Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kamlakant Patel | 1997 | 99.45% | 2 | 33.33% |
Jayachandran C | 6 | 0.30% | 1 | 16.67% |
Thomas Gleixner | 2 | 0.10% | 1 | 16.67% |
Yue haibing | 2 | 0.10% | 1 | 16.67% |
Gustavo A. R. Silva | 1 | 0.05% | 1 | 16.67% |
Total | 2008 | 6 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2003-2015 Broadcom Corporation * All Rights Reserved */ #include <linux/acpi.h> #include <linux/clk.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #include <linux/interrupt.h> /* SPI Configuration Register */ #define XLP_SPI_CONFIG 0x00 #define XLP_SPI_CPHA BIT(0) #define XLP_SPI_CPOL BIT(1) #define XLP_SPI_CS_POL BIT(2) #define XLP_SPI_TXMISO_EN BIT(3) #define XLP_SPI_TXMOSI_EN BIT(4) #define XLP_SPI_RXMISO_EN BIT(5) #define XLP_SPI_CS_LSBFE BIT(10) #define XLP_SPI_RXCAP_EN BIT(11) /* SPI Frequency Divider Register */ #define XLP_SPI_FDIV 0x04 /* SPI Command Register */ #define XLP_SPI_CMD 0x08 #define XLP_SPI_CMD_IDLE_MASK 0x0 #define XLP_SPI_CMD_TX_MASK 0x1 #define XLP_SPI_CMD_RX_MASK 0x2 #define XLP_SPI_CMD_TXRX_MASK 0x3 #define XLP_SPI_CMD_CONT BIT(4) #define XLP_SPI_XFR_BITCNT_SHIFT 16 /* SPI Status Register */ #define XLP_SPI_STATUS 0x0c #define XLP_SPI_XFR_PENDING BIT(0) #define XLP_SPI_XFR_DONE BIT(1) #define XLP_SPI_TX_INT BIT(2) #define XLP_SPI_RX_INT BIT(3) #define XLP_SPI_TX_UF BIT(4) #define XLP_SPI_RX_OF BIT(5) #define XLP_SPI_STAT_MASK 0x3f /* SPI Interrupt Enable Register */ #define XLP_SPI_INTR_EN 0x10 #define XLP_SPI_INTR_DONE BIT(0) #define XLP_SPI_INTR_TXTH BIT(1) #define XLP_SPI_INTR_RXTH BIT(2) #define XLP_SPI_INTR_TXUF BIT(3) #define XLP_SPI_INTR_RXOF BIT(4) /* SPI FIFO Threshold Register */ #define XLP_SPI_FIFO_THRESH 0x14 /* SPI FIFO Word Count Register */ #define XLP_SPI_FIFO_WCNT 0x18 #define XLP_SPI_RXFIFO_WCNT_MASK 0xf #define XLP_SPI_TXFIFO_WCNT_MASK 0xf0 #define XLP_SPI_TXFIFO_WCNT_SHIFT 4 /* SPI Transmit Data FIFO Register */ #define XLP_SPI_TXDATA_FIFO 0x1c /* SPI Receive Data FIFO Register */ #define XLP_SPI_RXDATA_FIFO 0x20 /* SPI System Control Register */ #define XLP_SPI_SYSCTRL 0x100 #define XLP_SPI_SYS_RESET BIT(0) #define XLP_SPI_SYS_CLKDIS BIT(1) #define XLP_SPI_SYS_PMEN BIT(8) #define SPI_CS_OFFSET 0x40 #define XLP_SPI_TXRXTH 0x80 #define XLP_SPI_FIFO_SIZE 8 #define XLP_SPI_MAX_CS 4 #define XLP_SPI_DEFAULT_FREQ 133333333 #define XLP_SPI_FDIV_MIN 4 #define XLP_SPI_FDIV_MAX 65535 /* * SPI can transfer only 28 bytes properly at a time. So split the * transfer into 28 bytes size. */ #define XLP_SPI_XFER_SIZE 28 struct xlp_spi_priv { struct device dev; /* device structure */ void __iomem *base; /* spi registers base address */ const u8 *tx_buf; /* tx data buffer */ u8 *rx_buf; /* rx data buffer */ int tx_len; /* tx