_slave_configure(struct scsi_device *sdev)
{
	if (qedf_queue_depth) {
		scsi_change_queue_depth(sdev, qedf_queue_depth);
	}

	return 0;
}

static struct scsi_host_template qedf_host_template = {
	.module 	= THIS_MODULE,
	.name 		= QEDF_MODULE_NAME,
	.this_id 	= -1,
	.cmd_per_lun	= 32,
	.max_sectors 	= 0xffff,
	.queuecommand 	= qedf_queuecommand,
	.shost_groups	= qedf_host_groups,
	.eh_abort_handler	= qedf_eh_abort,
	.eh_device_reset_handler = qedf_eh_device_reset, /* lun reset */
	.eh_target_reset_handler = qedf_eh_target_reset, /* target reset */
	.eh_host_reset_handler  = qedf_eh_host_reset,
	.slave_configure	= qedf_slave_configure,
	.dma_boundary = QED_HW_DMA_BOUNDARY,
	.sg_tablesize = QEDF_MAX_BDS_PER_CMD,
	.can_queue = FCOE_PARAMS_NUM_TASKS,
	.change_queue_depth = scsi_change_queue_depth,
	.cmd_size = sizeof(struct qedf_cmd_priv),
};

static int qedf_get_paged_crc_eof(struct sk_buff *skb, int tlen)
{
	int rc;

	spin_lock(&qedf_global_lock);
	rc = fcoe_get_paged_crc_eof(skb, tlen, &qedf_global);
	spin_unlock(&qedf_global_lock);

	return rc;
}

static struct qedf_rport *qedf_fcport_lookup(struct qedf_ctx *qedf, u32 port_id)
{
	struct qedf_rport *fcport;
	struct fc_rport_priv *rdata;

	rcu_read_lock();
	list_for_each_entry_rcu(fcport, &qedf->fcports, peers) {
		rdata = fcport->rdata;
		if (rdata == NULL)
			continue;
		if (rdata->ids.port_id == port_id) {
			rcu_read_unlock();
			return fcport;
		}
	}
	rcu_read_unlock();

	/* Return NULL to caller to let them know fcport was not found */
	return NULL;
}

/* Transmits an ELS frame over an offloaded session */
static int qedf_xmit_l2_frame(struct qedf_rport *fcport, struct fc_frame *fp)
{
	struct fc_frame_header *fh;
	int rc = 0;

	fh = fc_frame_header_get(fp);
	if ((fh->fh_type == FC_TYPE_ELS) &&
	    (fh->fh_r_ctl == FC_RCTL_ELS_REQ)) {
		switch (fc_frame_payload_op(fp)) {
		case ELS_ADISC:
			qedf_send_adisc(fcport, fp);
			rc = 1;
			break;
		}
	}

	return rc;
}

/*
 * qedf_xmit - qedf FCoE frame transmit function
 */
static int qedf_xmit(struct fc_lport *lport, struct fc_frame *fp)
{
	struct fc_lport		*base_lport;
	struct qedf_ctx		*qedf;
	struct ethhdr		*eh;
	struct fcoe_crc_eof	*cp;
	struct sk_buff		*skb;
	struct fc_frame_header	*fh;
	struct fcoe_hdr		*hp;
	u8			sof, eof;
	u32			crc;
	unsigned int		hlen, tlen, elen;
	int			wlen;
	struct fc_lport *tmp_lport;
	struct fc_lport *vn_port = NULL;
	struct qedf_rport *fcport;
	int rc;
	u16 vlan_tci = 0;

	qedf = (struct qedf_ctx *)lport_priv(lport);

	fh = fc_frame_header_get(fp);
	skb = fp_skb(fp);

	/* Filter out traffic to other NPIV ports on the same host */
	if (lport->vport)
		base_lport = shost_priv(vport_to_shost(lport->vport));
	else
		base_lport = lport;

	/* Flag if the destination is the base port */
	if (base_lport->port_id == ntoh24(fh->fh_d_id)) {
		vn_port = base_lport;
	} else {
		/* Got through the list of vports attached to the base_lport
		 * and see if we have a match with the destination address.
		 */
		list_for_each_entry(tmp_lport, &base_lport->vports, list) {
			if (tmp_lport->port_id == ntoh24(fh->fh_d_id)) {
				vn_port = tmp_lport;
				break;
			}
		}
	}
	if (vn_port && ntoh24(fh->fh_d_id) != FC_FID_FLOGI) {
		struct fc_rport_priv *rdata = NULL;

		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2,
		    "Dropping FCoE frame to %06x.\n", ntoh24(fh->fh_d_id));
		kfree_skb(skb);
		rdata = fc_rport_lookup(lport, ntoh24(fh->fh_d_id));
		if (rdata) {
			rdata->retries = lport->max_rport_retry_count;
			kref_put(&rdata->kref, fc_rport_destroy);
		}
		return -EINVAL;
	}
	/* End NPIV filtering */

	if (!qedf->ctlr.sel_fcf) {
		kfree_skb(skb);
		return 0;
	}

	if (!test_bit(QEDF_LL2_STARTED, &qedf->flags)) {
		QEDF_WARN(&(qedf->dbg_ctx), "LL2 not started\n");
		kfree_skb(skb);
		return 0;
	}

	if (atomic_read(&qedf->link_state) != QEDF_LINK_UP) {
		QEDF_WARN(&(qedf->dbg_ctx), "qedf link down\n");
		kfree_skb(skb);
		return 0;
	}

	if (unlikely(fh->fh_r_ctl == FC_RCTL_ELS_REQ)) {
		if (fcoe_ctlr_els_send(&qedf->ctlr, lport, skb))
			return 0;
	}

	/* Check to see if this needs to be sent on an offloaded session */
	fcport = qedf_fcport_lookup(qedf, ntoh24(fh->fh_d_id));

	if (fcport && test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) {
		rc = qedf_xmit_l2_frame(fcport, fp);
		/*
		 * If the frame was successfully sent over the middle path
		 * then do not try to also send it over the LL2 path
		 */
		if (rc)
			return 0;
	}

	sof = fr_sof(fp);
	eof = fr_eof(fp);

	elen = sizeof(struct ethhdr);
	hlen = sizeof(struct fcoe_hdr);
	tlen = sizeof(struct fcoe_crc_eof);
	wlen = (skb->len - tlen + sizeof(crc)) / FCOE_WORD_TO_BYTE;

	skb->ip_summed = CHECKSUM_NONE;
	crc = fcoe_fc_crc(fp);

	/* copy port crc and eof to the skb buff */
	if (skb_is_nonlinear(skb)) {
		skb_frag_t *frag;

		if (qedf_get_paged_crc_eof(skb, tlen)) {
			kfree_skb(skb);
			return -ENOMEM;
		}
		frag = &skb_shinfo(skb)->frags[skb_shinfo(skb)->nr_frags - 1];
		cp = kmap_atomic(skb_frag_page(frag)) + skb_frag_off(frag);
	} else {
		cp = skb_put(skb, tlen);
	}

	memset(cp, 0, sizeof(*cp));
	cp->fcoe_eof = eof;
	cp->fcoe_crc32 = cpu_to_le32(~crc);
	if (skb_is_nonlinear(skb)) {
		kunmap_atomic(cp);
		cp = NULL;
	}


	/* adjust skb network/transport offsets to match mac/fcoe/port */
	skb_push(skb, elen + hlen);
	skb_reset_mac_header(skb);
	skb_reset_network_header(skb);
	skb->mac_len = elen;
	skb->protocol = htons(ETH_P_FCOE);

	/*
	 * Add VLAN tag to non-offload FCoE frame based on current stored VLAN
	 * for FIP/FCoE traffic.
	 */
	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), qedf->vlan_id);

	/* fill up mac and fcoe headers */
	eh = eth_hdr(skb);
	eh->h_proto = htons(ETH_P_FCOE);
	if (qedf->ctlr.map_dest)
		fc_fcoe_set_mac(eh->h_dest, fh->fh_d_id);
	else
		/* insert GW address */
		ether_addr_copy(eh->h_dest, qedf->ctlr.dest_addr);

	/* Set the source MAC address */
	ether_addr_copy(eh->h_source, qedf->data_src_addr);

	hp = (struct fcoe_hdr *)(eh + 1);
	memset(hp, 0, sizeof(*hp));
	if (FC_FCOE_VER)
		FC_FCOE_ENCAPS_VER(hp, FC_FCOE_VER);
	hp->fcoe_sof = sof;

	/*update tx stats */
	this_cpu_inc(lport->stats->TxFrames);
	this_cpu_add(lport->stats->TxWords, wlen);

	/* Get VLAN ID from skb for printing purposes */
	__vlan_hwaccel_get_tag(skb, &vlan_tci);

	/* send down to lld */
	fr_dev(fp) = lport;
	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2, "FCoE frame send: "
	    "src=%06x dest=%06x r_ctl=%x type=%x vlan=%04x.\n",
	    ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id), fh->fh_r_ctl, fh->fh_type,
	    vlan_tci);
	if (qedf_dump_frames)
		print_hex_dump(KERN_WARNING, "fcoe: ", DUMP_PREFIX_OFFSET, 16,
		    1, skb->data, skb->len, false);
	rc = qed_ops->ll2->start_xmit(qedf->cdev, skb, 0);
	if (rc) {
		QEDF_ERR(&qedf->dbg_ctx, "start_xmit failed rc = %d.\n", rc);
		kfree_skb(skb);
		return rc;
	}

	return 0;
}

static int qedf_alloc_sq(struct qedf_ctx *qedf, struct qedf_rport *fcport)
{
	int rval = 0;
	u32 *pbl;
	dma_addr_t page;
	int num_pages;

	/* Calculate appropriate queue and PBL sizes */
	fcport->sq_mem_size = SQ_NUM_ENTRIES * sizeof(struct fcoe_wqe);
	fcport->sq_mem_size = ALIGN(fcport->sq_mem_size, QEDF_PAGE_SIZE);
	fcport->sq_pbl_size = (fcport->sq_mem_size / QEDF_PAGE_SIZE) *
	    sizeof(void *);
	fcport->sq_pbl_size = fcport->sq_pbl_size + QEDF_PAGE_SIZE;

	fcport->sq = dma_alloc_coherent(&qedf->pdev->dev, fcport->sq_mem_size,
					&fcport->sq_dma, GFP_KERNEL);
	if (!fcport->sq) {
		QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate send queue.\n");
		rval = 1;
		goto out;
	}

	fcport->sq_pbl = dma_alloc_coherent(&qedf->pdev->dev,
					    fcport->sq_pbl_size,
					    &fcport->sq_pbl_dma, GFP_KERNEL);
	if (!fcport->sq_pbl) {
		QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate send queue PBL.\n");
		rval = 1;
		goto out_free_sq;
	}

	/* Create PBL */
	num_pages = fcport->sq_mem_size / QEDF_PAGE_SIZE;
	page = fcport->sq_dma;
	pbl = (u32 *)fcport->sq_pbl;

	while (num_pages--) {
		*pbl = U64_LO(page);
		pbl++;
		*pbl = U64_HI(page);
		pbl++;
		page += QEDF_PAGE_SIZE;
	}

	return rval;

out_free_sq:
	dma_free_coherent(&qedf->pdev->dev, fcport->sq_mem_size, fcport->sq,
	    fcport->sq_dma);
out:
	return rval;
}

static void qedf_free_sq(struct qedf_ctx *qedf, struct qedf_rport *fcport)
{
	if (fcport->sq_pbl)
		dma_free_coherent(&qedf->pdev->dev, fcport->sq_pbl_size,
		    fcport->sq_pbl, fcport->sq_pbl_dma);
	if (fcport->sq)
		dma_free_coherent(&qedf->pdev->dev, fcport->sq_mem_size,
		    fcport->sq, fcport->sq_dma);
}

static int qedf_offload_connection(struct qedf_ctx *qedf,
	struct qedf_rport *fcport)
{
	struct qed_fcoe_params_offload conn_info;
	u32 port_id;
	int rval;
	uint16_t total_sqe = (fcport->sq_mem_size / sizeof(struct fcoe_wqe));

	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "Offloading connection "
		   "portid=%06x.\n", fcport->rdata->ids.port_id);
	rval = qed_ops->acquire_conn(qedf->cdev, &fcport->handle,
	    &fcport->fw_cid, &fcport->p_doorbell);
	if (rval) {
		QEDF_WARN(&(qedf->dbg_ctx), "Could not acquire connection "
			   "for portid=%06x.\n", fcport->rdata->ids.port_id);
		rval = 1; /* For some reason qed returns 0 on failure here */
		goto out;
	}

	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "portid=%06x "
		   "fw_cid=%08x handle=%d.\n", fcport->rdata->ids.port_id,
		   fcport->fw_cid, fcport->handle);

	memset(&conn_info, 0, sizeof(struct qed_fcoe_params_offload));

	/* Fill in the offload connection info */
	conn_info.sq_pbl_addr = fcport->sq_pbl_dma;

	conn_info.sq_curr_page_addr = (dma_addr_t)(*(u64 *)fcport->sq_pbl);
	conn_info.sq_next_page_addr =
	    (dma_addr_t)(*(u64 *)(fcport->sq_pbl + 8));

	/* Need to use our FCoE MAC for the offload session */
	ether_addr_copy(conn_info.src_mac, qedf->data_src_addr);

	ether_addr_copy(conn_info.dst_mac, qedf->ctlr.dest_addr);

	conn_info.tx_max_fc_pay_len = fcport->rdata->maxframe_size;
	conn_info.e_d_tov_timer_val = qedf->lport->e_d_tov;
	conn_info.rec_tov_timer_val = 3; /* I think this is what E3 was */
	conn_info.rx_max_fc_pay_len = fcport->rdata->maxframe_size;

	/* Set VLAN data */
	conn_info.vlan_tag = qedf->vlan_id <<
	    FCOE_CONN_OFFLOAD_RAMROD_DATA_VLAN_ID_SHIFT;
	conn_info.vlan_tag |=
	    qedf->prio << FCOE_CONN_OFFLOAD_RAMROD_DATA_PRIORITY_SHIFT;
	conn_info.flags |= (FCOE_CONN_OFFLOAD_RAMROD_DATA_B_VLAN_FLAG_MASK <<
	    FCOE_CONN_OFFLOAD_RAMROD_DATA_B_VLAN_FLAG_SHIFT);

	/* Set host port source id */
	port_id = fc_host_port_id(qedf->lport->host);
	fcport->sid = port_id;
	conn_info.s_id.addr_hi = (port_id & 0x000000FF);
	conn_info.s_id.addr_mid = (port_id & 0x0000FF00) >> 8;
	conn_info.s_id.addr_lo = (port_id & 0x00FF0000) >> 16;

	conn_info.max_conc_seqs_c3 = fcport->rdata->max_seq;

