Contributors: 19
Author Tokens Token Proportion Commits Commit Proportion
Lijo Lazar 8079 83.38% 4 6.56%
Tim Huang 453 4.68% 1 1.64%
Evan Quan 435 4.49% 18 29.51%
Kevin Wang 346 3.57% 13 21.31%
Huang Rui 260 2.68% 4 6.56%
Andrey Grodzovsky 28 0.29% 2 3.28%
changzhu 18 0.19% 1 1.64%
Alex Deucher 15 0.15% 4 6.56%
Darren Powell 11 0.11% 3 4.92%
Aurabindo Pillai 10 0.10% 1 1.64%
bobzhou 7 0.07% 1 1.64%
Likun Gao 6 0.06% 1 1.64%
André Almeida 5 0.05% 1 1.64%
Xiaomeng Hou 4 0.04% 1 1.64%
Stanley.Yang 3 0.03% 1 1.64%
Mario Limonciello 3 0.03% 2 3.28%
Wenhui Sheng 3 0.03% 1 1.64%
Amber Lin 2 0.02% 1 1.64%
Prike Liang 1 0.01% 1 1.64%
Total 9689 61


/*
 * Copyright 2021 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#define SWSMU_CODE_LAYER_L2

#include <linux/firmware.h>
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "atomfirmware.h"
#include "amdgpu_atomfirmware.h"
#include "amdgpu_atombios.h"
#include "smu_v13_0_6_pmfw.h"
#include "smu13_driver_if_v13_0_6.h"
#include "smu_v13_0_6_ppsmc.h"
#include "soc15_common.h"
#include "atom.h"
#include "power_state.h"
#include "smu_v13_0.h"
#include "smu_v13_0_6_ppt.h"
#include "nbio/nbio_7_4_offset.h"
#include "nbio/nbio_7_4_sh_mask.h"
#include "thm/thm_11_0_2_offset.h"
#include "thm/thm_11_0_2_sh_mask.h"
#include "amdgpu_xgmi.h"
#include <linux/pci.h>
#include "amdgpu_ras.h"
#include "smu_cmn.h"
#include "mp/mp_13_0_6_offset.h"
#include "mp/mp_13_0_6_sh_mask.h"

#undef MP1_Public
#undef smnMP1_FIRMWARE_FLAGS

/* TODO: Check final register offsets */
#define MP1_Public 0x03b00000
#define smnMP1_FIRMWARE_FLAGS 0x3010028
/*
 * DO NOT use these for err/warn/info/debug messages.
 * Use dev_err, dev_warn, dev_info and dev_dbg instead.
 * They are more MGPU friendly.
 */
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug

#define to_amdgpu_device(x) (container_of(x, struct amdgpu_device, pm.smu_i2c))

#define SMU_13_0_6_FEA_MAP(smu_feature, smu_13_0_6_feature)                    \
	[smu_feature] = { 1, (smu_13_0_6_feature) }

#define FEATURE_MASK(feature) (1ULL << feature)
#define SMC_DPM_FEATURE                                                        \
	(FEATURE_MASK(FEATURE_DATA_CALCULATION) |                              \
	 FEATURE_MASK(FEATURE_DPM_GFXCLK) | FEATURE_MASK(FEATURE_DPM_UCLK) |   \
	 FEATURE_MASK(FEATURE_DPM_SOCCLK) | FEATURE_MASK(FEATURE_DPM_FCLK) |   \
	 FEATURE_MASK(FEATURE_DPM_LCLK) | FEATURE_MASK(FEATURE_DPM_XGMI) |     \
	 FEATURE_MASK(FEATURE_DPM_VCN))

/* possible frequency drift (1Mhz) */
#define EPSILON 1

#define smnPCIE_ESM_CTRL 0x111003D0

static const struct cmn2asic_msg_mapping smu_v13_0_6_message_map[SMU_MSG_MAX_COUNT] = {
	MSG_MAP(TestMessage,			     PPSMC_MSG_TestMessage,			0),
	MSG_MAP(GetSmuVersion,			     PPSMC_MSG_GetSmuVersion,			1),
	MSG_MAP(GetDriverIfVersion,		     PPSMC_MSG_GetDriverIfVersion,		1),
	MSG_MAP(EnableAllSmuFeatures,		     PPSMC_MSG_EnableAllSmuFeatures,		1),
	MSG_MAP(DisableAllSmuFeatures,		     PPSMC_MSG_DisableAllSmuFeatures,		1),
	MSG_MAP(RequestI2cTransaction,		     PPSMC_MSG_RequestI2cTransaction,		0),
	MSG_MAP(GetMetricsTable,		     PPSMC_MSG_GetMetricsTable,			1),
	MSG_MAP(GetEnabledSmuFeaturesHigh,	     PPSMC_MSG_GetEnabledSmuFeaturesHigh,	1),
	MSG_MAP(GetEnabledSmuFeaturesLow,	     PPSMC_MSG_GetEnabledSmuFeaturesLow,	1),
	MSG_MAP(SetDriverDramAddrHigh,		     PPSMC_MSG_SetDriverDramAddrHigh,		1),
	MSG_MAP(SetDriverDramAddrLow,		     PPSMC_MSG_SetDriverDramAddrLow,		1),
	MSG_MAP(SetToolsDramAddrHigh,		     PPSMC_MSG_SetToolsDramAddrHigh,		0),
	MSG_MAP(SetToolsDramAddrLow,		     PPSMC_MSG_SetToolsDramAddrLow,		0),
	MSG_MAP(SetSoftMinByFreq,		     PPSMC_MSG_SetSoftMinByFreq,		0),
	MSG_MAP(SetSoftMaxByFreq,		     PPSMC_MSG_SetSoftMaxByFreq,		0),
	MSG_MAP(GetMinDpmFreq,			     PPSMC_MSG_GetMinDpmFreq,			0),
	MSG_MAP(GetMaxDpmFreq,			     PPSMC_MSG_GetMaxDpmFreq,			0),
	MSG_MAP(GetDpmFreqByIndex,		     PPSMC_MSG_GetDpmFreqByIndex,		1),
	MSG_MAP(SetPptLimit,			     PPSMC_MSG_SetPptLimit,			0),
	MSG_MAP(GetPptLimit,			     PPSMC_MSG_GetPptLimit,			1),
	MSG_MAP(GfxDeviceDriverReset,		     PPSMC_MSG_GfxDriverReset,			0),
	MSG_MAP(DramLogSetDramAddrHigh,		     PPSMC_MSG_DramLogSetDramAddrHigh,		0),
	MSG_MAP(DramLogSetDramAddrLow,		     PPSMC_MSG_DramLogSetDramAddrLow,		0),
	MSG_MAP(DramLogSetDramSize,		     PPSMC_MSG_DramLogSetDramSize,		0),
	MSG_MAP(GetDebugData,			     PPSMC_MSG_GetDebugData,			0),
	MSG_MAP(SetNumBadHbmPagesRetired,	     PPSMC_MSG_SetNumBadHbmPagesRetired,	0),
	MSG_MAP(DFCstateControl,		     PPSMC_MSG_DFCstateControl,			0),
	MSG_MAP(GetGmiPwrDnHyst,		     PPSMC_MSG_GetGmiPwrDnHyst,			0),
	MSG_MAP(SetGmiPwrDnHyst,		     PPSMC_MSG_SetGmiPwrDnHyst,			0),
	MSG_MAP(GmiPwrDnControl,		     PPSMC_MSG_GmiPwrDnControl,			0),
	MSG_MAP(EnterGfxoff,			     PPSMC_MSG_EnterGfxoff,			0),
	MSG_MAP(ExitGfxoff,			     PPSMC_MSG_ExitGfxoff,			0),
	MSG_MAP(EnableDeterminism,		     PPSMC_MSG_EnableDeterminism,		0),
	MSG_MAP(DisableDeterminism,		     PPSMC_MSG_DisableDeterminism,		0),
	MSG_MAP(GfxDriverResetRecovery,		     PPSMC_MSG_GfxDriverResetRecovery,		0),
	MSG_MAP(GetMinGfxclkFrequency,               PPSMC_MSG_GetMinGfxDpmFreq,                0),
	MSG_MAP(GetMaxGfxclkFrequency,               PPSMC_MSG_GetMaxGfxDpmFreq,                0),
	MSG_MAP(SetSoftMinGfxclk,                    PPSMC_MSG_SetSoftMinGfxClk,                0),
	MSG_MAP(SetSoftMaxGfxClk,                    PPSMC_MSG_SetSoftMaxGfxClk,                0),
};

static const struct cmn2asic_mapping smu_v13_0_6_clk_map[SMU_CLK_COUNT] = {
	CLK_MAP(SOCCLK, PPCLK_SOCCLK),
	CLK_MAP(FCLK, PPCLK_FCLK),
	CLK_MAP(UCLK, PPCLK_UCLK),
	CLK_MAP(MCLK, PPCLK_UCLK),
	CLK_MAP(DCLK, PPCLK_DCLK),
	CLK_MAP(VCLK, PPCLK_VCLK),
	CLK_MAP(LCLK, PPCLK_LCLK),
};

static const struct cmn2asic_mapping smu_v13_0_6_feature_mask_map[SMU_FEATURE_COUNT] = {
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_DATA_CALCULATIONS_BIT, 		FEATURE_DATA_CALCULATION),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_DPM_GFXCLK_BIT, 			FEATURE_DPM_GFXCLK),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_DPM_UCLK_BIT, 			FEATURE_DPM_UCLK),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_DPM_SOCCLK_BIT, 			FEATURE_DPM_SOCCLK),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_DPM_FCLK_BIT, 			FEATURE_DPM_FCLK),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_DPM_LCLK_BIT, 			FEATURE_DPM_LCLK),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_DPM_VCLK_BIT,			FEATURE_DPM_VCN),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_DPM_DCLK_BIT,			FEATURE_DPM_VCN),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_DPM_XGMI_BIT, 			FEATURE_DPM_XGMI),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_DS_GFXCLK_BIT, 			FEATURE_DS_GFXCLK),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_DS_SOCCLK_BIT, 			FEATURE_DS_SOCCLK),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_DS_LCLK_BIT, 			FEATURE_DS_LCLK),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_DS_FCLK_BIT, 			FEATURE_DS_FCLK),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_VCN_DPM_BIT, 			FEATURE_DPM_VCN),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_PPT_BIT, 			FEATURE_PPT),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_TDC_BIT, 			FEATURE_TDC),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_APCC_DFLL_BIT, 			FEATURE_APCC_DFLL),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_MP1_CG_BIT, 			FEATURE_SMU_CG),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_GFXOFF_BIT, 			FEATURE_GFXOFF),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_FW_CTF_BIT, 			FEATURE_FW_CTF),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_THERMAL_BIT, 			FEATURE_THERMAL),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_XGMI_PER_LINK_PWR_DWN_BIT,	FEATURE_XGMI_PER_LINK_PWR_DOWN),
	SMU_13_0_6_FEA_MAP(SMU_FEATURE_DF_CSTATE_BIT, 			FEATURE_DF_CSTATE),
};

