Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sandeep Paulraj | 1579 | 37.68% | 1 | 1.25% |
Brian Niebuhr | 1152 | 27.49% | 29 | 36.25% |
Murali Karicheri | 449 | 10.71% | 5 | 6.25% |
Sekhar Nori | 261 | 6.23% | 6 | 7.50% |
Matt Porter | 237 | 5.65% | 1 | 1.25% |
Franklin S Cooper Jr | 121 | 2.89% | 2 | 2.50% |
Frode Isaksen | 90 | 2.15% | 4 | 5.00% |
Fabien Parent | 88 | 2.10% | 2 | 2.50% |
Peter Ujfalusi | 65 | 1.55% | 1 | 1.25% |
Jingoo Han | 34 | 0.81% | 3 | 3.75% |
Linus Walleij | 15 | 0.36% | 1 | 1.25% |
Andrzej Hajda | 15 | 0.36% | 1 | 1.25% |
David Lechner | 13 | 0.31% | 1 | 1.25% |
Stephen Warren | 12 | 0.29% | 1 | 1.25% |
Arvind Yadav | 11 | 0.26% | 2 | 2.50% |
Luis de Bethencourt | 6 | 0.14% | 1 | 1.25% |
Grant C. Likely | 6 | 0.14% | 1 | 1.25% |
Kees Cook | 5 | 0.12% | 1 | 1.25% |
Axel Lin | 4 | 0.10% | 2 | 2.50% |
Prakash Manjunathappa | 3 | 0.07% | 2 | 2.50% |
Grygorii Strashko | 3 | 0.07% | 2 | 2.50% |
Michael Williamson | 3 | 0.07% | 2 | 2.50% |
Lee Jones | 3 | 0.07% | 1 | 1.25% |
Tian Tao | 3 | 0.07% | 1 | 1.25% |
Thomas Gleixner | 2 | 0.05% | 1 | 1.25% |
Bartosz Golaszewski | 2 | 0.05% | 1 | 1.25% |
Wolfram Sang | 2 | 0.05% | 1 | 1.25% |
Sachin Kamat | 2 | 0.05% | 1 | 1.25% |
Matija Glavinic Pecotic | 2 | 0.05% | 1 | 1.25% |
Tejun Heo | 2 | 0.05% | 1 | 1.25% |
Linus Torvalds | 1 | 0.02% | 1 | 1.25% |
Total | 4191 | 80 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2009 Texas Instruments. * Copyright (C) 2010 EF Johnson Technologies */ #include <linux/interrupt.h> #include <linux/io.h> #include <linux/gpio/consumer.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/spi/spi.h> #include <linux/spi/spi_bitbang.h> #include <linux/slab.h> #include <linux/platform_data/spi-davinci.h> #define CS_DEFAULT 0xFF #define SPIFMT_PHASE_MASK BIT(16) #define SPIFMT_POLARITY_MASK BIT(17) #define SPIFMT_DISTIMER_MASK BIT(18) #define SPIFMT_SHIFTDIR_MASK BIT(20) #define SPIFMT_WAITENA_MASK BIT(21) #define SPIFMT_PARITYENA_MASK BIT(22) #define SPIFMT_ODD_PARITY_MASK BIT(23) #define SPIFMT_WDELAY_MASK 0x3f000000u #define SPIFMT_WDELAY_SHIFT 24 #define SPIFMT_PRESCALE_SHIFT 8 /* SPIPC0 */ #define SPIPC0_DIFUN_MASK BIT(11) /* MISO */ #define SPIPC0_DOFUN_MASK BIT(10) /* MOSI */ #define SPIPC0_CLKFUN_MASK BIT(9) /* CLK */ #define SPIPC0_SPIENA_MASK BIT(8) /* nREADY */ #define SPIINT_MASKALL 0x0101035F #define SPIINT_MASKINT 0x0000015F #define SPI_INTLVL_1 0x000001FF #define SPI_INTLVL_0 0x00000000 /* SPIDAT1 (upper 16 bit defines) */ #define SPIDAT1_CSHOLD_MASK BIT(12) #define SPIDAT1_WDEL BIT(10) /* SPIGCR1 */ #define SPIGCR1_CLKMOD_MASK BIT(1) #define SPIGCR1_MASTER_MASK BIT(0) #define SPIGCR1_POWERDOWN_MASK BIT(8) #define SPIGCR1_LOOPBACK_MASK BIT(16) #define SPIGCR1_SPIENA_MASK BIT(24) /* SPIBUF */ #define SPIBUF_TXFULL_MASK BIT(29) #define SPIBUF_RXEMPTY_MASK BIT(31) /* SPIDELAY */ #define SPIDELAY_C2TDELAY_SHIFT 24 #define SPIDELAY_C2TDELAY_MASK (0xFF << SPIDELAY_C2TDELAY_SHIFT) #define SPIDELAY_T2CDELAY_SHIFT 16 #define SPIDELAY_T2CDELAY_MASK (0xFF << SPIDELAY_T2CDELAY_SHIFT) #define SPIDELAY_T2EDELAY_SHIFT 8 #define SPIDELAY_T2EDELAY_MASK (0xFF << SPIDELAY_T2EDELAY_SHIFT) #define SPIDELAY_C2EDELAY_SHIFT 0 #define SPIDELAY_C2EDELAY_MASK 0xFF /* Error Masks */ #define SPIFLG_DLEN_ERR_MASK BIT(0) #define SPIFLG_TIMEOUT_MASK BIT(1) #define SPIFLG_PARERR_MASK BIT(2) #define SPIFLG_DESYNC_MASK