	/* Set remote port destination id */
	port_id = fcport->rdata->rport->port_id;
	conn_info.d_id.addr_hi = (port_id & 0x000000FF);
	conn_info.d_id.addr_mid = (port_id & 0x0000FF00) >> 8;
	conn_info.d_id.addr_lo = (port_id & 0x00FF0000) >> 16;

	conn_info.def_q_idx = 0; /* Default index for send queue? */

	/* Set FC-TAPE specific flags if needed */
	if (fcport->dev_type == QEDF_RPORT_TYPE_TAPE) {
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN,
		    "Enable CONF, REC for portid=%06x.\n",
		    fcport->rdata->ids.port_id);
		conn_info.flags |= 1 <<
		    FCOE_CONN_OFFLOAD_RAMROD_DATA_B_CONF_REQ_SHIFT;
		conn_info.flags |=
		    ((fcport->rdata->sp_features & FC_SP_FT_SEQC) ? 1 : 0) <<
		    FCOE_CONN_OFFLOAD_RAMROD_DATA_B_REC_VALID_SHIFT;
	}

	rval = qed_ops->offload_conn(qedf->cdev, fcport->handle, &conn_info);
	if (rval) {
		QEDF_WARN(&(qedf->dbg_ctx), "Could not offload connection "
			   "for portid=%06x.\n", fcport->rdata->ids.port_id);
		goto out_free_conn;
	} else
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "Offload "
			   "succeeded portid=%06x total_sqe=%d.\n",
			   fcport->rdata->ids.port_id, total_sqe);

	spin_lock_init(&fcport->rport_lock);
	atomic_set(&fcport->free_sqes, total_sqe);
	return 0;
out_free_conn:
	qed_ops->release_conn(qedf->cdev, fcport->handle);
out:
	return rval;
}

#define QEDF_TERM_BUFF_SIZE		10
static void qedf_upload_connection(struct qedf_ctx *qedf,
	struct qedf_rport *fcport)
{
	void *term_params;
	dma_addr_t term_params_dma;

	/* Term params needs to be a DMA coherent buffer as qed shared the
	 * physical DMA address with the firmware. The buffer may be used in
	 * the receive path so we may eventually have to move this.
	 */
	term_params = dma_alloc_coherent(&qedf->pdev->dev, QEDF_TERM_BUFF_SIZE,
		&term_params_dma, GFP_KERNEL);
	if (!term_params)
		return;

	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "Uploading connection "
		   "port_id=%06x.\n", fcport->rdata->ids.port_id);

	qed_ops->destroy_conn(qedf->cdev, fcport->handle, term_params_dma);
	qed_ops->release_conn(qedf->cdev, fcport->handle);

	dma_free_coherent(&qedf->pdev->dev, QEDF_TERM_BUFF_SIZE, term_params,
	    term_params_dma);
}

static void qedf_cleanup_fcport(struct qedf_ctx *qedf,
	struct qedf_rport *fcport)
{
	struct fc_rport_priv *rdata = fcport->rdata;

	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "Cleaning up portid=%06x.\n",
	    fcport->rdata->ids.port_id);

	/* Flush any remaining i/o's before we upload the connection */
	qedf_flush_active_ios(fcport, -1);

	if (test_and_clear_bit(QEDF_RPORT_SESSION_READY, &fcport->flags))
		qedf_upload_connection(qedf, fcport);
	qedf_free_sq(qedf, fcport);
	fcport->rdata = NULL;
	fcport->qedf = NULL;
	kref_put(&rdata->kref, fc_rport_destroy);
}

/*
 * This event_callback is called after successful completion of libfc
 * initiated target login. qedf can proceed with initiating the session
 * establishment.
 */
static void qedf_rport_event_handler(struct fc_lport *lport,
				struct fc_rport_priv *rdata,
				enum fc_rport_event event)
{
	struct qedf_ctx *qedf = lport_priv(lport);
	struct fc_rport *rport = rdata->rport;
	struct fc_rport_libfc_priv *rp;
	struct qedf_rport *fcport;
	u32 port_id;
	int rval;
	unsigned long flags;

	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "event = %d, "
		   "port_id = 0x%x\n", event, rdata->ids.port_id);

	switch (event) {
	case RPORT_EV_READY:
		if (!rport) {
			QEDF_WARN(&(qedf->dbg_ctx), "rport is NULL.\n");
			break;
		}

		rp = rport->dd_data;
		fcport = (struct qedf_rport *)&rp[1];
		fcport->qedf = qedf;

		if (atomic_read(&qedf->num_offloads) >= QEDF_MAX_SESSIONS) {
			QEDF_ERR(&(qedf->dbg_ctx), "Not offloading "
			    "portid=0x%x as max number of offloaded sessions "
			    "reached.\n", rdata->ids.port_id);
			return;
		}

		/*
		 * Don't try to offload the session again. Can happen when we
		 * get an ADISC
		 */
		if (test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) {
			QEDF_WARN(&(qedf->dbg_ctx), "Session already "
				   "offloaded, portid=0x%x.\n",
				   rdata->ids.port_id);
			return;
		}

		if (rport->port_id == FC_FID_DIR_SERV) {
			/*
			 * qedf_rport structure doesn't exist for
			 * directory server.
			 * We should not come here, as lport will
			 * take care of fabric login
			 */
			QEDF_WARN(&(qedf->dbg_ctx), "rport struct does not "
			    "exist for dir server port_id=%x\n",
			    rdata->ids.port_id);
			break;
		}

		if (rdata->spp_type != FC_TYPE_FCP) {
			QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
			    "Not offloading since spp type isn't FCP\n");
			break;
		}
		if (!(rdata->ids.roles & FC_RPORT_ROLE_FCP_TARGET)) {
			QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
			    "Not FCP target so not offloading\n");
			break;
		}

		/* Initial reference held on entry, so this can't fail */
		kref_get(&rdata->kref);
		fcport->rdata = rdata;
		fcport->rport = rport;

		rval = qedf_alloc_sq(qedf, fcport);
		if (rval) {
			qedf_cleanup_fcport(qedf, fcport);
			break;
		}

		/* Set device type */
		if (rdata->flags & FC_RP_FLAGS_RETRY &&
		    rdata->ids.roles & FC_RPORT_ROLE_FCP_TARGET &&
		    !(rdata->ids.roles & FC_RPORT_ROLE_FCP_INITIATOR)) {
			fcport->dev_type = QEDF_RPORT_TYPE_TAPE;
			QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
			    "portid=%06x is a TAPE device.\n",
			    rdata->ids.port_id);
		} else {
			fcport->dev_type = QEDF_RPORT_TYPE_DISK;
		}

		rval = qedf_offload_connection(qedf, fcport);
		if (rval) {
			qedf_cleanup_fcport(qedf, fcport);
			break;
		}

		/* Add fcport to list of qedf_ctx list of offloaded ports */
		spin_lock_irqsave(&qedf->hba_lock, flags);
		list_add_rcu(&fcport->peers, &qedf->fcports);
		spin_unlock_irqrestore(&qedf->hba_lock, flags);

		/*
		 * Set the session ready bit to let everyone know that this
		 * connection is ready for I/O
		 */
		set_bit(QEDF_RPORT_SESSION_READY, &fcport->flags);
		atomic_inc(&qedf->num_offloads);

		break;
	case RPORT_EV_LOGO:
	case RPORT_EV_FAILED:
	case RPORT_EV_STOP:
		port_id = rdata->ids.port_id;
		if (port_id == FC_FID_DIR_SERV)
			break;

		if (rdata->spp_type != FC_TYPE_FCP) {
			QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
			    "No action since spp type isn't FCP\n");
			break;
		}
		if (!(rdata->ids.roles & FC_RPORT_ROLE_FCP_TARGET)) {
			QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
			    "Not FCP target so no action\n");
			break;
		}

		if (!rport) {
			QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
			    "port_id=%x - rport notcreated Yet!!\n", port_id);
			break;
		}
		rp = rport->dd_data;
		/*
		 * Perform session upload. Note that rdata->peers is already
		 * removed from disc->rports list before we get this event.
		 */
		fcport = (struct qedf_rport *)&rp[1];

		spin_lock_irqsave(&fcport->rport_lock, flags);
		/* Only free this fcport if it is offloaded already */
		if (test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags) &&
		    !test_bit(QEDF_RPORT_UPLOADING_CONNECTION,
		    &fcport->flags)) {
			set_bit(QEDF_RPORT_UPLOADING_CONNECTION,
				&fcport->flags);
			spin_unlock_irqrestore(&fcport->rport_lock, flags);
			qedf_cleanup_fcport(qedf, fcport);
			/*
			 * Remove fcport to list of qedf_ctx list of offloaded
			 * ports
			 */
			spin_lock_irqsave(&qedf->hba_lock, flags);
			list_del_rcu(&fcport->peers);
			spin_unlock_irqrestore(&qedf->hba_lock, flags);

			clear_bit(QEDF_RPORT_UPLOADING_CONNECTION,
			    &fcport->flags);
			atomic_dec(&qedf->num_offloads);
		} else {
			spin_unlock_irqrestore(&fcport->rport_lock, flags);
		}
		break;

	case RPORT_EV_NONE:
		break;
	}
}

static void qedf_abort_io(struct fc_lport *lport)
{
	/* NO-OP but need to fill in the template */
}

static void qedf_fcp_cleanup(struct fc_lport *lport)
{
	/*
	 * NO-OP but need to fill in template to prevent a NULL
	 * function pointer dereference during link down. I/Os
	 * will be flushed when port is uploaded.
	 */
}

static struct libfc_function_template qedf_lport_template = {
	.frame_send		= qedf_xmit,
	.fcp_abort_io		= qedf_abort_io,
	.fcp_cleanup		= qedf_fcp_cleanup,
	.rport_event_callback	= qedf_rport_event_handler,
	.elsct_send		= qedf_elsct_send,
};

static void qedf_fcoe_ctlr_setup(struct qedf_ctx *qedf)
{
	fcoe_ctlr_init(&qedf->ctlr, FIP_MODE_AUTO);

	qedf->ctlr.send = qedf_fip_send;
	qedf->ctlr.get_src_addr = qedf_get_src_mac;
	ether_addr_copy(qedf->ctlr.ctl_src_addr, qedf->mac);
}

static void qedf_setup_fdmi(struct qedf_ctx *qedf)
{
	struct fc_lport *lport = qedf->lport;
	u8 buf[8];
	int pos;
	uint32_t i;

	/*
	 * fdmi_enabled needs to be set for libfc
	 * to execute FDMI registration
	 */
	lport->fdmi_enabled = 1;

	/*
	 * Setup the necessary fc_host attributes to that will be used to fill
	 * in the FDMI information.
	 */

	/* Get the PCI-e Device Serial Number Capability */
	pos = pci_find_ext_capability(qedf->pdev, PCI_EXT_CAP_ID_DSN);
	if (pos) {
		pos += 4;
		for (i = 0; i < 8; i++)
			pci_read_config_byte(qedf->pdev, pos + i, &buf[i]);

		snprintf(fc_host_serial_number(lport->host),
		    FC_SERIAL_NUMBER_SIZE,
		    "%02X%02X%02X%02X%02X%02X%02X%02X",
		    buf[7], buf[6], buf[5], buf[4],
		    buf[3], buf[2], buf[1], buf[0]);
	} else
		snprintf(fc_host_serial_number(lport->host),
		    FC_SERIAL_NUMBER_SIZE, "Unknown");

	snprintf(fc_host_manufacturer(lport->host),
	    FC_SERIAL_NUMBER_SIZE, "%s", "Marvell Semiconductor Inc.");

	if (qedf->pdev->device == QL45xxx) {
		snprintf(fc_host_model(lport->host),
			FC_SYMBOLIC_NAME_SIZE, "%s", "QL45xxx");

		snprintf(fc_host_model_description(lport->host),
			FC_SYMBOLIC_NAME_SIZE, "%s",
			"Marvell FastLinQ QL45xxx FCoE Adapter");
	}

	if (qedf->pdev->device == QL41xxx) {
		snprintf(fc_host_model(lport->host),
			FC_SYMBOLIC_NAME_SIZE, "%s", "QL41xxx");

		snprintf(fc_host_model_description(lport->host),
			FC_SYMBOLIC_NAME_SIZE, "%s",
			"Marvell FastLinQ QL41xxx FCoE Adapter");
	}

	snprintf(fc_host_hardware_version(lport->host),
	    FC_VERSION_STRING_SIZE, "Rev %d", qedf->pdev->revision);

	snprintf(fc_host_driver_version(lport->host),
	    FC_VERSION_STRING_SIZE, "%s", QEDF_VERSION);

	snprintf(fc_host_firmware_version(lport->host),
	    FC_VERSION_STRING_SIZE, "%d.%d.%d.%d",
	    FW_MAJOR_VERSION, FW_MINOR_VERSION, FW_REVISION_VERSION,
	    FW_ENGINEERING_VERSION);

	snprintf(fc_host_vendor_identifier(lport->host),
		FC_VENDOR_IDENTIFIER, "%s", "Marvell");

}

static int qedf_lport_setup(struct qedf_ctx *qedf)
{
	struct fc_lport *lport = qedf->lport;

	lport->link_up = 0;
	lport->max_retry_count = QEDF_FLOGI_RETRY_CNT;
	lport->max_rport_retry_count = QEDF_RPORT_RETRY_CNT;
	lport->service_params = (FCP_SPPF_INIT_FCN | FCP_SPPF_RD_XRDY_DIS |
	    FCP_SPPF_RETRY | FCP_SPPF_CONF_COMPL);
	lport->boot_time = jiffies;
	lport->e_d_tov = 2 * 1000;
	lport->r_a_tov = 10 * 1000;

	/* Set NPIV support */
	lport->does_npiv = 1;
	fc_host_max_npiv_vports(lport->host) = QEDF_MAX_NPIV;

	fc_set_wwnn(lport, qedf->wwnn);
	fc_set_wwpn(lport, qedf->wwpn);

	if (fcoe_libfc_config(lport, &qedf->ctlr, &qedf_lport_template, 0)) {
		QEDF_ERR(&qedf->dbg_ctx,
			 "fcoe_libfc_config failed.\n");
		return -ENOMEM;
	}

	/* Allocate the exchange manager */
	fc_exch_mgr_alloc(lport, FC_CLASS_3, FCOE_PARAMS_NUM_TASKS,
			  0xfffe, NULL);

	if (fc_lport_init_stats(lport))
		return -ENOMEM;