#define TABLE_PMSTATUSLOG             0
#define TABLE_SMU_METRICS             1
#define TABLE_I2C_COMMANDS            2
#define TABLE_COUNT                   3

static const struct cmn2asic_mapping smu_v13_0_6_table_map[SMU_TABLE_COUNT] = {
	TAB_MAP(PMSTATUSLOG),
	TAB_MAP(SMU_METRICS),
	TAB_MAP(I2C_COMMANDS),
};

#define THROTTLER_PROCHOT_GFX_BIT  0
#define THROTTLER_PPT_BIT 1
#define THROTTLER_TEMP_SOC_BIT 2
#define THROTTLER_TEMP_VR_GFX_BIT 3
#define THROTTLER_TEMP_HBM_BIT 4

static const uint8_t smu_v13_0_6_throttler_map[] = {
	[THROTTLER_PPT_BIT]		= (SMU_THROTTLER_PPT0_BIT),
	[THROTTLER_TEMP_SOC_BIT]	= (SMU_THROTTLER_TEMP_GPU_BIT),
	[THROTTLER_TEMP_HBM_BIT]	= (SMU_THROTTLER_TEMP_MEM_BIT),
	[THROTTLER_TEMP_VR_GFX_BIT]	= (SMU_THROTTLER_TEMP_VR_GFX_BIT),
	[THROTTLER_PROCHOT_GFX_BIT]	= (SMU_THROTTLER_PROCHOT_GFX_BIT),
};

struct PPTable_t {
	uint32_t MaxSocketPowerLimit;
	uint32_t MaxGfxclkFrequency;
	uint32_t MinGfxclkFrequency;
	uint32_t FclkFrequencyTable[4];
	uint32_t UclkFrequencyTable[4];
	uint32_t SocclkFrequencyTable[4];
	uint32_t VclkFrequencyTable[4];
	uint32_t DclkFrequencyTable[4];
	uint32_t LclkFrequencyTable[4];
	uint32_t MaxLclkDpmRange;
	uint32_t MinLclkDpmRange;
	bool Init;
};

#define SMUQ10_TO_UINT(x) ((x) >> 10)

struct smu_v13_0_6_dpm_map {
	enum smu_clk_type clk_type;
	uint32_t feature_num;
	struct smu_13_0_dpm_table *dpm_table;
	uint32_t *freq_table;
};

static int smu_v13_0_6_tables_init(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
	struct amdgpu_device *adev = smu->adev;

	if (!(adev->flags & AMD_IS_APU))
		SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU13_TOOL_SIZE,
			       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);

	SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(MetricsTable_t),
		       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);

	SMU_TABLE_INIT(tables, SMU_TABLE_I2C_COMMANDS, sizeof(SwI2cRequest_t),
		       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);

	smu_table->metrics_table = kzalloc(sizeof(MetricsTable_t), GFP_KERNEL);
	if (!smu_table->metrics_table)
		return -ENOMEM;
	smu_table->metrics_time = 0;

	smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v1_3);
	smu_table->gpu_metrics_table =
		kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL);
	if (!smu_table->gpu_metrics_table) {
		kfree(smu_table->metrics_table);
		return -ENOMEM;
	}

	smu_table->driver_pptable =
		kzalloc(sizeof(struct PPTable_t), GFP_KERNEL);
	if (!smu_table->driver_pptable) {
		kfree(smu_table->metrics_table);
		kfree(smu_table->gpu_metrics_table);
		return -ENOMEM;
	}

	return 0;
}

static int smu_v13_0_6_allocate_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	smu_dpm->dpm_context =
		kzalloc(sizeof(struct smu_13_0_dpm_context), GFP_KERNEL);
	if (!smu_dpm->dpm_context)
		return -ENOMEM;
	smu_dpm->dpm_context_size = sizeof(struct smu_13_0_dpm_context);

	return 0;
}

static int smu_v13_0_6_init_smc_tables(struct smu_context *smu)
{
	int ret = 0;

	ret = smu_v13_0_6_tables_init(smu);
	if (ret)
		return ret;

	ret = smu_v13_0_6_allocate_dpm_context(smu);

	return ret;
}

static int smu_v13_0_6_get_allowed_feature_mask(struct smu_context *smu,
						uint32_t *feature_mask,
						uint32_t num)
{
	if (num > 2)
		return -EINVAL;

	/* pptable will handle the features to enable */
	memset(feature_mask, 0xFF, sizeof(uint32_t) * num);

	return 0;
}

static int smu_v13_0_6_get_metrics_table(struct smu_context *smu,
					 void *metrics_table, bool bypass_cache)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	uint32_t table_size = smu_table->tables[SMU_TABLE_SMU_METRICS].size;
	struct smu_table *table = &smu_table->driver_table;
	int ret;

	if (bypass_cache || !smu_table->metrics_time ||
	    time_after(jiffies,
		       smu_table->metrics_time + msecs_to_jiffies(1))) {
		ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetMetricsTable, NULL);
		if (ret) {
			dev_info(smu->adev->dev,
				 "Failed to export SMU metrics table!\n");
			return ret;
		}

		amdgpu_asic_invalidate_hdp(smu->adev, NULL);
		memcpy(smu_table->metrics_table, table->cpu_addr, table_size);

		smu_table->metrics_time = jiffies;
	}

	if (metrics_table)
		memcpy(metrics_table, smu_table->metrics_table, table_size);

	return 0;
}

static int smu_v13_0_6_setup_driver_pptable(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	MetricsTable_t *metrics = (MetricsTable_t *)smu_table->metrics_table;
	struct PPTable_t *pptable =
		(struct PPTable_t *)smu_table->driver_pptable;
	int ret;
	int i;

	/* Store one-time values in driver PPTable */
	if (!pptable->Init) {
		ret = smu_v13_0_6_get_metrics_table(smu, NULL, false);
		if (ret)
			return ret;

		pptable->MaxSocketPowerLimit =
			SMUQ10_TO_UINT(metrics->MaxSocketPowerLimit);
		pptable->MaxGfxclkFrequency =
			SMUQ10_TO_UINT(metrics->MaxGfxclkFrequency);
		pptable->MinGfxclkFrequency =
			SMUQ10_TO_UINT(metrics->MinGfxclkFrequency);

		for (i = 0; i < 4; ++i) {
			pptable->FclkFrequencyTable[i] =
				SMUQ10_TO_UINT(metrics->FclkFrequencyTable[i]);
			pptable->UclkFrequencyTable[i] =
				SMUQ10_TO_UINT(metrics->UclkFrequencyTable[i]);
			pptable->SocclkFrequencyTable[i] = SMUQ10_TO_UINT(
				metrics->SocclkFrequencyTable[i]);
			pptable->VclkFrequencyTable[i] =
				SMUQ10_TO_UINT(metrics->VclkFrequencyTable[i]);
			pptable->DclkFrequencyTable[i] =
				SMUQ10_TO_UINT(metrics->DclkFrequencyTable[i]);
			pptable->LclkFrequencyTable[i] =
				SMUQ10_TO_UINT(metrics->LclkFrequencyTable[i]);
		}

		pptable->Init = true;
	}

	return 0;
}

static int smu_v13_0_6_get_dpm_ultimate_freq(struct smu_context *smu,
					     enum smu_clk_type clk_type,
					     uint32_t *min, uint32_t *max)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct PPTable_t *pptable =
		(struct PPTable_t *)smu_table->driver_pptable;
	uint32_t clock_limit = 0, param;
	int ret = 0, clk_id = 0;

	if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type)) {
		switch (clk_type) {
		case SMU_MCLK:
		case SMU_UCLK:
			if (pptable->Init)
				clock_limit = pptable->UclkFrequencyTable[0];
			break;
		case SMU_GFXCLK:
		case SMU_SCLK:
			if (pptable->Init)
				clock_limit = pptable->MinGfxclkFrequency;
			break;
		case SMU_SOCCLK:
			if (pptable->Init)
				clock_limit = pptable->UclkFrequencyTable[0];
			break;
		case SMU_FCLK:
			if (pptable->Init)
				clock_limit = pptable->FclkFrequencyTable[0];
			break;
		case SMU_VCLK:
			if (pptable->Init)
				clock_limit = pptable->VclkFrequencyTable[0];
			break;
		case SMU_DCLK:
			if (pptable->Init)
				clock_limit = pptable->DclkFrequencyTable[0];
			break;
		default:
			break;
		}

