Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Wolfram Sang | 1250 | 47.91% | 3 | 7.69% |
Niklas Söderlund | 1096 | 42.01% | 17 | 43.59% |
Yoshihiro Kaneko | 156 | 5.98% | 3 | 7.69% |
Marek Vašut | 59 | 2.26% | 1 | 2.56% |
Daniel Lezcano | 13 | 0.50% | 2 | 5.13% |
Fabrizio Castro | 11 | 0.42% | 1 | 2.56% |
Geert Uytterhoeven | 7 | 0.27% | 3 | 7.69% |
Sergei Shtylyov | 6 | 0.23% | 1 | 2.56% |
Jiada Wang | 2 | 0.08% | 1 | 2.56% |
Hien Dang | 2 | 0.08% | 1 | 2.56% |
Kuninori Morimoto | 2 | 0.08% | 1 | 2.56% |
Fuqian Huang | 1 | 0.04% | 1 | 2.56% |
Hoan Nguyen An | 1 | 0.04% | 1 | 2.56% |
Biju Das | 1 | 0.04% | 1 | 2.56% |
Dien Pham | 1 | 0.04% | 1 | 2.56% |
Marian-Cristian Rotariu | 1 | 0.04% | 1 | 2.56% |
Total | 2609 | 39 |
// SPDX-License-Identifier: GPL-2.0 /* * R-Car Gen3 THS thermal sensor driver * Based on rcar_thermal.c and work from Hien Dang and Khiem Nguyen. * * Copyright (C) 2016 Renesas Electronics Corporation. * Copyright (C) 2016 Sang Engineering */ #include <linux/delay.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/sys_soc.h> #include <linux/thermal.h> #include "thermal_hwmon.h" /* Register offsets */ #define REG_GEN3_IRQSTR 0x04 #define REG_GEN3_IRQMSK 0x08 #define REG_GEN3_IRQCTL 0x0C #define REG_GEN3_IRQEN 0x10 #define REG_GEN3_IRQTEMP1 0x14 #define REG_GEN3_IRQTEMP2 0x18 #define REG_GEN3_IRQTEMP3 0x1C #define REG_GEN3_CTSR 0x20 #define REG_GEN3_THCTR 0x20 #define REG_GEN3_TEMP 0x28 #define REG_GEN3_THCODE1 0x50 #define REG_GEN3_THCODE2 0x54 #define REG_GEN3_THCODE3 0x58 #define REG_GEN3_PTAT1 0x5c #define REG_GEN3_PTAT2 0x60 #define REG_GEN3_PTAT3 0x64 #define REG_GEN3_THSCP 0x68 /* IRQ{STR,MSK,EN} bits */ #define IRQ_TEMP1 BIT(0) #define IRQ_TEMP2 BIT(1) #define IRQ_TEMP3 BIT(2) #define IRQ_TEMPD1 BIT(3) #define IRQ_TEMPD2 BIT(4) #define IRQ_TEMPD3 BIT(5) /* CTSR bits */ #define CTSR_PONM BIT(8) #define CTSR_AOUT BIT(7) #define CTSR_THBGR BIT(5) #define CTSR_VMEN BIT(4) #define CTSR_VMST BIT(1) #define CTSR_THSST BIT(0) /* THCTR bits */ #define THCTR_PONM BIT(6) #define THCTR_THSST BIT(0) /* THSCP bits */ #define THSCP_COR_PARA_VLD (BIT(15) | BIT(14)) #define CTEMP_MASK 0xFFF #define MCELSIUS(temp) ((temp) * 1000) #define GEN3_FUSE_MASK 0xFFF #define TSC_MAX_NUM 5 /* Structure for thermal temperature calculation */ struct equation_coefs { int a1; int b1; int a2; int b2; }; struct rcar_gen3_thermal_tsc { void __iomem *base; struct thermal_zone_device *zone; struct equation_coefs coef; int tj_t; int thcode[3]; }; struct rcar_gen3_thermal_priv { struct rcar_gen3_thermal_tsc *tscs[TSC_MAX_NUM]; struct thermal_zone_device_ops ops; unsigned int num_tscs; void (*thermal_init)(struct rcar_gen3_thermal_priv *priv, struct rcar_gen3_thermal_tsc *tsc); int ptat[3]; }; static inline u32 rcar_gen3_thermal_read(struct rcar_gen3_thermal_tsc *tsc, u32 reg) { return ioread32(tsc->base + reg); } static inline void rcar_gen3_thermal_write(struct rcar_gen3_thermal_tsc *tsc, u32 reg, u32 data) { iowrite32(data, tsc->base + reg); } /* * Linear