	/* Finish lport config */
	fc_lport_config(lport);

	/* Set max frame size */
	fc_set_mfs(lport, QEDF_MFS);
	fc_host_maxframe_size(lport->host) = lport->mfs;

	/* Set default dev_loss_tmo based on module parameter */
	fc_host_dev_loss_tmo(lport->host) = qedf_dev_loss_tmo;

	/* Set symbolic node name */
	if (qedf->pdev->device == QL45xxx)
		snprintf(fc_host_symbolic_name(lport->host), 256,
			"Marvell FastLinQ 45xxx FCoE v%s", QEDF_VERSION);

	if (qedf->pdev->device == QL41xxx)
		snprintf(fc_host_symbolic_name(lport->host), 256,
			"Marvell FastLinQ 41xxx FCoE v%s", QEDF_VERSION);

	qedf_setup_fdmi(qedf);

	return 0;
}

/*
 * NPIV functions
 */

static int qedf_vport_libfc_config(struct fc_vport *vport,
	struct fc_lport *lport)
{
	lport->link_up = 0;
	lport->qfull = 0;
	lport->max_retry_count = QEDF_FLOGI_RETRY_CNT;
	lport->max_rport_retry_count = QEDF_RPORT_RETRY_CNT;
	lport->service_params = (FCP_SPPF_INIT_FCN | FCP_SPPF_RD_XRDY_DIS |
	    FCP_SPPF_RETRY | FCP_SPPF_CONF_COMPL);
	lport->boot_time = jiffies;
	lport->e_d_tov = 2 * 1000;
	lport->r_a_tov = 10 * 1000;
	lport->does_npiv = 1; /* Temporary until we add NPIV support */

	/* Allocate stats for vport */
	if (fc_lport_init_stats(lport))
		return -ENOMEM;

	/* Finish lport config */
	fc_lport_config(lport);

	/* offload related configuration */
	lport->crc_offload = 0;
	lport->seq_offload = 0;
	lport->lro_enabled = 0;
	lport->lro_xid = 0;
	lport->lso_max = 0;

	return 0;
}

static int qedf_vport_create(struct fc_vport *vport, bool disabled)
{
	struct Scsi_Host *shost = vport_to_shost(vport);
	struct fc_lport *n_port = shost_priv(shost);
	struct fc_lport *vn_port;
	struct qedf_ctx *base_qedf = lport_priv(n_port);
	struct qedf_ctx *vport_qedf;

	char buf[32];
	int rc = 0;

	rc = fcoe_validate_vport_create(vport);
	if (rc) {
		fcoe_wwn_to_str(vport->port_name, buf, sizeof(buf));
		QEDF_WARN(&(base_qedf->dbg_ctx), "Failed to create vport, "
			   "WWPN (0x%s) already exists.\n", buf);
		return rc;
	}

	if (atomic_read(&base_qedf->link_state) != QEDF_LINK_UP) {
		QEDF_WARN(&(base_qedf->dbg_ctx), "Cannot create vport "
			   "because link is not up.\n");
		return -EIO;
	}

	vn_port = libfc_vport_create(vport, sizeof(struct qedf_ctx));
	if (!vn_port) {
		QEDF_WARN(&(base_qedf->dbg_ctx), "Could not create lport "
			   "for vport.\n");
		return -ENOMEM;
	}

	fcoe_wwn_to_str(vport->port_name, buf, sizeof(buf));
	QEDF_ERR(&(base_qedf->dbg_ctx), "Creating NPIV port, WWPN=%s.\n",
	    buf);

	/* Copy some fields from base_qedf */
	vport_qedf = lport_priv(vn_port);
	memcpy(vport_qedf, base_qedf, sizeof(struct qedf_ctx));

	/* Set qedf data specific to this vport */
	vport_qedf->lport = vn_port;
	/* Use same hba_lock as base_qedf */
	vport_qedf->hba_lock = base_qedf->hba_lock;
	vport_qedf->pdev = base_qedf->pdev;
	vport_qedf->cmd_mgr = base_qedf->cmd_mgr;
	init_completion(&vport_qedf->flogi_compl);
	INIT_LIST_HEAD(&vport_qedf->fcports);
	INIT_DELAYED_WORK(&vport_qedf->stag_work, qedf_stag_change_work);

	rc = qedf_vport_libfc_config(vport, vn_port);
	if (rc) {
		QEDF_ERR(&(base_qedf->dbg_ctx), "Could not allocate memory "
		    "for lport stats.\n");
		goto err;
	}

	fc_set_wwnn(vn_port, vport->node_name);
	fc_set_wwpn(vn_port, vport->port_name);
	vport_qedf->wwnn = vn_port->wwnn;
	vport_qedf->wwpn = vn_port->wwpn;

	vn_port->host->transportt = qedf_fc_vport_transport_template;
	vn_port->host->can_queue = FCOE_PARAMS_NUM_TASKS;
	vn_port->host->max_lun = qedf_max_lun;
	vn_port->host->sg_tablesize = QEDF_MAX_BDS_PER_CMD;
	vn_port->host->max_cmd_len = QEDF_MAX_CDB_LEN;
	vn_port->host->max_id = QEDF_MAX_SESSIONS;

	rc = scsi_add_host(vn_port->host, &vport->dev);
	if (rc) {
		QEDF_WARN(&base_qedf->dbg_ctx,
			  "Error adding Scsi_Host rc=0x%x.\n", rc);
		goto err;
	}

	/* Set default dev_loss_tmo based on module parameter */
	fc_host_dev_loss_tmo(vn_port->host) = qedf_dev_loss_tmo;

	/* Init libfc stuffs */
	memcpy(&vn_port->tt, &qedf_lport_template,
		sizeof(qedf_lport_template));
	fc_exch_init(vn_port);
	fc_elsct_init(vn_port);
	fc_lport_init(vn_port);
	fc_disc_init(vn_port);
	fc_disc_config(vn_port, vn_port);


	/* Allocate the exchange manager */
	shost = vport_to_shost(vport);
	n_port = shost_priv(shost);
	fc_exch_mgr_list_clone(n_port, vn_port);

	/* Set max frame size */
	fc_set_mfs(vn_port, QEDF_MFS);

	fc_host_port_type(vn_port->host) = FC_PORTTYPE_UNKNOWN;

	if (disabled) {
		fc_vport_set_state(vport, FC_VPORT_DISABLED);
	} else {
		vn_port->boot_time = jiffies;
		fc_fabric_login(vn_port);
		fc_vport_setlink(vn_port);
	}

	/* Set symbolic node name */
	if (base_qedf->pdev->device == QL45xxx)
		snprintf(fc_host_symbolic_name(vn_port->host), 256,
			 "Marvell FastLinQ 45xxx FCoE v%s", QEDF_VERSION);

	if (base_qedf->pdev->device == QL41xxx)
		snprintf(fc_host_symbolic_name(vn_port->host), 256,
			 "Marvell FastLinQ 41xxx FCoE v%s", QEDF_VERSION);

	/* Set supported speed */
	fc_host_supported_speeds(vn_port->host) = n_port->link_supported_speeds;

	/* Set speed */
	vn_port->link_speed = n_port->link_speed;

	/* Set port type */
	fc_host_port_type(vn_port->host) = FC_PORTTYPE_NPIV;

	/* Set maxframe size */
	fc_host_maxframe_size(vn_port->host) = n_port->mfs;

	QEDF_INFO(&(base_qedf->dbg_ctx), QEDF_LOG_NPIV, "vn_port=%p.\n",
		   vn_port);

	/* Set up debug context for vport */
	vport_qedf->dbg_ctx.host_no = vn_port->host->host_no;
	vport_qedf->dbg_ctx.pdev = base_qedf->pdev;

	return 0;

err:
	scsi_host_put(vn_port->host);
	return rc;
}

static int qedf_vport_destroy(struct fc_vport *vport)
{
	struct Scsi_Host *shost = vport_to_shost(vport);
	struct fc_lport *n_port = shost_priv(shost);
	struct fc_lport *vn_port = vport->dd_data;
	struct qedf_ctx *qedf = lport_priv(vn_port);

	if (!qedf) {
		QEDF_ERR(NULL, "qedf is NULL.\n");
		goto out;
	}

	/* Set unloading bit on vport qedf_ctx to prevent more I/O */
	set_bit(QEDF_UNLOADING, &qedf->flags);

	mutex_lock(&n_port->lp_mutex);
	list_del(&vn_port->list);
	mutex_unlock(&n_port->lp_mutex);

	fc_fabric_logoff(vn_port);
	fc_lport_destroy(vn_port);

	/* Detach from scsi-ml */
	fc_remove_host(vn_port->host);
	scsi_remove_host(vn_port->host);

	/*
	 * Only try to release the exchange manager if the vn_port
	 * configuration is complete.
	 */
	if (vn_port->state == LPORT_ST_READY)
		fc_exch_mgr_free(vn_port);

	/* Free memory used by statistical counters */
	fc_lport_free_stats(vn_port);

	/* Release Scsi_Host */
	scsi_host_put(vn_port->host);

out:
	return 0;
}

static int qedf_vport_disable(struct fc_vport *vport, bool disable)
{
	struct fc_lport *lport = vport->dd_data;

	if (disable) {
		fc_vport_set_state(vport, FC_VPORT_DISABLED);
		fc_fabric_logoff(lport);
	} else {
		lport->boot_time = jiffies;
		fc_fabric_login(lport);
		fc_vport_setlink(lport);
	}
	return 0;
}

/*
 * During removal we need to wait for all the vports associated with a port
 * to be destroyed so we avoid a race condition where libfc is still trying
 * to reap vports while the driver remove function has already reaped the
 * driver contexts associated with the physical port.
 */
static void qedf_wait_for_vport_destroy(struct qedf_ctx *qedf)
{
	struct fc_host_attrs *fc_host = shost_to_fc_host(qedf->lport->host);

	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_NPIV,
	    "Entered.\n");
	while (fc_host->npiv_vports_inuse > 0) {
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_NPIV,
		    "Waiting for all vports to be reaped.\n");
		msleep(1000);
	}
}

/**
 * qedf_fcoe_reset - Resets the fcoe
 *
 * @shost: shost the reset is from
 *
 * Returns: always 0
 */
static int qedf_fcoe_reset(struct Scsi_Host *shost)
{
	struct fc_lport *lport = shost_priv(shost);

	qedf_ctx_soft_reset(lport);
	return 0;
}

static void qedf_get_host_port_id(struct Scsi_Host *shost)
{
	struct fc_lport *lport = shost_priv(shost);

	fc_host_port_id(shost) = lport->port_id;
}

static struct fc_host_statistics *qedf_fc_get_host_stats(struct Scsi_Host
	*shost)
{
	struct fc_host_statistics *qedf_stats;
	struct fc_lport *lport = shost_priv(shost);
	struct qedf_ctx *qedf = lport_priv(lport);
	struct qed_fcoe_stats *fw_fcoe_stats;

	qedf_stats = fc_get_host_stats(shost);

	/* We don't collect offload stats for specific NPIV ports */
	if (lport->vport)
		goto out;

	fw_fcoe_stats = kmalloc(sizeof(struct qed_fcoe_stats), GFP_KERNEL);
	if (!fw_fcoe_stats) {
		QEDF_ERR(&(qedf->dbg_ctx), "Could not allocate memory for "
		    "fw_fcoe_stats.\n");
		goto out;
	}

	mutex_lock(&qedf->stats_mutex);

	/* Query firmware for offload stats */
	qed_ops->get_stats(qedf->cdev, fw_fcoe_stats);

	/*
	 * The expectation is that we add our offload stats to the stats
	 * being maintained by libfc each time the fc_get_host_status callback
	 * is invoked. The additions are not carried over for each call to
	 * the fc_get_host_stats callback.
	 */
	qedf_stats->tx_frames += fw_fcoe_stats->fcoe_tx_data_pkt_cnt +
	    fw_fcoe_stats->fcoe_tx_xfer_pkt_cnt +
	    fw_fcoe_stats->fcoe_tx_other_pkt_cnt;
	qedf_stats->rx_frames += fw_fcoe_stats->fcoe_rx_data_pkt_cnt +
	    fw_fcoe_stats->fcoe_rx_xfer_pkt_cnt +
	    fw_fcoe_stats->fcoe_rx_other_pkt_cnt;
	qedf_stats->fcp_input_megabytes +=
	    do_div(fw_fcoe_stats->fcoe_rx_byte_cnt, 1000000);
	qedf_stats->fcp_output_megabytes +=
	    do_div(fw_fcoe_stats->fcoe_tx_byte_cnt, 1000000);
	qedf_stats->rx_words += fw_fcoe_stats->fcoe_rx_byte_cnt / 4;
	qedf_stats->tx_words += fw_fcoe_stats->fcoe_tx_byte_cnt / 4;
	qedf_stats->invalid_crc_count +=
	    fw_fcoe_stats->fcoe_silent_drop_pkt_crc_error_cnt;
	qedf_stats->dumped_frames =
	    fw_fcoe_stats->fcoe_silent_drop_total_pkt_cnt;
	qedf_stats->error_frames +=
	    fw_fcoe_stats->fcoe_silent_drop_total_pkt_cnt;
	qedf_stats->fcp_input_requests += qedf->input_requests;
	qedf_stats->fcp_output_requests += qedf->output_requests;
	qedf_stats->fcp_control_requests += qedf->control_requests;
	qedf_stats->fcp_packet_aborts += qedf->packet_aborts;
	qedf_stats->fcp_frame_alloc_failures += qedf->alloc_failures;

	mutex_unlock(&qedf->stats_mutex);
	kfree(fw_fcoe_stats);
out:
	return qedf_stats;
}

static struct fc_function_template qedf_fc_transport_fn = {
	.show_host_node_name = 1,
	.show_host_port_name = 1,
	.show_host_supported_classes = 1,
	.show_host_supported_fc4s = 1,
	.show_host_active_fc4s = 1,
	.show_host_maxframe_size = 1,

	.get_host_port_id = qedf_get_host_port_id,
	.show_host_port_id = 1,
	.show_host_supported_speeds = 1,
	.get_host_speed = fc_get_host_speed,
	.show_host_speed = 1,
	.show_host_port_type = 1,
	.get_host_port_state = fc_get_host_port_state,
	.show_host_port_state = 1,
	.show_host_symbolic_name = 1,