		if (min)
			*min = clock_limit;

		if (max)
			*max = clock_limit;

		return 0;
	}

	if (!(clk_type == SMU_GFXCLK || clk_type == SMU_SCLK)) {
		clk_id = smu_cmn_to_asic_specific_index(
			smu, CMN2ASIC_MAPPING_CLK, clk_type);
		if (clk_id < 0) {
			ret = -EINVAL;
			goto failed;
		}
		param = (clk_id & 0xffff) << 16;
	}

	if (max) {
		if (clk_type == SMU_GFXCLK || clk_type == SMU_SCLK)
			ret = smu_cmn_send_smc_msg(
				smu, SMU_MSG_GetMaxGfxclkFrequency, max);
		else
			ret = smu_cmn_send_smc_msg_with_param(
				smu, SMU_MSG_GetMaxDpmFreq, param, max);
		if (ret)
			goto failed;
	}

	if (min) {
		if (clk_type == SMU_GFXCLK || clk_type == SMU_SCLK)
			ret = smu_cmn_send_smc_msg(
				smu, SMU_MSG_GetMinGfxclkFrequency, min);
		else
			ret = smu_cmn_send_smc_msg_with_param(
				smu, SMU_MSG_GetMinDpmFreq, param, min);
	}

failed:
	return ret;
}

static int smu_v13_0_6_get_dpm_level_count(struct smu_context *smu,
					  enum smu_clk_type clk_type,
					  uint32_t *levels)
{
	int ret;

	ret = smu_v13_0_get_dpm_freq_by_index(smu, clk_type, 0xff, levels);
	if (!ret)
		++(*levels);

	return ret;
}

static int smu_v13_0_6_set_default_dpm_table(struct smu_context *smu)
{
	struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_13_0_dpm_table *dpm_table = NULL;
	struct PPTable_t *pptable =
		(struct PPTable_t *)smu_table->driver_pptable;
	uint32_t gfxclkmin, gfxclkmax, levels;
	int ret = 0, i, j;
	struct smu_v13_0_6_dpm_map dpm_map[] = {
		{ SMU_SOCCLK, SMU_FEATURE_DPM_SOCCLK_BIT,
		  &dpm_context->dpm_tables.soc_table,
		  pptable->SocclkFrequencyTable },
		{ SMU_UCLK, SMU_FEATURE_DPM_UCLK_BIT,
		  &dpm_context->dpm_tables.uclk_table,
		  pptable->UclkFrequencyTable },
		{ SMU_FCLK, SMU_FEATURE_DPM_FCLK_BIT,
		  &dpm_context->dpm_tables.fclk_table,
		  pptable->FclkFrequencyTable },
		{ SMU_VCLK, SMU_FEATURE_DPM_VCLK_BIT,
		  &dpm_context->dpm_tables.vclk_table,
		  pptable->VclkFrequencyTable },
		{ SMU_DCLK, SMU_FEATURE_DPM_DCLK_BIT,
		  &dpm_context->dpm_tables.dclk_table,
		  pptable->DclkFrequencyTable },
	};

	smu_v13_0_6_setup_driver_pptable(smu);

	/* gfxclk dpm table setup */
	dpm_table = &dpm_context->dpm_tables.gfx_table;
	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
		/* In the case of gfxclk, only fine-grained dpm is honored.
		 * Get min/max values from FW.
		 */
		ret = smu_v13_0_6_get_dpm_ultimate_freq(smu, SMU_GFXCLK,
							&gfxclkmin, &gfxclkmax);
		if (ret)
			return ret;

		dpm_table->count = 2;
		dpm_table->dpm_levels[0].value = gfxclkmin;
		dpm_table->dpm_levels[0].enabled = true;
		dpm_table->dpm_levels[1].value = gfxclkmax;
		dpm_table->dpm_levels[1].enabled = true;
		dpm_table->min = dpm_table->dpm_levels[0].value;
		dpm_table->max = dpm_table->dpm_levels[1].value;
	} else {
		dpm_table->count = 1;
		dpm_table->dpm_levels[0].value = pptable->MinGfxclkFrequency;
		dpm_table->dpm_levels[0].enabled = true;
		dpm_table->min = dpm_table->dpm_levels[0].value;
		dpm_table->max = dpm_table->dpm_levels[0].value;
	}

	for (j = 0; j < ARRAY_SIZE(dpm_map); j++) {
		dpm_table = dpm_map[j].dpm_table;
		levels = 1;
		if (smu_cmn_feature_is_enabled(smu, dpm_map[j].feature_num)) {
			ret = smu_v13_0_6_get_dpm_level_count(
				smu, dpm_map[j].clk_type, &levels);
			if (ret)
				return ret;
		}
		dpm_table->count = levels;
		for (i = 0; i < dpm_table->count; ++i) {
			dpm_table->dpm_levels[i].value =
				dpm_map[j].freq_table[i];
			dpm_table->dpm_levels[i].enabled = true;

		}
		dpm_table->min = dpm_table->dpm_levels[0].value;
		dpm_table->max = dpm_table->dpm_levels[levels - 1].value;

	}

	return 0;
}

static int smu_v13_0_6_setup_pptable(struct smu_context *smu)
{
	struct smu_table_context *table_context = &smu->smu_table;

	/* TODO: PPTable is not available.
	 * 1) Find an alternate way to get 'PPTable values' here.
	 * 2) Check if there is SW CTF
	 */
	table_context->thermal_controller_type = 0;

	return 0;
}

static int smu_v13_0_6_check_fw_status(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

	mp1_fw_flags =
		RREG32_PCIE(MP1_Public | (smnMP1_FIRMWARE_FLAGS & 0xffffffff));

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;

	return -EIO;
}

static int smu_v13_0_6_populate_umd_state_clk(struct smu_context *smu)
{
	struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
	struct smu_13_0_dpm_table *gfx_table =
		&dpm_context->dpm_tables.gfx_table;
	struct smu_13_0_dpm_table *mem_table =
		&dpm_context->dpm_tables.uclk_table;
	struct smu_13_0_dpm_table *soc_table =
		&dpm_context->dpm_tables.soc_table;
	struct smu_umd_pstate_table *pstate_table = &smu->pstate_table;

	pstate_table->gfxclk_pstate.min = gfx_table->min;
	pstate_table->gfxclk_pstate.peak = gfx_table->max;
	pstate_table->gfxclk_pstate.curr.min = gfx_table->min;
	pstate_table->gfxclk_pstate.curr.max = gfx_table->max;

	pstate_table->uclk_pstate.min = mem_table->min;
	pstate_table->uclk_pstate.peak = mem_table->max;
	pstate_table->uclk_pstate.curr.min = mem_table->min;
	pstate_table->uclk_pstate.curr.max = mem_table->max;

	pstate_table->socclk_pstate.min = soc_table->min;
	pstate_table->socclk_pstate.peak = soc_table->max;
	pstate_table->socclk_pstate.curr.min = soc_table->min;
	pstate_table->socclk_pstate.curr.max = soc_table->max;

	if (gfx_table->count > SMU_13_0_6_UMD_PSTATE_GFXCLK_LEVEL &&
	    mem_table->count > SMU_13_0_6_UMD_PSTATE_MCLK_LEVEL &&
	    soc_table->count > SMU_13_0_6_UMD_PSTATE_SOCCLK_LEVEL) {
		pstate_table->gfxclk_pstate.standard =
			gfx_table->dpm_levels[SMU_13_0_6_UMD_PSTATE_GFXCLK_LEVEL].value;
		pstate_table->uclk_pstate.standard =
			mem_table->dpm_levels[SMU_13_0_6_UMD_PSTATE_MCLK_LEVEL].value;
		pstate_table->socclk_pstate.standard =
			soc_table->dpm_levels[SMU_13_0_6_UMD_PSTATE_SOCCLK_LEVEL].value;
	} else {
		pstate_table->gfxclk_pstate.standard =
			pstate_table->gfxclk_pstate.min;
		pstate_table->uclk_pstate.standard =
			pstate_table->uclk_pstate.min;
		pstate_table->socclk_pstate.standard =
			pstate_table->socclk_pstate.min;
	}

	return 0;
}

static int smu_v13_0_6_get_clk_table(struct smu_context *smu,
				     struct pp_clock_levels_with_latency *clocks,
				     struct smu_13_0_dpm_table *dpm_table)
{
	int i, count;

	count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS :
						      dpm_table->count;
	clocks->num_levels = count;

	for (i = 0; i < count; i++) {
		clocks->data[i].clocks_in_khz =
			dpm_table->dpm_levels[i].value * 1000;
		clocks->data[i].latency_in_us = 0;
	}

	return 0;
}

static int smu_v13_0_6_freqs_in_same_level(int32_t frequency1,
					   int32_t frequency2)
{
	return (abs(frequency1 - frequency2) <= EPSILON);
}

static uint32_t smu_v13_0_6_get_throttler_status(struct smu_context *smu,
						 MetricsTable_t *metrics)
{
	uint32_t  throttler_status = 0;

	throttler_status |= metrics->ProchotResidencyAcc > 0 ? 1U << THROTTLER_PROCHOT_GFX_BIT : 0;
	throttler_status |= metrics->PptResidencyAcc > 0 ? 1U << THROTTLER_PPT_BIT : 0;
	throttler_status |= metrics->SocketThmResidencyAcc > 0 ?  1U << THROTTLER_TEMP_SOC_BIT : 0;
	throttler_status |= metrics->VrThmResidencyAcc > 0 ? 1U << THROTTLER_TEMP_VR_GFX_BIT : 0;
	throttler_status |= metrics->HbmThmResidencyAcc > 0 ? 1U << THROTTLER_TEMP_HBM_BIT : 0;

	return throttler_status;
}

static int smu_v13_0_6_get_smu_metrics_data(struct smu_context *smu,
					    MetricsMember_t member,
					    uint32_t *value)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	MetricsTable_t *metrics = (MetricsTable_t *)smu_table->metrics_table;
	int ret = 0;

	ret = smu_v13_0_6_get_metrics_table(smu, NULL, false);
	if (ret)
		return ret;