approximation for temperature * * [reg] = [temp] * a + b => [temp] = ([reg] - b) / a * * The constants a and b are calculated using two triplets of int values PTAT * and THCODE. PTAT and THCODE can either be read from hardware or use hard * coded values from driver. The formula to calculate a and b are taken from * BSP and sparsely documented and understood. * * Examining the linear formula and the formula used to calculate constants a * and b while knowing that the span for PTAT and THCODE values are between * 0x000 and 0xfff the largest integer possible is 0xfff * 0xfff == 0xffe001. * Integer also needs to be signed so that leaves 7 bits for binary * fixed point scaling. */ #define FIXPT_SHIFT 7 #define FIXPT_INT(_x) ((_x) << FIXPT_SHIFT) #define INT_FIXPT(_x) ((_x) >> FIXPT_SHIFT) #define FIXPT_DIV(_a, _b) DIV_ROUND_CLOSEST(((_a) << FIXPT_SHIFT), (_b)) #define FIXPT_TO_MCELSIUS(_x) ((_x) * 1000 >> FIXPT_SHIFT) #define RCAR3_THERMAL_GRAN 500 /* mili Celsius */ /* no idea where these constants come from */ #define TJ_3 -41 static void rcar_gen3_thermal_calc_coefs(struct rcar_gen3_thermal_priv *priv, struct rcar_gen3_thermal_tsc *tsc, int ths_tj_1) { /* TODO: Find documentation and document constant calculation formula */ /* * Division is not scaled in BSP and if scaled it might overflow * the dividend (4095 * 4095 << 14 > INT_MAX) so keep it unscaled */ tsc->tj_t = (FIXPT_INT((priv->ptat[1] - priv->ptat[2]) * (ths_tj_1 - TJ_3)) / (priv->ptat[0] - priv->ptat[2])) + FIXPT_INT(TJ_3); tsc->coef.a1 = FIXPT_DIV(FIXPT_INT(tsc->thcode[1] - tsc->thcode[2]), tsc->tj_t - FIXPT_INT(TJ_3)); tsc->coef.b1 = FIXPT_INT(tsc->thcode[2]) - tsc->coef.a1 * TJ_3; tsc->coef.a2 = FIXPT_DIV(FIXPT_INT(tsc->thcode[1] - tsc->thcode[0]), tsc->tj_t - FIXPT_INT(ths_tj_1)); tsc->coef.b2 = FIXPT_INT(tsc->thcode[0]) - tsc->coef.a2 * ths_tj_1; } static int rcar_gen3_thermal_round(int temp) { int result, round_offs; round_offs = temp >= 0 ? RCAR3_THERMAL_GRAN / 2 : -RCAR3_THERMAL_GRAN / 2; result = (temp + round_offs) / RCAR3_THERMAL_GRAN; return result * RCAR3_THERMAL_GRAN; } static int rcar_gen3_thermal_get_temp(struct thermal_zone_device *tz, int *temp) { struct rcar_gen3_thermal_tsc *tsc = tz->devdata; int mcelsius, val; int reg; /* Read register and convert to mili Celsius */ reg = rcar_gen3_thermal_read(tsc, REG_GEN3_TEMP) & CTEMP_MASK; if (reg <= tsc->thcode[1]) val = FIXPT_DIV(FIXPT_INT(reg) - tsc->coef.b1, tsc->coef.a1); else val = FIXPT_DIV(FIXPT_INT(reg) - tsc->coef.b2, tsc->coef.a2); mcelsius = FIXPT_TO_MCELSIUS(val); /* Guaranteed operating range is -40C to 125C. */ /* Round value to device granularity setting */ *temp = rcar_gen3_thermal_round(mcelsius); return 0; } static int rcar_gen3_thermal_mcelsius_to_temp(struct rcar_gen3_thermal_tsc *tsc, int mcelsius) { int celsius, val; celsius = DIV_ROUND_CLOSEST(mcelsius, 1000); if (celsius <= INT_FIXPT(tsc->tj_t)) val = celsius * tsc->coef.a1 + tsc->coef.b1; else val = celsius * tsc->coef.a2 + tsc->coef.b2; return INT_FIXPT(val); } static