	/*
	 * Tell FC transport to allocate enough space to store the backpointer
	 * for the associate qedf_rport struct.
	 */
	.dd_fcrport_size = (sizeof(struct fc_rport_libfc_priv) +
				sizeof(struct qedf_rport)),
	.show_rport_maxframe_size = 1,
	.show_rport_supported_classes = 1,
	.show_host_fabric_name = 1,
	.show_starget_node_name = 1,
	.show_starget_port_name = 1,
	.show_starget_port_id = 1,
	.set_rport_dev_loss_tmo = fc_set_rport_loss_tmo,
	.show_rport_dev_loss_tmo = 1,
	.get_fc_host_stats = qedf_fc_get_host_stats,
	.issue_fc_host_lip = qedf_fcoe_reset,
	.vport_create = qedf_vport_create,
	.vport_delete = qedf_vport_destroy,
	.vport_disable = qedf_vport_disable,
	.bsg_request = fc_lport_bsg_request,
};

static struct fc_function_template qedf_fc_vport_transport_fn = {
	.show_host_node_name = 1,
	.show_host_port_name = 1,
	.show_host_supported_classes = 1,
	.show_host_supported_fc4s = 1,
	.show_host_active_fc4s = 1,
	.show_host_maxframe_size = 1,
	.show_host_port_id = 1,
	.show_host_supported_speeds = 1,
	.get_host_speed = fc_get_host_speed,
	.show_host_speed = 1,
	.show_host_port_type = 1,
	.get_host_port_state = fc_get_host_port_state,
	.show_host_port_state = 1,
	.show_host_symbolic_name = 1,
	.dd_fcrport_size = (sizeof(struct fc_rport_libfc_priv) +
				sizeof(struct qedf_rport)),
	.show_rport_maxframe_size = 1,
	.show_rport_supported_classes = 1,
	.show_host_fabric_name = 1,
	.show_starget_node_name = 1,
	.show_starget_port_name = 1,
	.show_starget_port_id = 1,
	.set_rport_dev_loss_tmo = fc_set_rport_loss_tmo,
	.show_rport_dev_loss_tmo = 1,
	.get_fc_host_stats = fc_get_host_stats,
	.issue_fc_host_lip = qedf_fcoe_reset,
	.bsg_request = fc_lport_bsg_request,
};

static bool qedf_fp_has_work(struct qedf_fastpath *fp)
{
	struct qedf_ctx *qedf = fp->qedf;
	struct global_queue *que;
	struct qed_sb_info *sb_info = fp->sb_info;
	struct status_block *sb = sb_info->sb_virt;
	u16 prod_idx;

	/* Get the pointer to the global CQ this completion is on */
	que = qedf->global_queues[fp->sb_id];

	/* Be sure all responses have been written to PI */
	rmb();

	/* Get the current firmware producer index */
	prod_idx = sb->pi_array[QEDF_FCOE_PARAMS_GL_RQ_PI];

	return (que->cq_prod_idx != prod_idx);
}

/*
 * Interrupt handler code.
 */

/* Process completion queue and copy CQE contents for deferred processesing
 *
 * Return true if we should wake the I/O thread, false if not.
 */
static bool qedf_process_completions(struct qedf_fastpath *fp)
{
	struct qedf_ctx *qedf = fp->qedf;
	struct qed_sb_info *sb_info = fp->sb_info;
	struct status_block *sb = sb_info->sb_virt;
	struct global_queue *que;
	u16 prod_idx;
	struct fcoe_cqe *cqe;
	struct qedf_io_work *io_work;
	int num_handled = 0;
	unsigned int cpu;
	struct qedf_ioreq *io_req = NULL;
	u16 xid;
	u16 new_cqes;
	u32 comp_type;

	/* Get the current firmware producer index */
	prod_idx = sb->pi_array[QEDF_FCOE_PARAMS_GL_RQ_PI];

	/* Get the pointer to the global CQ this completion is on */
	que = qedf->global_queues[fp->sb_id];

	/* Calculate the amount of new elements since last processing */
	new_cqes = (prod_idx >= que->cq_prod_idx) ?
	    (prod_idx - que->cq_prod_idx) :
	    0x10000 - que->cq_prod_idx + prod_idx;

	/* Save producer index */
	que->cq_prod_idx = prod_idx;

	while (new_cqes) {
		fp->completions++;
		num_handled++;
		cqe = &que->cq[que->cq_cons_idx];

		comp_type = (cqe->cqe_data >> FCOE_CQE_CQE_TYPE_SHIFT) &
		    FCOE_CQE_CQE_TYPE_MASK;

		/*
		 * Process unsolicited CQEs directly in the interrupt handler
		 * sine we need the fastpath ID
		 */
		if (comp_type == FCOE_UNSOLIC_CQE_TYPE) {
			QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_UNSOL,
			   "Unsolicated CQE.\n");
			qedf_process_unsol_compl(qedf, fp->sb_id, cqe);
			/*
			 * Don't add a work list item.  Increment consumer
			 * consumer index and move on.
			 */
			goto inc_idx;
		}

		xid = cqe->cqe_data & FCOE_CQE_TASK_ID_MASK;
		io_req = &qedf->cmd_mgr->cmds[xid];

		/*
		 * Figure out which percpu thread we should queue this I/O
		 * on.
		 */
		if (!io_req)
			/* If there is not io_req assocated with this CQE
			 * just queue it on CPU 0
			 */
			cpu = 0;
		else {
			cpu = io_req->cpu;
			io_req->int_cpu = smp_processor_id();
		}

		io_work = mempool_alloc(qedf->io_mempool, GFP_ATOMIC);
		if (!io_work) {
			QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate "
				   "work for I/O completion.\n");
			continue;
		}
		memset(io_work, 0, sizeof(struct qedf_io_work));

		INIT_WORK(&io_work->work, qedf_fp_io_handler);

		/* Copy contents of CQE for deferred processing */
		memcpy(&io_work->cqe, cqe, sizeof(struct fcoe_cqe));

		io_work->qedf = fp->qedf;
		io_work->fp = NULL; /* Only used for unsolicited frames */

		queue_work_on(cpu, qedf_io_wq, &io_work->work);

inc_idx:
		que->cq_cons_idx++;
		if (que->cq_cons_idx == fp->cq_num_entries)
			que->cq_cons_idx = 0;
		new_cqes--;
	}

	return true;
}


/* MSI-X fastpath handler code */
static irqreturn_t qedf_msix_handler(int irq, void *dev_id)
{
	struct qedf_fastpath *fp = dev_id;

	if (!fp) {
		QEDF_ERR(NULL, "fp is null.\n");
		return IRQ_HANDLED;
	}
	if (!fp->sb_info) {
		QEDF_ERR(NULL, "fp->sb_info in null.");
		return IRQ_HANDLED;
	}

	/*
	 * Disable interrupts for this status block while we process new
	 * completions
	 */
	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);

	while (1) {
		qedf_process_completions(fp);

		if (qedf_fp_has_work(fp) == 0) {
			/* Update the sb information */
			qed_sb_update_sb_idx(fp->sb_info);

			/* Check for more work */
			rmb();

			if (qedf_fp_has_work(fp) == 0) {
				/* Re-enable interrupts */
				qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
				return IRQ_HANDLED;
			}
		}
	}

	/* Do we ever want to break out of above loop? */
	return IRQ_HANDLED;
}

/* simd handler for MSI/INTa */
static void qedf_simd_int_handler(void *cookie)
{
	/* Cookie is qedf_ctx struct */
	struct qedf_ctx *qedf = (struct qedf_ctx *)cookie;

	QEDF_WARN(&(qedf->dbg_ctx), "qedf=%p.\n", qedf);
}

#define QEDF_SIMD_HANDLER_NUM		0
static void qedf_sync_free_irqs(struct qedf_ctx *qedf)
{
	int i;
	u16 vector_idx = 0;
	u32 vector;

	if (qedf->int_info.msix_cnt) {
		for (i = 0; i < qedf->int_info.used_cnt; i++) {
			vector_idx = i * qedf->dev_info.common.num_hwfns +
				qed_ops->common->get_affin_hwfn_idx(qedf->cdev);
			QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
				  "Freeing IRQ #%d vector_idx=%d.\n",
				  i, vector_idx);
			vector = qedf->int_info.msix[vector_idx].vector;
			synchronize_irq(vector);
			irq_set_affinity_hint(vector, NULL);
			irq_set_affinity_notifier(vector, NULL);
			free_irq(vector, &qedf->fp_array[i]);
		}
	} else
		qed_ops->common->simd_handler_clean(qedf->cdev,
		    QEDF_SIMD_HANDLER_NUM);

	qedf->int_info.used_cnt = 0;
	qed_ops->common->set_fp_int(qedf->cdev, 0);
}

static int qedf_request_msix_irq(struct qedf_ctx *qedf)
{
	int i, rc, cpu;
	u16 vector_idx = 0;
	u32 vector;

	cpu = cpumask_first(cpu_online_mask);
	for (i = 0; i < qedf->num_queues; i++) {
		vector_idx = i * qedf->dev_info.common.num_hwfns +
			qed_ops->common->get_affin_hwfn_idx(qedf->cdev);
		QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
			  "Requesting IRQ #%d vector_idx=%d.\n",
			  i, vector_idx);
		vector = qedf->int_info.msix[vector_idx].vector;
		rc = request_irq(vector, qedf_msix_handler, 0, "qedf",
				 &qedf->fp_array[i]);

		if (rc) {
			QEDF_WARN(&(qedf->dbg_ctx), "request_irq failed.\n");
			qedf_sync_free_irqs(qedf);
			return rc;
		}

		qedf->int_info.used_cnt++;
		rc = irq_set_affinity_hint(vector, get_cpu_mask(cpu));
		cpu = cpumask_next(cpu, cpu_online_mask);
	}

	return 0;
}

static int qedf_setup_int(struct qedf_ctx *qedf)
{
	int rc = 0;

	/*
	 * Learn interrupt configuration
	 */
	rc = qed_ops->common->set_fp_int(qedf->cdev, num_online_cpus());
	if (rc <= 0)
		return 0;

	rc  = qed_ops->common->get_fp_int(qedf->cdev, &qedf->int_info);
	if (rc)
		return 0;

	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Number of msix_cnt = "
		   "0x%x num of cpus = 0x%x\n", qedf->int_info.msix_cnt,
		   num_online_cpus());

	if (qedf->int_info.msix_cnt)
		return qedf_request_msix_irq(qedf);

	qed_ops->common->simd_handler_config(qedf->cdev, &qedf,
	    QEDF_SIMD_HANDLER_NUM, qedf_simd_int_handler);
	qedf->int_info.used_cnt = 1;

	QEDF_ERR(&qedf->dbg_ctx,
		 "Cannot load driver due to a lack of MSI-X vectors.\n");
	return -EINVAL;
}

/* Main function for libfc frame reception */
static void qedf_recv_frame(struct qedf_ctx *qedf,
	struct sk_buff *skb)
{
	u32 fr_len;
	struct fc_lport *lport;
	struct fc_frame_header *fh;
	struct fcoe_crc_eof crc_eof;
	struct fc_frame *fp;
	u8 *mac = NULL;
	u8 *dest_mac = NULL;
	struct fcoe_hdr *hp;
	struct qedf_rport *fcport;
	struct fc_lport *vn_port;
	u32 f_ctl;

	lport = qedf->lport;
	if (lport == NULL || lport->state == LPORT_ST_DISABLED) {
		QEDF_WARN(NULL, "Invalid lport struct or lport disabled.\n");
		kfree_skb(skb);
		return;
	}

	if (skb_is_nonlinear(skb))
		skb_linearize(skb);
	mac = eth_hdr(skb)->h_source;
	dest_mac = eth_hdr(skb)->h_dest;

	/* Pull the header */
	hp = (struct fcoe_hdr *)skb->data;
	fh = (struct fc_frame_header *) skb_transport_header(skb);
	skb_pull(skb, sizeof(struct fcoe_hdr));
	fr_len = skb->len - sizeof(struct fcoe_crc_eof);

	fp = (struct fc_frame *)skb;
	fc_frame_init(fp);
	fr_dev(fp) = lport;
	fr_sof(fp) = hp->fcoe_sof;
	if (skb_copy_bits(skb, fr_len, &crc_eof, sizeof(crc_eof))) {
		QEDF_INFO(NULL, QEDF_LOG_LL2, "skb_copy_bits failed.\n");
		kfree_skb(skb);
		return;
	}
	fr_eof(fp) = crc_eof.fcoe_eof;
	fr_crc(fp) = crc_eof.fcoe_crc32;
	if (pskb_trim(skb, fr_len)) {
		QEDF_INFO(NULL, QEDF_LOG_LL2, "pskb_trim failed.\n");
		kfree_skb(skb);
		return;
	}

	fh = fc_frame_header_get(fp);

	/*
	 * Invalid frame filters.
	 */

	if (fh->fh_r_ctl == FC_RCTL_DD_SOL_DATA &&
	    fh->fh_type == FC_TYPE_FCP) {
		/* Drop FCP data. We dont this in L2 path */
		kfree_skb(skb);
		return;
	}
	if (fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
	    fh->fh_type == FC_TYPE_ELS) {
		switch (fc_frame_payload_op(fp)) {
		case ELS_LOGO:
			if (ntoh24(fh->fh_s_id) == FC_FID_FLOGI) {
				/* drop non-FIP LOGO */
				kfree_skb(skb);
				return;
			}
			break;
		}
	}

	if (fh->fh_r_ctl == FC_RCTL_BA_ABTS) {
		/* Drop incoming ABTS */
		kfree_skb(skb);
		return;
	}

	if (ntoh24(&dest_mac[3]) != ntoh24(fh->fh_d_id)) {
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2,
		    "FC frame d_id mismatch with MAC %pM.\n", dest_mac);
		kfree_skb(skb);
		return;
	}

	if (qedf->ctlr.state) {
		if (!ether_addr_equal(mac, qedf->ctlr.dest_addr)) {
			QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2,
			    "Wrong source address: mac:%pM dest_addr:%pM.\n",
			    mac, qedf->ctlr.dest_addr);
			kfree_skb(skb);
			return;
		}
	}

	vn_port = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));

	/*
	 * If the destination ID from the frame header does not match what we
	 * have on record for lport and the search for a NPIV port came up
	 * empty then this is not addressed to our port so simply drop it.
	 */
	if (lport->port_id != ntoh24(fh->fh_d_id) && !vn_port) {
		QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_LL2,
			  "Dropping frame due to destination mismatch: lport->port_id=0x%x fh->d_id=0x%x.\n",
			  lport->port_id, ntoh24(fh->fh_d_id));
		kfree_skb(skb);
		return;
	}

	f_ctl = ntoh24(fh->fh_f_ctl);
	if ((fh->fh_type == FC_TYPE_BLS) && (f_ctl & FC_FC_SEQ_CTX) &&
	    (f_ctl & FC_FC_EX_CTX)) {
		/* Drop incoming ABTS response that has both SEQ/EX CTX set */
		QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_LL2,
			  "Dropping ABTS response as both SEQ/EX CTX set.\n");
		kfree_skb(skb);
		return;
	}

