Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jens Axboe | 1026 | 39.06% | 26 | 24.76% |
John Garry | 406 | 15.45% | 17 | 16.19% |
Ming Lei | 396 | 15.07% | 14 | 13.33% |
Omar Sandoval | 352 | 13.40% | 4 | 3.81% |
Christoph Hellwig | 85 | 3.24% | 9 | 8.57% |
Sagi Grimberg | 58 | 2.21% | 5 | 4.76% |
Lei Ming | 52 | 1.98% | 1 | 0.95% |
Keith Busch | 52 | 1.98% | 4 | 3.81% |
qiulaibin | 51 | 1.94% | 1 | 0.95% |
yu kuai | 38 | 1.45% | 1 | 0.95% |
Bart Van Assche | 27 | 1.03% | 3 | 2.86% |
Hannes Reinecke | 16 | 0.61% | 1 | 0.95% |
Shaohua Li | 14 | 0.53% | 1 | 0.95% |
Sam Bradshaw | 12 | 0.46% | 1 | 0.95% |
Tian Lan | 9 | 0.34% | 1 | 0.95% |
Andrew Morton | 9 | 0.34% | 3 | 2.86% |
Tejun Heo | 7 | 0.27% | 2 | 1.90% |
Jianchao Wang | 6 | 0.23% | 2 | 1.90% |
Linus Torvalds (pre-git) | 5 | 0.19% | 3 | 2.86% |
Liu Song | 1 | 0.04% | 1 | 0.95% |
Linus Torvalds | 1 | 0.04% | 1 | 0.95% |
Baolin Wang | 1 | 0.04% | 1 | 0.95% |
Josef Bacik | 1 | 0.04% | 1 | 0.95% |
Dan J Williams | 1 | 0.04% | 1 | 0.95% |
Bhaskar Chowdhury | 1 | 0.04% | 1 | 0.95% |
Total | 2627 | 105 |
// SPDX-License-Identifier: GPL-2.0 /* * Tag allocation using scalable bitmaps. Uses active queue tracking to support * fairer distribution of tags between multiple submitters when a shared tag map * is used. * * Copyright (C) 2013-2014 Jens Axboe */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/delay.h> #include "blk.h" #include "blk-mq.h" #include "blk-mq-sched.h" /* * Recalculate wakeup batch when tag is shared by hctx. */ static void blk_mq_update_wake_batch(struct blk_mq_tags *tags, unsigned int users) { if (!users) return; sbitmap_queue_recalculate_wake_batch(&tags->bitmap_tags, users); sbitmap_queue_recalculate_wake_batch(&tags->breserved_tags, users); } /* * If a previously inactive queue goes active, bump the active user count. * We need to do this before try to allocate driver tag, then even if fail * to get tag when first time, the other shared-tag users could reserve * budget for it. */ void __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) { unsigned int users; struct blk_mq_tags *tags = hctx->tags; /* * calling test_bit() prior to test_and_set_bit() is intentional, * it avoids dirtying the cacheline if the queue is already active. */ if (blk_mq_is_shared_tags(hctx->flags)) { struct request_queue *q = hctx->queue; if (test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags) || test_and_set_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags)) return; } else { if (test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) || test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) return; } spin_lock_irq(&tags->lock); users = tags->active_queues + 1; WRITE_ONCE(tags->active_queues, users); blk_mq_update_wake_batch(tags, users); spin_unlock_irq(&tags->lock); } /* * Wakeup all potentially sleeping on tags */ void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) { sbitmap_queue_wake_all(&tags->bitmap_tags); if (include_reserve) sbitmap_queue_wake_all(&tags->breserved_tags); } /* * If a previously busy queue goes inactive, potential waiters could now * be allowed to queue. Wake them up and check. */ void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) { struct blk_mq_tags *tags = hctx->tags; unsigned int users; if (blk_mq_is_shared_tags(hctx->flags)) { struct request_queue *q = hctx->queue; if (!test_and_clear_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags)) return; } else { if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) return; } spin_lock_irq(&tags->lock); users = tags->active_queues - 1; WRITE_ONCE(tags->active_queues, users); blk_mq_update_wake_batch(tags, users); spin_unlock_irq(&tags->lock); blk_mq_tag_wakeup_all(tags, false); } static int __blk_mq_get_tag(struct blk_mq_alloc_data *data, struct sbitmap_queue *bt) { if (!data->q->elevator && !