int rcar_gen3_thermal_set_trips(struct thermal_zone_device *tz, int low, int high) { struct rcar_gen3_thermal_tsc *tsc = tz->devdata; u32 irqmsk = 0; if (low != -INT_MAX) { irqmsk |= IRQ_TEMPD1; rcar_gen3_thermal_write(tsc, REG_GEN3_IRQTEMP1, rcar_gen3_thermal_mcelsius_to_temp(tsc, low)); } if (high != INT_MAX) { irqmsk |= IRQ_TEMP2; rcar_gen3_thermal_write(tsc, REG_GEN3_IRQTEMP2, rcar_gen3_thermal_mcelsius_to_temp(tsc, high)); } rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, irqmsk); return 0; } static const struct thermal_zone_device_ops rcar_gen3_tz_of_ops = { .get_temp = rcar_gen3_thermal_get_temp, .set_trips = rcar_gen3_thermal_set_trips, }; static irqreturn_t rcar_gen3_thermal_irq(int irq, void *data) { struct rcar_gen3_thermal_priv *priv = data; unsigned int i; u32 status; for (i = 0; i < priv->num_tscs; i++) { status = rcar_gen3_thermal_read(priv->tscs[i], REG_GEN3_IRQSTR); rcar_gen3_thermal_write(priv->tscs[i], REG_GEN3_IRQSTR, 0); if (status && priv->tscs[i]->zone) thermal_zone_device_update(priv->tscs[i]->zone, THERMAL_EVENT_UNSPECIFIED); } return IRQ_HANDLED; } static const struct soc_device_attribute r8a7795es1[] = { { .soc_id = "r8a7795", .revision = "ES1.*" }, { /* sentinel */ } }; static bool rcar_gen3_thermal_read_fuses(struct rcar_gen3_thermal_priv *priv) { unsigned int i; u32 thscp; /* If fuses are not set, fallback to pseudo values. */ thscp = rcar_gen3_thermal_read(priv->tscs[0], REG_GEN3_THSCP); if ((thscp & THSCP_COR_PARA_VLD) != THSCP_COR_PARA_VLD) { /* Default THCODE values in case FUSEs are not set. */ static const int thcodes[TSC_MAX_NUM][3] = { { 3397, 2800, 2221 }, { 3393, 2795, 2216 }, { 3389, 2805, 2237 }, { 3415, 2694, 2195 }, { 3356, 2724, 2244 }, }; priv->ptat[0] = 2631; priv->ptat[1] = 1509; priv->ptat[2] = 435; for (i = 0; i < priv->num_tscs; i++) { struct rcar_gen3_thermal_tsc *tsc = priv->tscs[i]; tsc->thcode[0] = thcodes[i][0]; tsc->thcode[1] = thcodes[i][1]; tsc->thcode[2] = thcodes[i][2]; } return false; } /* * Set the pseudo calibration points with fused values. * PTAT is shared between all TSCs but only fused for the first * TSC while THCODEs are fused for each TSC. */ priv->ptat[0] = rcar_gen3_thermal_read(priv->tscs[0], REG_GEN3_PTAT1) & GEN3_FUSE_MASK; priv->ptat[1] = rcar_gen3_thermal_read(priv->tscs[0], REG_GEN3_PTAT2) & GEN3_FUSE_MASK; priv->ptat[2] = rcar_gen3_thermal_read(priv->tscs[0], REG_GEN3_PTAT3) & GEN3_FUSE_MASK; for (i = 0; i < priv->num_tscs; i++) { struct rcar_gen3_thermal_tsc *tsc = priv->tscs[i]; tsc->thcode[0] = rcar_gen3_thermal_read(tsc, REG_GEN3_THCODE1) & GEN3_FUSE_MASK; tsc->thcode[1] = rcar_gen3_thermal_read(tsc, REG_GEN3_THCODE2) & GEN3_FUSE_MASK; tsc->thcode[2] = rcar_gen3_thermal_read(tsc, REG_GEN3_THCODE3) & GEN3_FUSE_MASK; } return true; } static void rcar_gen3_thermal_init_r8a7795es1(struct rcar_gen3_thermal_priv *priv, struct rcar_gen3_thermal_tsc *tsc) { rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, CTSR_THBGR); rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, 