Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Joel Stanley | 828 | 44.04% | 2 | 9.09% |
Edward A. James | 332 | 17.66% | 2 | 9.09% |
Andrew Jeffery | 294 | 15.64% | 3 | 13.64% |
Ivan Mikhaylov | 179 | 9.52% | 1 | 4.55% |
Christopher Bostic | 139 | 7.39% | 1 | 4.55% |
Eduardo Valentin | 37 | 1.97% | 1 | 4.55% |
Milton D. Miller II | 22 | 1.17% | 2 | 9.09% |
Ryan Chen | 19 | 1.01% | 1 | 4.55% |
Guenter Roeck | 16 | 0.85% | 3 | 13.64% |
Chin-Ting Kuo | 6 | 0.32% | 1 | 4.55% |
Christophe Jaillet | 3 | 0.16% | 1 | 4.55% |
Thomas Gleixner | 2 | 0.11% | 1 | 4.55% |
Juerg Haefliger | 1 | 0.05% | 1 | 4.55% |
Tao Ren | 1 | 0.05% | 1 | 4.55% |
Wolfram Sang | 1 | 0.05% | 1 | 4.55% |
Total | 1880 | 22 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2016 IBM Corporation * * Joel Stanley <joel@jms.id.au> */ #include <linux/bits.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/kstrtox.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/watchdog.h> static bool nowayout = WATCHDOG_NOWAYOUT; module_param(nowayout, bool, 0); MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); struct aspeed_wdt_config { u32 ext_pulse_width_mask; u32 irq_shift; u32 irq_mask; }; struct aspeed_wdt { struct watchdog_device wdd; void __iomem *base; u32 ctrl; const struct aspeed_wdt_config *cfg; }; static const struct aspeed_wdt_config ast2400_config = { .ext_pulse_width_mask = 0xff, .irq_shift = 0, .irq_mask = 0, }; static const struct aspeed_wdt_config ast2500_config = { .ext_pulse_width_mask = 0xfffff, .irq_shift = 12, .irq_mask = GENMASK(31, 12), }; static const struct aspeed_wdt_config ast2600_config = { .ext_pulse_width_mask = 0xfffff, .irq_shift = 0, .irq_mask = GENMASK(31, 10), }; static const struct of_device_id aspeed_wdt_of_table[] = { { .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config }, { .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config }, { .compatible = "aspeed,ast2600-wdt", .data = &ast2600_config }, { }, }; MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table); #define WDT_STATUS 0x00 #define WDT_RELOAD_VALUE 0x04 #define WDT_RESTART 0x08 #define WDT_CTRL 0x0C #define WDT_CTRL_BOOT_SECONDARY BIT(7) #define WDT_CTRL_RESET_MODE_SOC (0x00 << 5) #define WDT_CTRL_RESET_MODE_FULL_CHIP (0x01 << 5) #define WDT_CTRL_RESET_MODE_ARM_CPU (0x10 << 5) #define WDT_CTRL_1MHZ_CLK BIT(4) #define WDT_CTRL_WDT_EXT BIT(3) #define WDT_CTRL_WDT_INTR BIT(2) #define WDT_CTRL_RESET_SYSTEM BIT(1) #define WDT_CTRL_ENABLE BIT(0) #define WDT_TIMEOUT_STATUS 0x10 #define WDT_TIMEOUT_STATUS_IRQ BIT(2) #define WDT_TIMEOUT_STATUS_BOOT_SECONDARY BIT(1) #define WDT_CLEAR_TIMEOUT_STATUS 0x14 #define WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION BIT(0) /* * WDT_RESET_WIDTH controls the characteristics of the external pulse (if * enabled), specifically: * * * Pulse duration * * Drive mode: push-pull vs open-drain * * Polarity: Active high or active low * * Pulse duration configuration is available on both the AST2400 and AST2500, * though the field changes between SoCs: * * AST2400: Bits 7:0 * AST2500: Bits 19:0 * * This difference is captured in struct aspeed_wdt_config. * * The AST2500 exposes the drive mode and polarity options, but not in a * regular fashion. For read purposes, bit 31 represents active high or low, * and bit 30 represents push-pull or open-drain. With respect to write, magic * values need to be written to the top byte to change the state of the drive * mode and polarity bits. Any other value written to the top byte has no * effect on the state of the drive mode or polarity bits. However, the pulse * width value must be preserved (as desired) if written. */ #define WDT_RESET_WIDTH 0x18 #define WDT_RESET_WIDTH_ACTIVE_HIGH BIT(31) #define WDT_ACTIVE_HIGH_MAGIC (0xA5 << 24) #define WDT_ACTIVE_LOW_MAGIC (0x5A << 24) #define WDT_RESET_WIDTH_PUSH_PULL BIT(30) #define WDT_PUSH_PULL_MAGIC (0xA8 << 24) #define WDT_OPEN_DRAIN_MAGIC (0x8A << 24) #define WDT_RESTART_MAGIC 0x4755 /* 32 bits at 1MHz, in milliseconds */ #define WDT_MAX_TIMEOUT_MS 4294967 #define WDT_DEFAULT_TIMEOUT 30 #define WDT_RATE_1MHZ 1000000 static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd) { return container_of(wdd, struct aspeed_wdt, wdd); } static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count) { wdt->ctrl |= WDT_CTRL_ENABLE; writel(0, wdt->base + WDT_CTRL); writel(count, wdt->base + WDT_RELOAD_VALUE); writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART); writel(wdt->ctrl, wdt->base + WDT_CTRL); } static int aspeed_wdt_start(struct watchdog_device *wdd) { struct aspeed_wdt *wdt = to_aspeed_wdt(wdd); aspeed_wdt_enable(wdt, wdd->timeout * WDT_RATE_1MHZ); return 0; } static int aspeed_wdt_stop(struct watchdog_device *wdd) { struct aspeed_wdt *wdt = to_aspeed_wdt(wdd); wdt->ctrl &= ~WDT_CTRL_ENABLE; writel(wdt->ctrl, wdt->base + WDT_CTRL); return 0; } static int aspeed_wdt_ping(struct watchdog_device *wdd) { struct aspeed_wdt *wdt = to_aspeed_wdt(wdd); writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART); return 0; } static int aspeed_wdt_set_timeout(struct watchdog_device *wdd, unsigned int timeout) { struct aspeed_wdt *wdt = to_aspeed_wdt(wdd); u32 actual; wdd->timeout = timeout; actual = min(timeout, wdd->max_hw_heartbeat_ms / 1000); writel(actual * WDT_RATE_1MHZ, wdt->base + WDT_RELOAD_VALUE); writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART); return 0; } static int aspeed_wdt_set_pretimeout(struct watchdog_device *wdd, unsigned int pretimeout) { struct aspeed_wdt *wdt = to_aspeed_wdt(wdd); u32 actual = pretimeout * WDT_RATE_1MHZ; u32 s = wdt->cfg->irq_shift; u32 m = wdt->cfg->irq_mask; wdd->pretimeout = pretimeout; wdt->ctrl &= ~m; if (pretimeout) wdt->ctrl |= ((actual << s) & m) | WDT_CTRL_WDT_INTR; else wdt->ctrl &= ~WDT_CTRL_WDT_INTR; writel(wdt->ctrl, wdt->base + WDT_CTRL); return 0; } static int aspeed_wdt_restart(struct watchdog_device *wdd, unsigned long action, void *data) { struct aspeed_wdt *wdt = to_aspeed_wdt(wdd); wdt->ctrl &= ~WDT_CTRL_BOOT_SECONDARY; aspeed_wdt_enable(wdt, 128 * WDT_RATE_1MHZ / 1000); mdelay(1000); return 0; } /* access_cs0 shows if cs0 is accessible, hence the reverted bit */ static ssize_t access_cs0_show(struct device *dev, struct device_attribute *attr, char *buf) { struct aspeed_wdt *wdt = dev_get_drvdata(dev); u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS); return sysfs_emit(buf, "%u\n", !