(data->flags & BLK_MQ_REQ_RESERVED) && !hctx_may_queue(data->hctx, bt)) return BLK_MQ_NO_TAG; if (data->shallow_depth) return sbitmap_queue_get_shallow(bt, data->shallow_depth); else return __sbitmap_queue_get(bt); } unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags, unsigned int *offset) { struct blk_mq_tags *tags = blk_mq_tags_from_data(data); struct sbitmap_queue *bt = &tags->bitmap_tags; unsigned long ret; if (data->shallow_depth ||data->flags & BLK_MQ_REQ_RESERVED || data->hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) return 0; ret = __sbitmap_queue_get_batch(bt, nr_tags, offset); *offset += tags->nr_reserved_tags; return ret; } unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) { struct blk_mq_tags *tags = blk_mq_tags_from_data(data); struct sbitmap_queue *bt; struct sbq_wait_state *ws; DEFINE_SBQ_WAIT(wait); unsigned int tag_offset; int tag; if (data->flags & BLK_MQ_REQ_RESERVED) { if (unlikely(!tags->nr_reserved_tags)) { WARN_ON_ONCE(1); return BLK_MQ_NO_TAG; } bt = &tags->breserved_tags; tag_offset = 0; } else { bt = &tags->bitmap_tags; tag_offset = tags->nr_reserved_tags; } tag = __blk_mq_get_tag(data, bt); if (tag != BLK_MQ_NO_TAG) goto found_tag; if (data->flags & BLK_MQ_REQ_NOWAIT) return BLK_MQ_NO_TAG; ws = bt_wait_ptr(bt, data->hctx); do { struct sbitmap_queue *bt_prev; /* * We're out of tags on this hardware queue, kick any * pending IO submits before going to sleep waiting for * some to complete. */ blk_mq_run_hw_queue(data->hctx, false); /* * Retry tag allocation after running the hardware queue, * as running the queue may also have found completions. */ tag = __blk_mq_get_tag(data, bt); if (tag != BLK_MQ_NO_TAG) break; sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE); tag = __blk_mq_get_tag(data, bt); if (tag != BLK_MQ_NO_TAG) break; bt_prev = bt; io_schedule(); sbitmap_finish_wait(bt, ws, &wait); data->ctx = blk_mq_get_ctx(data->q); data->hctx = blk_mq_map_queue(data->q, data->cmd_flags, data->ctx); tags = blk_mq_tags_from_data(data); if (data->flags & BLK_MQ_REQ_RESERVED) bt = &tags->breserved_tags; else bt = &tags->bitmap_tags; /* * If destination hw queue is changed, fake wake up on * previous queue for compensating the wake up miss, so * other allocations on previous queue won't be starved. */ if (bt != bt_prev) sbitmap_queue_wake_up(bt_prev, 1); ws = bt_wait_ptr(bt, data->hctx); } while (1); sbitmap_finish_wait(bt, ws, &wait); found_tag: /* * Give up this allocation if the hctx is inactive. The caller will * retry on an active hctx. */ if (unlikely(test_bit(BLK_MQ_S_INACTIVE, &data->hctx->state))) { blk_mq_put_tag(tags, data->ctx, tag + tag_offset); return BLK_MQ_NO_TAG; } return tag + tag_offset; } void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx, unsigned int tag) { if (!blk_mq_tag_is_reserved(tags, tag)) { const int real_tag = tag - tags->nr_reserved_tags; BUG_ON(real_tag >= tags->nr_tags); sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu); } else { sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu); } } void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags) { sbitmap_queue_clear_batch(&tags->bitmap_tags, tags->nr_reserved_tags, tag_array, nr_tags); } struct bt_iter_data { struct blk_mq_hw_ctx *hctx; struct request_queue *q; busy_tag_iter_fn *fn; void *data; bool reserved; }; static struct request *blk_mq_find_and_get_req(struct blk_mq_tags *tags, unsigned int bitnr) { struct request *rq; unsigned long flags; spin_lock_irqsave(&tags->lock, flags); rq = tags->rqs[bitnr]; if (!rq || rq->tag != bitnr || !req_ref_inc_not_zero(rq)) rq = NULL; spin_unlock_irqrestore(&tags->lock, flags); return rq; } static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) { struct bt_iter_data *iter_data = data; struct blk_mq_hw_ctx *hctx = iter_data->hctx; struct request_queue *q = iter_data->q; struct blk_mq_tag_set *set = q->tag_set; struct blk_mq_tags *tags; struct request *rq; bool ret = true; if (blk_mq_is_shared_tags(set->flags)) tags = set->shared_tags; else tags = hctx->tags; if (!iter_data->reserved) bitnr += tags->nr_reserved_tags; /* * We can hit rq == NULL here, because the tagging functions * test and set the bit before assigning ->rqs[]. */ rq = blk_mq_find_and_get_req(tags, bitnr); if (!rq) return true; if (rq->q == q && (!hctx || rq->mq_hctx == hctx)) ret = iter_data->fn(rq, iter_data->data); blk_mq_put_rq_ref(rq); return ret; } /** * bt_for_each - iterate over the requests associated with a hardware queue * @hctx: Hardware queue to examine. * @q: Request queue to examine. * @bt: sbitmap to examine. This is either the breserved_tags member * or the bitmap_tags member of struct blk_mq_tags. * @fn: Pointer to the function that will be called for each request * associated with @hctx that has been assigned a driver tag. * @fn will be called as follows: @fn(@hctx, rq, @data, @reserved) * where rq is a pointer to a request. Return true to continue * iterating tags, false to stop. * @data: Will be passed as third argument to @fn. * @reserved: Indicates whether @bt is the breserved_tags member or the * bitmap_tags member of struct blk_mq_tags. */ static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct request_queue *q, struct sbitmap_queue *bt, busy_tag_iter_fn *fn, void *data, bool reserved) { struct bt_iter_data iter_data = { .hctx = hctx, .fn = fn, .data = data, .reserved = reserved, .q = q, }; sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data); } struct bt_tags_iter_data { struct blk_mq_tags *tags; busy_tag_iter_fn *fn; void *data; unsigned int flags; }; #define BT_TAG_ITER_RESERVED (1 << 0) #define BT_TAG_ITER_STARTED (1 << 1) #define BT_TAG_ITER_STATIC_RQS (1 << 2) static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) { struct bt_tags_iter_data *iter_data = data; struct blk_mq_tags *tags = iter_data->tags; struct request *rq; bool ret = true; bool iter_static_rqs = !!(iter_data->flags & BT_TAG_ITER_STATIC_RQS); if (!(iter_data->flags & BT_TAG_ITER_RESERVED)) bitnr += tags->nr_reserved_tags; /* * We can hit rq == NULL here, because the tagging functions * test and set the bit before assigning ->rqs[]. */ if (iter_static_rqs) rq = tags->static_rqs[bitnr]; else rq = blk_mq_find_and_get_req(tags, bitnr); if (!rq) return true; if (!(iter_data->flags & BT_TAG_ITER_STARTED) || blk_mq_request_started(rq)) ret = iter_data->fn(rq, iter_data->data); if (!iter_static_rqs) blk_mq_put_rq_ref(rq); return ret; } /** * bt_tags_for_each - iterate over the requests in a tag map * @tags: Tag map to iterate over. * @bt: sbitmap to examine. This is either the breserved_tags member * or the bitmap_tags member of struct blk_mq_tags. * @fn: Pointer to the function that will be called for each started * request. @fn will be called as follows: @fn(rq, @data, * @reserved) where rq is a pointer to a request. Return true * to continue iterating tags, false to stop. * @data: Will be passed as second argument to @fn. * @flags: BT_TAG_ITER_* */ static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt, busy_tag_iter_fn *fn, void *data, unsigned int flags) { struct bt_tags_iter_data iter_data = { .tags = tags, .fn = fn, .data = data, .flags = flags, }; if (tags->rqs) sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data); } static void __blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn, void *priv, unsigned int flags) { WARN_ON_ONCE(flags & BT_TAG_ITER_RESERVED); if (tags->nr_reserved_tags) bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, flags | BT_TAG_ITER_RESERVED); bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, flags); } /** * blk_mq_all_tag_iter - iterate over all requests in a tag map * @tags: Tag map to iterate over. * @fn: Pointer to the function that will be called for each * request. @fn will be called as follows: @fn(rq, @priv, * reserved) where rq is a pointer to a request. 