	/*
	 * If a connection is uploading, drop incoming FCoE frames as there
	 * is a small window where we could try to return a frame while libfc
	 * is trying to clean things up.
	 */

	/* Get fcport associated with d_id if it exists */
	fcport = qedf_fcport_lookup(qedf, ntoh24(fh->fh_d_id));

	if (fcport && test_bit(QEDF_RPORT_UPLOADING_CONNECTION,
	    &fcport->flags)) {
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2,
		    "Connection uploading, dropping fp=%p.\n", fp);
		kfree_skb(skb);
		return;
	}

	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2, "FCoE frame receive: "
	    "skb=%p fp=%p src=%06x dest=%06x r_ctl=%x fh_type=%x.\n", skb, fp,
	    ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id), fh->fh_r_ctl,
	    fh->fh_type);
	if (qedf_dump_frames)
		print_hex_dump(KERN_WARNING, "fcoe: ", DUMP_PREFIX_OFFSET, 16,
		    1, skb->data, skb->len, false);
	fc_exch_recv(lport, fp);
}

static void qedf_ll2_process_skb(struct work_struct *work)
{
	struct qedf_skb_work *skb_work =
	    container_of(work, struct qedf_skb_work, work);
	struct qedf_ctx *qedf = skb_work->qedf;
	struct sk_buff *skb = skb_work->skb;
	struct ethhdr *eh;

	if (!qedf) {
		QEDF_ERR(NULL, "qedf is NULL\n");
		goto err_out;
	}

	eh = (struct ethhdr *)skb->data;

	/* Undo VLAN encapsulation */
	if (eh->h_proto == htons(ETH_P_8021Q)) {
		memmove((u8 *)eh + VLAN_HLEN, eh, ETH_ALEN * 2);
		eh = skb_pull(skb, VLAN_HLEN);
		skb_reset_mac_header(skb);
	}

	/*
	 * Process either a FIP frame or FCoE frame based on the
	 * protocol value.  If it's not either just drop the
	 * frame.
	 */
	if (eh->h_proto == htons(ETH_P_FIP)) {
		qedf_fip_recv(qedf, skb);
		goto out;
	} else if (eh->h_proto == htons(ETH_P_FCOE)) {
		__skb_pull(skb, ETH_HLEN);
		qedf_recv_frame(qedf, skb);
		goto out;
	} else
		goto err_out;

err_out:
	kfree_skb(skb);
out:
	kfree(skb_work);
	return;
}

static int qedf_ll2_rx(void *cookie, struct sk_buff *skb,
	u32 arg1, u32 arg2)
{
	struct qedf_ctx *qedf = (struct qedf_ctx *)cookie;
	struct qedf_skb_work *skb_work;

	if (atomic_read(&qedf->link_state) == QEDF_LINK_DOWN) {
		QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_LL2,
			  "Dropping frame as link state is down.\n");
		kfree_skb(skb);
		return 0;
	}

	skb_work = kzalloc(sizeof(struct qedf_skb_work), GFP_ATOMIC);
	if (!skb_work) {
		QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate skb_work so "
			   "dropping frame.\n");
		kfree_skb(skb);
		return 0;
	}

	INIT_WORK(&skb_work->work, qedf_ll2_process_skb);
	skb_work->skb = skb;
	skb_work->qedf = qedf;
	queue_work(qedf->ll2_recv_wq, &skb_work->work);

	return 0;
}

static struct qed_ll2_cb_ops qedf_ll2_cb_ops = {
	.rx_cb = qedf_ll2_rx,
	.tx_cb = NULL,
};

/* Main thread to process I/O completions */
void qedf_fp_io_handler(struct work_struct *work)
{
	struct qedf_io_work *io_work =
	    container_of(work, struct qedf_io_work, work);
	u32 comp_type;

	/*
	 * Deferred part of unsolicited CQE sends
	 * frame to libfc.
	 */
	comp_type = (io_work->cqe.cqe_data >>
	    FCOE_CQE_CQE_TYPE_SHIFT) &
	    FCOE_CQE_CQE_TYPE_MASK;
	if (comp_type == FCOE_UNSOLIC_CQE_TYPE &&
	    io_work->fp)
		fc_exch_recv(io_work->qedf->lport, io_work->fp);
	else
		qedf_process_cqe(io_work->qedf, &io_work->cqe);

	kfree(io_work);
}

static int qedf_alloc_and_init_sb(struct qedf_ctx *qedf,
	struct qed_sb_info *sb_info, u16 sb_id)
{
	struct status_block *sb_virt;
	dma_addr_t sb_phys;
	int ret;

	sb_virt = dma_alloc_coherent(&qedf->pdev->dev,
	    sizeof(struct status_block), &sb_phys, GFP_KERNEL);

	if (!sb_virt) {
		QEDF_ERR(&qedf->dbg_ctx,
			 "Status block allocation failed for id = %d.\n",
			 sb_id);
		return -ENOMEM;
	}

	ret = qed_ops->common->sb_init(qedf->cdev, sb_info, sb_virt, sb_phys,
	    sb_id, QED_SB_TYPE_STORAGE);

	if (ret) {
		QEDF_ERR(&qedf->dbg_ctx,
			 "Status block initialization failed (0x%x) for id = %d.\n",
			 ret, sb_id);
		return ret;
	}

	return 0;
}

static void qedf_free_sb(struct qedf_ctx *qedf, struct qed_sb_info *sb_info)
{
	if (sb_info->sb_virt)
		dma_free_coherent(&qedf->pdev->dev, sizeof(*sb_info->sb_virt),
		    (void *)sb_info->sb_virt, sb_info->sb_phys);
}

static void qedf_destroy_sb(struct qedf_ctx *qedf)
{
	int id;
	struct qedf_fastpath *fp = NULL;

	for (id = 0; id < qedf->num_queues; id++) {
		fp = &(qedf->fp_array[id]);
		if (fp->sb_id == QEDF_SB_ID_NULL)
			break;
		qedf_free_sb(qedf, fp->sb_info);
		kfree(fp->sb_info);
	}
	kfree(qedf->fp_array);
}

static int qedf_prepare_sb(struct qedf_ctx *qedf)
{
	int id;
	struct qedf_fastpath *fp;
	int ret;

	qedf->fp_array =
	    kcalloc(qedf->num_queues, sizeof(struct qedf_fastpath),
		GFP_KERNEL);

	if (!qedf->fp_array) {
		QEDF_ERR(&(qedf->dbg_ctx), "fastpath array allocation "
			  "failed.\n");
		return -ENOMEM;
	}

	for (id = 0; id < qedf->num_queues; id++) {
		fp = &(qedf->fp_array[id]);
		fp->sb_id = QEDF_SB_ID_NULL;
		fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
		if (!fp->sb_info) {
			QEDF_ERR(&(qedf->dbg_ctx), "SB info struct "
				  "allocation failed.\n");
			goto err;
		}
		ret = qedf_alloc_and_init_sb(qedf, fp->sb_info, id);
		if (ret) {
			QEDF_ERR(&(qedf->dbg_ctx), "SB allocation and "
				  "initialization failed.\n");
			goto err;
		}
		fp->sb_id = id;
		fp->qedf = qedf;
		fp->cq_num_entries =
		    qedf->global_queues[id]->cq_mem_size /
		    sizeof(struct fcoe_cqe);
	}
err:
	return 0;
}

void qedf_process_cqe(struct qedf_ctx *qedf, struct fcoe_cqe *cqe)
{
	u16 xid;
	struct qedf_ioreq *io_req;
	struct qedf_rport *fcport;
	u32 comp_type;

	comp_type = (cqe->cqe_data >> FCOE_CQE_CQE_TYPE_SHIFT) &
	    FCOE_CQE_CQE_TYPE_MASK;

	xid = cqe->cqe_data & FCOE_CQE_TASK_ID_MASK;
	io_req = &qedf->cmd_mgr->cmds[xid];

	/* Completion not for a valid I/O anymore so just return */
	if (!io_req) {
		QEDF_ERR(&qedf->dbg_ctx,
			 "io_req is NULL for xid=0x%x.\n", xid);
		return;
	}

	fcport = io_req->fcport;

	if (fcport == NULL) {
		QEDF_ERR(&qedf->dbg_ctx,
			 "fcport is NULL for xid=0x%x io_req=%p.\n",
			 xid, io_req);
		return;
	}

	/*
	 * Check that fcport is offloaded.  If it isn't then the spinlock
	 * isn't valid and shouldn't be taken. We should just return.
	 */
	if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) {
		QEDF_ERR(&qedf->dbg_ctx,
			 "Session not offloaded yet, fcport = %p.\n", fcport);
		return;
	}


	switch (comp_type) {
	case FCOE_GOOD_COMPLETION_CQE_TYPE:
		atomic_inc(&fcport->free_sqes);
		switch (io_req->cmd_type) {
		case QEDF_SCSI_CMD:
			qedf_scsi_completion(qedf, cqe, io_req);
			break;
		case QEDF_ELS:
			qedf_process_els_compl(qedf, cqe, io_req);
			break;
		case QEDF_TASK_MGMT_CMD:
			qedf_process_tmf_compl(qedf, cqe, io_req);
			break;
		case QEDF_SEQ_CLEANUP:
			qedf_process_seq_cleanup_compl(qedf, cqe, io_req);
			break;
		}
		break;
	case FCOE_ERROR_DETECTION_CQE_TYPE:
		atomic_inc(&fcport->free_sqes);
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
		    "Error detect CQE.\n");
		qedf_process_error_detect(qedf, cqe, io_req);
		break;
	case FCOE_EXCH_CLEANUP_CQE_TYPE:
		atomic_inc(&fcport->free_sqes);
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
		    "Cleanup CQE.\n");
		qedf_process_cleanup_compl(qedf, cqe, io_req);
		break;
	case FCOE_ABTS_CQE_TYPE:
		atomic_inc(&fcport->free_sqes);
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
		    "Abort CQE.\n");
		qedf_process_abts_compl(qedf, cqe, io_req);
		break;
	case FCOE_DUMMY_CQE_TYPE:
		atomic_inc(&fcport->free_sqes);
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
		    "Dummy CQE.\n");
		break;
	case FCOE_LOCAL_COMP_CQE_TYPE:
		atomic_inc(&fcport->free_sqes);
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
		    "Local completion CQE.\n");
		break;
	case FCOE_WARNING_CQE_TYPE:
		atomic_inc(&fcport->free_sqes);
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
		    "Warning CQE.\n");
		qedf_process_warning_compl(qedf, cqe, io_req);
		break;
	case MAX_FCOE_CQE_TYPE:
		atomic_inc(&fcport->free_sqes);
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
		    "Max FCoE CQE.\n");
		break;
	default:
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
		    "Default CQE.\n");
		break;
	}
}

static void qedf_free_bdq(struct qedf_ctx *qedf)
{
	int i;

	if (qedf->bdq_pbl_list)
		dma_free_coherent(&qedf->pdev->dev, QEDF_PAGE_SIZE,
		    qedf->bdq_pbl_list, qedf->bdq_pbl_list_dma);

	if (qedf->bdq_pbl)
		dma_free_coherent(&qedf->pdev->dev, qedf->bdq_pbl_mem_size,
		    qedf->bdq_pbl, qedf->bdq_pbl_dma);

	for (i = 0; i < QEDF_BDQ_SIZE; i++) {
		if (qedf->bdq[i].buf_addr) {
			dma_free_coherent(&qedf->pdev->dev, QEDF_BDQ_BUF_SIZE,
			    qedf->bdq[i].buf_addr, qedf->bdq[i].buf_dma);
		}
	}
}

static void qedf_free_global_queues(struct qedf_ctx *qedf)
{
	int i;
	struct global_queue **gl = qedf->global_queues;

	for (i = 0; i < qedf->num_queues; i++) {
		if (!gl[i])
			continue;

		if (gl[i]->cq)
			dma_free_coherent(&qedf->pdev->dev,
			    gl[i]->cq_mem_size, gl[i]->cq, gl[i]->cq_dma);
		if (gl[i]->cq_pbl)
			dma_free_coherent(&qedf->pdev->dev, gl[i]->cq_pbl_size,
			    gl[i]->cq_pbl, gl[i]->cq_pbl_dma);

		kfree(gl[i]);
	}

	qedf_free_bdq(qedf);
}

static int qedf_alloc_bdq(struct qedf_ctx *qedf)
{
	int i;
	struct scsi_bd *pbl;
	u64 *list;

	/* Alloc dma memory for BDQ buffers */
	for (i = 0; i < QEDF_BDQ_SIZE; i++) {
		qedf->bdq[i].buf_addr = dma_alloc_coherent(&qedf->pdev->dev,
		    QEDF_BDQ_BUF_SIZE, &qedf->bdq[i].buf_dma, GFP_KERNEL);
		if (!qedf->bdq[i].buf_addr) {
			QEDF_ERR(&(qedf->dbg_ctx), "Could not allocate BDQ "
			    "buffer %d.\n", i);
			return -ENOMEM;
		}
	}

	/* Alloc dma memory for BDQ page buffer list */
	qedf->bdq_pbl_mem_size =
	    QEDF_BDQ_SIZE * sizeof(struct scsi_bd);
	qedf->bdq_pbl_mem_size =
	    ALIGN(qedf->bdq_pbl_mem_size, QEDF_PAGE_SIZE);

	qedf->bdq_pbl = dma_alloc_coherent(&qedf->pdev->dev,
	    qedf->bdq_pbl_mem_size, &qedf->bdq_pbl_dma, GFP_KERNEL);
	if (!qedf->bdq_pbl) {
		QEDF_ERR(&(qedf->dbg_ctx), "Could not allocate BDQ PBL.\n");
		return -ENOMEM;
	}

	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
		  "BDQ PBL addr=0x%p dma=%pad\n",
		  qedf->bdq_pbl, &qedf->bdq_pbl_dma);

	/*
	 * Populate BDQ PBL with physical and virtual address of individual
	 * BDQ buffers
	 */
	pbl = (struct scsi_bd *)qedf->bdq_pbl;
	for (i = 0; i < QEDF_BDQ_SIZE; i++) {
		pbl->address.hi = cpu_to_le32(U64_HI(qedf->bdq[i].buf_dma));
		pbl->address.lo = cpu_to_le32(U64_LO(qedf->bdq[i].buf_dma));
		pbl->opaque.fcoe_opaque.hi = 0;
		/* Opaque lo data is an index into the BDQ array */
		pbl->opaque.fcoe_opaque.lo = cpu_to_le32(i);
		pbl++;
	}