	/* For clocks with multiple instances, only report the first one */
	switch (member) {
	case METRICS_CURR_GFXCLK:
	case METRICS_AVERAGE_GFXCLK:
		*value = 0;
		break;
	case METRICS_CURR_SOCCLK:
	case METRICS_AVERAGE_SOCCLK:
		*value = SMUQ10_TO_UINT(metrics->SocclkFrequency[0]);
		break;
	case METRICS_CURR_UCLK:
	case METRICS_AVERAGE_UCLK:
		*value = SMUQ10_TO_UINT(metrics->UclkFrequency);
		break;
	case METRICS_CURR_VCLK:
		*value = SMUQ10_TO_UINT(metrics->VclkFrequency[0]);
		break;
	case METRICS_CURR_DCLK:
		*value = SMUQ10_TO_UINT(metrics->DclkFrequency[0]);
		break;
	case METRICS_CURR_FCLK:
		*value = SMUQ10_TO_UINT(metrics->FclkFrequency);
		break;
	case METRICS_AVERAGE_GFXACTIVITY:
		*value = SMUQ10_TO_UINT(metrics->SocketGfxBusy);
		break;
	case METRICS_AVERAGE_MEMACTIVITY:
		*value = SMUQ10_TO_UINT(metrics->DramBandwidthUtilization);
		break;
	case METRICS_AVERAGE_SOCKETPOWER:
		*value = SMUQ10_TO_UINT(metrics->SocketPower) << 8;
		break;
	case METRICS_TEMPERATURE_HOTSPOT:
		*value = SMUQ10_TO_UINT(metrics->MaxSocketTemperature);
		break;
	case METRICS_TEMPERATURE_MEM:
		*value = SMUQ10_TO_UINT(metrics->MaxHbmTemperature);
		break;
	/* This is the max of all VRs and not just SOC VR.
	 * No need to define another data type for the same.
	 */
	case METRICS_TEMPERATURE_VRSOC:
		*value = SMUQ10_TO_UINT(metrics->MaxVrTemperature);
		break;
	case METRICS_THROTTLER_STATUS:
		*value = smu_v13_0_6_get_throttler_status(smu, metrics);
		break;
	default:
		*value = UINT_MAX;
		break;
	}

	return ret;
}

static int smu_v13_0_6_get_current_clk_freq_by_table(struct smu_context *smu,
						     enum smu_clk_type clk_type,
						     uint32_t *value)
{
	MetricsMember_t member_type;

	if (!value)
		return -EINVAL;

	switch (clk_type) {
	case SMU_GFXCLK:
		member_type = METRICS_CURR_GFXCLK;
		break;
	case SMU_UCLK:
		member_type = METRICS_CURR_UCLK;
		break;
	case SMU_SOCCLK:
		member_type = METRICS_CURR_SOCCLK;
		break;
	case SMU_VCLK:
		member_type = METRICS_CURR_VCLK;
		break;
	case SMU_DCLK:
		member_type = METRICS_CURR_DCLK;
		break;
	case SMU_FCLK:
		member_type = METRICS_CURR_FCLK;
		break;
	default:
		return -EINVAL;
	}

	return smu_v13_0_6_get_smu_metrics_data(smu, member_type, value);
}

static int smu_v13_0_6_print_clk_levels(struct smu_context *smu,
					enum smu_clk_type type, char *buf)
{
	int i, now, size = 0;
	int ret = 0;
	struct smu_umd_pstate_table *pstate_table = &smu->pstate_table;
	struct pp_clock_levels_with_latency clocks;
	struct smu_13_0_dpm_table *single_dpm_table;
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
	struct smu_13_0_dpm_context *dpm_context = NULL;
	uint32_t display_levels;
	uint32_t freq_values[3] = { 0 };
	uint32_t min_clk, max_clk;

	smu_cmn_get_sysfs_buf(&buf, &size);

	if (amdgpu_ras_intr_triggered()) {
		size += sysfs_emit_at(buf, size, "unavailable\n");
		return size;
	}

	dpm_context = smu_dpm->dpm_context;

	switch (type) {
	case SMU_OD_SCLK:
		size += sysfs_emit_at(buf, size, "%s:\n", "GFXCLK");
		fallthrough;
	case SMU_SCLK:
		ret = smu_v13_0_6_get_current_clk_freq_by_table(smu, SMU_GFXCLK,
								&now);
		if (ret) {
			dev_err(smu->adev->dev,
				"Attempt to get current gfx clk Failed!");
			return ret;
		}

		single_dpm_table = &(dpm_context->dpm_tables.gfx_table);
		ret = smu_v13_0_6_get_clk_table(smu, &clocks, single_dpm_table);
		if (ret) {
			dev_err(smu->adev->dev,
				"Attempt to get gfx clk levels Failed!");
			return ret;
		}

		display_levels = clocks.num_levels;

		min_clk = pstate_table->gfxclk_pstate.curr.min;
		max_clk = pstate_table->gfxclk_pstate.curr.max;

		freq_values[0] = min_clk;
		freq_values[1] = max_clk;

		/* fine-grained dpm has only 2 levels */
		if (now > min_clk && now < max_clk) {
			display_levels = clocks.num_levels + 1;
			freq_values[2] = max_clk;
			freq_values[1] = now;
		}

		/*
		 * For DPM disabled case, there will be only one clock level.
		 * And it's safe to assume that is always the current clock.
		 */
		if (display_levels == clocks.num_levels) {
			for (i = 0; i < clocks.num_levels; i++)
				size += sysfs_emit_at(
					buf, size, "%d: %uMhz %s\n", i,
					freq_values[i],
					(clocks.num_levels == 1) ?
						"*" :
						(smu_v13_0_6_freqs_in_same_level(
							 freq_values[i], now) ?
							 "*" :
							 ""));
		} else {
			for (i = 0; i < display_levels; i++)
				size += sysfs_emit_at(buf, size,
						      "%d: %uMhz %s\n", i,
						      freq_values[i],
						      i == 1 ? "*" : "");
		}

		break;

	case SMU_OD_MCLK:
		size += sysfs_emit_at(buf, size, "%s:\n", "MCLK");
		fallthrough;
	case SMU_MCLK:
		ret = smu_v13_0_6_get_current_clk_freq_by_table(smu, SMU_UCLK,
								&now);
		if (ret) {
			dev_err(smu->adev->dev,
				"Attempt to get current mclk Failed!");
			return ret;
		}

		single_dpm_table = &(dpm_context->dpm_tables.uclk_table);
		ret = smu_v13_0_6_get_clk_table(smu, &clocks, single_dpm_table);
		if (ret) {
			dev_err(smu->adev->dev,
				"Attempt to get memory clk levels Failed!");
			return ret;
		}

		for (i = 0; i < clocks.num_levels; i++)
			size += sysfs_emit_at(
				buf, size, "%d: %uMhz %s\n", i,
				clocks.data[i].clocks_in_khz / 1000,
				(clocks.num_levels == 1) ?
					"*" :
					(smu_v13_0_6_freqs_in_same_level(
						 clocks.data[i].clocks_in_khz /
							 1000,
						 now) ?
						 "*" :
						 ""));
		break;

	case SMU_SOCCLK:
		ret = smu_v13_0_6_get_current_clk_freq_by_table(smu, SMU_SOCCLK,
								&now);
		if (ret) {
			dev_err(smu->adev->dev,
				"Attempt to get current socclk Failed!");
			return ret;
		}

		single_dpm_table = &(dpm_context->dpm_tables.soc_table);
		ret = smu_v13_0_6_get_clk_table(smu, &clocks, single_dpm_table);
		if (ret) {
			dev_err(smu->adev->dev,
				"Attempt to get socclk levels Failed!");
			return ret;
		}

		for (i = 0; i < clocks.num_levels; i++)
			size += sysfs_emit_at(
				buf, size, "%d: %uMhz %s\n", i,
				clocks.data[i].clocks_in_khz / 1000,
				(clocks.num_levels == 1) ?
					"*" :
					(smu_v13_0_6_freqs_in_same_level(
						 clocks.data[i].clocks_in_khz /
							 1000,
						 now) ?
						 "*" :
						 ""));
		break;

	case SMU_FCLK:
		ret = smu_v13_0_6_get_current_clk_freq_by_table(smu, SMU_FCLK,
								&now);
		if (ret) {
			dev_err(smu->adev->dev,
				"Attempt to get current fclk Failed!");
			return ret;
		}

		single_dpm_table = &(dpm_context->dpm_tables.fclk_table);
		ret = smu_v13_0_6_get_clk_table(smu, &clocks, single_dpm_table);
		if (ret) {
			dev_err(smu->adev->dev,
				"Attempt to get fclk levels Failed!");
			return ret;
		}

		for (i = 0; i < single_dpm_table->count; i++)
			size += sysfs_emit_at(
				buf, size, "%d: %uMhz %s\n", i,
				single_dpm_table->dpm_levels[i].value,
				(clocks.num_levels == 1) ?
					"*" :
					(smu_v13_0_6_freqs_in_same_level(
						 clocks.data[i].clocks_in_khz /
							 1000,
						 now) ?
						 "*" :
						 ""));
		break;