BIT(3) #define SPIFLG_BITERR_MASK BIT(4) #define SPIFLG_OVRRUN_MASK BIT(6) #define SPIFLG_BUF_INIT_ACTIVE_MASK BIT(24) #define SPIFLG_ERROR_MASK (SPIFLG_DLEN_ERR_MASK \ | SPIFLG_TIMEOUT_MASK | SPIFLG_PARERR_MASK \ | SPIFLG_DESYNC_MASK | SPIFLG_BITERR_MASK \ | SPIFLG_OVRRUN_MASK) #define SPIINT_DMA_REQ_EN BIT(16) /* SPI Controller registers */ #define SPIGCR0 0x00 #define SPIGCR1 0x04 #define SPIINT 0x08 #define SPILVL 0x0c #define SPIFLG 0x10 #define SPIPC0 0x14 #define SPIDAT1 0x3c #define SPIBUF 0x40 #define SPIDELAY 0x48 #define SPIDEF 0x4c #define SPIFMT0 0x50 #define DMA_MIN_BYTES 16 /* SPI Controller driver's private data. */ struct davinci_spi { struct spi_bitbang bitbang; struct clk *clk; u8 version; resource_size_t pbase; void __iomem *base; u32 irq; struct completion done; const void *tx; void *rx; int rcount; int wcount; struct dma_chan *dma_rx; struct dma_chan *dma_tx; struct davinci_spi_platform_data pdata; void (*get_rx)(u32 rx_data, struct davinci_spi *); u32 (*get_tx)(struct davinci_spi *); u8 *bytes_per_word; u8 prescaler_limit; }; static struct davinci_spi_config davinci_spi_default_cfg; static void davinci_spi_rx_buf_u8(u32 data, struct davinci_spi *dspi) { if (dspi->rx) { u8 *rx = dspi->rx; *rx++ = (u8)data; dspi->rx = rx; } } static void davinci_spi_rx_buf_u16(u32 data, struct davinci_spi *dspi) { if (dspi->rx) { u16 *rx = dspi->rx; *rx++ = (u16)data; dspi->rx = rx; } } static u32 davinci_spi_tx_buf_u8(struct davinci_spi *dspi) { u32 data = 0; if (dspi->tx) { const u8 *tx = dspi->tx; data = *tx++; dspi->tx = tx; } return data; } static u32 davinci_spi_tx_buf_u16(struct davinci_spi *dspi) { u32 data = 0; if (dspi->tx) { const u16 *tx = dspi->tx; data = *tx++; dspi->tx = tx; } return data; } static inline void set_io_bits(void __iomem *addr, u32 bits) { u32 v = ioread32(addr); v |= bits; iowrite32(v, addr); } static inline void clear_io_bits(void __iomem *addr, u32 bits) { u32 v = ioread32(addr); v &= ~bits; iowrite32(v, addr); } /* * Interface to control the chip select signal */ static void davinci_spi_chipselect(struct spi_device *spi, int value) { struct davinci_spi *dspi; struct davinci_spi_config *spicfg = spi->controller_data; u8 chip_sel = spi->chip_select; u16 spidat1 = CS_DEFAULT; dspi = spi_master_get_devdata(spi->master); /* program delay transfers if tx_delay is non zero */ if (spicfg && spicfg->wdelay) spidat1 |= SPIDAT1_WDEL; /* * Board specific chip select logic decides the polarity and cs * line for the controller */ if (spi->cs_gpiod) { if (value == BITBANG_CS_ACTIVE) gpiod_set_value(spi->cs_gpiod, 1); else gpiod_set_value(spi->cs_gpiod, 0); } else { if (value == BITBANG_CS_ACTIVE) { if (!(spi->mode & SPI_CS_WORD)) spidat1 |= SPIDAT1_CSHOLD_MASK; spidat1 &= ~(0x1 << chip_sel); } } iowrite16(spidat1, dspi->base + SPIDAT1 + 2); } /** * davinci_spi_get_prescale - Calculates the correct prescale value * @dspi: the controller data * @max_speed_hz: the maximum rate the SPI clock can run at * * This function calculates the prescale value that generates a clock rate * less than or equal to the specified maximum. * * Returns: calculated prescale value for easy programming into SPI registers * or negative error number if valid prescalar cannot be updated. */ static inline int davinci_spi_get_prescale(struct davinci_spi *dspi, u32 max_speed_hz) { int ret; /* Subtract 