xfer length */ int rx_len; /* rx xfer length */ int txerrors; /* TXFIFO underflow count */ int rxerrors; /* RXFIFO overflow count */ int cs; /* slave device chip select */ u32 spi_clk; /* spi clock frequency */ bool cmd_cont; /* cs active */ struct completion done; /* completion notification */ }; static inline u32 xlp_spi_reg_read(struct xlp_spi_priv *priv, int cs, int regoff) { return readl(priv->base + regoff + cs * SPI_CS_OFFSET); } static inline void xlp_spi_reg_write(struct xlp_spi_priv *priv, int cs, int regoff, u32 val) { writel(val, priv->base + regoff + cs * SPI_CS_OFFSET); } static inline void xlp_spi_sysctl_write(struct xlp_spi_priv *priv, int regoff, u32 val) { writel(val, priv->base + regoff); } /* * Setup global SPI_SYSCTRL register for all SPI channels. */ static void xlp_spi_sysctl_setup(struct xlp_spi_priv *xspi) { int cs; for (cs = 0; cs < XLP_SPI_MAX_CS; cs++) xlp_spi_sysctl_write(xspi, XLP_SPI_SYSCTRL, XLP_SPI_SYS_RESET << cs); xlp_spi_sysctl_write(xspi, XLP_SPI_SYSCTRL, XLP_SPI_SYS_PMEN); } static int xlp_spi_setup(struct spi_device *spi) { struct xlp_spi_priv *xspi; u32 fdiv, cfg; int cs; xspi = spi_master_get_devdata(spi->master); cs = spi->chip_select; /* * The value of fdiv must be between 4 and 65535. */ fdiv = DIV_ROUND_UP(xspi->spi_clk, spi->max_speed_hz); if (fdiv > XLP_SPI_FDIV_MAX) fdiv = XLP_SPI_FDIV_MAX; else if (fdiv < XLP_SPI_FDIV_MIN) fdiv = XLP_SPI_FDIV_MIN; xlp_spi_reg_write(xspi, cs, XLP_SPI_FDIV, fdiv); xlp_spi_reg_write(xspi, cs, XLP_SPI_FIFO_THRESH, XLP_SPI_TXRXTH); cfg = xlp_spi_reg_read(xspi, cs, XLP_SPI_CONFIG); if (spi->mode & SPI_CPHA) cfg |= XLP_SPI_CPHA; else cfg &= ~XLP_SPI_CPHA; if (spi->mode & SPI_CPOL) cfg |= XLP_SPI_CPOL; else cfg &= ~XLP_SPI_CPOL; if (!(spi->mode & SPI_CS_HIGH)) cfg |= XLP_SPI_CS_POL; else cfg &= ~XLP_SPI_CS_POL; if (spi->mode & SPI_LSB_FIRST) cfg |= XLP_SPI_CS_LSBFE; else cfg &= ~XLP_SPI_CS_LSBFE; cfg |= XLP_SPI_TXMOSI_EN | XLP_SPI_RXMISO_EN; if (fdiv == 4) cfg |= XLP_SPI_RXCAP_EN; xlp_spi_reg_write(xspi, cs, XLP_SPI_CONFIG, cfg); return 0; } static void xlp_spi_read_rxfifo(struct xlp_spi_priv *xspi) { u32 rx_data, rxfifo_cnt; int i, j, nbytes; rxfifo_cnt = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_FIFO_WCNT); rxfifo_cnt &= XLP_SPI_RXFIFO_WCNT_MASK; while (rxfifo_cnt) { rx_data = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_RXDATA_FIFO); j = 0; nbytes = min(xspi->rx_len, 4); for (i = nbytes - 1; i >= 0; i--, j++) xspi->rx_buf[i] = (rx_data >> (j * 8)) & 0xff; xspi->rx_len -= nbytes; xspi->rx_buf += nbytes; rxfifo_cnt--; } } static void xlp_spi_fill_txfifo(struct xlp_spi_priv *xspi) { u32 tx_data, txfifo_cnt; int i, j, nbytes; txfifo_cnt = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_FIFO_WCNT); txfifo_cnt &= XLP_SPI_TXFIFO_WCNT_MASK; txfifo_cnt >>= XLP_SPI_TXFIFO_WCNT_SHIFT; while (xspi->tx_len && (txfifo_cnt < XLP_SPI_FIFO_SIZE)) { j = 0; tx_data = 0; nbytes = min(xspi->tx_len, 4); for (i = nbytes - 1; i >= 0; i--, j++) tx_data |= xspi->tx_buf[i] << (j * 8); xlp_spi_reg_write(xspi, xspi->cs, XLP_SPI_TXDATA_FIFO, tx_data); xspi->tx_len -= nbytes; xspi->tx_buf += nbytes; txfifo_cnt++; } } static irqreturn_t xlp_spi_interrupt(int irq, void *dev_id) { struct xlp_spi_priv *xspi = dev_id; u32 stat; stat = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_STATUS) & XLP_SPI_STAT_MASK; if (!stat) return IRQ_NONE; if (stat & XLP_SPI_TX_INT) { if (xspi->tx_len) xlp_spi_fill_txfifo(xspi); if (stat & XLP_SPI_TX_UF) xspi->txerrors++; } if (stat & XLP_SPI_RX_INT) { if (xspi->rx_len) xlp_spi_read_rxfifo(xspi); if (stat & XLP_SPI_RX_OF) xspi->rxerrors++; } /* write status back to clear interrupts */ xlp_spi_reg_write(xspi, xspi->cs, XLP_SPI_STATUS, stat); if (stat & XLP_SPI_XFR_DONE) complete(&xspi->done); return IRQ_HANDLED; } static void xlp_spi_send_cmd(struct xlp_spi_priv *xspi, int xfer_len, int cmd_cont) { u32 cmd = 0; if (xspi->tx_buf) cmd |= XLP_SPI_CMD_TX_MASK; if (xspi->rx_buf) cmd |= XLP_SPI_CMD_RX_MASK; if (cmd_cont) cmd |= XLP_SPI_CMD_CONT; cmd |= ((xfer_len * 8 - 1) << XLP_SPI_XFR_BITCNT_SHIFT); xlp_spi_reg_write(xspi, xspi->cs, XLP_SPI_CMD, cmd); } static int xlp_spi_xfer_block(struct xlp_spi_priv *xs, const unsigned char *tx_buf, unsigned char *rx_buf, int xfer_len, int cmd_cont) { int timeout; u32 intr_mask = 0; xs->tx_buf = tx_buf; xs->rx_buf = rx_buf; xs->tx_len = (xs->tx_buf == NULL) ? 0 : xfer_len; xs->rx_len = (xs->rx_buf == NULL) ? 0 : xfer_len; xs->txerrors = xs->rxerrors = 0; /* fill TXDATA_FIFO, then send the CMD */ if (xs->tx_len) xlp_spi_fill_txfifo(xs); xlp_spi_send_cmd(xs, xfer_len, cmd_cont); /* * We are getting some spurious tx interrupts, so avoid enabling * tx interrupts when only rx is in process. * Enable all the interrupts in tx case. */ if (xs->tx_len) intr_mask |= XLP_SPI_INTR_TXTH | XLP_SPI_INTR_TXUF | XLP_SPI_INTR_RXTH | XLP_SPI_INTR_RXOF; else intr_mask |= XLP_SPI_INTR_RXTH | XLP_SPI_INTR_RXOF; intr_mask |= XLP_SPI_INTR_DONE; xlp_spi_reg_write(xs, xs->cs, XLP_SPI_INTR_EN, intr_mask); timeout = wait_for_completion_timeout(&xs->done, msecs_to_jiffies(1000)); /* Disable interrupts */ xlp_spi_reg_write(xs, xs->cs, XLP_SPI_INTR_EN, 0x0); if (!timeout) { dev_err(&xs->dev, "xfer timedout!\n"); goto out; } if (xs->txerrors || xs->rxerrors) dev_err(&xs->dev, "Over/Underflow rx %d tx %d xfer %d!