	/* Allocate list of PBL pages */
	qedf->bdq_pbl_list = dma_alloc_coherent(&qedf->pdev->dev,
						QEDF_PAGE_SIZE,
						&qedf->bdq_pbl_list_dma,
						GFP_KERNEL);
	if (!qedf->bdq_pbl_list) {
		QEDF_ERR(&(qedf->dbg_ctx), "Could not allocate list of PBL pages.\n");
		return -ENOMEM;
	}

	/*
	 * Now populate PBL list with pages that contain pointers to the
	 * individual buffers.
	 */
	qedf->bdq_pbl_list_num_entries = qedf->bdq_pbl_mem_size /
	    QEDF_PAGE_SIZE;
	list = (u64 *)qedf->bdq_pbl_list;
	for (i = 0; i < qedf->bdq_pbl_list_num_entries; i++) {
		*list = qedf->bdq_pbl_dma;
		list++;
	}

	return 0;
}

static int qedf_alloc_global_queues(struct qedf_ctx *qedf)
{
	u32 *list;
	int i;
	int status;
	u32 *pbl;
	dma_addr_t page;
	int num_pages;

	/* Allocate and map CQs, RQs */
	/*
	 * Number of global queues (CQ / RQ). This should
	 * be <= number of available MSIX vectors for the PF
	 */
	if (!qedf->num_queues) {
		QEDF_ERR(&(qedf->dbg_ctx), "No MSI-X vectors available!\n");
		return -ENOMEM;
	}

	/*
	 * Make sure we allocated the PBL that will contain the physical
	 * addresses of our queues
	 */
	if (!qedf->p_cpuq) {
		status = -EINVAL;
		QEDF_ERR(&qedf->dbg_ctx, "p_cpuq is NULL.\n");
		goto mem_alloc_failure;
	}

	qedf->global_queues = kzalloc((sizeof(struct global_queue *)
	    * qedf->num_queues), GFP_KERNEL);
	if (!qedf->global_queues) {
		QEDF_ERR(&(qedf->dbg_ctx), "Unable to allocate global "
			  "queues array ptr memory\n");
		return -ENOMEM;
	}
	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
		   "qedf->global_queues=%p.\n", qedf->global_queues);

	/* Allocate DMA coherent buffers for BDQ */
	status = qedf_alloc_bdq(qedf);
	if (status) {
		QEDF_ERR(&qedf->dbg_ctx, "Unable to allocate bdq.\n");
		goto mem_alloc_failure;
	}

	/* Allocate a CQ and an associated PBL for each MSI-X vector */
	for (i = 0; i < qedf->num_queues; i++) {
		qedf->global_queues[i] = kzalloc(sizeof(struct global_queue),
		    GFP_KERNEL);
		if (!qedf->global_queues[i]) {
			QEDF_WARN(&(qedf->dbg_ctx), "Unable to allocate "
				   "global queue %d.\n", i);
			status = -ENOMEM;
			goto mem_alloc_failure;
		}

		qedf->global_queues[i]->cq_mem_size =
		    FCOE_PARAMS_CQ_NUM_ENTRIES * sizeof(struct fcoe_cqe);
		qedf->global_queues[i]->cq_mem_size =
		    ALIGN(qedf->global_queues[i]->cq_mem_size, QEDF_PAGE_SIZE);

		qedf->global_queues[i]->cq_pbl_size =
		    (qedf->global_queues[i]->cq_mem_size /
		    PAGE_SIZE) * sizeof(void *);
		qedf->global_queues[i]->cq_pbl_size =
		    ALIGN(qedf->global_queues[i]->cq_pbl_size, QEDF_PAGE_SIZE);

		qedf->global_queues[i]->cq =
		    dma_alloc_coherent(&qedf->pdev->dev,
				       qedf->global_queues[i]->cq_mem_size,
				       &qedf->global_queues[i]->cq_dma,
				       GFP_KERNEL);

		if (!qedf->global_queues[i]->cq) {
			QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate cq.\n");
			status = -ENOMEM;
			goto mem_alloc_failure;
		}

		qedf->global_queues[i]->cq_pbl =
		    dma_alloc_coherent(&qedf->pdev->dev,
				       qedf->global_queues[i]->cq_pbl_size,
				       &qedf->global_queues[i]->cq_pbl_dma,
				       GFP_KERNEL);

		if (!qedf->global_queues[i]->cq_pbl) {
			QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate cq PBL.\n");
			status = -ENOMEM;
			goto mem_alloc_failure;
		}

		/* Create PBL */
		num_pages = qedf->global_queues[i]->cq_mem_size /
		    QEDF_PAGE_SIZE;
		page = qedf->global_queues[i]->cq_dma;
		pbl = (u32 *)qedf->global_queues[i]->cq_pbl;

		while (num_pages--) {
			*pbl = U64_LO(page);
			pbl++;
			*pbl = U64_HI(page);
			pbl++;
			page += QEDF_PAGE_SIZE;
		}
		/* Set the initial consumer index for cq */
		qedf->global_queues[i]->cq_cons_idx = 0;
	}

	list = (u32 *)qedf->p_cpuq;

	/*
	 * The list is built as follows: CQ#0 PBL pointer, RQ#0 PBL pointer,
	 * CQ#1 PBL pointer, RQ#1 PBL pointer, etc.  Each PBL pointer points
	 * to the physical address which contains an array of pointers to
	 * the physical addresses of the specific queue pages.
	 */
	for (i = 0; i < qedf->num_queues; i++) {
		*list = U64_LO(qedf->global_queues[i]->cq_pbl_dma);
		list++;
		*list = U64_HI(qedf->global_queues[i]->cq_pbl_dma);
		list++;
		*list = U64_LO(0);
		list++;
		*list = U64_HI(0);
		list++;
	}

	return 0;

mem_alloc_failure:
	qedf_free_global_queues(qedf);
	return status;
}

static int qedf_set_fcoe_pf_param(struct qedf_ctx *qedf)
{
	u8 sq_num_pbl_pages;
	u32 sq_mem_size;
	u32 cq_mem_size;
	u32 cq_num_entries;
	int rval;

	/*
	 * The number of completion queues/fastpath interrupts/status blocks
	 * we allocation is the minimum off:
	 *
	 * Number of CPUs
	 * Number allocated by qed for our PCI function
	 */
	qedf->num_queues = MIN_NUM_CPUS_MSIX(qedf);

	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Number of CQs is %d.\n",
		   qedf->num_queues);

	qedf->p_cpuq = dma_alloc_coherent(&qedf->pdev->dev,
	    qedf->num_queues * sizeof(struct qedf_glbl_q_params),
	    &qedf->hw_p_cpuq, GFP_KERNEL);

	if (!qedf->p_cpuq) {
		QEDF_ERR(&(qedf->dbg_ctx), "dma_alloc_coherent failed.\n");
		return 1;
	}

	rval = qedf_alloc_global_queues(qedf);
	if (rval) {
		QEDF_ERR(&(qedf->dbg_ctx), "Global queue allocation "
			  "failed.\n");
		return 1;
	}

	/* Calculate SQ PBL size in the same manner as in qedf_sq_alloc() */
	sq_mem_size = SQ_NUM_ENTRIES * sizeof(struct fcoe_wqe);
	sq_mem_size = ALIGN(sq_mem_size, QEDF_PAGE_SIZE);
	sq_num_pbl_pages = (sq_mem_size / QEDF_PAGE_SIZE);

	/* Calculate CQ num entries */
	cq_mem_size = FCOE_PARAMS_CQ_NUM_ENTRIES * sizeof(struct fcoe_cqe);
	cq_mem_size = ALIGN(cq_mem_size, QEDF_PAGE_SIZE);
	cq_num_entries = cq_mem_size / sizeof(struct fcoe_cqe);

	memset(&(qedf->pf_params), 0, sizeof(qedf->pf_params));

	/* Setup the value for fcoe PF */
	qedf->pf_params.fcoe_pf_params.num_cons = QEDF_MAX_SESSIONS;
	qedf->pf_params.fcoe_pf_params.num_tasks = FCOE_PARAMS_NUM_TASKS;
	qedf->pf_params.fcoe_pf_params.glbl_q_params_addr =
	    (u64)qedf->hw_p_cpuq;
	qedf->pf_params.fcoe_pf_params.sq_num_pbl_pages = sq_num_pbl_pages;

	qedf->pf_params.fcoe_pf_params.rq_buffer_log_size = 0;

	qedf->pf_params.fcoe_pf_params.cq_num_entries = cq_num_entries;
	qedf->pf_params.fcoe_pf_params.num_cqs = qedf->num_queues;

	/* log_page_size: 12 for 4KB pages */
	qedf->pf_params.fcoe_pf_params.log_page_size = ilog2(QEDF_PAGE_SIZE);

	qedf->pf_params.fcoe_pf_params.mtu = 9000;
	qedf->pf_params.fcoe_pf_params.gl_rq_pi = QEDF_FCOE_PARAMS_GL_RQ_PI;
	qedf->pf_params.fcoe_pf_params.gl_cmd_pi = QEDF_FCOE_PARAMS_GL_CMD_PI;

	/* BDQ address and size */
	qedf->pf_params.fcoe_pf_params.bdq_pbl_base_addr[0] =
	    qedf->bdq_pbl_list_dma;
	qedf->pf_params.fcoe_pf_params.bdq_pbl_num_entries[0] =
	    qedf->bdq_pbl_list_num_entries;
	qedf->pf_params.fcoe_pf_params.rq_buffer_size = QEDF_BDQ_BUF_SIZE;

	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
	    "bdq_list=%p bdq_pbl_list_dma=%llx bdq_pbl_list_entries=%d.\n",
	    qedf->bdq_pbl_list,
	    qedf->pf_params.fcoe_pf_params.bdq_pbl_base_addr[0],
	    qedf->pf_params.fcoe_pf_params.bdq_pbl_num_entries[0]);

	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
	    "cq_num_entries=%d.\n",
	    qedf->pf_params.fcoe_pf_params.cq_num_entries);

	return 0;
}

/* Free DMA coherent memory for array of queue pointers we pass to qed */
static void qedf_free_fcoe_pf_param(struct qedf_ctx *qedf)
{
	size_t size = 0;

	if (qedf->p_cpuq) {
		size = qedf->num_queues * sizeof(struct qedf_glbl_q_params);
		dma_free_coherent(&qedf->pdev->dev, size, qedf->p_cpuq,
		    qedf->hw_p_cpuq);
	}

	qedf_free_global_queues(qedf);

	kfree(qedf->global_queues);
}

/*
 * PCI driver functions
 */

static const struct pci_device_id qedf_pci_tbl[] = {
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, 0x165c) },
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, 0x8080) },
	{0}
};
MODULE_DEVICE_TABLE(pci, qedf_pci_tbl);

static struct pci_driver qedf_pci_driver = {
	.name = QEDF_MODULE_NAME,
	.id_table = qedf_pci_tbl,
	.probe = qedf_probe,
	.remove = qedf_remove,
	.shutdown = qedf_shutdown,
};

static int __qedf_probe(struct pci_dev *pdev, int mode)
{
	int rc = -EINVAL;
	struct fc_lport *lport;
	struct qedf_ctx *qedf = NULL;
	struct Scsi_Host *host;
	bool is_vf = false;
	struct qed_ll2_params params;
	char host_buf[20];
	struct qed_link_params link_params;
	int status;
	void *task_start, *task_end;
	struct qed_slowpath_params slowpath_params;
	struct qed_probe_params qed_params;
	u16 retry_cnt = 10;

	/*
	 * When doing error recovery we didn't reap the lport so don't try
	 * to reallocate it.
	 */
retry_probe:
	if (mode == QEDF_MODE_RECOVERY)
		msleep(2000);

	if (mode != QEDF_MODE_RECOVERY) {
		lport = libfc_host_alloc(&qedf_host_template,
		    sizeof(struct qedf_ctx));

		if (!lport) {
			QEDF_ERR(NULL, "Could not allocate lport.\n");
			rc = -ENOMEM;
			goto err0;
		}

		fc_disc_init(lport);

		/* Initialize qedf_ctx */
		qedf = lport_priv(lport);
		set_bit(QEDF_PROBING, &qedf->flags);
		qedf->lport = lport;
		qedf->ctlr.lp = lport;
		qedf->pdev = pdev;
		qedf->dbg_ctx.pdev = pdev;
		qedf->dbg_ctx.host_no = lport->host->host_no;
		spin_lock_init(&qedf->hba_lock);
		INIT_LIST_HEAD(&qedf->fcports);
		qedf->curr_conn_id = QEDF_MAX_SESSIONS - 1;
		atomic_set(&qedf->num_offloads, 0);
		qedf->stop_io_on_error = false;
		pci_set_drvdata(pdev, qedf);
		init_completion(&qedf->fipvlan_compl);
		mutex_init(&qedf->stats_mutex);
		mutex_init(&qedf->flush_mutex);
		qedf->flogi_pending = 0;

		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_INFO,
		   "QLogic FastLinQ FCoE Module qedf %s, "
		   "FW %d.%d.%d.%d\n", QEDF_VERSION,
		   FW_MAJOR_VERSION, FW_MINOR_VERSION, FW_REVISION_VERSION,
		   FW_ENGINEERING_VERSION);
	} else {
		/* Init pointers during recovery */
		qedf = pci_get_drvdata(pdev);
		set_bit(QEDF_PROBING, &qedf->flags);
		lport = qedf->lport;
	}

	QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC, "Probe started.\n");

	host = lport->host;

	/* Allocate mempool for qedf_io_work structs */
	qedf->io_mempool = mempool_create_slab_pool(QEDF_IO_WORK_MIN,
	    qedf_io_work_cache);
	if (qedf->io_mempool == NULL) {
		QEDF_ERR(&(qedf->dbg_ctx), "qedf->io_mempool is NULL.\n");
		goto err1;
	}
	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_INFO, "qedf->io_mempool=%p.\n",
	    qedf->io_mempool);

	sprintf(host_buf, "qedf_%u_link",
	    qedf->lport->host->host_no);
	qedf->link_update_wq = create_workqueue(host_buf);
	INIT_DELAYED_WORK(&qedf->link_update, qedf_handle_link_update);
	INIT_DELAYED_WORK(&qedf->link_recovery, qedf_link_recovery);
	INIT_DELAYED_WORK(&qedf->grcdump_work, qedf_wq_grcdump);
	INIT_DELAYED_WORK(&qedf->stag_work, qedf_stag_change_work);
	qedf->fipvlan_retries = qedf_fipvlan_retries;
	/* Set a default prio in case DCBX doesn't converge */
	if (qedf_default_prio > -1) {
		/*
		 * This is the case where we pass a modparam in so we want to
		 * honor it even if dcbx doesn't converge.
		 */
		qedf->prio = qedf_default_prio;
	} else
		qedf->prio = QEDF_DEFAULT_PRIO;