	case SMU_VCLK:
		ret = smu_v13_0_6_get_current_clk_freq_by_table(smu, SMU_VCLK,
								&now);
		if (ret) {
			dev_err(smu->adev->dev,
				"Attempt to get current vclk Failed!");
			return ret;
		}

		single_dpm_table = &(dpm_context->dpm_tables.vclk_table);
		ret = smu_v13_0_6_get_clk_table(smu, &clocks, single_dpm_table);
		if (ret) {
			dev_err(smu->adev->dev,
				"Attempt to get vclk levels Failed!");
			return ret;
		}

		for (i = 0; i < single_dpm_table->count; i++)
			size += sysfs_emit_at(
				buf, size, "%d: %uMhz %s\n", i,
				single_dpm_table->dpm_levels[i].value,
				(clocks.num_levels == 1) ?
					"*" :
					(smu_v13_0_6_freqs_in_same_level(
						 clocks.data[i].clocks_in_khz /
							 1000,
						 now) ?
						 "*" :
						 ""));
		break;

	case SMU_DCLK:
		ret = smu_v13_0_6_get_current_clk_freq_by_table(smu, SMU_DCLK,
							       &now);
		if (ret) {
			dev_err(smu->adev->dev,
				"Attempt to get current dclk Failed!");
			return ret;
		}

		single_dpm_table = &(dpm_context->dpm_tables.dclk_table);
		ret = smu_v13_0_6_get_clk_table(smu, &clocks, single_dpm_table);
		if (ret) {
			dev_err(smu->adev->dev,
				"Attempt to get dclk levels Failed!");
			return ret;
		}

		for (i = 0; i < single_dpm_table->count; i++)
			size += sysfs_emit_at(
				buf, size, "%d: %uMhz %s\n", i,
				single_dpm_table->dpm_levels[i].value,
				(clocks.num_levels == 1) ?
					"*" :
					(smu_v13_0_6_freqs_in_same_level(
						 clocks.data[i].clocks_in_khz /
							 1000,
						 now) ?
						 "*" :
						 ""));
		break;

	default:
		break;
	}

	return size;
}

static int smu_v13_0_6_upload_dpm_level(struct smu_context *smu, bool max,
					uint32_t feature_mask, uint32_t level)
{
	struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
	uint32_t freq;
	int ret = 0;

	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT) &&
	    (feature_mask & FEATURE_MASK(FEATURE_DPM_GFXCLK))) {
		freq = dpm_context->dpm_tables.gfx_table.dpm_levels[level].value;
		ret = smu_cmn_send_smc_msg_with_param(
			smu,
			(max ? SMU_MSG_SetSoftMaxGfxClk :
			       SMU_MSG_SetSoftMinGfxclk),
			freq & 0xffff, NULL);
		if (ret) {
			dev_err(smu->adev->dev,
				"Failed to set soft %s gfxclk !\n",
				max ? "max" : "min");
			return ret;
		}
	}

	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
	    (feature_mask & FEATURE_MASK(FEATURE_DPM_UCLK))) {
		freq = dpm_context->dpm_tables.uclk_table.dpm_levels[level]
			       .value;
		ret = smu_cmn_send_smc_msg_with_param(
			smu,
			(max ? SMU_MSG_SetSoftMaxByFreq :
			       SMU_MSG_SetSoftMinByFreq),
			(PPCLK_UCLK << 16) | (freq & 0xffff), NULL);
		if (ret) {
			dev_err(smu->adev->dev,
				"Failed to set soft %s memclk !\n",
				max ? "max" : "min");
			return ret;
		}
	}

	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT) &&
	    (feature_mask & FEATURE_MASK(FEATURE_DPM_SOCCLK))) {
		freq = dpm_context->dpm_tables.soc_table.dpm_levels[level].value;
		ret = smu_cmn_send_smc_msg_with_param(
			smu,
			(max ? SMU_MSG_SetSoftMaxByFreq :
			       SMU_MSG_SetSoftMinByFreq),
			(PPCLK_SOCCLK << 16) | (freq & 0xffff), NULL);
		if (ret) {
			dev_err(smu->adev->dev,
				"Failed to set soft %s socclk !\n",
				max ? "max" : "min");
			return ret;
		}
	}

	return ret;
}

static int smu_v13_0_6_force_clk_levels(struct smu_context *smu,
					enum smu_clk_type type, uint32_t mask)
{
	struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
	struct smu_13_0_dpm_table *single_dpm_table = NULL;
	uint32_t soft_min_level, soft_max_level;
	int ret = 0;

	soft_min_level = mask ? (ffs(mask) - 1) : 0;
	soft_max_level = mask ? (fls(mask) - 1) : 0;

	switch (type) {
	case SMU_SCLK:
		single_dpm_table = &(dpm_context->dpm_tables.gfx_table);
		if (soft_max_level >= single_dpm_table->count) {
			dev_err(smu->adev->dev,
				"Clock level specified %d is over max allowed %d\n",
				soft_max_level, single_dpm_table->count - 1);
			ret = -EINVAL;
			break;
		}

		ret = smu_v13_0_6_upload_dpm_level(
			smu, false, FEATURE_MASK(FEATURE_DPM_GFXCLK),
			soft_min_level);
		if (ret) {
			dev_err(smu->adev->dev,
				"Failed to upload boot level to lowest!\n");
			break;
		}

		ret = smu_v13_0_6_upload_dpm_level(
			smu, true, FEATURE_MASK(FEATURE_DPM_GFXCLK),
			soft_max_level);
		if (ret)
			dev_err(smu->adev->dev,
				"Failed to upload dpm max level to highest!\n");

		break;

	case SMU_MCLK:
	case SMU_SOCCLK:
	case SMU_FCLK:
		/*
		 * Should not arrive here since smu_13_0_6 does not
		 * support mclk/socclk/fclk softmin/softmax settings
		 */
		ret = -EINVAL;
		break;

	default:
		break;
	}

	return ret;
}

static int smu_v13_0_6_get_current_activity_percent(struct smu_context *smu,
						    enum amd_pp_sensors sensor,
						    uint32_t *value)
{
	int ret = 0;

	if (!value)
		return -EINVAL;

	switch (sensor) {
	case AMDGPU_PP_SENSOR_GPU_LOAD:
		ret = smu_v13_0_6_get_smu_metrics_data(
			smu, METRICS_AVERAGE_GFXACTIVITY, value);
		break;
	case AMDGPU_PP_SENSOR_MEM_LOAD:
		ret = smu_v13_0_6_get_smu_metrics_data(
			smu, METRICS_AVERAGE_MEMACTIVITY, value);
		break;
	default:
		dev_err(smu->adev->dev,
			"Invalid sensor for retrieving clock activity\n");
		return -EINVAL;
	}

	return ret;
}

static int smu_v13_0_6_get_gpu_power(struct smu_context *smu, uint32_t *value)
{
	if (!value)
		return -EINVAL;

	return smu_v13_0_6_get_smu_metrics_data(smu, METRICS_AVERAGE_SOCKETPOWER,
					       value);
}

static int smu_v13_0_6_thermal_get_temperature(struct smu_context *smu,
					       enum amd_pp_sensors sensor,
					       uint32_t *value)
{
	int ret = 0;

	if (!value)
		return -EINVAL;

	switch (sensor) {
	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
		ret = smu_v13_0_6_get_smu_metrics_data(
			smu, METRICS_TEMPERATURE_HOTSPOT, value);
		break;
	case AMDGPU_PP_SENSOR_MEM_TEMP:
		ret = smu_v13_0_6_get_smu_metrics_data(
			smu, METRICS_TEMPERATURE_MEM, value);
		break;
	default:
		dev_err(smu->adev->dev, "Invalid sensor for retrieving temp\n");
		return -EINVAL;
	}

	return ret;
}

static int smu_v13_0_6_read_sensor(struct smu_context *smu,
				   enum amd_pp_sensors sensor, void *data,
				   uint32_t *size)
{
	int ret = 0;

	if (amdgpu_ras_intr_triggered())
		return 0;

	if (!data || !size)
		return -EINVAL;

	switch (sensor) {
	case AMDGPU_PP_SENSOR_MEM_LOAD:
	case AMDGPU_PP_SENSOR_GPU_LOAD:
		ret = smu_v13_0_6_get_current_activity_percent(smu, sensor,
							       (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GPU_POWER:
		ret = smu_v13_0_6_get_gpu_power(smu, (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
	case AMDGPU_PP_SENSOR_MEM_TEMP:
		ret = smu_v13_0_6_thermal_get_temperature(smu, sensor,
							  (uint32_t *)data);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_MCLK:
		ret = smu_v13_0_6_get_current_clk_freq_by_table(
			smu, SMU_UCLK, (uint32_t *)data);
		/* the output clock frequency in 10K unit */
		*(uint32_t *)data *= 100;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
		ret = smu_v13_0_6_get_current_clk_freq_by_table(
			smu, SMU_GFXCLK, (uint32_t *)data);
		*(uint32_t *)data *= 100;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v13_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
		break;
	default:
		ret = -EOPNOTSUPP;
		break;
	}

	return ret;
}

static int smu_v13_0_6_get_power_limit(struct smu_context *smu,
				       uint32_t *current_power_limit,
				       uint32_t *default_power_limit,
				       uint32_t *max_power_limit)
{
        struct smu_table_context *smu_table = &smu->smu_table;
        struct PPTable_t *pptable =
                (struct PPTable_t *)smu_table->driver_pptable;
	uint32_t power_limit = 0;
	int ret;

	if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
		if (current_power_limit)
			*current_power_limit = 0;
		if (default_power_limit)
			*default_power_limit = 0;
		if (max_power_limit)
			*max_power_limit = 0;

		dev_warn(
			smu->adev->dev,
			"PPT feature is not enabled, power values can't be fetched.");

		return 0;
	}

	ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetPptLimit, &power_limit);

	if (ret) {
		dev_err(smu->adev->dev, "Couldn't get PPT limit");
		return -EINVAL;
	}

	if (current_power_limit)
		*current_power_limit = power_limit;
	if (default_power_limit)
		*default_power_limit = power_limit;

	if (max_power_limit) {
		*max_power_limit = pptable->MaxSocketPowerLimit;
	}

	return 0;
}

static int smu_v13_0_6_set_power_limit(struct smu_context *smu,
				       enum smu_ppt_limit_type limit_type,
				       uint32_t limit)
{
	return smu_v13_0_set_power_limit(smu, limit_type, limit);
}

static int smu_v13_0_6_system_features_control(struct smu_context *smu,
					       bool enable)
{
	int ret;