0x0); usleep_range(1000, 2000); rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, CTSR_PONM); rcar_gen3_thermal_write(tsc, REG_GEN3_IRQCTL, 0x3F); rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, 0); if (priv->ops.set_trips) rcar_gen3_thermal_write(tsc, REG_GEN3_IRQEN, IRQ_TEMPD1 | IRQ_TEMP2); rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, CTSR_PONM | CTSR_AOUT | CTSR_THBGR | CTSR_VMEN); usleep_range(100, 200); rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, CTSR_PONM | CTSR_AOUT | CTSR_THBGR | CTSR_VMEN | CTSR_VMST | CTSR_THSST); usleep_range(1000, 2000); } static void rcar_gen3_thermal_init(struct rcar_gen3_thermal_priv *priv, struct rcar_gen3_thermal_tsc *tsc) { u32 reg_val; reg_val = rcar_gen3_thermal_read(tsc, REG_GEN3_THCTR); reg_val &= ~THCTR_PONM; rcar_gen3_thermal_write(tsc, REG_GEN3_THCTR, reg_val); usleep_range(1000, 2000); rcar_gen3_thermal_write(tsc, REG_GEN3_IRQCTL, 0); rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, 0); if (priv->ops.set_trips) rcar_gen3_thermal_write(tsc, REG_GEN3_IRQEN, IRQ_TEMPD1 | IRQ_TEMP2); reg_val = rcar_gen3_thermal_read(tsc, REG_GEN3_THCTR); reg_val |= THCTR_THSST; rcar_gen3_thermal_write(tsc, REG_GEN3_THCTR, reg_val); usleep_range(1000, 2000); } static const int rcar_gen3_ths_tj_1 = 126; static const int rcar_gen3_ths_tj_1_m3_w = 116; static const struct of_device_id rcar_gen3_thermal_dt_ids[] = { { .compatible = "renesas,r8a774a1-thermal", .data = &rcar_gen3_ths_tj_1_m3_w, }, { .compatible = "renesas,r8a774b1-thermal", .data = &rcar_gen3_ths_tj_1, }, { .compatible = "renesas,r8a774e1-thermal", .data = &rcar_gen3_ths_tj_1, }, { .compatible = "renesas,r8a7795-thermal", .data = &rcar_gen3_ths_tj_1, }, { .compatible = "renesas,r8a7796-thermal", .data = &rcar_gen3_ths_tj_1_m3_w, }, { .compatible = "renesas,r8a77961-thermal", .data = &rcar_gen3_ths_tj_1_m3_w, }, { .compatible = "renesas,r8a77965-thermal", .data = &rcar_gen3_ths_tj_1, }, { .compatible = "renesas,r8a77980-thermal", .data = &rcar_gen3_ths_tj_1, }, { .compatible = "renesas,r8a779a0-thermal", .data = &rcar_gen3_ths_tj_1, }, { .compatible = "renesas,r8a779f0-thermal", .data = &rcar_gen3_ths_tj_1, }, { .compatible = "renesas,r8a779g0-thermal", .data = &rcar_gen3_ths_tj_1, }, {}, }; MODULE_DEVICE_TABLE(of, rcar_gen3_thermal_dt_ids); static int rcar_gen3_thermal_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; pm_runtime_put(dev); pm_runtime_disable(dev); return 0; } static void rcar_gen3_hwmon_action(void *data) { struct thermal_zone_device *zone = data; thermal_remove_hwmon_sysfs(zone); } static int rcar_gen3_thermal_request_irqs(struct rcar_gen3_thermal_priv *priv, struct platform_device *pdev) { struct device *dev = &pdev->dev; unsigned int i; char *irqname; int ret, irq; for (i = 0; i < 2; i++) { irq = platform_get_irq_optional(pdev, i); if (irq < 0) return irq; irqname = devm_kasprintf(dev, GFP_KERNEL, "%s:ch%d", dev_name(dev), i); if (!irqname) return -ENOMEM; ret = devm_request_threaded_irq(dev, irq, NULL, rcar_gen3_thermal_irq, IRQF_ONESHOT, irqname, priv); if (ret) return ret; } return 0; } static int rcar_gen3_thermal_probe(struct platform_device *pdev) { struct rcar_gen3_thermal_priv *priv; struct device *dev = &pdev->dev; const int *ths_tj_1 = of_device_get_match_data(dev); struct resource *res; struct thermal_zone_device *zone; unsigned int i; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->ops = rcar_gen3_tz_of_ops; priv->thermal_init = rcar_gen3_thermal_init; if (soc_device_match(r8a7795es1)) priv->thermal_init = rcar_gen3_thermal_init_r8a7795es1; platform_set_drvdata(pdev, priv); if (rcar_gen3_thermal_request_irqs(priv, pdev)) priv->ops.set_trips = NULL; pm_runtime_enable(dev); pm_runtime_get_sync(dev); for (i = 0; i < TSC_MAX_NUM; i++) { struct rcar_gen3_thermal_tsc *tsc; res = platform_get_resource(pdev, IORESOURCE_MEM, i); if (!res) break; tsc = devm_kzalloc(dev, sizeof(*tsc), GFP_KERNEL); if (!tsc) { ret = -ENOMEM; goto error_unregister; } tsc->base = devm_ioremap_resource(dev, res); if (IS_ERR(tsc->base)) { ret = PTR_ERR(tsc->base); goto error_unregister; } priv->tscs[i] = tsc; } priv->num_tscs = i; if (!rcar_gen3_thermal_read_fuses(priv)) dev_info(dev, "No calibration values fused, fallback to driver values\n"); for (i = 0; i < priv->num_tscs; i++) { struct rcar_gen3_thermal_tsc *tsc = priv->tscs[i]; priv->thermal_init(priv, tsc); rcar_gen3_thermal_calc_coefs(priv, tsc, *ths_tj_1); zone = devm_thermal_of_zone_register(dev, i, tsc, &priv->ops); if (IS_ERR(zone)) { dev_err(dev, "Sensor %u: Can't register thermal zone\n", i); ret = PTR_ERR(zone); goto error_unregister; } tsc->zone = zone; tsc->zone->tzp->no_hwmon = false; ret = thermal_add_hwmon_sysfs(tsc->zone); if (ret) goto error_unregister; ret = devm_add_action_or_reset(dev, rcar_gen3_hwmon_action, zone); if (ret) goto error_unregister; ret = thermal_zone_get_num_trips(tsc->zone); if (ret < 0) goto error_unregister; dev_info(dev, "Sensor %u: Loaded %d trip points\n", i, ret); } if (!priv->num_tscs) { ret = -ENODEV; goto error_unregister; } return 0; error_unregister: rcar_gen3_thermal_remove(pdev); return ret; } static int __maybe_unused rcar_gen3_thermal_resume(struct device *dev) { struct rcar_gen3_thermal_priv *priv = dev_get_drvdata(dev); unsigned int i; for (i = 0; i < priv->num_tscs; i++) { struct rcar_gen3_thermal_tsc *tsc = priv->tscs[i]; priv->thermal_init(priv, tsc); } return 0; } static SIMPLE_DEV_PM_OPS(rcar_gen3_thermal_pm_ops, NULL, rcar_gen3_thermal_resume); static struct platform_driver rcar_gen3_thermal_driver = { .driver = { .name = "rcar_gen3_thermal", .pm = &rcar_gen3_thermal_pm_ops, .of_match_table = rcar_gen3_thermal_dt_ids, }, .probe = rcar_gen3_thermal_probe, .remove = rcar_gen3_thermal_remove, }; module_platform_driver(rcar_gen3_thermal_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("R-Car Gen3 THS thermal sensor driver"); MODULE_AUTHOR("Wolfram Sang <wsa+renesas@sang-engineering.com>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1