	/*
	 * Common probe. Takes care of basic hardware init and pci_*
	 * functions.
	 */
	memset(&qed_params, 0, sizeof(qed_params));
	qed_params.protocol = QED_PROTOCOL_FCOE;
	qed_params.dp_module = qedf_dp_module;
	qed_params.dp_level = qedf_dp_level;
	qed_params.is_vf = is_vf;
	qedf->cdev = qed_ops->common->probe(pdev, &qed_params);
	if (!qedf->cdev) {
		if ((mode == QEDF_MODE_RECOVERY) && retry_cnt) {
			QEDF_ERR(&qedf->dbg_ctx,
				"Retry %d initialize hardware\n", retry_cnt);
			retry_cnt--;
			goto retry_probe;
		}
		QEDF_ERR(&qedf->dbg_ctx, "common probe failed.\n");
		rc = -ENODEV;
		goto err1;
	}

	/* Learn information crucial for qedf to progress */
	rc = qed_ops->fill_dev_info(qedf->cdev, &qedf->dev_info);
	if (rc) {
		QEDF_ERR(&(qedf->dbg_ctx), "Failed to dev info.\n");
		goto err1;
	}

	QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
		  "dev_info: num_hwfns=%d affin_hwfn_idx=%d.\n",
		  qedf->dev_info.common.num_hwfns,
		  qed_ops->common->get_affin_hwfn_idx(qedf->cdev));

	/* queue allocation code should come here
	 * order should be
	 * 	slowpath_start
	 * 	status block allocation
	 *	interrupt registration (to get min number of queues)
	 *	set_fcoe_pf_param
	 *	qed_sp_fcoe_func_start
	 */
	rc = qedf_set_fcoe_pf_param(qedf);
	if (rc) {
		QEDF_ERR(&(qedf->dbg_ctx), "Cannot set fcoe pf param.\n");
		goto err2;
	}
	qed_ops->common->update_pf_params(qedf->cdev, &qedf->pf_params);

	/* Learn information crucial for qedf to progress */
	rc = qed_ops->fill_dev_info(qedf->cdev, &qedf->dev_info);
	if (rc) {
		QEDF_ERR(&qedf->dbg_ctx, "Failed to fill dev info.\n");
		goto err2;
	}

	if (mode != QEDF_MODE_RECOVERY) {
		qedf->devlink = qed_ops->common->devlink_register(qedf->cdev);
		if (IS_ERR(qedf->devlink)) {
			QEDF_ERR(&qedf->dbg_ctx, "Cannot register devlink\n");
			rc = PTR_ERR(qedf->devlink);
			qedf->devlink = NULL;
			goto err2;
		}
	}

	/* Record BDQ producer doorbell addresses */
	qedf->bdq_primary_prod = qedf->dev_info.primary_dbq_rq_addr;
	qedf->bdq_secondary_prod = qedf->dev_info.secondary_bdq_rq_addr;
	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
	    "BDQ primary_prod=%p secondary_prod=%p.\n", qedf->bdq_primary_prod,
	    qedf->bdq_secondary_prod);

	qed_ops->register_ops(qedf->cdev, &qedf_cb_ops, qedf);

	rc = qedf_prepare_sb(qedf);
	if (rc) {

		QEDF_ERR(&(qedf->dbg_ctx), "Cannot start slowpath.\n");
		goto err2;
	}

	/* Start the Slowpath-process */
	slowpath_params.int_mode = QED_INT_MODE_MSIX;
	slowpath_params.drv_major = QEDF_DRIVER_MAJOR_VER;
	slowpath_params.drv_minor = QEDF_DRIVER_MINOR_VER;
	slowpath_params.drv_rev = QEDF_DRIVER_REV_VER;
	slowpath_params.drv_eng = QEDF_DRIVER_ENG_VER;
	strncpy(slowpath_params.name, "qedf", QED_DRV_VER_STR_SIZE);
	rc = qed_ops->common->slowpath_start(qedf->cdev, &slowpath_params);
	if (rc) {
		QEDF_ERR(&(qedf->dbg_ctx), "Cannot start slowpath.\n");
		goto err2;
	}

	/*
	 * update_pf_params needs to be called before and after slowpath
	 * start
	 */
	qed_ops->common->update_pf_params(qedf->cdev, &qedf->pf_params);

	/* Setup interrupts */
	rc = qedf_setup_int(qedf);
	if (rc) {
		QEDF_ERR(&qedf->dbg_ctx, "Setup interrupts failed.\n");
		goto err3;
	}

	rc = qed_ops->start(qedf->cdev, &qedf->tasks);
	if (rc) {
		QEDF_ERR(&(qedf->dbg_ctx), "Cannot start FCoE function.\n");
		goto err4;
	}
	task_start = qedf_get_task_mem(&qedf->tasks, 0);
	task_end = qedf_get_task_mem(&qedf->tasks, MAX_TID_BLOCKS_FCOE - 1);
	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Task context start=%p, "
		   "end=%p block_size=%u.\n", task_start, task_end,
		   qedf->tasks.size);

	/*
	 * We need to write the number of BDs in the BDQ we've preallocated so
	 * the f/w will do a prefetch and we'll get an unsolicited CQE when a
	 * packet arrives.
	 */
	qedf->bdq_prod_idx = QEDF_BDQ_SIZE;
	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
	    "Writing %d to primary and secondary BDQ doorbell registers.\n",
	    qedf->bdq_prod_idx);
	writew(qedf->bdq_prod_idx, qedf->bdq_primary_prod);
	readw(qedf->bdq_primary_prod);
	writew(qedf->bdq_prod_idx, qedf->bdq_secondary_prod);
	readw(qedf->bdq_secondary_prod);

	qed_ops->common->set_power_state(qedf->cdev, PCI_D0);

	/* Now that the dev_info struct has been filled in set the MAC
	 * address
	 */
	ether_addr_copy(qedf->mac, qedf->dev_info.common.hw_mac);
	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "MAC address is %pM.\n",
		   qedf->mac);

	/*
	 * Set the WWNN and WWPN in the following way:
	 *
	 * If the info we get from qed is non-zero then use that to set the
	 * WWPN and WWNN. Otherwise fall back to use fcoe_wwn_from_mac() based
	 * on the MAC address.
	 */
	if (qedf->dev_info.wwnn != 0 && qedf->dev_info.wwpn != 0) {
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
		    "Setting WWPN and WWNN from qed dev_info.\n");
		qedf->wwnn = qedf->dev_info.wwnn;
		qedf->wwpn = qedf->dev_info.wwpn;
	} else {
		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
		    "Setting WWPN and WWNN using fcoe_wwn_from_mac().\n");
		qedf->wwnn = fcoe_wwn_from_mac(qedf->mac, 1, 0);
		qedf->wwpn = fcoe_wwn_from_mac(qedf->mac, 2, 0);
	}
	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,  "WWNN=%016llx "
		   "WWPN=%016llx.\n", qedf->wwnn, qedf->wwpn);

	sprintf(host_buf, "host_%d", host->host_no);
	qed_ops->common->set_name(qedf->cdev, host_buf);

	/* Allocate cmd mgr */
	qedf->cmd_mgr = qedf_cmd_mgr_alloc(qedf);
	if (!qedf->cmd_mgr) {
		QEDF_ERR(&(qedf->dbg_ctx), "Failed to allocate cmd mgr.\n");
		rc = -ENOMEM;
		goto err5;
	}

	if (mode != QEDF_MODE_RECOVERY) {
		host->transportt = qedf_fc_transport_template;
		host->max_lun = qedf_max_lun;
		host->max_cmd_len = QEDF_MAX_CDB_LEN;
		host->max_id = QEDF_MAX_SESSIONS;
		host->can_queue = FCOE_PARAMS_NUM_TASKS;
		rc = scsi_add_host(host, &pdev->dev);
		if (rc) {
			QEDF_WARN(&qedf->dbg_ctx,
				  "Error adding Scsi_Host rc=0x%x.\n", rc);
			goto err6;
		}
	}

	memset(&params, 0, sizeof(params));
	params.mtu = QEDF_LL2_BUF_SIZE;
	ether_addr_copy(params.ll2_mac_address, qedf->mac);

	/* Start LL2 processing thread */
	snprintf(host_buf, 20, "qedf_%d_ll2", host->host_no);
	qedf->ll2_recv_wq =
		create_workqueue(host_buf);
	if (!qedf->ll2_recv_wq) {
		QEDF_ERR(&(qedf->dbg_ctx), "Failed to LL2 workqueue.\n");
		rc = -ENOMEM;
		goto err7;
	}

#ifdef CONFIG_DEBUG_FS
	qedf_dbg_host_init(&(qedf->dbg_ctx), qedf_debugfs_ops,
			    qedf_dbg_fops);
#endif

	/* Start LL2 */
	qed_ops->ll2->register_cb_ops(qedf->cdev, &qedf_ll2_cb_ops, qedf);
	rc = qed_ops->ll2->start(qedf->cdev, &params);
	if (rc) {
		QEDF_ERR(&(qedf->dbg_ctx), "Could not start Light L2.\n");
		goto err7;
	}
	set_bit(QEDF_LL2_STARTED, &qedf->flags);

	/* Set initial FIP/FCoE VLAN to NULL */
	qedf->vlan_id = 0;

	/*
	 * No need to setup fcoe_ctlr or fc_lport objects during recovery since
	 * they were not reaped during the unload process.
	 */
	if (mode != QEDF_MODE_RECOVERY) {
		/* Setup imbedded fcoe controller */
		qedf_fcoe_ctlr_setup(qedf);

		/* Setup lport */
		rc = qedf_lport_setup(qedf);
		if (rc) {
			QEDF_ERR(&(qedf->dbg_ctx),
			    "qedf_lport_setup failed.\n");
			goto err7;
		}
	}

	sprintf(host_buf, "qedf_%u_timer", qedf->lport->host->host_no);
	qedf->timer_work_queue =
		create_workqueue(host_buf);
	if (!qedf->timer_work_queue) {
		QEDF_ERR(&(qedf->dbg_ctx), "Failed to start timer "
			  "workqueue.\n");
		rc = -ENOMEM;
		goto err7;
	}

	/* DPC workqueue is not reaped during recovery unload */
	if (mode != QEDF_MODE_RECOVERY) {
		sprintf(host_buf, "qedf_%u_dpc",
		    qedf->lport->host->host_no);
		qedf->dpc_wq = create_workqueue(host_buf);
	}
	INIT_DELAYED_WORK(&qedf->recovery_work, qedf_recovery_handler);

	/*
	 * GRC dump and sysfs parameters are not reaped during the recovery
	 * unload process.
	 */
	if (mode != QEDF_MODE_RECOVERY) {
		qedf->grcdump_size =
		    qed_ops->common->dbg_all_data_size(qedf->cdev);
		if (qedf->grcdump_size) {
			rc = qedf_alloc_grc_dump_buf(&qedf->grcdump,
			    qedf->grcdump_size);
			if (rc) {
				QEDF_ERR(&(qedf->dbg_ctx),
				    "GRC Dump buffer alloc failed.\n");
				qedf->grcdump = NULL;
			}

			QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
			    "grcdump: addr=%p, size=%u.\n",
			    qedf->grcdump, qedf->grcdump_size);
		}
		qedf_create_sysfs_ctx_attr(qedf);

		/* Initialize I/O tracing for this adapter */
		spin_lock_init(&qedf->io_trace_lock);
		qedf->io_trace_idx = 0;
	}

	init_completion(&qedf->flogi_compl);

	status = qed_ops->common->update_drv_state(qedf->cdev, true);
	if (status)
		QEDF_ERR(&(qedf->dbg_ctx),
			"Failed to send drv state to MFW.\n");

	memset(&link_params, 0, sizeof(struct qed_link_params));
	link_params.link_up = true;
	status = qed_ops->common->set_link(qedf->cdev, &link_params);
	if (status)
		QEDF_WARN(&(qedf->dbg_ctx), "set_link failed.\n");

	/* Start/restart discovery */
	if (mode == QEDF_MODE_RECOVERY)
		fcoe_ctlr_link_up(&qedf->ctlr);
	else
		fc_fabric_login(lport);

	QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC, "Probe done.\n");

	clear_bit(QEDF_PROBING, &qedf->flags);

	/* All good */
	return 0;

err7:
	if (qedf->ll2_recv_wq)
		destroy_workqueue(qedf->ll2_recv_wq);
	fc_remove_host(qedf->lport->host);
	scsi_remove_host(qedf->lport->host);
#ifdef CONFIG_DEBUG_FS
	qedf_dbg_host_exit(&(qedf->dbg_ctx));
#endif
err6:
	qedf_cmd_mgr_free(qedf->cmd_mgr);
err5:
	qed_ops->stop(qedf->cdev);
err4:
	qedf_free_fcoe_pf_param(qedf);
	qedf_sync_free_irqs(qedf);
err3:
	qed_ops->common->slowpath_stop(qedf->cdev);
err2:
	qed_ops->common->remove(qedf->cdev);
err1:
	scsi_host_put(lport->host);
err0:
	return rc;
}

static int qedf_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
	return __qedf_probe(pdev, QEDF_MODE_NORMAL);
}

static void __qedf_remove(struct pci_dev *pdev, int mode)
{
	struct qedf_ctx *qedf;
	int rc;

	if (!pdev) {
		QEDF_ERR(NULL, "pdev is NULL.\n");
		return;
	}

	qedf = pci_get_drvdata(pdev);

	/*
	 * Prevent race where we're in board disable work and then try to
	 * rmmod the module.
	 */
	if (test_bit(QEDF_UNLOADING, &qedf->flags)) {
		QEDF_ERR(&qedf->dbg_ctx, "Already removing PCI function.\n");
		return;
	}

	if (mode != QEDF_MODE_RECOVERY)
		set_bit(QEDF_UNLOADING, &qedf->flags);

	/* Logoff the fabric to upload all connections */
	if (mode == QEDF_MODE_RECOVERY)
		fcoe_ctlr_link_down(&qedf->ctlr);
	else
		fc_fabric_logoff(qedf->lport);

	if (!qedf_wait_for_upload(qedf))
		QEDF_ERR(&qedf->dbg_ctx, "Could not upload all sessions.\n");