	/* Nothing to be done for APU */
	if (smu->adev->flags & AMD_IS_APU)
		return 0;

	ret = smu_v13_0_system_features_control(smu, enable);

	return ret;
}

static int smu_v13_0_6_set_gfx_soft_freq_limited_range(struct smu_context *smu,
						       uint32_t min,
						       uint32_t max)
{
	int ret;

	ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk,
					      max & 0xffff, NULL);
	if (ret)
		return ret;

	ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinGfxclk,
					      min & 0xffff, NULL);

	return ret;
}

static int smu_v13_0_6_set_performance_level(struct smu_context *smu,
					     enum amd_dpm_forced_level level)
{
	struct smu_dpm_context *smu_dpm = &(smu->smu_dpm);
	struct smu_13_0_dpm_context *dpm_context = smu_dpm->dpm_context;
	struct smu_13_0_dpm_table *gfx_table =
		&dpm_context->dpm_tables.gfx_table;
	struct smu_umd_pstate_table *pstate_table = &smu->pstate_table;
	int ret;

	/* Disable determinism if switching to another mode */
	if ((smu_dpm->dpm_level == AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) &&
	    (level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM)) {
		smu_cmn_send_smc_msg(smu, SMU_MSG_DisableDeterminism, NULL);
		pstate_table->gfxclk_pstate.curr.max = gfx_table->max;
	}

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM:
		return 0;

	case AMD_DPM_FORCED_LEVEL_AUTO:
		if ((gfx_table->min == pstate_table->gfxclk_pstate.curr.min) &&
		    (gfx_table->max == pstate_table->gfxclk_pstate.curr.max))
			return 0;

		ret = smu_v13_0_6_set_gfx_soft_freq_limited_range(
			smu, gfx_table->min, gfx_table->max);
		if (ret)
			return ret;

		pstate_table->gfxclk_pstate.curr.min = gfx_table->min;
		pstate_table->gfxclk_pstate.curr.max = gfx_table->max;
		return 0;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
		return 0;
	default:
		break;
	}

	return -EINVAL;
}

static int smu_v13_0_6_set_soft_freq_limited_range(struct smu_context *smu,
						   enum smu_clk_type clk_type,
						   uint32_t min, uint32_t max)
{
	struct smu_dpm_context *smu_dpm = &(smu->smu_dpm);
	struct smu_13_0_dpm_context *dpm_context = smu_dpm->dpm_context;
	struct smu_umd_pstate_table *pstate_table = &smu->pstate_table;
	struct amdgpu_device *adev = smu->adev;
	uint32_t min_clk;
	uint32_t max_clk;
	int ret = 0;

	if (clk_type != SMU_GFXCLK && clk_type != SMU_SCLK)
		return -EINVAL;

	if ((smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) &&
	    (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM))
		return -EINVAL;

	if (smu_dpm->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) {
		if (min >= max) {
			dev_err(smu->adev->dev,
				"Minimum GFX clk should be less than the maximum allowed clock\n");
			return -EINVAL;
		}

		if ((min == pstate_table->gfxclk_pstate.curr.min) &&
		    (max == pstate_table->gfxclk_pstate.curr.max))
			return 0;

		ret = smu_v13_0_6_set_gfx_soft_freq_limited_range(smu, min, max);
		if (!ret) {
			pstate_table->gfxclk_pstate.curr.min = min;
			pstate_table->gfxclk_pstate.curr.max = max;
		}

		return ret;
	}

	if (smu_dpm->dpm_level == AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) {
		if (!max || (max < dpm_context->dpm_tables.gfx_table.min) ||
		    (max > dpm_context->dpm_tables.gfx_table.max)) {
			dev_warn(
				adev->dev,
				"Invalid max frequency %d MHz specified for determinism\n",
				max);
			return -EINVAL;
		}

		/* Restore default min/max clocks and enable determinism */
		min_clk = dpm_context->dpm_tables.gfx_table.min;
		max_clk = dpm_context->dpm_tables.gfx_table.max;
		ret = smu_v13_0_6_set_gfx_soft_freq_limited_range(smu, min_clk,
								 max_clk);
		if (!ret) {
			usleep_range(500, 1000);
			ret = smu_cmn_send_smc_msg_with_param(
				smu, SMU_MSG_EnableDeterminism, max, NULL);
			if (ret) {
				dev_err(adev->dev,
					"Failed to enable determinism at GFX clock %d MHz\n",
					max);
			} else {
				pstate_table->gfxclk_pstate.curr.min = min_clk;
				pstate_table->gfxclk_pstate.curr.max = max;
			}
		}
	}

	return ret;
}

static int smu_v13_0_6_usr_edit_dpm_table(struct smu_context *smu,
					  enum PP_OD_DPM_TABLE_COMMAND type,
					  long input[], uint32_t size)
{
	struct smu_dpm_context *smu_dpm = &(smu->smu_dpm);
	struct smu_13_0_dpm_context *dpm_context = smu_dpm->dpm_context;
	struct smu_umd_pstate_table *pstate_table = &smu->pstate_table;
	uint32_t min_clk;
	uint32_t max_clk;
	int ret = 0;

	/* Only allowed in manual or determinism mode */
	if ((smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) &&
	    (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM))
		return -EINVAL;

	switch (type) {
	case PP_OD_EDIT_SCLK_VDDC_TABLE:
		if (size != 2) {
			dev_err(smu->adev->dev,
				"Input parameter number not correct\n");
			return -EINVAL;
		}

		if (input[0] == 0) {
			if (input[1] < dpm_context->dpm_tables.gfx_table.min) {
				dev_warn(
					smu->adev->dev,
					"Minimum GFX clk (%ld) MHz specified is less than the minimum allowed (%d) MHz\n",
					input[1],
					dpm_context->dpm_tables.gfx_table.min);
				pstate_table->gfxclk_pstate.custom.min =
					pstate_table->gfxclk_pstate.curr.min;
				return -EINVAL;
			}

			pstate_table->gfxclk_pstate.custom.min = input[1];
		} else if (input[0] == 1) {
			if (input[1] > dpm_context->dpm_tables.gfx_table.max) {
				dev_warn(
					smu->adev->dev,
					"Maximum GFX clk (%ld) MHz specified is greater than the maximum allowed (%d) MHz\n",
					input[1],
					dpm_context->dpm_tables.gfx_table.max);
				pstate_table->gfxclk_pstate.custom.max =
					pstate_table->gfxclk_pstate.curr.max;
				return -EINVAL;
			}

			pstate_table->gfxclk_pstate.custom.max = input[1];
		} else {
			return -EINVAL;
		}
		break;
	case PP_OD_RESTORE_DEFAULT_TABLE:
		if (size != 0) {
			dev_err(smu->adev->dev,
				"Input parameter number not correct\n");
			return -EINVAL;
		} else {
			/* Use the default frequencies for manual and determinism mode */
			min_clk = dpm_context->dpm_tables.gfx_table.min;
			max_clk = dpm_context->dpm_tables.gfx_table.max;

			return smu_v13_0_6_set_soft_freq_limited_range(
				smu, SMU_GFXCLK, min_clk, max_clk);
		}
		break;
	case PP_OD_COMMIT_DPM_TABLE:
		if (size != 0) {
			dev_err(smu->adev->dev,
				"Input parameter number not correct\n");
			return -EINVAL;
		} else {
			if (!pstate_table->gfxclk_pstate.custom.min)
				pstate_table->gfxclk_pstate.custom.min =
					pstate_table->gfxclk_pstate.curr.min;

			if (!pstate_table->gfxclk_pstate.custom.max)
				pstate_table->gfxclk_pstate.custom.max =
					pstate_table->gfxclk_pstate.curr.max;

			min_clk = pstate_table->gfxclk_pstate.custom.min;
			max_clk = pstate_table->gfxclk_pstate.custom.max;

			return smu_v13_0_6_set_soft_freq_limited_range(
				smu, SMU_GFXCLK, min_clk, max_clk);
		}
		break;
	default:
		return -ENOSYS;
	}

	return ret;
}

static int smu_v13_0_6_get_enabled_mask(struct smu_context *smu,
					uint64_t *feature_mask)
{
	uint32_t smu_version;
	int ret;

	smu_cmn_get_smc_version(smu, NULL, &smu_version);
	ret = smu_cmn_get_enabled_mask(smu, feature_mask);

	if (ret == -EIO && smu_version < 0x552F00) {
		*feature_mask = 0;
		ret = 0;
	}

	return ret;
}

static bool smu_v13_0_6_is_dpm_running(struct smu_context *smu)
{
	int ret;
	uint64_t feature_enabled;

	ret = smu_v13_0_6_get_enabled_mask(smu, &feature_enabled);

	if (ret)
		return false;