1 to match what will be programmed into SPI register. */ ret = DIV_ROUND_UP(clk_get_rate(dspi->clk), max_speed_hz) - 1; if (ret < dspi->prescaler_limit || ret > 255) return -EINVAL; return ret; } /** * davinci_spi_setup_transfer - This functions will determine transfer method * @spi: spi device on which data transfer to be done * @t: spi transfer in which transfer info is filled * * This function determines data transfer method (8/16/32 bit transfer). * It will also set the SPI Clock Control register according to * SPI slave device freq. */ static int davinci_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct davinci_spi *dspi; struct davinci_spi_config *spicfg; u8 bits_per_word = 0; u32 hz = 0, spifmt = 0; int prescale; dspi = spi_master_get_devdata(spi->master); spicfg = spi->controller_data; if (!spicfg) spicfg = &davinci_spi_default_cfg; if (t) { bits_per_word = t->bits_per_word; hz = t->speed_hz; } /* if bits_per_word is not set then set it default */ if (!bits_per_word) bits_per_word = spi->bits_per_word; /* * Assign function pointer to appropriate transfer method * 8bit, 16bit or 32bit transfer */ if (bits_per_word <= 8) { dspi->get_rx = davinci_spi_rx_buf_u8; dspi->get_tx = davinci_spi_tx_buf_u8; dspi->bytes_per_word[spi->chip_select] = 1; } else { dspi->get_rx = davinci_spi_rx_buf_u16; dspi->get_tx = davinci_spi_tx_buf_u16; dspi->bytes_per_word[spi->chip_select] = 2; } if (!hz) hz = spi->max_speed_hz; /* Set up SPIFMTn register, unique to this chipselect. */ prescale = davinci_spi_get_prescale(dspi, hz); if (prescale < 0) return prescale; spifmt = (prescale << SPIFMT_PRESCALE_SHIFT) | (bits_per_word & 0x1f); if (spi->mode & SPI_LSB_FIRST) spifmt |= SPIFMT_SHIFTDIR_MASK; if (spi->mode & SPI_CPOL) spifmt |= SPIFMT_POLARITY_MASK; if (!(spi->mode & SPI_CPHA)) spifmt |= SPIFMT_PHASE_MASK; /* * Assume wdelay is used only on SPI peripherals that has this field * in SPIFMTn register and when it's configured from board file or DT. */ if (spicfg->wdelay) spifmt |= ((spicfg->wdelay << SPIFMT_WDELAY_SHIFT) & SPIFMT_WDELAY_MASK); /* * Version 1 hardware supports two basic SPI modes: * - Standard SPI mode uses 4 pins, with chipselect * - 3 pin SPI is a 4 pin variant without CS (SPI_NO_CS) * (distinct from SPI_3WIRE, with just one data wire; * or similar variants without MOSI or without MISO) * * Version 2 hardware supports an optional handshaking signal, * so it can support two more modes: * - 5 pin SPI variant is standard SPI plus SPI_READY * - 4 pin with enable is (SPI_READY | SPI_NO_CS) */ if (dspi->version == SPI_VERSION_2) { u32 delay = 0; if (spicfg->odd_parity) spifmt |= SPIFMT_ODD_PARITY_MASK; if (spicfg->parity_enable) spifmt |= SPIFMT_PARITYENA_MASK; if (spicfg->timer_disable) { spifmt |= SPIFMT_DISTIMER_MASK; } else { delay |= (spicfg->c2tdelay << SPIDELAY_C2TDELAY_SHIFT) & SPIDELAY_C2TDELAY_MASK; delay |= (spicfg->t2cdelay << SPIDELAY_T2CDELAY_SHIFT) & SPIDELAY_T2CDELAY_MASK; } if (spi->mode & SPI_READY) { spifmt |= SPIFMT_WAITENA_MASK; delay |= (spicfg->t2edelay << SPIDELAY_T2EDELAY_SHIFT) & SPIDELAY_T2EDELAY_MASK; delay |= (spicfg->c2edelay << SPIDELAY_C2EDELAY_SHIFT) & SPIDELAY_C2EDELAY_MASK; } iowrite32(delay, dspi->base + SPIDELAY); } iowrite32(spifmt, dspi->base + SPIFMT0); return 0; } static int davinci_spi_of_setup(struct spi_device *spi) { struct davinci_spi_config *spicfg = spi->controller_data; struct device_node *np = spi->dev.of_node; struct davinci_spi *dspi = spi_master_get_devdata(spi->master); u32 prop; if (spicfg == NULL && np) { spicfg = kzalloc(sizeof(*spicfg), GFP_KERNEL); if (!spicfg) return -ENOMEM; *spicfg = davinci_spi_default_cfg; /* override with dt configured values */ if (!of_property_read_u32(np, "ti,spi-wdelay", &prop)) spicfg->wdelay = (u8)prop; spi->controller_data = spicfg; if (dspi->dma_rx && dspi->dma_tx) spicfg->io_type = SPI_IO_TYPE_DMA; } return 0; } /** * davinci_spi_setup - This functions will set default transfer method * @spi: spi device on which data transfer to be done * * This functions sets the default transfer method. */ static int davinci_spi_setup(struct spi_device *spi) { struct davinci_spi *dspi; struct device_node *np = spi->dev.of_node; bool internal_cs = true; dspi = spi_master_get_devdata(spi->master); if (!(spi->mode & SPI_NO_CS)) { if (np && spi->cs_gpiod) internal_cs = false; if (internal_cs) set_io_bits(dspi->base + SPIPC0, 1 << spi->chip_select); } if (spi->mode & SPI_READY) set_io_bits(dspi->base + SPIPC0, SPIPC0_SPIENA_MASK); if (spi->mode & SPI_LOOP) set_io_bits(dspi->base + SPIGCR1, SPIGCR1_LOOPBACK_MASK); else clear_io_bits(dspi->base + SPIGCR1, SPIGCR1_LOOPBACK_MASK); return davinci_spi_of_setup(spi); } static void davinci_spi_cleanup(struct spi_device *spi) { struct davinci_spi_config *spicfg = spi->controller_data; spi->controller_data = NULL; if (spi->dev.of_node) kfree(spicfg); } static bool davinci_spi_can_dma(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { struct davinci_spi_config *spicfg = spi->controller_data; bool can_dma = false; if (spicfg) can_dma = (spicfg->io_type == SPI_IO_TYPE_DMA) && (xfer->len >= DMA_MIN_BYTES) && !is_vmalloc_addr(xfer->rx_buf) && !is_vmalloc_addr(xfer->tx_buf); return can_dma; } static int davinci_spi_check_error(struct davinci_spi *dspi, int int_status) { struct device *sdev = dspi->bitbang.master->dev.parent; if (int_status & SPIFLG_TIMEOUT_MASK) { dev_err(sdev, "SPI Time-out Error\n"); return -ETIMEDOUT; } if (int_status & SPIFLG_DESYNC_MASK) { dev_err(sdev, "SPI Desynchronization Error\n"); return -EIO; } if (int_status & SPIFLG_BITERR_MASK) { dev_err(sdev, "SPI Bit error\n"); return -EIO; } if (dspi->version == SPI_VERSION_2) { if (int_status & SPIFLG_DLEN_ERR_MASK) { dev_err(sdev, "SPI Data Length Error\n"); return -EIO; } if (int_status & SPIFLG_PARERR_MASK) { dev_err(sdev, "SPI Parity Error\n"); return -EIO; } if (int_status & SPIFLG_OVRRUN_MASK) { dev_err(sdev, "SPI Data Overrun error\n"); return -EIO; } if (int_status & SPIFLG_BUF_INIT_ACTIVE_MASK) { dev_err(sdev, "SPI Buffer Init Active\n"); return -EBUSY; } } return 0; } /** * davinci_spi_process_events - check for and handle any SPI controller events * @dspi: the controller data * * This function will check the SPIFLG register and handle any events that are * detected there */ static int davinci_spi_process_events(struct davinci_spi *dspi) { u32 buf, status, errors = 0, spidat1; buf = ioread32(dspi->base + SPIBUF); if (dspi->rcount > 0 && !(buf & SPIBUF_RXEMPTY_MASK)) { dspi->get_rx(buf & 0xFFFF, dspi); dspi->rcount--; } status = ioread32(dspi->base + SPIFLG); if (unlikely(status & SPIFLG_ERROR_MASK)) { errors = status & SPIFLG_ERROR_MASK; goto out; } if (dspi->wcount > 0 && !