\n", xs->rxerrors, xs->txerrors, xfer_len); return xfer_len; out: return -ETIMEDOUT; } static int xlp_spi_txrx_bufs(struct xlp_spi_priv *xs, struct spi_transfer *t) { int bytesleft, sz; unsigned char *rx_buf; const unsigned char *tx_buf; tx_buf = t->tx_buf; rx_buf = t->rx_buf; bytesleft = t->len; while (bytesleft) { if (bytesleft > XLP_SPI_XFER_SIZE) sz = xlp_spi_xfer_block(xs, tx_buf, rx_buf, XLP_SPI_XFER_SIZE, 1); else sz = xlp_spi_xfer_block(xs, tx_buf, rx_buf, bytesleft, xs->cmd_cont); if (sz < 0) return sz; bytesleft -= sz; if (tx_buf) tx_buf += sz; if (rx_buf) rx_buf += sz; } return bytesleft; } static int xlp_spi_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *t) { struct xlp_spi_priv *xspi = spi_master_get_devdata(master); int ret = 0; xspi->cs = spi->chip_select; xspi->dev = spi->dev; if (spi_transfer_is_last(master, t)) xspi->cmd_cont = 0; else xspi->cmd_cont = 1; if (xlp_spi_txrx_bufs(xspi, t)) ret = -EIO; spi_finalize_current_transfer(master); return ret; } static int xlp_spi_probe(struct platform_device *pdev) { struct spi_master *master; struct xlp_spi_priv *xspi; struct clk *clk; int irq, err; xspi = devm_kzalloc(&pdev->dev, sizeof(*xspi), GFP_KERNEL); if (!xspi) return -ENOMEM; xspi->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(xspi->base)) return PTR_ERR(xspi->base); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; err = devm_request_irq(&pdev->dev, irq, xlp_spi_interrupt, 0, pdev->name, xspi); if (err) { dev_err(&pdev->dev, "unable to request irq %d\n", irq); return err; } clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(clk)) { dev_err(&pdev->dev, "could not get spi clock\n"); return PTR_ERR(clk); } xspi->spi_clk = clk_get_rate(clk); master = spi_alloc_master(&pdev->dev, 0); if (!master) { dev_err(&pdev->dev, "could not alloc master\n"); return -ENOMEM; } master->bus_num = 0; master->num_chipselect = XLP_SPI_MAX_CS; master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; master->setup = xlp_spi_setup; master->transfer_one = xlp_spi_transfer_one; master->dev.of_node = pdev->dev.of_node; init_completion(&xspi->done); spi_master_set_devdata(master, xspi); xlp_spi_sysctl_setup(xspi); /* register spi controller */ err = devm_spi_register_master(&pdev->dev, master); if (err) { dev_err(&pdev->dev, "spi register master failed!\n"); spi_master_put(master); return err; } return 0; } #ifdef CONFIG_ACPI static const struct acpi_device_id xlp_spi_acpi_match[] = { { "BRCM900D", 0 }, { "CAV900D", 0 }, { }, }; MODULE_DEVICE_TABLE(acpi, xlp_spi_acpi_match); #endif static struct platform_driver xlp_spi_driver = { .probe = xlp_spi_probe, .driver = { .name = "xlp-spi", .acpi_match_table = ACPI_PTR(xlp_spi_acpi_match), }, }; module_platform_driver(xlp_spi_driver); MODULE_AUTHOR("Kamlakant Patel <kamlakant.patel@broadcom.com>"); MODULE_DESCRIPTION("Netlogic XLP SPI controller driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1