	return !!(feature_enabled & SMC_DPM_FEATURE);
}

static int smu_v13_0_6_request_i2c_xfer(struct smu_context *smu,
					void *table_data)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *table = &smu_table->driver_table;
	struct amdgpu_device *adev = smu->adev;
	uint32_t table_size;
	int ret = 0;

	if (!table_data)
		return -EINVAL;

	table_size = smu_table->tables[SMU_TABLE_I2C_COMMANDS].size;

	memcpy(table->cpu_addr, table_data, table_size);
	/* Flush hdp cache */
	amdgpu_asic_flush_hdp(adev, NULL);
	ret = smu_cmn_send_smc_msg(smu, SMU_MSG_RequestI2cTransaction,
					  NULL);

	return ret;
}

static int smu_v13_0_6_i2c_xfer(struct i2c_adapter *i2c_adap,
				struct i2c_msg *msg, int num_msgs)
{
	struct amdgpu_smu_i2c_bus *smu_i2c = i2c_get_adapdata(i2c_adap);
	struct amdgpu_device *adev = smu_i2c->adev;
	struct smu_context *smu = adev->powerplay.pp_handle;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *table = &smu_table->driver_table;
	SwI2cRequest_t *req, *res = (SwI2cRequest_t *)table->cpu_addr;
	int i, j, r, c;
	u16 dir;

	if (!adev->pm.dpm_enabled)
		return -EBUSY;

	req = kzalloc(sizeof(*req), GFP_KERNEL);
	if (!req)
		return -ENOMEM;

	req->I2CcontrollerPort = smu_i2c->port;
	req->I2CSpeed = I2C_SPEED_FAST_400K;
	req->SlaveAddress = msg[0].addr << 1; /* wants an 8-bit address */
	dir = msg[0].flags & I2C_M_RD;

	for (c = i = 0; i < num_msgs; i++) {
		for (j = 0; j < msg[i].len; j++, c++) {
			SwI2cCmd_t *cmd = &req->SwI2cCmds[c];

			if (!(msg[i].flags & I2C_M_RD)) {
				/* write */
				cmd->CmdConfig |= CMDCONFIG_READWRITE_MASK;
				cmd->ReadWriteData = msg[i].buf[j];
			}

			if ((dir ^ msg[i].flags) & I2C_M_RD) {
				/* The direction changes.
				 */
				dir = msg[i].flags & I2C_M_RD;
				cmd->CmdConfig |= CMDCONFIG_RESTART_MASK;
			}

			req->NumCmds++;

			/*
			 * Insert STOP if we are at the last byte of either last
			 * message for the transaction or the client explicitly
			 * requires a STOP at this particular message.
			 */
			if ((j == msg[i].len - 1) &&
			    ((i == num_msgs - 1) || (msg[i].flags & I2C_M_STOP))) {
				cmd->CmdConfig &= ~CMDCONFIG_RESTART_MASK;
				cmd->CmdConfig |= CMDCONFIG_STOP_MASK;
			}
		}
	}
	mutex_lock(&adev->pm.mutex);
	r = smu_v13_0_6_request_i2c_xfer(smu, req);
	mutex_unlock(&adev->pm.mutex);
	if (r)
		goto fail;

	for (c = i = 0; i < num_msgs; i++) {
		if (!(msg[i].flags & I2C_M_RD)) {
			c += msg[i].len;
			continue;
		}
		for (j = 0; j < msg[i].len; j++, c++) {
			SwI2cCmd_t *cmd = &res->SwI2cCmds[c];

			msg[i].buf[j] = cmd->ReadWriteData;
		}
	}
	r = num_msgs;
fail:
	kfree(req);
	return r;
}

static u32 smu_v13_0_6_i2c_func(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}

static const struct i2c_algorithm smu_v13_0_6_i2c_algo = {
	.master_xfer = smu_v13_0_6_i2c_xfer,
	.functionality = smu_v13_0_6_i2c_func,
};

static const struct i2c_adapter_quirks smu_v13_0_6_i2c_control_quirks = {
	.flags = I2C_AQ_COMB | I2C_AQ_COMB_SAME_ADDR | I2C_AQ_NO_ZERO_LEN,
	.max_read_len = MAX_SW_I2C_COMMANDS,
	.max_write_len = MAX_SW_I2C_COMMANDS,
	.max_comb_1st_msg_len = 2,
	.max_comb_2nd_msg_len = MAX_SW_I2C_COMMANDS - 2,
};

static int smu_v13_0_6_i2c_control_init(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int res, i;

	for (i = 0; i < MAX_SMU_I2C_BUSES; i++) {
		struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i];
		struct i2c_adapter *control = &smu_i2c->adapter;

		smu_i2c->adev = adev;
		smu_i2c->port = i;
		mutex_init(&smu_i2c->mutex);
		control->owner = THIS_MODULE;
		control->class = I2C_CLASS_SPD;
		control->dev.parent = &adev->pdev->dev;
		control->algo = &smu_v13_0_6_i2c_algo;
		snprintf(control->name, sizeof(control->name), "AMDGPU SMU %d", i);
		control->quirks = &smu_v13_0_6_i2c_control_quirks;
		i2c_set_adapdata(control, smu_i2c);

		res = i2c_add_adapter(control);
		if (res) {
			DRM_ERROR("Failed to register hw i2c, err: %d\n", res);
			goto Out_err;
		}
	}

	adev->pm.ras_eeprom_i2c_bus = &adev->pm.smu_i2c[0].adapter;
	adev->pm.fru_eeprom_i2c_bus = &adev->pm.smu_i2c[0].adapter;

	return 0;
Out_err:
	for ( ; i >= 0; i--) {
		struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i];
		struct i2c_adapter *control = &smu_i2c->adapter;

		i2c_del_adapter(control);
	}
	return res;
}

static void smu_v13_0_6_i2c_control_fini(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int i;

	for (i = 0; i < MAX_SMU_I2C_BUSES; i++) {
		struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i];
		struct i2c_adapter *control = &smu_i2c->adapter;

		i2c_del_adapter(control);
	}
	adev->pm.ras_eeprom_i2c_bus = NULL;
	adev->pm.fru_eeprom_i2c_bus = NULL;
}

static void smu_v13_0_6_get_unique_id(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	//SmuMetrics_t *metrics = smu->smu_table.metrics_table;
	uint32_t upper32 = 0, lower32 = 0;
	int ret;

	ret = smu_cmn_get_metrics_table(smu, NULL, false);
	if (ret)
		goto out;

	//upper32 = metrics->PublicSerialNumUpper32;
	//lower32 = metrics->PublicSerialNumLower32;

out:
	adev->unique_id = ((uint64_t)upper32 << 32) | lower32;
	if (adev->serial[0] == '\0')
		sprintf(adev->serial, "%016llx", adev->unique_id);
}

static bool smu_v13_0_6_is_baco_supported(struct smu_context *smu)
{
	/* smu_13_0_6 does not support baco */

	return false;
}

static int smu_v13_0_6_set_df_cstate(struct smu_context *smu,
				     enum pp_df_cstate state)
{
	return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DFCstateControl,
					       state, NULL);
}

static int smu_v13_0_6_allow_xgmi_power_down(struct smu_context *smu, bool en)
{
	return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GmiPwrDnControl,
					       en ? 0 : 1, NULL);
}

static const struct throttling_logging_label {
	uint32_t feature_mask;
	const char *label;
} logging_label[] = {
	{ (1U << THROTTLER_TEMP_HBM_BIT), "HBM" },
	{ (1U << THROTTLER_TEMP_SOC_BIT), "SOC" },
	{ (1U << THROTTLER_TEMP_VR_GFX_BIT), "VR limit" },
};
static void smu_v13_0_6_log_thermal_throttling_event(struct smu_context *smu)
{
	int ret;
	int throttler_idx, throtting_events = 0, buf_idx = 0;
	struct amdgpu_device *adev = smu->adev;
	uint32_t throttler_status;
	char log_buf[256];

	ret = smu_v13_0_6_get_smu_metrics_data(smu, METRICS_THROTTLER_STATUS,
					      &throttler_status);
	if (ret)
		return;

	memset(log_buf, 0, sizeof(log_buf));
	for (throttler_idx = 0; throttler_idx < ARRAY_SIZE(logging_label);
	     throttler_idx++) {
		if (throttler_status &
		    logging_label[throttler_idx].feature_mask) {
			throtting_events++;
			buf_idx += snprintf(log_buf + buf_idx,
					    sizeof(log_buf) - buf_idx, "%s%s",
					    throtting_events > 1 ? " and " : "",
					    logging_label[throttler_idx].label);
			if (buf_idx >= sizeof(log_buf)) {
				dev_err(adev->dev, "buffer overflow!\n");
				log_buf[sizeof(log_buf) - 1] = '\0';
				break;
			}
		}
	}

	dev_warn(
		adev->dev,
		"WARN: GPU thermal throttling temperature reached, expect performance decrease. %s.\n",
		log_buf);
	kgd2kfd_smi_event_throttle(
		smu->adev->kfd.dev,
		smu_cmn_get_indep_throttler_status(throttler_status,
						   smu_v13_0_6_throttler_map));
}

static int smu_v13_0_6_get_current_pcie_link_speed(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t esm_ctrl;