(buf & SPIBUF_TXFULL_MASK)) { spidat1 = ioread32(dspi->base + SPIDAT1); dspi->wcount--; spidat1 &= ~0xFFFF; spidat1 |= 0xFFFF & dspi->get_tx(dspi); iowrite32(spidat1, dspi->base + SPIDAT1); } out: return errors; } static void davinci_spi_dma_rx_callback(void *data) { struct davinci_spi *dspi = (struct davinci_spi *)data; dspi->rcount = 0; if (!dspi->wcount && !dspi->rcount) complete(&dspi->done); } static void davinci_spi_dma_tx_callback(void *data) { struct davinci_spi *dspi = (struct davinci_spi *)data; dspi->wcount = 0; if (!dspi->wcount && !dspi->rcount) complete(&dspi->done); } /** * davinci_spi_bufs - functions which will handle transfer data * @spi: spi device on which data transfer to be done * @t: spi transfer in which transfer info is filled * * This function will put data to be transferred into data register * of SPI controller and then wait until the completion will be marked * by the IRQ Handler. */ static int davinci_spi_bufs(struct spi_device *spi, struct spi_transfer *t) { struct davinci_spi *dspi; int data_type, ret = -ENOMEM; u32 tx_data, spidat1; u32 errors = 0; struct davinci_spi_config *spicfg; struct davinci_spi_platform_data *pdata; dspi = spi_master_get_devdata(spi->master); pdata = &dspi->pdata; spicfg = (struct davinci_spi_config *)spi->controller_data; if (!spicfg) spicfg = &davinci_spi_default_cfg; /* convert len to words based on bits_per_word */ data_type = dspi->bytes_per_word[spi->chip_select]; dspi->tx = t->tx_buf; dspi->rx = t->rx_buf; dspi->wcount = t->len / data_type; dspi->rcount = dspi->wcount; spidat1 = ioread32(dspi->base + SPIDAT1); clear_io_bits(dspi->base + SPIGCR1, SPIGCR1_POWERDOWN_MASK); set_io_bits(dspi->base + SPIGCR1, SPIGCR1_SPIENA_MASK); reinit_completion(&dspi->done); if (!davinci_spi_can_dma(spi->master, spi, t)) { if (spicfg->io_type != SPI_IO_TYPE_POLL) set_io_bits(dspi->base + SPIINT, SPIINT_MASKINT); /* start the transfer */ dspi->wcount--; tx_data = dspi->get_tx(dspi); spidat1 &= 0xFFFF0000; spidat1 |= tx_data & 0xFFFF; iowrite32(spidat1, dspi->base + SPIDAT1); } else { struct dma_slave_config dma_rx_conf = { .direction = DMA_DEV_TO_MEM, .src_addr = (unsigned long)dspi->pbase + SPIBUF, .src_addr_width = data_type, .src_maxburst = 1, }; struct dma_slave_config dma_tx_conf = { .direction = DMA_MEM_TO_DEV, .dst_addr = (unsigned long)dspi->pbase + SPIDAT1, .dst_addr_width = data_type, .dst_maxburst = 1, }; struct dma_async_tx_descriptor *rxdesc; struct dma_async_tx_descriptor *txdesc; dmaengine_slave_config(dspi->dma_rx, &dma_rx_conf); dmaengine_slave_config(dspi->dma_tx, &dma_tx_conf); rxdesc = dmaengine_prep_slave_sg(dspi->dma_rx, t->rx_sg.sgl, t->rx_sg.nents, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!rxdesc) goto err_desc; if (!t->tx_buf) { /* To avoid errors when doing rx-only transfers with * many SG entries (> 20), use the rx buffer as the * dummy tx buffer so that dma reloads are done at the * same time for rx and tx. */ t->tx_sg.sgl = t->rx_sg.sgl; t->tx_sg.nents = t->rx_sg.nents; } txdesc = dmaengine_prep_slave_sg(dspi->dma_tx, t->tx_sg.sgl, t->tx_sg.nents, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!txdesc) goto err_desc; rxdesc->callback = davinci_spi_dma_rx_callback; rxdesc->callback_param = (void *)dspi; txdesc->callback = davinci_spi_dma_tx_callback; txdesc->callback_param = (void *)dspi; if (pdata->cshold_bug) iowrite16(spidat1 >> 16, dspi->base + SPIDAT1 + 2); dmaengine_submit(rxdesc); dmaengine_submit(txdesc); dma_async_issue_pending(dspi->dma_rx); dma_async_issue_pending(dspi->dma_tx); set_io_bits(dspi->base + SPIINT, SPIINT_DMA_REQ_EN); } /* Wait for the transfer to complete */ if (spicfg->io_type != SPI_IO_TYPE_POLL) { if (wait_for_completion_timeout(&dspi->done, HZ) == 0) errors = SPIFLG_TIMEOUT_MASK; } else { while (dspi->rcount > 0 || dspi->wcount > 0) { errors = davinci_spi_process_events(dspi); if (errors) break; cpu_relax(); } } clear_io_bits(dspi->base + SPIINT, SPIINT_MASKALL); if (davinci_spi_can_dma(spi->master, spi, t)) clear_io_bits(dspi->base + SPIINT, SPIINT_DMA_REQ_EN); clear_io_bits(dspi->base + SPIGCR1, SPIGCR1_SPIENA_MASK); set_io_bits(dspi->base + SPIGCR1, SPIGCR1_POWERDOWN_MASK); /* * Check for bit error, desync error,parity error,timeout error and * receive overflow errors */ if (errors) { ret = davinci_spi_check_error(dspi, errors); WARN(!ret, "%s: error reported but no error found!\n", dev_name(&spi->dev)); return ret; } if (dspi->rcount != 0 || dspi->wcount != 0) { dev_err(&spi->dev, "SPI data transfer error\n"); return -EIO; } return t->len; err_desc: return ret; } /** * dummy_thread_fn - dummy thread function * @irq: IRQ number for this SPI Master * @data: structure for SPI Master controller davinci_spi * * This is to satisfy the request_threaded_irq() API so that the irq * handler is called in interrupt context. */ static irqreturn_t dummy_thread_fn(s32 irq, void *data) { return IRQ_HANDLED; } /** * davinci_spi_irq - Interrupt handler for SPI Master Controller * @irq: IRQ number for this SPI Master * @data: structure for SPI Master controller davinci_spi * * ISR will determine that interrupt arrives either for READ or WRITE command. * According to command it will do the appropriate action. It will check * transfer length and if it is not zero then dispatch transfer command again. * If transfer length is zero then it will indicate the COMPLETION so that * davinci_spi_bufs function can go ahead. */ static irqreturn_t davinci_spi_irq(s32 irq, void *data) { struct davinci_spi *dspi = data; int status; status = davinci_spi_process_events(dspi); if (unlikely(status != 0)) clear_io_bits(dspi->base + SPIINT, SPIINT_MASKINT); if ((!dspi->rcount && !dspi->wcount) || status) complete(&dspi->done); return IRQ_HANDLED; } static int davinci_spi_request_dma(struct davinci_spi *dspi) { struct device *sdev = dspi->bitbang.master->dev.parent; dspi->dma_rx = dma_request_chan(sdev, "rx"); if (IS_ERR(dspi->dma_rx)) return PTR_ERR(dspi->dma_rx); dspi->dma_tx = dma_request_chan(sdev, "tx"); if (IS_ERR(dspi->dma_tx)) { dma_release_channel(dspi->dma_rx); return PTR_ERR(dspi->dma_tx); } return 0; } #if defined(CONFIG_OF) /* OF SPI data structure */ struct davinci_spi_of_data { u8 version; u8 prescaler_limit; }; static const struct davinci_spi_of_data dm6441_spi_data = { .version = SPI_VERSION_1, .prescaler_limit = 2, }; static const struct davinci_spi_of_data da830_spi_data = { .version = SPI_VERSION_2, .prescaler_limit = 2, }; static const struct davinci_spi_of_data keystone_spi_data = { .version = SPI_VERSION_1, .prescaler_limit = 0, }; static const struct of_device_id davinci_spi_of_match[] = { { .compatible = "ti,dm6441-spi", .data = &dm6441_spi_data, }, { .compatible = "ti,da830-spi", .data = &da830_spi_data, }, { .compatible = "ti,keystone-spi", .data = &keystone_spi_data, }, { }, }; MODULE_DEVICE_TABLE(of, davinci_spi_of_match); /** * spi_davinci_get_pdata - Get platform data from DTS binding * @pdev: ptr to platform data * @dspi: ptr to driver data * * Parses and populates pdata in dspi from device tree bindings. * * NOTE: Not all platform data params are supported currently. */ static int spi_davinci_get_pdata(struct platform_device *pdev, struct davinci_spi *dspi) { struct device_node *node = pdev->dev.of_node; const struct davinci_spi_of_data *spi_data; struct davinci_spi_platform_data *pdata; unsigned int num_cs, intr_line = 0; pdata = &dspi->pdata; spi_data = device_get_match_data(&pdev->dev); pdata->version = spi_data->version; pdata->prescaler_limit = spi_data->prescaler_limit; /* * default num_cs is 1 and all chipsel are internal to the chip * indicated by chip_sel being NULL or cs_gpios being NULL or * set to -ENOENT. num-cs includes internal as well as gpios. * indicated by chip_sel being NULL. GPIO based CS is not * supported yet in DT bindings. */ num_cs = 1; of_property_read_u32(node, "num-cs", &num_cs); pdata->num_chipselect = num_cs; of_property_read_u32(node, "ti,davinci-spi-intr-line", &intr_line); pdata->intr_line = intr_line; return 0; } #else static int spi_davinci_get_pdata(struct platform_device *pdev, struct davinci_spi *dspi) { return -ENODEV; } #endif /** * davinci_spi_probe - probe function for SPI Master Controller * @pdev: platform_device structure which contains plateform specific data * * According to Linux Device Model this function will be invoked by Linux * with platform_device struct which contains the device specific info. * This function will map the SPI controller's memory, register IRQ, * Reset SPI controller and setting its registers to default value. * It will invoke spi_bitbang_start to create work queue so that client driver * can register transfer method to work queue. */ static int davinci_spi_probe(struct platform_device *pdev) { struct spi_master *master; struct davinci_spi *dspi; struct davinci_spi_platform_data *pdata; struct resource *r; int ret = 0; u32 spipc0; master = spi_alloc_master(&pdev->dev, sizeof(struct davinci_spi)); if (master == NULL) { ret = -ENOMEM; goto err; } platform_set_drvdata(pdev, master); dspi = spi_master_get_devdata(master); if (dev_get_platdata(&pdev->dev)) { pdata = dev_get_platdata(&pdev->dev); dspi->pdata = *pdata; } else { /* update dspi pdata with that from the DT */ ret = spi_davinci_get_pdata(pdev, dspi); if (ret < 0) goto free_master; } /* pdata in dspi is now updated and point pdata to that */ pdata = &dspi->pdata; dspi->bytes_per_word = devm_kcalloc(&pdev->dev, pdata->num_chipselect, sizeof(*dspi->bytes_per_word), GFP_KERNEL); if (dspi->bytes_per_word == NULL) { ret = -ENOMEM; goto free_master; } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (r == NULL) { ret = -ENOENT; goto free_master; } dspi->pbase = r->start; dspi->base = devm_ioremap_resource(&pdev->dev, r); if (IS_ERR(dspi->base)) { ret = PTR_ERR(dspi->base); goto free_master; } init_completion(&dspi->done); ret = platform_get_irq(pdev, 0); if (ret == 0) ret = -EINVAL; if (ret < 0) goto free_master; dspi->irq = ret; ret = devm_request_threaded_irq(&pdev->dev, dspi->irq, davinci_spi_irq, dummy_thread_fn, 0, dev_name(&pdev->dev), dspi); if (ret) goto free_master; dspi->bitbang.master = master; dspi->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(dspi->clk)) { ret = -ENODEV; goto free_master; } ret = clk_prepare_enable(dspi->clk); if (ret) goto free_master; master->use_gpio_descriptors = true; master->dev.of_node = pdev->dev.of_node; master->bus_num = pdev->id; master->num_chipselect = pdata->num_chipselect; master->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 16); master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_GPIO_SS; master->setup = davinci_spi_setup; master->cleanup = davinci_spi_cleanup; master->can_dma = davinci_spi_can_dma; dspi->bitbang.chipselect = davinci_spi_chipselect; dspi->bitbang.setup_transfer = davinci_spi_setup_transfer; dspi->prescaler_limit = pdata->prescaler_limit; dspi->version = pdata->version; dspi->bitbang.flags = SPI_NO_CS | SPI_LSB_FIRST | SPI_LOOP | SPI_CS_WORD; if (dspi->version == SPI_VERSION_2) dspi->bitbang.flags |= SPI_READY; dspi->bitbang.txrx_bufs = davinci_spi_bufs; ret = davinci_spi_request_dma(dspi); if (ret == -EPROBE_DEFER) { goto free_clk; } else if (ret) { dev_info(&pdev->dev, "DMA is not supported (%d)\n", ret); dspi->dma_rx = NULL; dspi->dma_tx = NULL; } dspi->get_rx = davinci_spi_rx_buf_u8; dspi->get_tx = davinci_spi_tx_buf_u8; /* Reset In/OUT SPI module */ iowrite32(0, dspi->base + SPIGCR0); udelay(100); iowrite32(1, dspi->base + SPIGCR0); /* Set up SPIPC0. CS and ENA init is done in davinci_spi_setup */ spipc0 = SPIPC0_DIFUN_MASK | SPIPC0_DOFUN_MASK | SPIPC0_CLKFUN_MASK; iowrite32(spipc0, dspi->base + SPIPC0); if (pdata->intr_line) iowrite32(SPI_INTLVL_1, dspi->base + SPILVL); else iowrite32(SPI_INTLVL_0, dspi->base + SPILVL); iowrite32(CS_DEFAULT, dspi->base + SPIDEF); /* master mode default */ set_io_bits(dspi->base + SPIGCR1, SPIGCR1_CLKMOD_MASK); set_io_bits(dspi->base + SPIGCR1, SPIGCR1_MASTER_MASK); set_io_bits(dspi->base + SPIGCR1, SPIGCR1_POWERDOWN_MASK); ret = spi_bitbang_start(&dspi->bitbang); if (ret) goto free_dma; dev_info(&pdev->dev, "Controller at 0x%p\n", dspi->base); return ret; free_dma: if (dspi->dma_rx) { dma_release_channel(dspi->dma_rx); dma_release_channel(dspi->dma_tx); } free_clk: clk_disable_unprepare(dspi->clk); free_master: spi_master_put(master); err: return ret; } /** * davinci_spi_remove - remove function for SPI Master Controller * @pdev: platform_device structure which contains plateform specific data * * This function will do the reverse action of davinci_spi_probe function * It will free the IRQ and SPI controller's memory region. * It will also call spi_bitbang_stop to destroy the work queue which was * created by spi_bitbang_start. */ static int davinci_spi_remove(struct platform_device *pdev) { struct davinci_spi *dspi; struct spi_master *master; master = platform_get_drvdata(pdev); dspi = spi_master_get_devdata(master); spi_bitbang_stop(&dspi->bitbang); clk_disable_unprepare(dspi->clk); if (dspi->dma_rx) { dma_release_channel(dspi->dma_rx); dma_release_channel(dspi->dma_tx); } spi_master_put(master); return 0; } static struct platform_driver davinci_spi_driver = { .driver = { .name = "spi_davinci", .of_match_table = of_match_ptr(davinci_spi_of_match), }, .probe = davinci_spi_probe, .remove = davinci_spi_remove, }; module_platform_driver(davinci_spi_driver); MODULE_DESCRIPTION("TI DaVinci SPI Master Controller Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1