(status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY)); } static ssize_t access_cs0_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct aspeed_wdt *wdt = dev_get_drvdata(dev); unsigned long val; if (kstrtoul(buf, 10, &val)) return -EINVAL; if (val) writel(WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION, wdt->base + WDT_CLEAR_TIMEOUT_STATUS); return size; } /* * This attribute exists only if the system has booted from the alternate * flash with 'alt-boot' option. * * At alternate flash the 'access_cs0' sysfs node provides: * ast2400: a way to get access to the primary SPI flash chip at CS0 * after booting from the alternate chip at CS1. * ast2500: a way to restore the normal address mapping from * (CS0->CS1, CS1->CS0) to (CS0->CS0, CS1->CS1). * * Clearing the boot code selection and timeout counter also resets to the * initial state the chip select line mapping. When the SoC is in normal * mapping state (i.e. booted from CS0), clearing those bits does nothing for * both versions of the SoC. For alternate boot mode (booted from CS1 due to * wdt2 expiration) the behavior differs as described above. * * This option can be used with wdt2 (watchdog1) only. */ static DEVICE_ATTR_RW(access_cs0); static struct attribute *bswitch_attrs[] = { &dev_attr_access_cs0.attr, NULL }; ATTRIBUTE_GROUPS(bswitch); static const struct watchdog_ops aspeed_wdt_ops = { .start = aspeed_wdt_start, .stop = aspeed_wdt_stop, .ping = aspeed_wdt_ping, .set_timeout = aspeed_wdt_set_timeout, .set_pretimeout = aspeed_wdt_set_pretimeout, .restart = aspeed_wdt_restart, .owner = THIS_MODULE, }; static const struct watchdog_info aspeed_wdt_info = { .options = WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE | WDIOF_SETTIMEOUT, .identity = KBUILD_MODNAME, }; static const struct watchdog_info aspeed_wdt_pretimeout_info = { .options = WDIOF_KEEPALIVEPING | WDIOF_PRETIMEOUT | WDIOF_MAGICCLOSE | WDIOF_SETTIMEOUT, .identity = KBUILD_MODNAME, }; static irqreturn_t aspeed_wdt_irq(int irq, void *arg) { struct watchdog_device *wdd = arg; struct aspeed_wdt *wdt = to_aspeed_wdt(wdd); u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS); if (status & WDT_TIMEOUT_STATUS_IRQ) watchdog_notify_pretimeout(wdd); return IRQ_HANDLED; } static int aspeed_wdt_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct of_device_id *ofdid; struct aspeed_wdt *wdt; struct device_node *np; const char *reset_type; u32 duration; u32 status; int ret; wdt = devm_kzalloc(dev, sizeof(*wdt), GFP_KERNEL); if (!wdt) return -ENOMEM; np = dev->of_node; ofdid = of_match_node(aspeed_wdt_of_table, np); if (!ofdid) return -EINVAL; wdt->cfg = ofdid->data; wdt->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(wdt->base)) return PTR_ERR(wdt->base); wdt->wdd.info = &aspeed_wdt_info; if (wdt->cfg->irq_mask) { int irq = platform_get_irq_optional(pdev, 0); if (irq > 0) { ret = devm_request_irq(dev, irq, aspeed_wdt_irq, IRQF_SHARED, dev_name(dev), wdt); if (ret) return ret; wdt->wdd.info = &aspeed_wdt_pretimeout_info; } } wdt->wdd.ops = &aspeed_wdt_ops; wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS; wdt->wdd.parent = dev; wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT; watchdog_init_timeout(&wdt->wdd, 0, dev); watchdog_set_nowayout(&wdt->wdd, nowayout); /* * On clock rates: * - ast2400 wdt can run at PCLK, or 1MHz * - ast2500 only runs at 1MHz, hard coding bit 4 to 1 * - ast2600 always runs at 1MHz * * Set the ast2400 to run at 1MHz as it simplifies the driver. */ if (of_device_is_compatible(np, "aspeed,ast2400-wdt")) wdt->ctrl = WDT_CTRL_1MHZ_CLK; /* * Control reset on a per-device basis to ensure the * host is not affected by a BMC reboot */ ret = of_property_read_string(np, "aspeed,reset-type", &reset_type); if (ret) { wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM; } else { if (!strcmp(reset_type, "cpu")) wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU | WDT_CTRL_RESET_SYSTEM; else if (!strcmp(reset_type, "soc")) wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM; else if (!strcmp(reset_type, "system")) wdt->ctrl |= WDT_CTRL_RESET_MODE_FULL_CHIP | WDT_CTRL_RESET_SYSTEM; else if (strcmp(reset_type, "none")) return -EINVAL; } if (of_property_read_bool(np, "aspeed,external-signal")) wdt->ctrl |= WDT_CTRL_WDT_EXT; if (of_property_read_bool(np, "aspeed,alt-boot")) wdt->ctrl |= WDT_CTRL_BOOT_SECONDARY; if (readl(wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE) { /* * The watchdog is running, but invoke aspeed_wdt_start() to * write wdt->ctrl to WDT_CTRL to ensure the watchdog's * configuration conforms to the driver's expectations. * Primarily, ensure we're using the 1MHz clock source. */ aspeed_wdt_start(&wdt->wdd); set_bit(WDOG_HW_RUNNING, &wdt->wdd.status); } if ((of_device_is_compatible(np, "aspeed,ast2500-wdt")) || (of_device_is_compatible(np, "aspeed,ast2600-wdt"))) { u32 reg = readl(wdt->base + WDT_RESET_WIDTH); reg &= wdt->cfg->ext_pulse_width_mask; if (of_property_read_bool(np, "aspeed,ext-active-high")) reg |= WDT_ACTIVE_HIGH_MAGIC; else reg |= WDT_ACTIVE_LOW_MAGIC; writel(reg, wdt->base + WDT_RESET_WIDTH); reg &= wdt->cfg->ext_pulse_width_mask; if (of_property_read_bool(np, "aspeed,ext-push-pull")) reg |= WDT_PUSH_PULL_MAGIC; else reg |= WDT_OPEN_DRAIN_MAGIC; writel(reg, wdt->base + WDT_RESET_WIDTH); } if (!of_property_read_u32(np, "aspeed,ext-pulse-duration", &duration)) { u32 max_duration = wdt->cfg->ext_pulse_width_mask + 1; if (duration == 0 || duration > max_duration) { dev_err(dev, "Invalid pulse duration: %uus\n", duration); duration = max(1U, min(max_duration, duration)); dev_info(dev, "Pulse duration set to %uus\n", duration); } /* * The watchdog is always configured with a 1MHz source, so * there is no need to scale the microsecond value. However we * need to offset it - from the datasheet: * * "This register decides the asserting duration of wdt_ext and * wdt_rstarm signal. The default value is 0xFF. It means the * default asserting duration of wdt_ext and wdt_rstarm is * 256us." * * This implies a value of 0 gives a 1us pulse. */ writel(duration - 1, wdt->base + WDT_RESET_WIDTH); } status = readl(wdt->base + WDT_TIMEOUT_STATUS); if (status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY) { wdt->wdd.bootstatus = WDIOF_CARDRESET; if (of_device_is_compatible(np, "aspeed,ast2400-wdt") || of_device_is_compatible(np, "aspeed,ast2500-wdt")) wdt->wdd.groups = bswitch_groups; } dev_set_drvdata(dev, wdt); return devm_watchdog_register_device(dev, &wdt->wdd); } static struct platform_driver aspeed_watchdog_driver = { .probe = aspeed_wdt_probe, .driver = { .name = KBUILD_MODNAME, .of_match_table = of_match_ptr(aspeed_wdt_of_table), }, }; static int __init aspeed_wdt_init(void) { return platform_driver_register(&aspeed_watchdog_driver); } arch_initcall(aspeed_wdt_init); static void __exit aspeed_wdt_exit(void) { platform_driver_unregister(&aspeed_watchdog_driver); } module_exit(aspeed_wdt_exit); MODULE_DESCRIPTION("Aspeed Watchdog Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1