	/* TODO: confirm this on real target */
	esm_ctrl = RREG32_PCIE(smnPCIE_ESM_CTRL);
	if ((esm_ctrl >> 15) & 0x1FFFF)
		return (((esm_ctrl >> 8) & 0x3F) + 128);

	return smu_v13_0_get_current_pcie_link_speed(smu);
}

static ssize_t smu_v13_0_6_get_gpu_metrics(struct smu_context *smu, void **table)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct gpu_metrics_v1_3 *gpu_metrics =
		(struct gpu_metrics_v1_3 *)smu_table->gpu_metrics_table;
	MetricsTable_t *metrics;
	int i, ret = 0;

	metrics = kzalloc(sizeof(MetricsTable_t), GFP_KERNEL);
	ret = smu_v13_0_6_get_metrics_table(smu, metrics, true);
	if (ret)
		return ret;

	smu_cmn_init_soft_gpu_metrics(gpu_metrics, 1, 3);

	/* TODO: Decide on how to fill in zero value fields */
	gpu_metrics->temperature_edge = 0;
	gpu_metrics->temperature_hotspot = 0;
	gpu_metrics->temperature_mem = 0;
	gpu_metrics->temperature_vrgfx = 0;
	gpu_metrics->temperature_vrsoc = 0;
	gpu_metrics->temperature_vrmem = 0;

	gpu_metrics->average_gfx_activity = 0;
	gpu_metrics->average_umc_activity = 0;
	gpu_metrics->average_mm_activity = 0;

	gpu_metrics->average_socket_power = 0;
	gpu_metrics->energy_accumulator = 0;

	gpu_metrics->average_gfxclk_frequency = 0;
	gpu_metrics->average_socclk_frequency = 0;
	gpu_metrics->average_uclk_frequency = 0;
	gpu_metrics->average_vclk0_frequency = 0;
	gpu_metrics->average_dclk0_frequency = 0;

	gpu_metrics->current_gfxclk = 0;
	gpu_metrics->current_socclk = 0;
	gpu_metrics->current_uclk = 0;
	gpu_metrics->current_vclk0 = 0;
	gpu_metrics->current_dclk0 = 0;

	gpu_metrics->throttle_status = 0;
	gpu_metrics->indep_throttle_status = smu_cmn_get_indep_throttler_status(
		gpu_metrics->throttle_status, smu_v13_0_6_throttler_map);

	gpu_metrics->current_fan_speed = 0;

	gpu_metrics->pcie_link_width = 0;
	gpu_metrics->pcie_link_speed = smu_v13_0_6_get_current_pcie_link_speed(smu);

	gpu_metrics->system_clock_counter = ktime_get_boottime_ns();

	gpu_metrics->gfx_activity_acc = 0;
	gpu_metrics->mem_activity_acc = 0;

	for (i = 0; i < NUM_HBM_INSTANCES; i++)
		gpu_metrics->temperature_hbm[i] = 0;

	gpu_metrics->firmware_timestamp = 0;

	*table = (void *)gpu_metrics;
	kfree(metrics);

	return sizeof(struct gpu_metrics_v1_3);
}

static int smu_v13_0_6_mode2_reset(struct smu_context *smu)
{
	u32 smu_version;
	int ret = 0, index;
	struct amdgpu_device *adev = smu->adev;
	int timeout = 10;

	smu_cmn_get_smc_version(smu, NULL, &smu_version);

	index = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG,
					       SMU_MSG_GfxDeviceDriverReset);

	mutex_lock(&smu->message_lock);
	ret = smu_cmn_send_msg_without_waiting(smu, (uint16_t)index,
					       SMU_RESET_MODE_2);
	/* This is similar to FLR, wait till max FLR timeout */
	msleep(100);
	dev_dbg(smu->adev->dev, "restore config space...\n");
	/* Restore the config space saved during init */
	amdgpu_device_load_pci_state(adev->pdev);

	dev_dbg(smu->adev->dev, "wait for reset ack\n");
	while (ret == -ETIME && timeout) {
		ret = smu_cmn_wait_for_response(smu);
		/* Wait a bit more time for getting ACK */
		if (ret == -ETIME) {
			--timeout;
			usleep_range(500, 1000);
			continue;
		}

		if (ret != 1) {
			dev_err(adev->dev,
				"failed to send mode2 message \tparam: 0x%08x response %#x\n",
				SMU_RESET_MODE_2, ret);
			goto out;
		}
	}

	if (ret == 1)
		ret = 0;
out:
	mutex_unlock(&smu->message_lock);

	return ret;
}

static int smu_v13_0_6_mode1_reset(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	struct amdgpu_ras *ras;
	u32 fatal_err, param;
	int ret = 0;

	ras = amdgpu_ras_get_context(adev);
	fatal_err = 0;
	param = SMU_RESET_MODE_1;

	/* fatal error triggered by ras, PMFW supports the flag */
	if (ras && atomic_read(&ras->in_recovery))
		fatal_err = 1;

	param |= (fatal_err << 16);
	ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GfxDeviceDriverReset,
					      param, NULL);

	if (!ret)
		msleep(SMU13_MODE1_RESET_WAIT_TIME_IN_MS);

	return ret;
}

static bool smu_v13_0_6_is_mode1_reset_supported(struct smu_context *smu)
{
	/* TODO: Enable this when FW support is added */
	return false;
}

static bool smu_v13_0_6_is_mode2_reset_supported(struct smu_context *smu)
{
	return true;
}

static int smu_v13_0_6_smu_send_hbm_bad_page_num(struct smu_context *smu,
						 uint32_t size)
{
	int ret = 0;

	/* message SMU to update the bad page number on SMUBUS */
	ret = smu_cmn_send_smc_msg_with_param(
		smu, SMU_MSG_SetNumBadHbmPagesRetired, size, NULL);
	if (ret)
		dev_err(smu->adev->dev,
			"[%s] failed to message SMU to update HBM bad pages number\n",
			__func__);

	return ret;
}

static const struct pptable_funcs smu_v13_0_6_ppt_funcs = {
	/* init dpm */
	.get_allowed_feature_mask = smu_v13_0_6_get_allowed_feature_mask,
	/* dpm/clk tables */
	.set_default_dpm_table = smu_v13_0_6_set_default_dpm_table,
	.populate_umd_state_clk = smu_v13_0_6_populate_umd_state_clk,
	.print_clk_levels = smu_v13_0_6_print_clk_levels,
	.force_clk_levels = smu_v13_0_6_force_clk_levels,
	.read_sensor = smu_v13_0_6_read_sensor,
	.set_performance_level = smu_v13_0_6_set_performance_level,
	.get_power_limit = smu_v13_0_6_get_power_limit,
	.is_dpm_running = smu_v13_0_6_is_dpm_running,
	.get_unique_id = smu_v13_0_6_get_unique_id,
	.init_smc_tables = smu_v13_0_6_init_smc_tables,
	.fini_smc_tables = smu_v13_0_fini_smc_tables,
	.init_power = smu_v13_0_init_power,
	.fini_power = smu_v13_0_fini_power,
	.check_fw_status = smu_v13_0_6_check_fw_status,
	/* pptable related */
	.check_fw_version = smu_v13_0_check_fw_version,
	.set_driver_table_location = smu_v13_0_set_driver_table_location,
	.set_tool_table_location = smu_v13_0_set_tool_table_location,
	.notify_memory_pool_location = smu_v13_0_notify_memory_pool_location,
	.system_features_control = smu_v13_0_6_system_features_control,
	.send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param,
	.send_smc_msg = smu_cmn_send_smc_msg,
	.get_enabled_mask = smu_v13_0_6_get_enabled_mask,
	.feature_is_enabled = smu_cmn_feature_is_enabled,
	.set_power_limit = smu_v13_0_6_set_power_limit,
	.set_xgmi_pstate = smu_v13_0_set_xgmi_pstate,
	/* TODO: Thermal limits unknown, skip these for now
	.register_irq_handler = smu_v13_0_register_irq_handler,
	.enable_thermal_alert = smu_v13_0_enable_thermal_alert,
	.disable_thermal_alert = smu_v13_0_disable_thermal_alert,
	*/
	.setup_pptable = smu_v13_0_6_setup_pptable,
	.baco_is_support = smu_v13_0_6_is_baco_supported,
	.get_dpm_ultimate_freq = smu_v13_0_6_get_dpm_ultimate_freq,
	.set_soft_freq_limited_range = smu_v13_0_6_set_soft_freq_limited_range,
	.od_edit_dpm_table = smu_v13_0_6_usr_edit_dpm_table,
	.set_df_cstate = smu_v13_0_6_set_df_cstate,
	.allow_xgmi_power_down = smu_v13_0_6_allow_xgmi_power_down,
	.log_thermal_throttling_event = smu_v13_0_6_log_thermal_throttling_event,
	.get_pp_feature_mask = smu_cmn_get_pp_feature_mask,
	.set_pp_feature_mask = smu_cmn_set_pp_feature_mask,
	.get_gpu_metrics = smu_v13_0_6_get_gpu_metrics,
	.mode1_reset_is_support = smu_v13_0_6_is_mode1_reset_supported,
	.mode2_reset_is_support = smu_v13_0_6_is_mode2_reset_supported,
	.mode1_reset = smu_v13_0_6_mode1_reset,
	.mode2_reset = smu_v13_0_6_mode2_reset,
	.wait_for_event = smu_v13_0_wait_for_event,
	.i2c_init = smu_v13_0_6_i2c_control_init,
	.i2c_fini = smu_v13_0_6_i2c_control_fini,
	.send_hbm_bad_pages_num = smu_v13_0_6_smu_send_hbm_bad_page_num,
};

void smu_v13_0_6_set_ppt_funcs(struct smu_context *smu)
{
	smu->ppt_funcs = &smu_v13_0_6_ppt_funcs;
	smu->message_map = smu_v13_0_6_message_map;
	smu->clock_map = smu_v13_0_6_clk_map;
	smu->feature_map = smu_v13_0_6_feature_mask_map;
	smu->table_map = smu_v13_0_6_table_map;
	smu_v13_0_set_smu_mailbox_registers(smu);
}