#ifdef CONFIG_DEBUG_FS
	qedf_dbg_host_exit(&(qedf->dbg_ctx));
#endif

	/* Stop any link update handling */
	cancel_delayed_work_sync(&qedf->link_update);
	destroy_workqueue(qedf->link_update_wq);
	qedf->link_update_wq = NULL;

	if (qedf->timer_work_queue)
		destroy_workqueue(qedf->timer_work_queue);

	/* Stop Light L2 */
	clear_bit(QEDF_LL2_STARTED, &qedf->flags);
	qed_ops->ll2->stop(qedf->cdev);
	if (qedf->ll2_recv_wq)
		destroy_workqueue(qedf->ll2_recv_wq);

	/* Stop fastpath */
	qedf_sync_free_irqs(qedf);
	qedf_destroy_sb(qedf);

	/*
	 * During recovery don't destroy OS constructs that represent the
	 * physical port.
	 */
	if (mode != QEDF_MODE_RECOVERY) {
		qedf_free_grc_dump_buf(&qedf->grcdump);
		qedf_remove_sysfs_ctx_attr(qedf);

		/* Remove all SCSI/libfc/libfcoe structures */
		fcoe_ctlr_destroy(&qedf->ctlr);
		fc_lport_destroy(qedf->lport);
		fc_remove_host(qedf->lport->host);
		scsi_remove_host(qedf->lport->host);
	}

	qedf_cmd_mgr_free(qedf->cmd_mgr);

	if (mode != QEDF_MODE_RECOVERY) {
		fc_exch_mgr_free(qedf->lport);
		fc_lport_free_stats(qedf->lport);

		/* Wait for all vports to be reaped */
		qedf_wait_for_vport_destroy(qedf);
	}

	/*
	 * Now that all connections have been uploaded we can stop the
	 * rest of the qed operations
	 */
	qed_ops->stop(qedf->cdev);

	if (mode != QEDF_MODE_RECOVERY) {
		if (qedf->dpc_wq) {
			/* Stop general DPC handling */
			destroy_workqueue(qedf->dpc_wq);
			qedf->dpc_wq = NULL;
		}
	}

	/* Final shutdown for the board */
	qedf_free_fcoe_pf_param(qedf);
	if (mode != QEDF_MODE_RECOVERY) {
		qed_ops->common->set_power_state(qedf->cdev, PCI_D0);
		pci_set_drvdata(pdev, NULL);
	}

	rc = qed_ops->common->update_drv_state(qedf->cdev, false);
	if (rc)
		QEDF_ERR(&(qedf->dbg_ctx),
			"Failed to send drv state to MFW.\n");

	if (mode != QEDF_MODE_RECOVERY && qedf->devlink) {
		qed_ops->common->devlink_unregister(qedf->devlink);
		qedf->devlink = NULL;
	}

	qed_ops->common->slowpath_stop(qedf->cdev);
	qed_ops->common->remove(qedf->cdev);

	mempool_destroy(qedf->io_mempool);

	/* Only reap the Scsi_host on a real removal */
	if (mode != QEDF_MODE_RECOVERY)
		scsi_host_put(qedf->lport->host);
}

static void qedf_remove(struct pci_dev *pdev)
{
	/* Check to make sure this function wasn't already disabled */
	if (!atomic_read(&pdev->enable_cnt))
		return;

	__qedf_remove(pdev, QEDF_MODE_NORMAL);
}

void qedf_wq_grcdump(struct work_struct *work)
{
	struct qedf_ctx *qedf =
	    container_of(work, struct qedf_ctx, grcdump_work.work);

	QEDF_ERR(&(qedf->dbg_ctx), "Collecting GRC dump.\n");
	qedf_capture_grc_dump(qedf);
}

void qedf_schedule_hw_err_handler(void *dev, enum qed_hw_err_type err_type)
{
	struct qedf_ctx *qedf = dev;

	QEDF_ERR(&(qedf->dbg_ctx),
			"Hardware error handler scheduled, event=%d.\n",
			err_type);

	if (test_bit(QEDF_IN_RECOVERY, &qedf->flags)) {
		QEDF_ERR(&(qedf->dbg_ctx),
				"Already in recovery, not scheduling board disable work.\n");
		return;
	}

	switch (err_type) {
	case QED_HW_ERR_FAN_FAIL:
		schedule_delayed_work(&qedf->board_disable_work, 0);
		break;
	case QED_HW_ERR_MFW_RESP_FAIL:
	case QED_HW_ERR_HW_ATTN:
	case QED_HW_ERR_DMAE_FAIL:
	case QED_HW_ERR_FW_ASSERT:
		/* Prevent HW attentions from being reasserted */
		qed_ops->common->attn_clr_enable(qedf->cdev, true);
		break;
	case QED_HW_ERR_RAMROD_FAIL:
		/* Prevent HW attentions from being reasserted */
		qed_ops->common->attn_clr_enable(qedf->cdev, true);

		if (qedf_enable_recovery && qedf->devlink)
			qed_ops->common->report_fatal_error(qedf->devlink,
				err_type);

		break;
	default:
		break;
	}
}

/*
 * Protocol TLV handler
 */
void qedf_get_protocol_tlv_data(void *dev, void *data)
{
	struct qedf_ctx *qedf = dev;
	struct qed_mfw_tlv_fcoe *fcoe = data;
	struct fc_lport *lport;
	struct Scsi_Host *host;
	struct fc_host_attrs *fc_host;
	struct fc_host_statistics *hst;

	if (!qedf) {
		QEDF_ERR(NULL, "qedf is null.\n");
		return;
	}

	if (test_bit(QEDF_PROBING, &qedf->flags)) {
		QEDF_ERR(&qedf->dbg_ctx, "Function is still probing.\n");
		return;
	}

	lport = qedf->lport;
	host = lport->host;
	fc_host = shost_to_fc_host(host);

	/* Force a refresh of the fc_host stats including offload stats */
	hst = qedf_fc_get_host_stats(host);

	fcoe->qos_pri_set = true;
	fcoe->qos_pri = 3; /* Hard coded to 3 in driver */

	fcoe->ra_tov_set = true;
	fcoe->ra_tov = lport->r_a_tov;

	fcoe->ed_tov_set = true;
	fcoe->ed_tov = lport->e_d_tov;

	fcoe->npiv_state_set = true;
	fcoe->npiv_state = 1; /* NPIV always enabled */

	fcoe->num_npiv_ids_set = true;
	fcoe->num_npiv_ids = fc_host->npiv_vports_inuse;

	/* Certain attributes we only want to set if we've selected an FCF */
	if (qedf->ctlr.sel_fcf) {
		fcoe->switch_name_set = true;
		u64_to_wwn(qedf->ctlr.sel_fcf->switch_name, fcoe->switch_name);
	}

	fcoe->port_state_set = true;
	/* For qedf we're either link down or fabric attach */
	if (lport->link_up)
		fcoe->port_state = QED_MFW_TLV_PORT_STATE_FABRIC;
	else
		fcoe->port_state = QED_MFW_TLV_PORT_STATE_OFFLINE;

	fcoe->link_failures_set = true;
	fcoe->link_failures = (u16)hst->link_failure_count;

	fcoe->fcoe_txq_depth_set = true;
	fcoe->fcoe_rxq_depth_set = true;
	fcoe->fcoe_rxq_depth = FCOE_PARAMS_NUM_TASKS;
	fcoe->fcoe_txq_depth = FCOE_PARAMS_NUM_TASKS;

	fcoe->fcoe_rx_frames_set = true;
	fcoe->fcoe_rx_frames = hst->rx_frames;

	fcoe->fcoe_tx_frames_set = true;
	fcoe->fcoe_tx_frames = hst->tx_frames;

	fcoe->fcoe_rx_bytes_set = true;
	fcoe->fcoe_rx_bytes = hst->fcp_input_megabytes * 1000000;

	fcoe->fcoe_tx_bytes_set = true;
	fcoe->fcoe_tx_bytes = hst->fcp_output_megabytes * 1000000;

	fcoe->crc_count_set = true;
	fcoe->crc_count = hst->invalid_crc_count;

	fcoe->tx_abts_set = true;
	fcoe->tx_abts = hst->fcp_packet_aborts;

	fcoe->tx_lun_rst_set = true;
	fcoe->tx_lun_rst = qedf->lun_resets;

	fcoe->abort_task_sets_set = true;
	fcoe->abort_task_sets = qedf->packet_aborts;

	fcoe->scsi_busy_set = true;
	fcoe->scsi_busy = qedf->busy;

	fcoe->scsi_tsk_full_set = true;
	fcoe->scsi_tsk_full = qedf->task_set_fulls;
}

/* Deferred work function to perform soft context reset on STAG change */
void qedf_stag_change_work(struct work_struct *work)
{
	struct qedf_ctx *qedf =
	    container_of(work, struct qedf_ctx, stag_work.work);

	printk_ratelimited("[%s]:[%s:%d]:%d: Performing software context reset.",
			dev_name(&qedf->pdev->dev), __func__, __LINE__,
			qedf->dbg_ctx.host_no);
	qedf_ctx_soft_reset(qedf->lport);
}

static void qedf_shutdown(struct pci_dev *pdev)
{
	__qedf_remove(pdev, QEDF_MODE_NORMAL);
}

/*
 * Recovery handler code
 */
static void qedf_schedule_recovery_handler(void *dev)
{
	struct qedf_ctx *qedf = dev;

	QEDF_ERR(&qedf->dbg_ctx, "Recovery handler scheduled.\n");
	schedule_delayed_work(&qedf->recovery_work, 0);
}

static void qedf_recovery_handler(struct work_struct *work)
{
	struct qedf_ctx *qedf =
	    container_of(work, struct qedf_ctx, recovery_work.work);

	if (test_and_set_bit(QEDF_IN_RECOVERY, &qedf->flags))
		return;

	/*
	 * Call common_ops->recovery_prolog to allow the MFW to quiesce
	 * any PCI transactions.
	 */
	qed_ops->common->recovery_prolog(qedf->cdev);

	QEDF_ERR(&qedf->dbg_ctx, "Recovery work start.\n");
	__qedf_remove(qedf->pdev, QEDF_MODE_RECOVERY);
	/*
	 * Reset link and dcbx to down state since we will not get a link down
	 * event from the MFW but calling __qedf_remove will essentially be a
	 * link down event.
	 */
	atomic_set(&qedf->link_state, QEDF_LINK_DOWN);
	atomic_set(&qedf->dcbx, QEDF_DCBX_PENDING);
	__qedf_probe(qedf->pdev, QEDF_MODE_RECOVERY);
	clear_bit(QEDF_IN_RECOVERY, &qedf->flags);
	QEDF_ERR(&qedf->dbg_ctx, "Recovery work complete.\n");
}

/* Generic TLV data callback */
void qedf_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
{
	struct qedf_ctx *qedf;

	if (!dev) {
		QEDF_INFO(NULL, QEDF_LOG_EVT,
			  "dev is NULL so ignoring get_generic_tlv_data request.\n");
		return;
	}
	qedf = (struct qedf_ctx *)dev;

	memset(data, 0, sizeof(struct qed_generic_tlvs));
	ether_addr_copy(data->mac[0], qedf->mac);
}

/*
 * Module Init/Remove
 */

static int __init qedf_init(void)
{
	int ret;

	/* If debug=1 passed, set the default log mask */
	if (qedf_debug == QEDF_LOG_DEFAULT)
		qedf_debug = QEDF_DEFAULT_LOG_MASK;

	/*
	 * Check that default prio for FIP/FCoE traffic is between 0..7 if a
	 * value has been set
	 */
	if (qedf_default_prio > -1)
		if (qedf_default_prio > 7) {
			qedf_default_prio = QEDF_DEFAULT_PRIO;
			QEDF_ERR(NULL, "FCoE/FIP priority out of range, resetting to %d.\n",
			    QEDF_DEFAULT_PRIO);
		}

	/* Print driver banner */
	QEDF_INFO(NULL, QEDF_LOG_INFO, "%s v%s.\n", QEDF_DESCR,
		   QEDF_VERSION);

	/* Create kmem_cache for qedf_io_work structs */
	qedf_io_work_cache = kmem_cache_create("qedf_io_work_cache",
	    sizeof(struct qedf_io_work), 0, SLAB_HWCACHE_ALIGN, NULL);
	if (qedf_io_work_cache == NULL) {
		QEDF_ERR(NULL, "qedf_io_work_cache is NULL.\n");
		goto err1;
	}
	QEDF_INFO(NULL, QEDF_LOG_DISC, "qedf_io_work_cache=%p.\n",
	    qedf_io_work_cache);

	qed_ops = qed_get_fcoe_ops();
	if (!qed_ops) {
		QEDF_ERR(NULL, "Failed to get qed fcoe operations\n");
		goto err1;
	}

#ifdef CONFIG_DEBUG_FS
	qedf_dbg_init("qedf");
#endif

	qedf_fc_transport_template =
	    fc_attach_transport(&qedf_fc_transport_fn);
	if (!qedf_fc_transport_template) {
		QEDF_ERR(NULL, "Could not register with FC transport\n");
		goto err2;
	}

	qedf_fc_vport_transport_template =
		fc_attach_transport(&qedf_fc_vport_transport_fn);
	if (!qedf_fc_vport_transport_template) {
		QEDF_ERR(NULL, "Could not register vport template with FC "
			  "transport\n");
		goto err3;
	}

	qedf_io_wq = create_workqueue("qedf_io_wq");
	if (!qedf_io_wq) {
		QEDF_ERR(NULL, "Could not create qedf_io_wq.\n");
		goto err4;
	}

	qedf_cb_ops.get_login_failures = qedf_get_login_failures;

	ret = pci_register_driver(&qedf_pci_driver);
	if (ret) {
		QEDF_ERR(NULL, "Failed to register driver\n");
		goto err5;
	}

	return 0;

err5:
	destroy_workqueue(qedf_io_wq);
err4:
	fc_release_transport(qedf_fc_vport_transport_template);
err3:
	fc_release_transport(qedf_fc_transport_template);
err2:
#ifdef CONFIG_DEBUG_FS
	qedf_dbg_exit();
#endif
	qed_put_fcoe_ops();
err1:
	return -EINVAL;
}

static void __exit qedf_cleanup(void)
{
	pci_unregister_driver(&qedf_pci_driver);

	destroy_workqueue(qedf_io_wq);

	fc_release_transport(qedf_fc_vport_transport_template);
	fc_release_transport(qedf_fc_transport_template);
#ifdef CONFIG_DEBUG_FS
	qedf_dbg_exit();
#endif
	qed_put_fcoe_ops();

	kmem_cache_destroy(qedf_io_work_cache);
}

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx FCoE Module");
MODULE_AUTHOR("QLogic Corporation");
MODULE_VERSION(QEDF_VERSION);
module_init(qedf_init);
module_exit(qedf_cleanup);