'reserved' * indicates whether or not @rq is a reserved request. Return * true to continue iterating tags, false to stop. * @priv: Will be passed as second argument to @fn. * * Caller has to pass the tag map from which requests are allocated. */ void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn, void *priv) { __blk_mq_all_tag_iter(tags, fn, priv, BT_TAG_ITER_STATIC_RQS); } /** * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set * @tagset: Tag set to iterate over. * @fn: Pointer to the function that will be called for each started * request. @fn will be called as follows: @fn(rq, @priv, * reserved) where rq is a pointer to a request. 'reserved' * indicates whether or not @rq is a reserved request. Return * true to continue iterating tags, false to stop. * @priv: Will be passed as second argument to @fn. * * We grab one request reference before calling @fn and release it after * @fn returns. */ void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, busy_tag_iter_fn *fn, void *priv) { unsigned int flags = tagset->flags; int i, nr_tags; nr_tags = blk_mq_is_shared_tags(flags) ? 1 : tagset->nr_hw_queues; for (i = 0; i < nr_tags; i++) { if (tagset->tags && tagset->tags[i]) __blk_mq_all_tag_iter(tagset->tags[i], fn, priv, BT_TAG_ITER_STARTED); } } EXPORT_SYMBOL(blk_mq_tagset_busy_iter); static bool blk_mq_tagset_count_completed_rqs(struct request *rq, void *data) { unsigned *count = data; if (blk_mq_request_completed(rq)) (*count)++; return true; } /** * blk_mq_tagset_wait_completed_request - Wait until all scheduled request * completions have finished. * @tagset: Tag set to drain completed request * * Note: This function has to be run after all IO queues are shutdown */ void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset) { while (true) { unsigned count = 0; blk_mq_tagset_busy_iter(tagset, blk_mq_tagset_count_completed_rqs, &count); if (!count) break; msleep(5); } } EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request); /** * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag * @q: Request queue to examine. * @fn: Pointer to the function that will be called for each request * on @q. @fn will be called as follows: @fn(hctx, rq, @priv, * reserved) where rq is a pointer to a request and hctx points * to the hardware queue associated with the request. 'reserved' * indicates whether or not @rq is a reserved request. * @priv: Will be passed as third argument to @fn. * * Note: if @q->tag_set is shared with other request queues then @fn will be * called for all requests on all queues that share that tag set and not only * for requests associated with @q. */ void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn, void *priv) { /* * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and hctx_table * while the queue is frozen. So we can use q_usage_counter to avoid * racing with it. */ if (!percpu_ref_tryget(&q->q_usage_counter)) return; if (blk_mq_is_shared_tags(q->tag_set->flags)) { struct blk_mq_tags *tags = q->tag_set->shared_tags; struct sbitmap_queue *bresv = &tags->breserved_tags; struct sbitmap_queue *btags = &tags->bitmap_tags; if (tags->nr_reserved_tags) bt_for_each(NULL, q, bresv, fn, priv, true); bt_for_each(NULL, q, btags, fn, priv, false); } else { struct blk_mq_hw_ctx *hctx; unsigned long i; queue_for_each_hw_ctx(q, hctx, i) { struct blk_mq_tags *tags = hctx->tags; struct sbitmap_queue *bresv = &tags->breserved_tags; struct sbitmap_queue *btags = &tags->bitmap_tags; /* * If no software queues are currently mapped to this * hardware queue, there's nothing to check */ if (!blk_mq_hw_queue_mapped(hctx)) continue; if (tags->nr_reserved_tags) bt_for_each(hctx, q, bresv, fn, priv, true); bt_for_each(hctx, q, btags, fn, priv, false); } } blk_queue_exit(q); } static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth, bool round_robin, int node) { return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL, node); } int blk_mq_init_bitmaps(struct sbitmap_queue *bitmap_tags, struct sbitmap_queue *breserved_tags, unsigned int queue_depth, unsigned int reserved, int node, int alloc_policy) { unsigned int depth = queue_depth - reserved; bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR; if (bt_alloc(bitmap_tags, depth, round_robin, node)) return -ENOMEM; if (bt_alloc(breserved_tags, reserved, round_robin, node)) goto free_bitmap_tags; return 0; free_bitmap_tags: sbitmap_queue_free(bitmap_tags); return -ENOMEM; } struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, unsigned int reserved_tags, int node, int alloc_policy) { struct blk_mq_tags *tags; if (total_tags > BLK_MQ_TAG_MAX) { pr_err("blk-mq: tag depth too large\n"); return NULL; } tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); if (!tags) return NULL; tags->nr_tags = total_tags; tags->nr_reserved_tags = reserved_tags; spin_lock_init(&tags->lock); if (blk_mq_init_bitmaps(&tags->bitmap_tags, &tags->breserved_tags, total_tags, reserved_tags, node, alloc_policy) < 0) { kfree(tags); return NULL; } return tags; } void blk_mq_free_tags(struct blk_mq_tags *tags) { sbitmap_queue_free(&tags->bitmap_tags); sbitmap_queue_free(&tags->breserved_tags); kfree(tags); } int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags **tagsptr, unsigned int tdepth, bool can_grow) { struct blk_mq_tags *tags = *tagsptr; if (tdepth <= tags->nr_reserved_tags) return -EINVAL; /* * If we are allowed to grow beyond the original size, allocate * a new set of tags before freeing the old one. */ if (tdepth > tags->nr_tags) { struct blk_mq_tag_set *set = hctx->queue->tag_set; struct blk_mq_tags *new; if (!can_grow) return -EINVAL; /* * We need some sort of upper limit, set it high enough that * no valid use cases should require more. */ if (tdepth > MAX_SCHED_RQ) return -EINVAL; /* * Only the sbitmap needs resizing since we allocated the max * initially. */ if (blk_mq_is_shared_tags(set->flags)) return 0; new = blk_mq_alloc_map_and_rqs(set, hctx->queue_num, tdepth); if (!new) return -ENOMEM; blk_mq_free_map_and_rqs(set, *tagsptr, hctx->queue_num); *tagsptr = new; } else { /* * Don't need (or can't) update reserved tags here, they * remain static and should never need resizing. */ sbitmap_queue_resize(&tags->bitmap_tags, tdepth - tags->nr_reserved_tags); } return 0; } void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set, unsigned int size) { struct blk_mq_tags *tags = set->shared_tags; sbitmap_queue_resize(&tags->bitmap_tags, size - set->reserved_tags); } void blk_mq_tag_update_sched_shared_tags(struct request_queue *q) { sbitmap_queue_resize(&q->sched_shared_tags->bitmap_tags, q->nr_requests - q->tag_set->reserved_tags); } /** * blk_mq_unique_tag() - return a tag that is unique queue-wide * @rq: request for which to compute a unique tag * * The tag field in struct request is unique per hardware queue but not over * all hardware queues. Hence this function that returns a tag with the * hardware context index in the upper bits and the per hardware queue tag in * the lower bits. * * Note: When called for a request that is queued on a non-multiqueue request * queue, the hardware context index is set to zero. */ u32 blk_mq_unique_tag(struct request *rq) { return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) | (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); } EXPORT_SYMBOL(blk_mq_unique_tag);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1